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Bernstein Polynomials of a Smooth
Function Restricted to an Isolated
Hypersurface Singularity

By

Tristan TORRELLI*

Abstract

Let f, g be two germs of holomorphic functions on C" such that f is smooth at the
origin and (f, g) defines an analytic complete intersection (Z,0) of codimension two.
We study Bernstein polynomials of f associated with sections of the local cohomology
module with support in X = ¢g~!(0), and in particular some sections of its minimal
extension. When (X,0) and (Z,0) have an isolated singularity, this may be reduced
to the study of a minimal polynomial of an endomorphism on a finite dimensional
vector space. As an application, we give an effective algorithm to compute those
Bernstein polynomials when f is a coordinate and g is non-degenerate with respect
to its Newton boundary.

81. Introduction

Let n > 2 be an integer. Let us denote O = C{x1,...,x,} the ring of
germs at 0 of complex holomorphic functions, and D = O(9/0x,...,0/0x,)
the ring of linear differential operators with holomorphic coeflicients.

Let g € O be a nonzero germ such that g(0) =0, and R = O[1/g]/O the
local cohomology module with support in the hypersurface (X,0) C (C",0)
defined by g¢g. It is a regular holonomic D-module such that its complex of
holomorphic solutions is the perverse sheaf Cx [—1] (see [5], [6], [14]).

Given a germ of function f € O nonzero on X, there are functional equa-
tions in R[1/f, s]f* = R ®o O[1/f, s]f* of the form:

b(s)ofs = P 5fet
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for every § € R, with b(s) € C[s] nonzero and P € D[s] = DRC[s] (see [6]). We
call Bernstein polynomial of f associated with ¢, and we denote b(df*,s), the
unitary generator of the ideal of polynomials b(s) verifying such an identity.
When f is not a unit, it is easy to check that (s + r(6) + 1) is a factor of
b(6f*,s), where () € N is such that § € fr@OR — frO+IR: let us denote
b(6f%,s) € Cls] the quotient of b(6f%,s) by (s +7(5) + 1).

Because of the algebraic theory of vanishing cycles, roots of these poly-
nomials determine the eigenvalues of the monodromy of f|x : (X,0) — (C,0)
(see [7], [12], and [20] for examples). In particular, the singular monodromy
theorem implies that their roots are rational numbers ([8], [10]).

The effective determination of these polynomials is a difficult question.
Following ideas of B. Malgrange ([11], [2] part A), we have investigated this
problem in [21] when X has an isolated singularity and (f, g) defines a germ of
complete intersection isolated singularity (Z,0). First, for 6 € R of the form
d/g* with a € O nonzero on the components of Z, the holonomic D-module:

Dslé f*
N5=(5+1)#

is supported by 0. Then the minimal polynomial of the action of s on N -
which is nothing else but l~)((5f57 s) - may be computed using its n*"-group of de
Rham cohomology Hp 5 (N5) = N5/ >-(9/0x;)Ns. In order to do that, we need
an explicit description of this group. So we imposed that the annihilator in D
of ¢ is generated by operators of degree less or equal to one; but it is a very
constraining condition, because this implies that g is weighted-homogeneous
and that a € O is a unit (see [21], [23]).

In this paper, we study the particular case where f is a germ of a smooth
function. Let us recall that this contains the classical theory of the Bernstein
polynomial of germs of holomorphic functions, because of the following relation:

i S _ s
b(mz ,S) = b(h, ,S)
for every h € O nonzero, where b(h®,s) is the Bernstein polynomial of h and
1/h — 2z € C{z,2}[1/h — 2]/C{x, 2} (see Proposition 2.8 for example).
Without further condition on g, we prove in Theorem 2.1 that for some
d € R, the D[s]-module N5 coincides with:
A, _ Dlsltac(g), g)ss !
D[s|T d¢f+
for an integer ¢ € N*, where jac(g) C O is the jacobian ideal of g, 7 C O is

(1)

the ideal generated by g and by all the 2 x 2-minors of the jacobian matrix of
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(f,9), and 6, € R is defined by (—1)**1(¢ —1)!/g° € O[1/g]. More precisely,
N is equal to N (resp. Nyy1) when § = v(g)d, (resp. § = d;) for every generic
regular vector field v such that v(f) = 0. This result enables us to treat in the
same way the Bernstein polynomials of f associated with sections dy, £ € N*,
but also with certain generators of the minimal extension £ C R of the local
algebraic cohomology with support in X (since D. Barlet and M. Kashiwara
prove in [1] that £ is generated by any nonzero section defined by v(g)/g, where
v € D is a vector field).

So we are interested in the determination of the minimal polynomial of the
action of s on Ny, denoted by Bg(s), when f is smooth, X has an isolated singu-
larity and (f, g) defines a germ of complete intersection isolated singularity. In
the third part, we express HJ,(N;) under these assumptions as a quotient of
two finite dimensional vector spaces Z; and Z; defined in section 3.2. Therefore:

Theorem 1.1.  For every £ € N*, l;g(s) is the minimal polynomial of
the action induced by s on Z;/Z,.

This needs the knowledge of the annihilator in D of &y f®, Annp i f%,
which authorizes the calculation of the n!"-group of the de Rham cohomology
of the D-module Y, -, Dy f*T! (into which D[s](jac(g), g)def*T" injects).

As an applicati(_)n, we develop in the last part an algorithm to com-
pute l;z(s) when f = x7 and g is non-degenerate with respect to its New-
ton boundary in the sense of Kouchnirenko, which gives a generalization of
[2]. Using the Newton function p on O, we define a weight function p* by
p*(udpai™) = p(uzy - - - x,) — k. Then Kouchnirenko division theorem makes
it possible to establish that the filtration induced by p* is suited to our construc-
tion of HP p(>"; >, DIk f5T1). Moreover, the action of s respects the filtration
induced by p* on Z,/Z,. Thus, if Bg7q(8) is the minimal polynomial of the ac-
tion of s on gry Z;/Z,, then the polynomial be(s) is the Le.m. of 547q(s), g€ Q
(Theorem 4.9). The technics ‘rewriting by division’ and ‘increase in weight’
allow us to give an explicit computation of the spaces Z’ Zq’ Z;, and of the
action of s on 2y /Z; . and thus to determine be(s). In the particular case
of semi-weighted-homogeneous germs, these computations are easier (Remark
4.12). On the way, we deduce from an algorithm for computing a multiple of
the polynomials BM (s) that the multiplicities of the roots of Bg(s) are strictly
smaller than n (Theorem 4.10).

We end with the complete determination of the polynomials be (s) when
g =%+ 23+ 2 + (v12073)%, d > 9.

Finally, we point out that the methods at the root of the algorithm may be
adapted to compute Bernstein functional equations associated with an analytic
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morphism - introduced by C. Sabbah ([15], [16]) - in the following case:

(g,21,...,2p) : (C™,0) — (CP*1,0), 1 < p < n—1. In particular, one can

make explicit non trivial equations of the form:
do(s)g™ayt---ayr € Dlslg™Talt - agy
dj(s)g™xy" - ayr € Dlslwjg™ait -xp, 1<j<p

where dy(s), dj(s) € Clso,...,sp) and D[s] = DR C|s, . ..,sp]. This completes
H. Maynadier-Gervais results about these functional equations ([13]).

I acknowledge the partial support of the Swiss National Science Founda-
tion. I also wish to thank Daniel Barlet for useful discussions, and Joél Briangon
for his help in the proof of Proposition 4.6.

§2. Some Equivalences of Functional Equations

In this part, we denote f € O a germ of a smooth function and g € O
a germ which is not a unit and does not belong to fO.

We first prove Theorem 2.1, where the D-module N is identified to N, for
some § € R. Then we give relations between some Bernstein polynomials of f
associated with sections of R = O[1/¢]/O.

§2.1. Some identifications of AN with N,
Let us state the result at the root of this study.

Theorem 2.1.  Let f € O be a germ of a smooth function at the origin,
and g € O a germ which is neither a unit nor a multiple of f. Let us denote
(Z,0) C (C™,0), the complete intersection defined by f and g.

i) For every non negative integer ¢ € N*, the D[s]-module:

D[s]égfs

(S + 1) 'D[S](ngs+1

where 6 = (—1) 1L — 1)!(1/g") € R, coincides with Ny 1.

ii) Let v € D be a regular vector field such that v(f) = 0. Let us suppose that
v is not tangent to (Z,0). Then, for every £ € N*, the D[s]-module:

Dis|v(g)def*

D) Bhulg)brft

coincides with Ny. Moreover, when (Z,0) does not have any irreducible
smooth component, the equality is verified if v is not tangent to (Sing(Z),0).
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iii) Let us suppose that f = x1. Let © € D be a wvector field of the form
x1(0/0x1) +v where v € C{xa,...,x,}{(0/0xs,...,0/0xy,) is a regular vec-
tor field. Let us suppose that v is not tangent to (Z,0). Then, for every
¢ € N*, the D[s]-module:

D[s]o(g)def*

) D ag)ef

coincides with Ny. Moreover, if (Z,0) does not have any irreducible smooth
component, the equality is verified if v is not tangent to (Sing(Z),0).

Given § € R, the D[s]-module N coincides with Ay, £ € N*, if and only
if the following identities are verified:

(1) D[s]of** = DIs]Tdef*"

1) D[s](s +1)6* + D[s]of*" = D[s] (jac(g), 9)de f*+

In order to prove the theorem, we will check that these identities are verified
in any case.

Proof of Theorem 2.1, case i). The equality (}) results from the following
identities:

(2) 9or1 [ = — Lo, fo
0 0
[ Y A s+1 _ A Y A s+1
(3) (fa:]gxl fxlgx])éf-i-lf (fxJ 0x; faf@ 8$J>5€f
So let 7 be an index such that f; is a unit. From the identities:
1 0 s - s
(s +1)def* = (fz,) 1%5&70 ()7 g, e S

and (T), we deduce:
DIs](s + 1)6,f° + D[s]0ef*™" = D[s] (gL, , T)Ser 5.

Thus (f) is verified since the ideal (g}, , {95, fr, — 95, [r, izr)O coincides with

z
jac(g). O

Proof of Theorem 2.1, first part of ii). Let v € D be a regular vector
field such that v annihilates f and is not tangent to (Z,0). Up to a change
of coordinates, we may assume that f = x; and v = 9/9x2 (in particular
T = (Ghys - 9%,,9)0). In algebraic terms, the geometrical assumption on v
is: g & (21,73, ...,7,)O. In other words, there exists N € N* such that vV (g)
is a unit.
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First we prove that the inclusion D[s]v(g)dpz1°Tt C D[s]Tdpx15t! is an
equality. It is enough to see that the ideal I = D[s]v(g) + Annpyy Sex; ™"
contains g, ...,g, and g. Since the operators (9/0z;)v(g) —vg,, 3 <i < n,
and vg + (£ — 1)v(g) annihilate 6,25, then vg, VGp.s -G, € I. So we have
Gy Gy -+ 195, € I by using the following lemma. Thus (f) is true.

Lemma 2.2. Let ¥ € D be a vector field and h € O a nonzero germ
such that 9~ (h) is a unit for a non negative integer N € N*.
Then, for every a,c € O[s], the ideal D[s](¥ + c)a + D[s]ha contains a.

Proof. Tt is enough to prove that 9*(h)a, k € N*, belong to the given
ideal. This may be done by induction, using the identities: dah — h(¢ + c)a =
J(h)a — cah and 99*(h)a — 9% (h) (I + ¢)a = 9*+1(h)a — 9*(h)ca, k € N*. O

Let us prove (1) for 6 = v(g)d,. Since D[s]v(g)dexst! coincides with
D[s]TSexit, and using the equality:

s __ i / s+1 __ i / s+1
() (s +Duo)ot = (v(0) g —oh,v)oi™ = (5-0(9) —vol, )dea

it is enough to remark that g, belongs to D(v(g),vg,, ). But this is a conse-
quence of Lemma 2.2. Then () is verified. O

Proof of Theorem 2.1, first part of iii). Let ¥ be the vector field 21 (9/0x1)+
v where v € C{za,...,2,}(0/0x,...,0/0z,) is regular and such that vV (g)
is a unit for a non negative integer N € N*. From the case ii), the D-module
D[s]v(g)dexi™ coincides with D[s]Jd,z5T. So, to prove (1), we just have
to remark that z1g} 6z} belongs to D[s]o(g)dex™" and to D[s]TexiT".
First, it is easy to check that if v"(g) is a unit, then " (g) is a unit too.
Moreover, identity (4) implies that (0 — (s + 1))z1g,,, (resp. vz1g,, ) belongs
to I = D[s]o(g) + Annpy Sexstt (vesp. I = D[s]u(g) + Annpj Sexst). Thus
the germ w19, belongs to I and to I ie. z19,, 6025 € Ds]o(g)def>+! and
z19g,, 6ozt € D[s]TSpaiT

The proof of (1) for & = ©(g)dezi™ is similar to the one of the previous
case, using the identity:

(s Dig)oeai = (o

o / s+1
5 0(0) + s+ 1= 0)gl, )apei T

O

Remark 2.3.  In the last case, we also prove that D[s](jac(g), g)def*F? is
contained in D[s] T, f5+!.
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Proof of Theorem 2.1, second part of ii) and iii). We are going to prove
that the equalities () and (1) are true for every regular vector field v or o =
21(0/0x1) +v, where v is not tangent to the singular set of (Z,0) and fulfils the
conditions of the exposition. Let us take some coordinates such that f = x;
and v = 0/0x. Thus the geometrical assumption on v means that there is at
least one monomial xY or z3z;, i > 3, in the Taylor expansion of g|,,—o €
C{za,...,xn}.

We start with the case § = v(g)d,f*T1. Under our assumption, there exists
an integer N € N* such that vV (g) = [ + h where [ is a linear form, nonzero
and not proportional to xy, and h € (x1,...,2,)20. Let us remark that if [
depends of the variable x5, vV*1(g) is a unit and v is not tangent to (Z,0).
Without loss of generality, we can also suppose that n > 3, [ = z3 and that
there is no monomial of the form z’ "in the Taylor expansion of h.

In order to get (f), we will prove that the ideal I = D[s]v(g) + Annpyy
&xTH contains g, , .. .,g, and g (following the proof of the case ‘v not tangent
to (Z,0)’). We start with the membership of I for g. As above, we have
VG, VG- - 09y, € I; 50 vgg,. —v(9)g,, € I and then vg, g, 3 <i < n, belong
to I too. Using that vg € I, we deduce: v(g,,)g € I. Thus g belongs to the
ideal I (Lemma 2.2).

It is more difficult to get the membership of I for g;_,...,g, . Since vg; ,
v(g)g,, € I, we remark - with the help of technics of Lemma 2.2 - that v (¢)g.,,,
3 < i < n, belong to I. Multiplying the operators (0/0z3)g,, — (0/0%)g,., €
Annp 625 by vV (g) = 23 + h, we deduce:

(5) for i # 1,3, (1+ h},)g,, — hi, g, belongs to I

Thus the operators ((8/dx3)hl,, (1+ hl,,)~! — 8/dx;)g),, belong to the ideal I.
Dividing A/, (14 k)~ by x3 + h, we get ((8)0x3)h; — 0/0x;)g,, € I where
h; € O does not depend of 3. Similarly, dividing g by x3 + h, we have
g = q(xz3 + h) + g, where g € O does not depend of z3, and is not proportional
to 1 because (Z,0) does not have any smooth irreducible component. Thus
39.., belongs to I. So the fact g, belongs to I comes from Lemma 2.2, taking
a =gy, h=gandv=73", , Xi((8/0x3)h; — 8/dx;), N; € C generic. From
(5), we have then g/, ,...,q, € 1.

Now we consider (). Following the proof of the case ii) above, it is enough
to remark that the ideal I’ = D[s](vg,,,gh,,--.9s ,9) + Annp(y ez con-
tains g, . Multiplying vg, by g,., we see that v(g,,)g,, belongs to I’. Then
we conclude with Lemma 2.2 (with h = v(g,,)).

In the case § = 0(g)def?, we can assume that f = z1, 0 = 21(9/0x1) + v
where v = 9/0xy and 9V (g) = 23 + h, h € (21, ...,2,)?O. Then the identities
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(s+1))g, (v—(s+

(1) and (I) may be got similarly, using that the operators (v —
¥(g) + Annpyg dpzit!

1))gey»---5(0 — (s +1))g,, belong to the ideal I = DIs]
This comes from the identities:

(54 10t = [ (0150 + 0)g + (€~ Do, +0(g)) oot

(s + 1)0(g)deas ™t = [(xl a% + 19)9 +O(1gl, + ﬁ(g))} Seast

for every vector field ¥ € C{xa,...,x,}(0/0z2,...,0/0xy).
Remark 2.4.  From these identities, we deduce the following ones:

Dlsl<aT 0¢f*T =Dlsl<a—1fg,, 6ef* T + DTS f*!
D[s|<a(jac(g), 9)0ef*+" = Dlsl<agy ef*+' + DTb0f*

for every d € N, where 7 is an index such that f; is a unit and D[s]<q C D[s]
is the subspace of the operators which the degree in s is less or equal to d. This
may be done by induction, and using that fg} d,f*" belongs to D[s]J 6, 5!
for every £ € N* (Remark 2.3).

Remark 2.5.  The identity (f) is not always true if (Z,0) has an irre-
ducible smooth component. For example if f =1, 9=2}+ 20w3, v=20/029
and ¢ = 1, then D[s]v(g)+Annp, dez; " is equal to D[s] (23, z3, (9/0x2)x2, s+

—(0/0z1)z1), and then it is different from the ideal D[s].7 + Annpyy Spzit =
DIs](22, 22, 23,5 + 2 — (0/0x1)11).

§2.2. Some relations between Bernstein polynomials

We start with some relations between the Bernstein polynomials of f
associated with some elements of R and the polynomial by(s), the minimal
polynomial of the action of s on Nj.

Corollary 2.6. Let f € O be a germ of a smooth function, and let
g € O be a germ which is neither a unit nor a multiple of f. Let us denote
(Z,0) C (C™,0), the complete intersection defined by (f,g). Let £ € N* be a
non negative integer.

i) The polynomial b(8,f*, s) coincides with byy1(s).

il) Let v be a regular vector field v such that v(f) = 0. If v is not tangent to
(Z,0), then b(v(g)def*, s) coincides with by(s). Moreover, when (Z,0) does
not have any irreducible smooth component, the equality is verified if v is
not tangent to (Sing(Z),0).
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iil) Assume that f = x1. Letv € C{xa,...,x,}{0/0xs,...,0/0x,) be a regular
vector field. If v is not tangent to (Z,0), then i)((xlg;I + v(9))def?, s)
coincides with by(s). Moreover, when (Z,0) does not have any smooth
component, this equality is true if v is not tangent to (Sing(Z),0).

iv) Letu € jac(g) +gO be a generator of the O-module (jac(g)+gO)/T. Then
the polynomial b(ude f*, s) is a multiple of E[(S —1).

Proof. The first 3 points are easy consequences of Theorem 2.1 and of the
fact that v(g) is not divisible by f for every v verifying the requisite conditions.
The last point is a consequence of the surjectivity of the following D]s]-linear

morphism:
Dlsjudef*  Dls](iac(g), )0/
D[s]udefs+2 D[s]Tdefst1
which is well defined from Remark 2.3. O

Hence, for every generic vector field v annihilating f, the polynomial
b(v(g)de, s) coincides with by(s). However, because of iv), this is not true for
every regular vector field v.

The following corollary gives a similar result for the classical Bernstein
polynomial of a germ of function.

Corollary 2.7. Let h € O be a germ neither zero nor a unit. Let us
denote (H,0) C (C™,0) the hypersurface defined by h and b(s) € C[s] its reduced
Bernstein polynomial.

Let v € D be a regular vector field. If v is not tangent to (H,0), then the
reduced Bernstein polynomial of v(h)h® is equal to b(s + 1). Moreover, when
(H,0) does not have any smooth component, the equality is true if v is not
tangent to the singular set of (H,0).

This shifting in the roots of 5(8) is very clear in terms of poles of analytic

continuation of distributions [, |h|**¢, where ¢ is a (n,n)-differential form

with compact support around the origin, because:

1
L e =~ [ min o)

for every vector field v.

In order to prove this corollary, we will use the following result. This is
the first explicit example of computation of the polynomials Bg(s), ¢ € N*, and
it generalizes a result of [19].
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Proposition 2.8. Let h € O be a germ which is neither zero nor a
unit. Let us denote l;(s) its reduced Bernstein polynomial. Let N € N* be a
non negative integer and z a new variable.

Up to a multiplicative constant, the polynomial Bg(s), ¢ € N*, associated
with f =z and g = h — 2 € C{x, 2} is equal to b(1 — £ + (s + 1)/N).

Proof. Without loss of generality, we will prove the result for h =¢€h,
where 7 is a new variable. In fact, it does not change the value of the studied
Bernstein polynomials.

To prove that by(s) is a multiple of b(1 — £+ (s + 1)/N), we start with the
‘Bernstein identity’ of by(s), i.e.:

be(8)2N L € D, o [s](hy hays - - shay,  h— 2N + Annp_ (g 602"t

where D, - is the ring of differential operators C{z, z, 7}(0/0x,0/0z,0/07). As
the operator N(9/97) + 2(9/9z) — s — 1 + N{ annihilates 6,2°"1, this equation
may be rewritten:

~ 8 8 N—1 7 7 7 N s+1
bg(Na—T g N+N£>z Der (b hiays - ha, 2™) + Annp, 6,2

or:

b (Naé ~N-1+ NE) N eD, (b hay, .. ha,, 2Y) + Annp,_ 82°F!
- ,

Then we remark that Annp_ dpz°T! is generated by its operators which are
not dependant of 9/0z. Indeed, if P = Zgzo(a/az)iﬂ with P; € 5Z)T =
C{x,2,7}(0/0x,0/07) annihilates d,2°T1, so does [P, z] = Zle i(0/0z) 1P,
So we prove by induction that the operators Py, ...,P; annihilate 6,2°71. The
identity becomes:

(6) IS@(N% -N-1 +N€)ZN_1 € 52,7@,%17...75%,/\[) + Anng 0 .

By division, an operator P € Anng  J, may be written:

P=Q( L (i ")+ (¢~ 1 )+ZQ( — )+ (0= D))

T

¢
+ q(ﬁ—zN)é—l-R/—l-Zri(iz—zN)z_i
i=1

R
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where R' € (0/0x,0/07)C{x,7}(0/0x,0/07)[2] and r1,...,re € C{z,T}[z]
have a degree in z strictly less than N, and Q, Q; € D, -, ¢ € C{z,2,7}. So
we have:

1 o+ o ooy
(ﬁ_ZN)e - ;( 1) ( (¢ — 1)!) (h — zN)t+i Z (h— 2N
and
~ d , '
RhS:;3(5—1)~'~(8—Z+1)h—;hs+rhs

where d = deg R and r} € C{x, 7}[2] has a degree in z strictly less than N. As
R annihilates dy, all the germs 7; and 7} are necessarily equal to zero, and then
R annihilates h®. Hence (6) implies that:

by (Nag —N -1+ NE)ZNfl € 252,7@,;%1, . ,hxn,zN) +5Z7TAnnDT h*
T

where D, = C{z,7}(d/dz,0/d7). Consequently, by(N(d/d7) — N — 1 + NY)
belongs to the ideal Dy (h, hy,, ... ha, ) + Annp_ b i.e. by(Ns — N — 1+ NY)
is definitely a multiple of b(s).

The proof of the converse relation is similar (see [19]). O

Proof of Corollary 2.7. By similar computations, we prove easily that
the polynomial b(d/(h — 2)z*, s) coincides with the Bernstein polynomial of ah®.
So the assertion is a direct consequence of Corollary 2.6 and Proposition 2.8. [

We end with a relation between the Bernstein polynomial of f associated
with some particular element of O[1/g] and of R = O[1/g]/O. From the point
of view of the monodromy, it is very clear (because ®;(O) is zero when f is
smooth).

Proposition 2.9.  Let f € O be a germ of a smooth function, and g € O
a germ which is neither a unit nor a multiple of f.

For every { € N*, the Bernstein polynomial of (1/g°)f* coincides with
b(5[fg, 8)

Proof. We just prove that the Bernstein polynomial of (1/g%)f® €
O[1/fg,s]f*, denoted by b((1/g%)f*,s), is a factor of b(S,f*,s) (the converse
relation is evident). Let R € D[s] be an operator realizing the functional equa-
tion of dpf: b(def*,8)0ef* = RO f5T1. So there are an integer d € Z and
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a € O[s], a & fO[s] — {0}, such that:
1 1
(7) b(éf*, S)Rfs = R?F“ +aft?

in O[1/fg,s]f*. If a is zero, b((1/g°) f*, s) divides definitely b(5,f*,s). Other-
wise, let us prove that af**9 belongs to D[s]f**+1. If d > 1, it is trivial. So we
suppose that d < 0. By specializations of s in —1,0,..., —d — 1, we remark
that (s +1)s---(s+d+ 1) is a factor of a. Hence af**? belongs to D[s]f**!,
because:

9 —d+1
0 ()] =
where r is an index such that f; is a unit. So the equation (7) implies that
b(0ef*,5)(1/9°) f° € DIs](1/g%) f*F!, and our assertion is proved. O

83. The Case of Isolated Singularities

In this part, the germ g € O defines an isolated singularity, and f € O
is a germ of smooth function such that f(0) =0 and (f, g) defines a complete
intersection isolated singularity.

Following [2], [21], we give an explicit description of H},,(N) in order
to study the polynomials by(s) (Theorem 1.1). So we introduce the D-module

S oor DO foH1

83.1. A suitable D-module

First, we remark that for every £ € IN*, the D[s]-module D[s]d, 5! is a
submodule of 37, -, Dy f*'. This comes from the identities:

(8) (5 200uf = (1) oo f5l* = (1)l foein S, ke N

where r is an index such that the germ f, is a unit. Indeed, the D-module
> ks1 DO f1 coincides with 35,51 37,50 DOk&i € R[1/f, 8] 5T, where d;&;
is the element (s —i +2)--- (s + 1)0xf5~"F1, because:

0
k&1 — (f2 )7 'gl Ok+1&i—1, k€ N*

_ 7 \—1
o0& = (fz,) oz,

for 4 € N.
We give now some results about the D-module Zkzl Doy ot
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Lemma 3.1.  For every non negative integer £ € N*, the D-module:

Zk21 Doy, f*H
'Dj(jefs-&-l

is supported by the origin.

Proof. Under our assumptions, the ideal [J defines zero (see its definition
page 798). So we have to prove that for every P € D and every non negative
integer k > ¢, there is an integer m € N* such that hPdf**t! belongs to
DJbef5T! for every h € J™. This may be done by induction on k — ¢ € N
and on the degree d of the operator P, using that hP € DJ for h € J%! and
that udy 51 € D1 £ for u € J (with the help of identities (2) & (3),
page 801). O

Let E be a C-vector subspace of O isomorphic to O/J by projection,
D C D the ring of differential operators with constant coefficients, DE C D
the subspace generated by 0%, e € E, and DJ C D the left ideal generated
by J.

Proposition 3.2.  For every £ € N*, there is a decomposition:
> Dot = DI @ (@ DB
k>1 k>

Proof. First remark that the D-modules Dé f*T1, 1 < k < £ — 1, are
contained in DJd, f*1 (since g € J). So, to get the existence of the decompo-
sition, it is enough to prove it only for the elements udy f*T1, v € O, k > £. By
division by J, there exists a uniquely defined element e € E, and h, \; ; € O,
1 <i<j<mnsuchthat u=e+hg+ >, ;N ;(fs,9, — f2,9,) Hence we
have:

ubp f = edp f — (k — 1)hop_y f5+°

+12 (a%- 2~ a% ;)Am - (f;jag—;j — [, (?xj) Spor foT

1<J

for k > ¢+ 1. So, by induction on k, every element of >, -, Dy, f** may be
decomposed in DT, f*T & (D~ , DES,f51). -

The proof of the uniqueness uses that the ideals Annp dy, f5t k€ N*, are
contained in DJ (see [19], [21]). Suppose that V&, 5+ + S, Updp 571 = 0
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with V € DJ and Uy, € DE. This may be written:

L—1
(—1)E+t ((2_11))!' Vgt 4 UL + Z(—l)““ki((k — ?)', Ueg™ *| o5 =0
! - !

L —

As Annp 07 511 C DJ, the operator Uz, belongs to DE and to DJ in the
same time, and so it is zero. By induction, we prove that Uy, £ < k < L — 1,
are zero too, and then V&, f*T! = 0. Consequently, we get the assertion. O

Let D' C D be the ideal of operators without nonzero constant term.
Given xk € N*, we consider the linear morphism:

e Y DO = DTS & (D DEsLSY) — @ Bon s

k>1 k>k k>

defined by c.(DJ6.f*T!) = 0 and if Q = Q' + e with Q' € D'E, e € E,
then c.(QrfT) = edpf*Tt for every k > k. Its kernel is DJ0,f5T! @
(B>, D'ES,f*T1). So we have the inclusion: @0,~, D'O8,f*t! C kerc,.
Hence c¢,, induces an isomorphism: -

_ n Zk>1D5kfs+1 s+1
(9) cH:HDR(W>—>§{E5kf .
§3.2. The spaces Zy, Z, and the polynomial Bg(s)

Given ¢ € N*, let us denote Z, = c,(D[s](jac(g), 9)def*T) and Z, =
ce(D[s]Tbef5T) C Z,. Now we give some general results on these C-vector
spaces.

Lemma 3.3.  For every £ € N*, there are the following identifications:
Z," = c(D[slgl, 6ef*T"), 20 = co(D[s]fg,, 6ef*t)
where r is an index such that f, is a unit.
It is a consequence of Remark 2.4.

Proposition 3.4.  For every { € N*, the dimensions of the spaces Z;
and Z; are finite.

Proof. From regularity of the holonomic D-module R, there exist good
operators in s in the annihilator of §f%, § € R, i.e. of the form sV + P;sV~1
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+---+ Py € D[s] where the degree of P; € D is less or equal to i (see [4], [18]).
If N is the degree of such an operator annihilating &, 5!, then:

N-1 ) N+4+£—-1
'D[S}(sgfs-H — Z Ssz(Sefs-‘rl I Z D§kfs+1
=0 k=1

(see identity (8)). In particular, the dimension of ¢,(D[s]d,f*T!) is finite, and
the one of Zj, Z, are finite too. O

Remark that the dimension of Z;, Z, and Z,/Z, depends on the integer ¢
(see the example studied in the last part).

Given ¢ € N*, we define the action of s on @~ , Ed; f*T! by s.U = ¢¢(sU).
Remark that c,(sU) € Z;, when U € kercy. Indeed, $@®sy D'ESf*T is
contained in the kernel of ¢,. Hence, the action of s on @, - [Eék F5t s well
defined on Z;, Zj, and then on Z/Z,. -

The proof of Theorem 1.1 is the very same as the one of [21], Theorem 1.1.
It uses Lemma 3.1, the identification (9) and the fact that the functor H}p,
from the category of D-modules supported by zero to the category of C-vector
spaces, is an exact and faithful functor ([11]).

84. The Computational Algorithm for Non Degenerate
Hypersurfaces

Here we adapt to the case of polynomials l;z(s) the algorithm of computa-
tion of Bernstein polynomial of a non-degenerate convenient germ with respect
to its Newton boundary in the sense of Kouchnirenko (see [2]). We invite the
reader to see [2] for the proof of some results which may be easily extended.

84.1. Division by J and increase in weight

Let g € O be a nonzero germ of an holomorphic function with g(0) = 0. Its

an

Taylor expansion is written ), nn gaz? where g4 € C and 2 = 2" --- 2%

for A = (ay,...,a,) € N™

Let N(g) = {A € N™|ga # 0} be the Newton cloud of g and T'(g) C (R™)"
its Newton boundary, the union of compact faces of the convex hull of N(g) +
N". For every face A C I'(g) and every u = > 4 .nn uprz? € O, we denote
ula =3 4en uaz? the restriction of u to A.

We make the following assumptions on g:
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- g is convenient: each coordinate line has a point contained in I'(g).

- g is non-degenerate with respect to its Newton boundary: for every face
A C I'(g), the system:

does not have any solution in (C*)™.

Under these conditions, g defines an isolated singularity. We will suppose that
f = x1. In particular, the ideal J is (g, gzy, - - - 9z, )O. Moreover the morphism
(21, g) defines a isolated singularity too, because the restriction of g to 1 =0
is also convenient and non-degenerate.

Remark that the system of equations in the definition of the non-
degeneracy condition is equivalent to the following one:

o (), ()

because g|a is a weighted-homogeneous polynomial in restriction to every face
A C T'(g). Let us recall that a nonzero polynomial is weighted-homogeneous
of weight d € Q™ for a system a € (Q*T)™ if it is a C-linear combination of
monomials z4 with (a, A) = d.

Now we introduce some notations before giving the division theorem by
the ideal J which is adapted to our situation.

Notation 4.1. Let F be the set of n — 1 dimensional faces of I'(g).
Given F € F, we consider the vector ar = (ap1,...,ap,) € (Q*T)" such
that (ap, A) =1 for every A € F. The weight pp(u) in relation to the face
F € F of a nonzero germ u = Y 4 .o uaz” € O is also defined by pp(u) =
inf{(ap, A) |ua # 0} € QT. By agreement, we fix prp(0) = +oo. Then we
define the weight of a germ u € O in relation to I'(g) by p(u) = infrper pr(u).

For every rational ¢ € Q, let us denote Osq = {u € O|p(u) > ¢}, Os4 =
{ueOlp(u) >q} and gr O =P cq+ O>4/O0>q-

We define another weight function, p* : O — Q% U {400}, by p*(u) =
infrer pf(u) where pi(u) = pp(uzs---x,) for every u € 0. As above, we
have the spaces O% , O% , ¢ € Q. If O is the set of germs u € O such that
uzs - - - Ty, is a polynomial supported by ¢I'(g), then gr* O = P, 0%, /0%, may
be identified to B, O;.

For every u € O nonzero, let in*(u) be the coset of u in (’);p*(u)/(’);p*(u)
identified to C’);*(u). For every ¢ € QT let E; C O be a supplementary of
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O; Nin*(J) in O}, where in*(J) C Clz] is the ideal generated by the initial
parts of the elements of J. Finally, let E%, C E be the space P, ~, E; -

Theorem 4.2.  ([2], [9]) For every u € O, there exists a unique element
veE = @qE;‘ and A1, ...,A\p € O such that:

U=U+)\19+Z)\i9;i
=2
where p*(v) > p*(u), p*(A1) > p*(u) =1, and for 2 < i <n: p*(Nigh,) > p*(u),
p*(Xi) = p*(u) = L+ p(xs), p*(OAi/Oxi) = p*(u) — 1.

The proof is a direct adaptation of the one of Proposition B.1.2.2, B.1.2.3,
B.1.2.6 of [2], which need Theorems 2.8 and 4.1 of [9]. In particular, the
multiplication by s - -z, induces a strict isomorphism A from (O/J, p*) to
(Oxp -2, /Oxg - - -2, N 1(g), p) where I(g) = (9,229, - - -1 Tngy, )O.

Indeed, these Kouchnirenko results are true for every non-degenerate fam-
ily h1,...,h, € O, i.e. satisfying the non-degeneracy condition and such that
p(h;) = 1 for 1 < i < n. In particular, the family {g,22g,,,...,2ng, } is
non-degenerate.

Let us denote IT* = {¢ € QT | E} # 0} and ¢* = sup{q| E; # 0}. Rewrit-
ing [2, p. 566], we get:

n—SUppcr pr(T1--x,) < 0" <n

The estimation is obtained by using the Rees function 7;(,y, which coincides
with the weight function p under our assumptions ([3], [17]).

We end by giving the technical lemmas at the root of the algorithm. First
we give a filtered version of Proposition 3.2.

Lemma 4.3. Given N,¢ € N*,| q € Q, there is the following identity in
Zk21 'D(Skfbiq+12

N N
1 1 s+1
E DO§q+k5kxi+ e DJZ(H_@(S@:E‘;J'_ D @ DEzq_,’_k.(skxi-i_
k=1 k=2

where J>q10 =T NO% 4y
For every face F € F, let us denote |ar| € Q*t the sum Y. ap,,

XF = Y1 ap,xi(0/0z;) the Euler vector field associated with F, xp =
> ey @pi(0/0xi)x; = XF + lap| and hp = xr(g9) — g € O.
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Lemma 4.4. Given w € C, F € F, u € O and k € N*, there is an
identity:

(ap1(s+1) + |ap| + wudpz; T = [Xpu + [(w + E)u — xr(u)]] - 6™

s+1
- Uhp5k+1xi+

and the following identities, for every F' € F:
P () > " (), P (w0 + K — X () = p*(w), pi (whp) = p*(u) + 1

If F' = F, then py(uhp) > p*(u) + 1. Moreover, if pi(u) > p*(u) or pi(u) =
p*(u) =w+k+ |ar| — ap1, then pi((w + k)u — xr(uw)) > p*(u).

For every monomial u, let F*(u) C F be the set of the faces F' with
pi(u) = p*(u); if w € O is nonzero, then F*(u) C F is the set of F' € F such
that there exists a monomial v in in*(u) with pj(v) = p*(u). Using Lemma
4.4, we get the following formula:

Lemma 4.5.  For every u € O nonzero and k € N*:

#HF" (u)
I (ari(s+2)+p"(w) = k)| udpai™ € > DOL iy idhrizt”
FeF*(u) i=0

Remark that the multiplicity of a factor (ap1(s+ 2) + p*(u) — k) in the
given polynomial may be arbitrarily high. The next result states the existence
of a polynomial such that the multiplicities are strictly smaller than n.

Proposition 4.6.  Let u € O nonzero and k € N*. Let A*(u) C Q*F
be the set of apy with F € F*(u). Then:

n—1

[T (als+2)+p(w) —k)|  ubpa;™
a€A* (u)
(n—1)x#A"(u)

+1
S Z Doip*(u)+i(5k+ixi
=0

We prove this result in the next paragraph.

84.2. Proof of Proposition 4.6

We need some additional notations.
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Let us attach to any face F' € F the closed cone C(F) C (RT)", the
union of linear half-lines going through F. In particular, A € (R¥)" belongs
to C(F) if and only if infp e r{ap/, A) = (ap, A). Let us denote C the fan with
support in (RT)™ associated with the Newton boundary I'(g). We recall that
it is the smallest family of convex polyhedral rational convex cones of (RT)"
which contains the cones C(F), F € F, and verifies the conditions:

- if C is a facet of a cone of C then C' € C;
- if C1,C5 € C, then C; N Cs is a facet of C; and Cs.

For every A € (R*)™ nonzero, we note C(A) € C the cone of smallest
dimension which contains A, and d(A) € N its dimension. In particular, we
have 1 < d(A) < n and d(A) = n if and only if A belongs to the interior of a
cone C(F).

The proof of the proposition uses the following elementary results.

Lemma 4.7. Let F € F and let A, A’ € C(F) be two nonzero vectors
such that A" ¢ C(A). Then A, A" € C(A+ A’) and so d(A+ A’") > d(A) + 1.

Lemma 4.8.  Let Fy,...,F,, € F be faces such that ap, 1,...,0F, 1
are equal. Let A € (RT)™ be a vector belonging to the cone C(Fy,...,Fy) =
C(F1)N---NC(Fy) and such that infpjaco(myory = ap,1. Then, for every
e € R*T small enough, the vector A+ €(1,0,...,0) belongs to C(Fy,...,Fy,).

Proof of Proposition 4.6. Without loss of generality, we assume that u is
a monomial; we denote A € N x (N*)"~! the n-uplet such that uzs - - -z, is
C-proportional to 2.

Let Fy € F*(u). Using Lemma 4.4, we have:

(a1 (5 +2) + p"(u) = K)udpai™ = Xp, - udpai™ —uhp, dpazi™

A

where Yp, - udpziT' € DOZP*(U)(Skl‘T-H. If w; = 2 is a monomial of the

Taylor expansion of hp,, then two cases are possible:
- First case: p*(uwi) > p*(u) + 1. Then wwidpy2T € O e ()41
(5k+1$i+1.

- Second case: p*(uwq) = p*(u) + 1. As pp(hp,) > 1 with an equality if and
only if F' # Fy, we have also F*(uw;) = {F € F*(u)| A} € F} and this set
does not contain F;. From Lemma 4.7 applied with A € C(Fy) N C(Fy),
A=A} € C(F,) — C(Fy) for Fy € F*(uws), we get d(A+ A}) > d(A) + 1.
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Hence, up to an element of the D-module ZLO Din*(uHﬁkafH, the
element (avp, 1(54+2)+p* (u)—k)udpx;t is equal to a C-linear finite combination
of terms ww; 8 125 with weight p* (u) — k such that F*(uw) C F*(u) —{F1}
and d(A+ A)) > 2 if wyuzy -z, = 23T

Remark that if d(A + A’) = n then F*(uw) has necessarily one element.
So, when a polynomial ¢(s) € CJs] allows to use n times this process, we
prove that c(s)udpz™ belongs to DIs]<deg c(s)—n 2ieo Din*(u)H&kﬂfo
then to Z?ﬁ%c(s) D(’);p*(u)ﬂ-ék“x‘fﬂ (Lemma 4.4). In particular, the poly-

nomial [HaeA*(u)(a(s +2)+ p*(u) — k)| is suitable. We will prove that the
power n — 1 is sufficient.

Tt is easy to see that it is true if d(A) > 2. Remark that it is again true when
there exists a € A*(u) such that ap; = a for at most n—1 faces F' € F*(u) (this
is true if n = 2). Indeed, by taking such a face F; € F*(u), the polynomials of
degree less or equal to n so used to get terms uwy - - - wi5k+ixf+1, i < n, with a
weight strictly greater than p*(u) — k, are multiples of (a(s + 2) + p*(u) — k),
but they can not be equal to (a(s+2) + p*(u) — k)". A similar argument allow
us to conclude when there exists F} € A*(u) such that, for every monomial w;
of the Taylor expansion of hr, with p*(uw;) = p*(u) + 1, the set A*(uwq) is
not reduced to {ap, 1}

So we have just to consider the following case: n > 3, d(A) = 1, and, for
every F € F*(u), there exists at least one monomial w = 24" in the Taylor
expansion of hp such that p*(uw) = p*(u)+1, d(A+A4") =2, A*(uvw) = {ar1}
and the set F*(uw) has at least n — 1 elements. We will prove that after at
least n — 1 iterations of the general process given above, we get a sum of terms
uwy - widg it i < n — 1 with a weight strictly bigger than p*(u) — k.

Let F; € F*(u) such that ap 1 is the smallest element of A*(u). Let
w; = 2 be a monomial in the Taylor expansion of hp, which verifies the
requisite conditions, and let F*(uw;) = {Fy,...,Fn}. Let us prove that A+ A}
is necessarily in the cone {0} x (R*)"~L. Otherwise the vector A + A} € (IN*)"
is in the interior of the cone C(Fy,....F,,) = C(F)N---NC(F,) € C, ie.
C(A+ A) = C(Fy,...,Fn). As A € C(A+ A))NC(F) and A} # C(Fy),
the cone C(Fy, Fy,...,F,,) is contained in a facet of C'(A + A}). Then for a
dimensional argument, it coincides with C'(A). But, from Lemma 4.8, this is not
possible because d(A) =1 and A € N x (N*)"~1. So the assertion is proved.

Now we apply this process for the face Fy. If d(A + A} + A}) > 4, at
least n — 3 additional iterations are enough for ending. So we can assume that
d(A+ A} + AY)) = 3. But d(A+ A}) = 2 and C(A + A4}) c {0} x (RT)"L.
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So, using again the above argument, we obtain also that A} € {0} x (R*)"~!
necessarily, and then C(A4 + A} + A}) C {0} x (RT)"~L. Tterating again at
least n — 4 times this process and the argument, if it is not finished, then
C(A+ A} +---+Al_,)isaconein {0} x (RT)"~! of dimension n—1. But also
F*(uwq -+ - wp—2) is reduced to {F'} and after a last iteration, p* (uwq - - - wp—2o
hpdpsn_125T1) is strictly greater than p*(u) — k. This ends the proof. O

§4.3. Filtrations and roots of by(s)

For every £ € N*, the weight function p* may be extend to P, Ebpastt
by p* (3, urdrait) = ming{p*(ux) — k}. It induces the decreasing filtration
(@kze Edkxfﬂ)zq = @kze E§q+k5kxf+1, g € Q. Then the spaces Z¢, Z, and
Z,/Z, get the induced filtrations and we have:

gr*Zy — gr* Z; — gr*(@Eékx‘;H) = @ (@E;Jrk(skxfﬂ)

k>t q k>t

For every U = 3, updpx;™ € @, , Edra;t! nonzero, the initial part of U is
the element in*(U) € @5, E;*(U)+k§kxf+1 defined by:

m*(U) = Z in*(uk)ékxi“
p*(ur)—k=p*(U)

If G C @, Edxxi™ is a nonzero subspace, we will denote in*(G) the sub-
space of @;(@kze E;+k(5kxf+1) generated by the initial parts of the nonzero
vectors of G. For ¢ € Q, let us denote Zj = in*(Z,) N @kzz E;‘+k6kx‘19+1, and
Z’Zq =in*(Z)) m@kzz E(’;+k6kxi+l. In particular, the rational numbers g with
Z', ,# 0 are contained in {¢ € Q|3k e N, ¢ + k € II*}.

Using (8) and Lemma 4.3, we prove that the action of s on Z)/ 2, respects
the filtration by p* and induces an action of degree zero on gr*(Z;/2,). For
every ¢ € Q, let us denote by 4(s) the minimal polynomial of s on gry(2/ Z0).
So, from Theorem 1.1, we have:

Theorem 4.9.  The polynomial 64(8) is the l.c.m. of the polynomials
beq(5):

bg(S) = l.C.m.gzqulqu&q (S)

Remark that, contrary to the classical case, the polynomials B&q(s) are not
a power of an affine form (see Lemma 4.5). In Proposition 4.6, we have proved
that the multiplicities of their roots are strictly smaller than n. Thus:
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Theorem 4.10.  The multiplicity of a root of be(s) is at most n — 1.

Remark 4.11.  Up to a change of notations, the first part of the proof of
Proposition 4.6 allows to prove in the case of a non-degenerate convenient germ
that the multiplicities of its reduced Bernstein polynomial are raised by n.

84.4. The effective computation

Thus the determination of l;g(s) needs the one of spaces Z  and Z’Zq,
q € Q. Here we adapt the method given in [2], and we apply it on an example.
Using the following formula:

(api(s+1)+w — (ap, B) — Xp)0Pudpai
=0°((w+k — |ap|)u — XF(u)]cS;gnf‘*‘1 - 35th5k.+1xf+1

forue O, ke N*, we C, 8 € N", and Lemma 4.3, we construct a sequence
(St;m)1<m=<m, of good operators Sy, in s of degree m, a creasing sequence
of rational numbers (qe,m)1<m<nm,—1 With g1 > p*(21g,,) and a sequence
(Hym)1<m<m,—1 of elements of @, DEékxi‘H such that:

o Sg’mxlg;ﬁgx‘zﬂ —Hppm € DJ&x‘fH forl1 <m < M, —1;

+1 +1.
o Sem,r19y, 002 € DI 6y

o Hé,m = Z€§k§€+n—2 Hg7m7k5kxi+l with I‘Ig,m’]€ S DEéqg)erkff of degree
at least m+¢ — k — 1.

Then this sequence (Hy,,,) determines Z;:

m=1

My—1
(10) Zp = { Z colamHom) + colaorigl, 6ex5™) | am € (9}

because Z; coincides with c,(D[s]z1g), 6ez™") (Lemma 3.3) and, for every

P(s) € Dis]:
My—1
P(s)aclg;clézx‘l"’+1 S Z DSgymxlg;ﬁgm‘;H + Dxlg;ﬁﬁ‘fﬂ + DT et

m=1

Indeed, by division we have: P(s) = Py, ($)Se,m, + ngi_ll P,,S¢,m + Py where
P, €D, 0<m<M;—1,and Pu,(s) € D[s|<a—m, if d € N is the degree in s
of P(s). An induction on d allows us to conclude, using Remark 2.4 and that
Sg7M£xlg;164x‘i+l € DJ(SMTH.

The determination of Z = c,(D]s]gl, dex;T") is similar, using sequences

(Stam)r<m<nys (Qm)1<m<ny—1 With gy > p*(gs,), and (Hy ) 1<m<nrg—1-
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Remark 4.12.  If the Newton polyhedron of ¢ has only one (n — 1)-
dimensional face F' - with normal vector a € (Q**)™ -, the algorithm is very
simple, exactly as in [2], part 2. In fact, it is enough to suppose that g|r and
(9|F,x1) define some isolated singularities, i.e. g, (g,21) are semi-weighted-
homogeneous morphism. Then the division theorem used in [2], p. 593, is
sufficient, and so the weight function p = pg is enough. Moreover, II is
also the set of the weights of a weighted-homogeneous co-basis of the ideal
in(J) = (in(g9),in(gzy), - - -, in (s, ))Clx], with 0 = n — 2|a| + a1, and the
formula given in Lemma 4.4 ends in one time:

(a5 + 1) + o] + plu) — kyudiri
€ DO )0k + DO p(uyp(hyk+127

where h = x(g) — g. Hence (a1(s + 1) + |a| + ¢) annihilates gr,Z)/Z,, and the
polynomial by(s) is given by:

b= I (s+1+ 200

a
Z0.,CZ) 1

="l,q

When g is in fact a weighted-homogeneous polynomial, we easily get:

be(s) = [ <5+ M)

«
pell’ 1

where II' C Q™ is the set of the weights of a weighted homogeneous cobasis of
(T15 Gzgs - - - 592, ) O (see [22]).

Example. Let g be the germ z{ + 24 + 24 + 232322 with d > 9, and
f = x1. The computation of the Bernstein polynomial of g is done in [2]. Here
we determinate the polynomials by(s), £ € N*.

The Newton polyhedron of g has exactly three 2-dimensional faces Fy, F,
F3, with normal vectors associated:

(1 211) (11 21) (111 2)
« = |-, -, - « =|l-\/-— -, — =|{-\-—-\, - — —
n=G T wad " e ad) T a2 d
So lap,| =1/2 and hp, = (d/2 — 3)z¢, 1 <i < 3.

The ideal J is generated by g, g,, = dzd=1 + 2222522 and Gy = drd= 4
2z3x323. By taking away the non multiple of xo23 monomials from the mono-
mial basis of I(g) = (g, 729L,,739,,)O given in [2], B.4.2.2.3, we obtain (using
the isomorphism A) the following monomials:
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u p*(u)

(r1223)° 21 (5+1)/2 0<e<4

(T120m3)°m12Y | (e+1)/2+i/d 0<e<2,1<i<d—-1,1<6<3
(z12923)°xhal | €/2+ (i+7+2)/d | 0<e<1,0<i,j<d-2

wittal 1/2+ (i+3)/d 1<i,j<d—1,60=2,3

So this gives a basis of a supplementary E C O of the ideal J. Thus
o*=5/2,;and II* ={1/2+ k/d|0 <k <2d}U{k/d |2 <k <2d}.

s+1)

Now we determinate the space Z; = ¢¢(D[s]z19], 0¢ First we remark

that the division of 219, by J is given by:

2
21, = dz{ + m(dg — @29y, — ¥305,)

Without loss of generality, it is also enough to find the sequence (Hp,y,) asso-
ciated with x§ 6g1:s+1 We have the identities:

+1

(%(s—i—l)—l—g—f—i&) {pastt = (6;d

1 3 6—d
(d(s +1) + 3~ l— XF3)$1$255+1335+1 (T)x‘f@x?ﬁgﬂxsﬂ

)x1x2(5@+1x5

where p*((z12923)%) = d/2 + 2/d > o* + 2 because d > 9. Hence the term
(z12973) (5”2:135“ belongs to ’DJ&@QCSH and so M; = 2. We get Hyq by
rewriting (d(6 — d)/2)2{z36,125T". As dzfad = afasgl — 2(z12013)%ad, we
obtain:

. d—6 B
Hg 1= (d 6)(x1x2x3) $15g+1x +1 +d< 9 ) {xl ax x1x2:| 5€$1

s+1)

Consequently, Z, is equal to Cg(OxiléngH + O(z17273) 22850110 . So we

find:
Zp = Gégxfﬂ &) C($1$2$3)2(E(1i(5[+11'§+1 &) C(x1x2x3)4x154+1x§+1
where G C F is the subspace generated by the monomials:

( )y 2<e<4

( yeat e=0,i=d, ore=1,i=d—-1,d,ore=2, 2<i<d
(z1@0w3)mxly e=1,i=d—1lore=2,1<i<d-1(0=23)

( yeahah e=0,i=j=d—2ore=1,d—3<4,j<d—2
Tl i=d 1<j<d-lord—2<i,j<d-1(0=2,3).
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The determination of the sequence (Hj ) associated with gh ST s

similar (for more details, see [22]). So we obtain that the quotient space Z;/2Z;
may be identified to:

G5t @ C(aywos)2ad ™ 52Tt
where G’ C F is the C-vector space generated by the d(d — 2) monomials:

(r12073)°2% =0, i=d—1,ore=1,i=d—2
(r120m3)zbal 1<i,j<d—2exceptd—3<i,j<d-—2

zix) i=d—-1,1<j<d-3,ori=d-3,d-1<;j<d-2
for every £ € N*, expect if d is even and ¢ = 2. In this case, the four
. d—1 _d/2+1 d/2+1 _ 1
monomials x7™ "z, . Ty xoxs(x12923), 0 = 2,3, do not belong to G,
and G’ have the following two vectors in addition zg/ o o, = dx‘li_lxg/ g

2$2/2+1x2x3(x1x2x3), 0=23.

In order to study the action of s on nonzero spaces Z’ Zq /Z{ ,» we use the
relation:

* s 6—d s
(op (s +2) + 9" (u) = Kudpari™ = = —ualdpaf™

where u is a monomial and F; € F such that p*(u) = pf, (u), and we compute

the image by ¢, after rewriting by division. For every udpzi™, u € G’, the

computation gives zero - in gr;*(u)_ZZé/Zg - with one exception if u = xil_lz

1 3 2
(3(5 +2)+ 57 q" €)$(1i_15517i+1

d—6, 4_ , _
= 57 (287 10,25 + 2(xywoms) 20l 50y 25T

and ((1/d)(s+2) +3/2—2/d—€)%5,23+ = 0. Consequently, by(s) is the Lc.m.
of ((1/d)(s+2)+3/2—2/d—¥)? and of (ap1(s+2)+p*(u) —£) with F € F*(u),
u # x‘li_l in the given basis of G’. Then in the general case, we have:

_ 3 g d=3 3
be(s) = Lem. {s+d(2 -1, (s+d<§ fz)) I1 (s+d(§ fe) +i>,

QﬁS (S LE ;2_6); Qi) }

=0

where the last polynomial is the one of the monomials v with F*(u) = {F}}.
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