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Abstract

We propose an improvement on the Fast Gauss Transform which was presented
by Greengard and Sun [Documenta Mathematica, Extra volume ICM 1998, III,
pp.575-584(1998)]. In their method, plane waves are used to approximate the Gauss
kernel. Plane waves they used were generated by the Fourier integral and the trape-
zoidal rule. We propose different plane waves, which enables us to calculate the Fast
Gauss Transform more efficiently.

§1. Introduction

The Gauss transform

Gδf(x) = (πδ)−d/2

∫
Γ

e−|x−y|2/δf(y)dy (δ > 0 ),

where δ is a given parameter and Γ is a prescribed subset of R
d, appears in many

problems of mathematics and applied mathematics, such as initial/boundary
value problems for the heat equation[1]. Accordingly its discrete versions are
of importance in numerical analysis.

In this paper, we consider the following discrete Gauss transform

G(x) =
N∑

j=1

qje
−|x−sj |2/δ,
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786 Kenta Kobayashi

where coefficients qj ∈ R and source location sj ∈ R
d are given. The problem

is, then, to compute G(x) at prescribed points xj ∈ R
d (j = 1, 2, . . . , M).

If we are required to evaluate G(x) at M target points, the number of
operations to calculate them directly is O(NM). If both M and N are large,
the cost of computation can be very expensive. To deal with this difficulty,
Greengard and Strain invented a Fast Gauss Transform using the Hermite
polynomials. This algorithm can calculate the discrete Gauss transform with
O(N +M) work by admitting certain acceptable errors [2]. In 1998, Greengard
and Sun [3] proposed a new version of the Fast Gauss Transform, which was
significantly faster than the previous version. The method of [2] is based on the
approximation of the Gauss Kernel by the Hermite expansion. The algorithm of
[3], however, approximates the Gauss Kernel by the plane waves, which enabled
them to have quite an important.

In this paper, we propose a further improvement on the Fast Gauss Trans-
form in [3]. We outline in section 2 the Fast Gauss Transform in [3]. Our
improvement is presented in section 3. Effectiveness of our method is illus-
trated in section 4 by numerical example. Conclusions are given in section 5.

§2. An Outline of the Fast Gauss Transform
by Greengard and Sun

In this section, we outline their new version of the Fast Gauss Transform.
The reader should consult [3] for details.

The fast Gauss transform is an analysis-based fast algorithm like the fast
multipole methods for the Laplace and Helmholtz equations [4]. The differ-
ence between analysis-based fast algorithms and others like the Fast Fourier
Transform is that the former accompanies a truncation error, while the latter
is exact. Although an error exists, it can be made arbitrarily small. Further,
analysis-based algorithms can be used in a variety of problems in which FFT
alone is of limited use.

Their algorithm can be used in arbitrary dimensions. However, for the
sake of brevity, we deal with only the one-dimensional case.

They divide the interval containing all the source and target points into
subintervals of length c

√
δ (they use

√
δ in their paper but we added c for gen-

eralization) denoted by I1, I2, . . . , IL with center u1, u2, . . . , uL, respectively.
Their method is based on an approximation of the Gauss kernel by plane

waves. The Gauss kernel is approximated by a linear combination of plane
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waves as follows:

Ej(x) =


P∑

k=1

akeibk(x−sj)/
√

δ ( |l − w| ≤ r where sj ∈ Il, x ∈ Iw )

0 ( |l − w| > r where sj ∈ Il, x ∈ Iw ),

where r is a given integer and specifies the range of approximation by plane
waves. The accuracy of this approximation is based on how to choose parame-
ters P , ak and bk. We describe it later.

In this case, ∣∣∣e−|x−sj |2/δ − Ej(x)
∣∣∣ ≤ max(ε1, ε2)

where

ε1 = max
|x|≤(r+1)c

∣∣∣∣∣e−x2 −
P∑

k=1

akeibkx

∣∣∣∣∣ , ε2 = e−(cr)2 .(2.1)

Accordingly, G(x) is approximated by
∑N

j=1 qjEj(x) = G̃(x) as

∣∣∣G(x) − G̃(x)
∣∣∣ ≤ Q max(ε1, ε2) where Q =

N∑
j=1

|qj |.

At first, we calculate the partial sum of Ej(x) at every intervals

∑
sj∈Il

qjEj(x) =


P∑

k=1

Alkeibk(x−ul)/
√

δ (|l − w| ≤ r where sj ∈ Il, x ∈ Iw)

0 (|l − w| > r where sj ∈ Il, x ∈ Iw),

where coefficients Alk are given by

Alk =
∑

sj∈Il

qjakeibk(ul−sj)/
√

δ.

Then, we can calculate G̃(x) as

G̃(x) =
∑

|l−w|≤r
sj∈Il

qjEj(x) =
P∑

k=1

Bwkeibk(x−uw)/
√

δ (x ∈ Iw),
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where coefficients Bwk is given by

Bwk =
∑

|l−w|≤r

Alkeibk(uw−ul)/
√

δ.

The amount of work required for this Fast Gauss Transform is

O(S
√

δ
−1

c−1P ) + O(PN) + O(PM).

O(PN) is to calculate {Alk} from {qj}, O(S
√

δ
−1

c−1P ) is to calculate {Bwk}
form {Alk}, and O(PM) is to evaluate G(xj) from {Blk}, where S is the
length of the smallest interval containing all the source and target points
(See [3] about the method of calculating Blk not by O(rS

√
δ
−1

c−1P ) but by
O(S

√
δ
−1

c−1P ) ).
From (2.1), it is necessary to make product cr large according to the accu-

racy we assume and it turns out that r and P have the relation of a trade off.
Greengard and Sun determined ak and bk by means of the Fourier relation

e−x2
=

1
2
√

π

∫ ∞

−∞
e−ξ2/4e−ixξdξ

in the following way: since the integrand is rapidly decaying when |ξ| grows,
the trapezoidal rule gives a good approximation. Applying the trapezoidal rule
of an interval 2K/(P − 1) and truncate to P terms, we have

e−x2 ≈ K√
π(P − 1)

P∑
k=1

e−ξ2
k/4e−iξkx where ξk =

K

P − 1
(2k − P − 1).

Accuracy will become good if K and P becomes large.
Namely this definition implies that

ak =
K√

π(P − 1)
e−ξ2

k/4, bk = −ξk.

If the dimension d is greater than one, the Gauss kernel

e−|x|2/δ = e−(x2
1+x2

2+···+x2
d)/δ = e−x2

1/δ e−x2
2/δ . . . e−x2

d/δ

is approximated by(
P∑

k=1

akeibkx1/
√

δ

) (
P∑

k=1

akeibkx2/
√

δ

)
· · ·

(
P∑

k=1

akeibkxd/
√

δ

)
.
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In this case, the amount of work required for this Fast Gauss Transform is

O(dS
√

δ
−d

c−dP d) + O(P dN) + O(P dM).

where S is the Lebesgue measure of rectangles which contain all source points
and target points.

Greengard and Sun took K = 7.5, P = 23, r = 4, c = 1 for single floating
precision and K = 12, P = 47, r = 6, c = 1 for double floating precision.

§3. Improvement

As we have seen, good approximation of the Gauss kernel by plane waves
is essential in their scheme. So, we can make this scheme more efficient if we
can choose suitable ak and bk to smaller P and larger c. We construct such an
approximation using Newton’s Method as follows.

Given the approximate relation

e−x2 ≈
P∑

k=1

akeibkx,

where we assume that ak = aP+1−k, bk = −bP+1−k (k = 1, 2, . . . , P ), we define

f(a, x) := e−x2 −
P∑

k=1

akeibkx

where

a =

{
(a1, a2, . . . , aP/2, b1, b2, . . . , bP/2) (P : even)

(a1, a2, . . . , a(P+1)/2, b1, b2, . . . , b(P−1)/2) (P : odd).

We look for those a which makes f(a, ·) be sufficiently small. In order to
find such an a with minimal labor, we look, in addition to a, for P points
t0, t1, . . . , tP−1, which are candidates for the extremal points of f(a, ·). Taking
Chebyshev’s theorem ( see, e.g., [5] ) in mind, we then look for a and t =
(t0, t1, . . . , tP−1) simultaneously in the way that the absolute values

f(a, t0) − ε, f(a, t1) + ε, f(a, t2) − ε, . . .

be minimal.
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We first fix P and set

ε = 0.01, K = 3.0,

a
(0)
k =

K√
π(P − 1)

e−ξ2
k/4, b

(0)
k = −ξk where ξk =

K

P − 1
(2k − P − 1),

t
(0)
k =

π

ξP+1
k (k = 0, 1, . . . , P − 1),

a(n) = (a(n)
1 , . . . , b

(n)
1 , . . . ),

t(n) =
(
t
(n)
0 , t

(n)
1 , . . . , t

(n)
P−1

)
.

And then, the following iterations are employed:

a(n+1) = a(n) − λ1J
(
a(n), t(n)

)−1

F
(
a(n), t(n)

)
,

t
(n+1)
k = t

(n)
k − λ2

∂

∂x
f(a(n+1), t

(n)
k )

∂2

∂x2
f(a(n+1), t

(n)
k )

.

where

F (a, t(n)) =
(
f(a, t

(n)
0 ) − ε, f(a, t

(n)
1 ) + ε, . . . , f(a, t

(n)
P−1) − (−1)P−1ε

)t

and J(a, t) is the Jacobi matrix of F (a, t) about a. Positive constants λ1 and
λ2 are smaller than 1, but we have to adjust them appropriately to have a
good convergence. If a(n) and t(n) have converged, we let ε decrease a little
and repeat the same iteration. When ε have decreased below an initially given
tolerance, we stop iteration.

Initial condition ε = 0.01, K = 3.0 worked well with P ≤ 60.
We considered three cases: Case 1 ∼ Case 3. Table 1 shows the conditions

of these cases. We decided P , c and r so that ε1 and ε2 are the same or less
than Greengard and Sun’s method.

Graphs of f(a, x) are drawn in Fig 1. The graph on the bottom is the
one used in [3]. Note that the number of the extrema is much smaller than P .
In view of the theory of the best approximation(Chebyshev’s theorem[5]), this
explains why their method can further be improved. In fact, our f(a, x) shows
a better quality in view of the number of extrema and P .

Remark. We described the method for single floating precision. The same
thing is possible also for double floating precision. However, in order to prevent
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Figure 1. The graphs of f(a, x). (P, r, c) = (23, 4, 1.0) proposed by Greengard
and Sun (bottom).
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cancellation error in that case, high accuracy, using quad floating precision etc.
is required for calculation of f(a, ·).

§4. Numerical Results

We carried out the discrete Gauss transform in these cases and compared
CPU time and precision. d = 2, S = [0, 10] × [0, 10], M = N = 30000 were
applied.

We take sj and xj at random in S and also take qj at random in [−1, 1] by
uniform distribution, where random numbers are generated by c++ function
rand() on Solaris8(Ultra Spark 60).

Tables 2 through 5 show the condition when δ = 1.0, δ = 0.1, δ = 0.01
and δ = 0.001. When δ = 0.001, we could not calculate the Case 1 because the
number of mesh points was too large.

If δ is relatively large, computation time depends more on P than on c.
Hence Case 1 gives the best result in this case. On the other hand, c is more
dominant than P , if δ is small. In this case, Case 3 gives the best result.

Tables 6-9 are lists of ak and bk which was used in case 1 ∼ case 3 and the
method that Greengard and Sun presented, respectively.

P c r ε1 ε2

Case 1 15 4/17 17 1.90 × 10−8 1.13 × 10−7

Case 2 17 1 4 1.90 × 10−8 1.13 × 10−7

Case 3 20 2 2 1.10 × 10−8 1.13 × 10−7

Greengard and Sun’s
method

23 1 4 3.89 × 10−8 1.13 × 10−7

Table 1. A list of conditions

δ = 1.0 CPU time (sec) maximum error
Case 1 32 2.24 × 10−6

Case 2 50 2.17 × 10−6

Case 3 77 1.43 × 10−6

Greengard and Sun’s
method

93 3.16 × 10−6

Direct calculation 671

Table 2. Numerical result when δ = 1.0
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These results show that any of Case 1 to Case 3 can achieve calculation
faster than Greengard and Sun’s method with a smaller error.

Remark. There are considerable differences in direct calculation by various
δ. It is not caused by the difference in the speed of a computer but on the
influence of internal algorithm of the exponential function.

δ = 0.1 CPU time (sec) maximum error
Case 1 47 1.02 × 10−6

Case 2 51 1.87 × 10−6

Case 3 77 1.36 × 10−6

Greengard and Sun’s
method

96 2.61 × 10−6

Direct calculation 1149

Table 3. Numerical result when δ = 0.1

δ = 0.01 CPU time (sec) maximum error
Case 1 186 3.02 × 10−7

Case 2 62 3.39 × 10−7

Case 3 81 1.32 × 10−6

Greengard and Sun’s
method

116 2.67 × 10−6

Direct calculation 1427

Table 4. Numerical result when δ = 0.01

δ = 0.001 CPU time (sec) maximum error
Case 1 — —
Case 2 163 1.08 × 10−7

Case 3 117 1.38 × 10−6

Greengard and Sun’s
method

300 2.60 × 10−6

Direct calculation 1280

Table 5. Numerical result when δ = 0.001
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a1 = 1.5024412350542115 × 10−7 b1 = 7.5
a2 = 1.7247900894047711 × 10−6 b2 = 6.8181818181818182
a3 = 1.5693812286707054 × 10−5 b3 = 6.1363636363636364
a4 = 1.1318115235748990 × 10−4 b4 = 5.4545454545454541
a5 = 6.4695373000284346 × 10−4 b5 = 4.7727272727272727
a6 = 2.9310672496119460 × 10−3 b6 = 4.0909090909090909
a7 = 1.0525234889691936 × 10−2 b7 = 3.4090909090909091
a8 = 2.9956513229246879 × 10−2 b8 = 2.7272727272727273
a9 = 6.7577820416272305 × 10−2 b9 = 2.0454545454545455

a10 = 0.12082882446808624 b10 = 1.3636363636363636
a11 = 0.17123414603808165 b11 = 0.6818181818181818
a12 = 0.19233735802764421 b12 = 0.0
ak = a24−k (13 ≤ k ≤ 23) bk = −b24−k (13 ≤ k ≤ 23)

Table 6. Lists of ak and bk which is used in Greengard and Sun’s method

a1 = 3.1602158548065147× 10−6 b1 = 6.8323332716494347
a2 = 1.0774164008553449× 10−4 b2 = 5.6445838356737017
a3 = 1.4414987705394192× 10−3 b3 = 4.5966981140329235
a4 = 1.0150979166018934× 10−2 b4 = 3.6198358194646820
a5 = 4.2736758775148202× 10−2 b5 = 2.6854056286373478
a6 = 0.11507861467068439 b6 = 1.7773883441184946
a7 = 0.20581846798610981 b7 = 0.88502778008267924
a8 = 0.24932553855111778 b8 = 0.0
ak = a16−k (9 ≤ k ≤ 15) bk = −b16−k (9 ≤ k ≤ 15)

Table 7. Lists of ak and bk which is used in Case 1

§5. Conclusions

We found plane waves that furnish better approximation for the Fast Gauss
transform. As we can see from numerical results in previous section, we could
make the Fast Gauss Transform, in its best, several times as faster as the
method of [3].

We listed up coefficients of the plane waves at table 6 ∼ table 9, so anybody
can use the faster Fast Gauss Transform immediately.
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a1 = 1.4480712327712938× 10−6 b1 = 7.0254411771533647
a2 = 4.0179072932667429× 10−5 b2 = 5.9521675353096670
a3 = 5.0584010513166024× 10−4 b3 = 4.9960582231137938
a4 = 3.6652357944413679× 10−3 b4 = 4.1019533388132361
a5 = 1.7025703894623791× 10−2 b5 = 3.2463293077293978
a6 = 5.3812559765011703× 10−2 b6 = 2.4160036679818364
a7 = 0.11992005473576491 b7 = 1.6022885299976992
a8 = 0.19248201399667833 b8 = 0.79872749553235256
a9 = 0.22509391012836563 b9 = 0.0
ak = a18−k (10 ≤ k ≤ 17) bk = −b18−k (10 ≤ k ≤ 17)

Table 8. Lists of ak and bk which is used in Case 2

a1 = 4.2408195477813319 × 10−7 b1 = 7.3296389251749705
a2 = 9.4942307284900443 × 10−6 b2 = 6.3821524074400342
a3 = 1.1167657306883446 × 10−4 b3 = 5.5282750548220214
a4 = 8.2920394539577461 × 10−4 b4 = 4.7264208710780498
a5 = 4.2416043852381907 × 10−3 b5 = 3.9581421510087544
a6 = 1.5718392795466322 × 10−2 b6 = 3.2130243227184327
a7 = 4.3555801883621612 × 10−2 b7 = 2.4842727384019905
a8 = 9.2138495635379181 × 10−2 b8 = 1.7669779404439534
a9 = 0.15081565250910717 b9 = 1.0572888477677547

a10 = 0.19257924846003965 b10 = 0.35195633263387421
ak = a21−k (11 ≤ k ≤ 20) bk = −b21−k (11 ≤ k ≤ 20)

Table 9. Lists of ak and bk which is used in Case 3
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