Bernstein Polynomials of a Smooth Function Restricted to an Isolated Hypersurface Singularity

By

Tristan TORRELLI^{*}

Abstract

Let f, g be two germs of holomorphic functions on \mathbb{C}^n such that f is smooth at the origin and (f,g) defines an analytic complete intersection $(Z, 0)$ of codimension two. We study Bernstein polynomials of f associated with sections of the local cohomology module with support in $X = q^{-1}(0)$, and in particular some sections of its minimal extension. When $(X, 0)$ and $(Z, 0)$ have an isolated singularity, this may be reduced to the study of a minimal polynomial of an endomorphism on a finite dimensional vector space. As an application, we give an effective algorithm to compute those Bernstein polynomials when f is a coordinate and g is non-degenerate with respect to its Newton boundary.

*§***1. Introduction**

Let $n \geq 2$ be an integer. Let us denote $\mathcal{O} = \mathbf{C}\{x_1, \ldots, x_n\}$ the ring of germs at 0 of complex holomorphic functions, and $\mathcal{D} = \mathcal{O}\langle\partial/\partial x_1,\ldots,\partial/\partial x_n\rangle$ the ring of linear differential operators with holomorphic coefficients.

Let $g \in \mathcal{O}$ be a nonzero germ such that $g(0) = 0$, and $\mathcal{R} = \mathcal{O}[1/g]/\mathcal{O}$ the local cohomology module with support in the hypersurface $(X, 0) \subset (\mathbb{C}^n, 0)$ defined by g . It is a regular holonomic \mathcal{D} -module such that its complex of holomorphic solutions is the perverse sheaf \mathbb{C}_X [−1] (see [5], [6], [14]).

Given a germ of function $f \in \mathcal{O}$ nonzero on X, there are functional equations in $\mathcal{R}[1/f, s]f^s = \mathcal{R} \otimes_{\mathcal{O}} \mathcal{O}[1/f, s]f^s$ of the form:

 $b(s)\delta f^s = P \cdot \delta f^{s+1}$

Communicated by K. Saito. Received September 24, 2002.

²⁰⁰⁰ Mathematics Subject Classification(s): 32C38, 32S40, 14B05.

^{*}Institut Élie Cartan, Université Henri Poincaré-Nancy I, UMR 7502 CNRS-INRIA-UHP, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France.

e-mail: torrelli@iecn.u-nancy.fr

798 Tristan Torrelli

for every $\delta \in \mathcal{R}$, with $b(s) \in \mathbf{C}[s]$ nonzero and $P \in \mathcal{D}[s] = \mathcal{D} \otimes \mathbf{C}[s]$ (see [6]). We call Bernstein polynomial of f associated with δ , and we denote $b(\delta f^s, s)$, the unitary generator of the ideal of polynomials $b(s)$ verifying such an identity. When f is not a unit, it is easy to check that $(s + r(\delta) + 1)$ is a factor of $b(\delta f^s, s)$, where $r(\delta) \in \mathbf{N}$ is such that $\delta \in f^{r(\delta)}\mathcal{R} - f^{r(\delta)+1}\mathcal{R}$; let us denote $\tilde{b}(\delta f^s, s) \in \mathbf{C}[s]$ the quotient of $b(\delta f^s, s)$ by $(s + r(\delta) + 1)$.

Because of the algebraic theory of vanishing cycles, roots of these polynomials determine the eigenvalues of the monodromy of $f|_X : (X,0) \to (\mathbb{C},0)$ (see [7], [12], and [20] for examples). In particular, the singular monodromy theorem implies that their roots are rational numbers ([8], [10]).

The effective determination of these polynomials is a difficult question. Following ideas of B. Malgrange $([11], [2]$ part A), we have investigated this problem in [21] when X has an isolated singularity and (f,g) defines a germ of complete intersection isolated singularity $(Z, 0)$. First, for $\delta \in \mathcal{R}$ of the form a/g^{ℓ} with $a \in \mathcal{O}$ nonzero on the components of Z, the holonomic D-module:

$$
\mathcal{N}_{\delta} = (s+1) \frac{\mathcal{D}[s] \delta f^{s}}{\mathcal{D}[s] \delta f^{s+1}}
$$

is supported by 0. Then the minimal polynomial of the action of s on \mathcal{N}_{δ} . which is nothing else but $\tilde{b}(\delta f^s, s)$ - may be computed using its n^{th} -group of de Rham cohomology $H_{DR}^n(\mathcal{N}_\delta) = \mathcal{N}_\delta / \sum (\partial/\partial x_i) \mathcal{N}_\delta$. In order to do that, we need an explicit description of this group. So we imposed that the annihilator in D of δ is generated by operators of degree less or equal to one; but it is a very constraining condition, because this implies that q is weighted-homogeneous and that $a \in \mathcal{O}$ is a unit (see [21], [23]).

In this paper, we study the particular case where f is a germ of a smooth function. Let us recall that this contains the classical theory of the Bernstein polynomial of germs of holomorphic functions, because of the following relation:

$$
b\Big(\frac{1}{h-z}z^s,s\Big)=b(h^s,s)
$$

for every $h \in \mathcal{O}$ nonzero, where $b(h^s, s)$ is the Bernstein polynomial of h and $1/h - z \in \mathbb{C}\{x, z\}[1/h - z]/\mathbb{C}\{x, z\}$ (see Proposition 2.8 for example).

Without further condition on g , we prove in Theorem 2.1 that for some $\delta \in \mathcal{R}$, the $\mathcal{D}[s]$ -module \mathcal{N}_{δ} coincides with:

(1)
$$
\mathcal{N}_{\ell} = \frac{\mathcal{D}[s](\mathrm{jac}(g), g)\delta_{\ell}f^{s+1}}{\mathcal{D}[s]\mathcal{J}\delta_{\ell}f^{s+1}}
$$

for an integer $\ell \in \mathbb{N}^*$, where $\text{jac}(g) \subset \mathcal{O}$ is the jacobian ideal of $g, \mathcal{J} \subset \mathcal{O}$ is the ideal generated by g and by all the 2×2 -minors of the jacobian matrix of

 (f,g) , and $\delta_{\ell} \in \mathcal{R}$ is defined by $(-1)^{\ell+1}(\ell-1)!/g^{\ell} \in \mathcal{O}[1/g]$. More precisely, \mathcal{N}_{δ} is equal to \mathcal{N}_{ℓ} (resp. $\mathcal{N}_{\ell+1}$) when $\delta = v(g)\delta_{\ell}$ (resp. $\delta = \delta_{\ell}$) for every generic regular vector field v such that $v(f) = 0$. This result enables us to treat in the same way the Bernstein polynomials of f associated with sections $\delta_{\ell}, \ell \in \mathbb{N}^*$, but also with certain generators of the minimal extension $\mathcal{L} \subset \mathcal{R}$ of the local algebraic cohomology with support in X (since D. Barlet and M. Kashiwara prove in [1] that $\mathcal L$ is generated by any nonzero section defined by $v(g)/g$, where $v \in \mathcal{D}$ is a vector field).

So we are interested in the determination of the minimal polynomial of the action of s on \mathcal{N}_{ℓ} , denoted by $\tilde{b}_{\ell}(s)$, when f is smooth, X has an isolated singularity and (f, g) defines a germ of complete intersection isolated singularity. In the third part, we express $H^n_{DR}(\mathcal{N}_\ell)$ under these assumptions as a quotient of two finite dimensional vector spaces \mathcal{Z}'_{ℓ} and \mathcal{Z}_{ℓ} defined in section 3.2. Therefore:

Theorem 1.1. For every $\ell \in \mathbb{N}^*, \tilde{b}_{\ell}(s)$ is the minimal polynomial of the action induced by s on $\mathcal{Z}'_{\ell}/\mathcal{Z}_{\ell}$.

This needs the knowledge of the annihilator in $\mathcal D$ of $\delta_k f^s$, Ann_D $\delta_k f^s$, which authorizes the calculation of the n^{th} -group of the de Rham cohomology of the D-module $\sum_{k\geq 1} \mathcal{D}\delta_k f^{s+1}$ (into which $\mathcal{D}[s](\mathrm{jac}(g), g)\delta_\ell f^{s+1}$ injects).

As an application, we develop in the last part an algorithm to compute $\tilde{b}_{\ell}(s)$ when $f = x_1$ and g is non-degenerate with respect to its Newton boundary in the sense of Kouchnirenko, which gives a generalization of [2]. Using the Newton function ρ on \mathcal{O} , we define a weight function ρ^* by $\rho^*(u\delta_k x_1^{s+1}) = \rho(ux_2 \cdots x_n) - k$. Then Kouchnirenko division theorem makes it possible to establish that the filtration induced by ρ^* is suited to our construction of $H_{DR}^n(\sum_{k\geq 1} \mathcal{D}\delta_k f^{s+1})$. Moreover, the action of s respects the filtration induced by ρ^* on $\mathcal{Z}'_{\ell}/\mathcal{Z}_{\ell}$. Thus, if $\tilde{b}_{\ell,q}(s)$ is the minimal polynomial of the action of s on $\operatorname{gr}^*_q\mathcal{Z}'_{\ell}/\mathcal{Z}_{\ell}$, then the polynomial $\tilde{b}_{\ell}(s)$ is the l.c.m. of $\tilde{b}_{\ell,q}(s)$, $q \in \mathbf{Q}$ (Theorem 4.9). The technics 'rewriting by division' and 'increase in weight' allow us to give an explicit computation of the spaces $\mathcal{Z'}_{\ell,q}^*$, $\mathcal{Z}_{\ell,q}^*$ and of the action of s on $\mathcal{Z'}_{\ell,q}^*/\mathcal{Z}_{\ell,q}^*$, and thus to determine $\tilde{b}_{\ell}(s)$. In the particular case of semi-weighted-homogeneous germs, these computations are easier (Remark 4.12). On the way, we deduce from an algorithm for computing a multiple of the polynomials $\tilde{b}_{\ell,q}(s)$ that the multiplicities of the roots of $\tilde{b}_{\ell}(s)$ are strictly smaller than n (Theorem 4.10).

We end with the complete determination of the polynomials $\tilde{b}_{\ell}(s)$ when $g = x_1^d + x_2^d + x_3^d + (x_1x_2x_3)^2, d \ge 9.$

Finally, we point out that the methods at the root of the algorithm may be adapted to compute Bernstein functional equations associated with an analytic 800 TRISTAN TORRELLI

morphism - introduced by C. Sabbah (15) , $[16]$) - in the following case: $(g, x_1, \ldots, x_p):(\mathbb{C}^n, 0) \to (\mathbb{C}^{p+1}, 0), 1 \leq p \leq n-1.$ In particular, one can make explicit non trivial equations of the form:

$$
d_0(\underline{s})g^{s_0}x_1^{s_1}\cdots x_p^{s_p} \in \mathcal{D}[\underline{s}]g^{s_0+1}x_1^{s_1}\cdots x_p^{s_p}
$$

$$
d_j(\underline{s})g^{s_0}x_1^{s_1}\cdots x_p^{s_p} \in \mathcal{D}[\underline{s}]x_jg^{s_0}x_1^{s_1}\cdots x_p^{s_p}, 1 \le j \le p
$$

where $d_0(\underline{s}), d_j(\underline{s}) \in \mathbf{C}[s_0, \ldots, s_p]$ and $\mathcal{D}[\underline{s}] = \mathcal{D} \otimes \mathbf{C}[s_0, \ldots, s_p]$. This completes H. Maynadier-Gervais results about these functional equations ([13]).

I acknowledge the partial support of the Swiss National Science Foundation. I also wish to thank Daniel Barlet for useful discussions, and Joël Briançon for his help in the proof of Proposition 4.6.

*§***2. Some Equivalences of Functional Equations**

In this part, we denote $f \in \mathcal{O}$ a germ of a smooth function and $g \in \mathcal{O}$ a germ which is not a unit and does not belong to $f\mathcal{O}$.

We first prove Theorem 2.1, where the D-module \mathcal{N}_{δ} is identified to \mathcal{N}_{ℓ} for some $\delta \in \mathcal{R}$. Then we give relations between some Bernstein polynomials of f associated with sections of $\mathcal{R} = \mathcal{O}[1/g]/\mathcal{O}$.

$\S 2.1.$ Some identifications of \mathcal{N}_{δ} with \mathcal{N}_{ℓ}

Let us state the result at the root of this study.

Theorem 2.1. Let $f \in \mathcal{O}$ be a germ of a smooth function at the origin, and $g \in \mathcal{O}$ a germ which is neither a unit nor a multiple of f. Let us denote $(Z, 0) \subset (\mathbb{C}^n, 0)$, the complete intersection defined by f and g.

i) For every non negative integer $\ell \in \mathbb{N}^*$, the $\mathcal{D}[s]$ -module:

$$
(s+1)\frac{\mathcal{D}[s]\delta_\ell f^s}{\mathcal{D}[s]\delta_\ell f^{s+1}}
$$

where $\delta_{\ell} = (-1)^{\ell+1} (\ell-1)! (1/g^{\ell}) \in \mathcal{R}$, coincides with $\mathcal{N}_{\ell+1}$.

ii) Let $v \in \mathcal{D}$ be a regular vector field such that $v(f)=0$. Let us suppose that v is not tangent to $(Z, 0)$. Then, for every $\ell \in \mathbb{N}^*$, the $\mathcal{D}[s]$ -module:

$$
(s+1)\frac{\mathcal{D}[s]v(g)\delta_{\ell}f^s}{\mathcal{D}[s]v(g)\delta_{\ell}f^{s+1}}
$$

coincides with \mathcal{N}_{ℓ} . Moreover, when $(Z, 0)$ does not have any irreducible smooth component, the equality is verified if v is not tangent to $(Sing(Z), 0)$. iii) Let us suppose that $f = x_1$. Let $\tilde{v} \in \mathcal{D}$ be a vector field of the form $x_1(\partial/\partial x_1)+v$ where $v \in \mathbf{C} \{x_2,\ldots,x_n\} \langle \partial/\partial x_2,\ldots,\partial/\partial x_n \rangle$ is a regular vector field. Let us suppose that v is not tangent to $(Z, 0)$. Then, for every $\ell \in \mathbb{N}^*,$ the $\mathcal{D}[s]$ -module:

$$
(s+1)\frac{\mathcal{D}[s]\tilde{v}(g)\delta_{\ell}f^s}{\mathcal{D}[s]\tilde{v}(g)\delta_{\ell}f^{s+1}}
$$

coincides with N_{ℓ} . Moreover, if $(Z, 0)$ does not have any irreducible smooth component, the equality is verified if v is not tangent to $(Sing(Z), 0)$.

Given $\delta \in \mathcal{R}$, the $\mathcal{D}[s]$ -module \mathcal{N}_{δ} coincides with $\mathcal{N}_{\ell}, \ell \in \mathbb{N}^*$, if and only if the following identities are verified:

$$
(†)\qquad \qquad \mathcal{D}[s]\delta f^{s+1} = \mathcal{D}[s]\mathcal{J}\delta_{\ell}f^{s+1}
$$

$$
(\ddagger) \qquad \mathcal{D}[s](s+1)\delta f^s + \mathcal{D}[s]\delta f^{s+1} = \mathcal{D}[s](\mathrm{Jac}(g),g)\delta_{\ell}f^{s+1}
$$

In order to prove the theorem, we will check that these identities are verified in any case.

Proof of Theorem 2.1, case i). The equality (†) results from the following identities:

(2)
$$
g\delta_{\ell+1}f^{s+1} = -\ell \delta_{\ell}f^{s+1}
$$

(3)
$$
(f'_{x_j}g'_{x_i} - f'_{x_i}g'_{x_j})\delta_{\ell+1}f^{s+1} = \left(f'_{x_j}\frac{\partial}{\partial x_i} - f'_{x_i}\frac{\partial}{\partial x_j}\right)\delta_{\ell}f^{s+1}
$$

So let r be an index such that f'_{x_r} is a unit. From the identities:

$$
(s+1)\delta_{\ell}f^{s} = (f'_{x_{r}})^{-1}\frac{\partial}{\partial x_{r}}\delta_{\ell}f^{s+1} - (f'_{x_{r}})^{-1}g'_{x_{r}}\delta_{\ell+1}f^{s+1}
$$

and (†), we deduce:

$$
\mathcal{D}[s](s+1)\delta_{\ell}f^{s} + \mathcal{D}[s]\delta_{\ell}f^{s+1} = \mathcal{D}[s](g'_{x_r}, \mathcal{J})\delta_{\ell+1}f^{s+1}.
$$

Thus (\ddagger) is verified since the ideal $(g'_{x_r}, \{g'_{x_i}f'_{x_r} - g'_{x_r}f'_{x_i}\}_{i \neq r})$ *O* coincides with $\mathrm{jac}(g)$. \Box

Proof of Theorem 2.1, first part of ii). Let $v \in \mathcal{D}$ be a regular vector field such that v annihilates f and is not tangent to $(Z, 0)$. Up to a change of coordinates, we may assume that $f = x_1$ and $v = \partial/\partial x_2$ (in particular $\mathcal{J} = (g'_{x_2}, \dots, g'_{x_n}, g)\mathcal{O}$. In algebraic terms, the geometrical assumption on v is: $g \notin (x_1, x_3, \ldots, x_n)\mathcal{O}$. In other words, there exists $N \in \mathbb{N}^*$ such that $v^N(g)$ is a unit.

First we prove that the inclusion $\mathcal{D}[s]v(g)\delta_{\ell}x_1^{s+1} \subset \mathcal{D}[s]\mathcal{J}\delta_{\ell}x_1^{s+1}$ is an equality. It is enough to see that the ideal $I = \mathcal{D}[s]v(g) + \text{Ann}_{\mathcal{D}[s]}\delta_{\ell}x_1^{s+1}$ contains $g'_{x_3}, \ldots, g'_{x_n}$ and g. Since the operators $(\partial/\partial x_i)v(g) - v g'_{x_i}, 3 \leq i \leq n$, and $vg + (\ell - 1)v(g)$ annihilate $\delta_{\ell} x_1^{s+1}$, then $vg, v g'_{x_3}, \ldots, v g'_{x_n} \in I$. So we have $g, g'_{x_3}, \ldots, g'_{x_n} \in I$ by using the following lemma. Thus (†) is true.

Lemma 2.2. Let $\vartheta \in \mathcal{D}$ be a vector field and $h \in \mathcal{O}$ a nonzero germ such that $\vartheta^N(h)$ is a unit for a non negative integer $N \in \mathbb{N}^*$.

Then, for every $a, c \in \mathcal{O}[s]$, the ideal $\mathcal{D}[s](\vartheta + c)a + \mathcal{D}[s]$ ha contains a.

Proof. It is enough to prove that $\vartheta^k(h)a, k \in \mathbb{N}^*$, belong to the given ideal. This may be done by induction, using the identities: $\vartheta ah - h(\vartheta + c)a =$ $\vartheta(h)a - \alpha h$ and $\vartheta \vartheta^k(h)a - \vartheta^k(h)(\vartheta + c)a = \vartheta^{k+1}(h)a - \vartheta^k(h)c a, k \in \mathbb{N}^*$. \Box

Let us prove (\ddagger) for $\delta = v(g)\delta_{\ell}$. Since $\mathcal{D}[s]v(g)\delta_{\ell}x_1^{s+1}$ coincides with $\mathcal{D}[s]\mathcal{J}\delta_{\ell}x_1^{s+1}$, and using the equality:

(4)
$$
(s+1)v(g)\delta_{\ell}x_1^s = \left(v(g)\frac{\partial}{\partial x_1} - g'_{x_1}v\right)\delta_{\ell}x_1^{s+1} = \left(\frac{\partial}{\partial x_1}v(g) - v g'_{x_1}\right)\delta_{\ell}x_1^{s+1}
$$

it is enough to remark that g'_{x_1} belongs to $\mathcal{D}(v(g), v g'_{x_1})$. But this is a consequence of Lemma 2.2. Then (\ddagger) is verified. □

Proof of Theorem 2.1, *first part of* iii). Let \tilde{v} be the vector field $x_1(\partial/\partial x_1)$ + v where $v \in \mathbf{C} \{x_2, \ldots, x_n\} \langle \partial/\partial x_2, \ldots, \partial/\partial x_n \rangle$ is regular and such that $v^N(g)$ is a unit for a non negative integer $N \in \mathbb{N}^*$. From the case *ii*), the D-module $\mathcal{D}[s]v(g)\delta_{\ell}x_1^{s+1}$ coincides with $\mathcal{D}[s]\mathcal{J}\delta_{\ell}x_1^{s+1}$. So, to prove (†), we just have to remark that $x_1 g'_{x_1} \delta_\ell x_1^{s+1}$ belongs to $\mathcal{D}[s] \tilde{v}(g) \delta_\ell x_1^{s+1}$ and to $\mathcal{D}[s] \mathcal{J} \delta_\ell x_1^{s+1}$. First, it is easy to check that if $v^N(g)$ is a unit, then $\tilde{v}^N(g)$ is a unit too. Moreover, identity (4) implies that $(\tilde{v} - (s+1))x_1g'_{x_1}$ (resp. $vx_1g'_{x_1}$) belongs to $\tilde{I} = \mathcal{D}[s]\tilde{v}(g) + \text{Ann}_{\mathcal{D}[s]}\delta_{\ell}x_1^{s+1}$ (resp. $I = \mathcal{D}[s]v(g) + \text{Ann}_{\mathcal{D}[s]}\delta_{\ell}x_1^{s+1})$. Thus the germ $x_1 g'_{x_1}$ belongs to I and to \tilde{I} *i.e.* $x_1 g'_{x_1} \delta_{\ell} x_1^{s+1} \in \mathcal{D}[s] \tilde{v}(g) \delta_{\ell} f^{s+1}$ and $x_1 g'_{x_1} \delta_\ell x_1^{s+1} \in \mathcal{D}[s] \mathcal{J} \delta_\ell x_1^{s+1}.$

The proof of (\ddagger) for $\delta = \tilde{v}(g)\delta_{\ell}x_1^{s+1}$ is similar to the one of the previous case, using the identity:

$$
(s+1)\tilde{v}(g)\delta_{\ell}x_1^s = \left(\frac{\partial}{\partial x_1}v(g) + (s+1-v)g'_{x_1}\right)\delta_{\ell}x_1^{s+1}.
$$

Remark 2.3. In the last case, we also prove that $\mathcal{D}[s](\text{jac}(g), g)\delta_{\ell}f^{s+2}$ is contained in $\mathcal{D}[s]\mathcal{J}\delta_{\ell}f^{s+1}$.

Proof of Theorem 2.1, second part of ii) and iii). We are going to prove that the equalities (†) and (†) are true for every regular vector field v or $\tilde{v} =$ $x_1(\partial/\partial x_1)+v$, where v is not tangent to the singular set of $(Z,0)$ and fulfils the conditions of the exposition. Let us take some coordinates such that $f = x_1$ and $v = \partial/\partial x_2$. Thus the geometrical assumption on v means that there is at least one monomial x_2^N or $x_2^N x_i$, $i \geq 3$, in the Taylor expansion of $g|_{x_1=0} \in$ ${\bf C} \{x_2, \ldots, x_n\}.$

We start with the case $\delta = v(g)\delta_{\ell}f^{s+1}$. Under our assumption, there exists an integer $N \in \mathbb{N}^*$ such that $v^N(q) = l + h$ where l is a linear form, nonzero and not proportional to x_1 , and $h \in (x_1, \ldots, x_n)^2 \mathcal{O}$. Let us remark that if l depends of the variable x_2 , $v^{N+1}(g)$ is a unit and v is not tangent to $(Z, 0)$. Without loss of generality, we can also suppose that $n \geq 3$, $l = x_3$ and that there is no monomial of the form $x_2^{N'}$ in the Taylor expansion of h.

In order to get (†), we will prove that the ideal $I = \mathcal{D}[s]v(g) + \text{Ann}_{\mathcal{D}[s]}$ $\delta_{\ell} x_1^{s+1}$ contains $g'_{x_3}, \ldots, g'_{x_n}$ and g (following the proof of the case 'v not tangent to $(Z, 0)$ '). We start with the membership of I for g. As above, we have $vg,vg'_{x_3},\ldots,vg'_{x_n} \in I$; so $vgg'_{x_i} - v(g)g'_{x_i} \in I$ and then $vg'_{x_i}g, 3 \leq i \leq n$, belong to I too. Using that $vg \in I$, we deduce: $v(g'_{x_3})g \in I$. Thus g belongs to the ideal I (Lemma 2.2).

It is more difficult to get the membership of I for $g'_{x_3}, \ldots, g'_{x_n}$. Since vg'_{x_i} , $v(g)g'_{x_i} \in I$, we remark - with the help of technics of Lemma 2.2 - that $v^N(g)g'_{x_i}$, $3 \leq i \leq n$, belong to *I*. Multiplying the operators $(\partial/\partial x_3)g'_{x_i} - (\partial/\partial x_i)g'_{x_3} \in$ Ann_{*D*} $\delta_{\ell} x_1^{s+1}$ by $v^N(g) = x_3 + h$, we deduce:

(5) for
$$
i \neq 1, 3
$$
, $(1 + h'_{x_3})g'_{x_i} - h'_{x_i}g'_{x_3}$ belongs to I

Thus the operators $((\partial/\partial x_3)h'_{x_1}(1+h'_{x_3})^{-1} - \partial/\partial x_i)g'_{x_3}$ belong to the ideal I. Dividing $h'_{x_i}(1 + h'_{x_3})^{-1}$ by $x_3 + h$, we get $((\partial/\partial x_3)\tilde{h}_i - \partial/\partial x_i)g'_{x_3} \in I$ where $h_i \in \mathcal{O}$ does not depend of x_3 . Similarly, dividing g by $x_3 + h$, we have $g = q(x_3 + h) + \tilde{g}$, where $\tilde{g} \in \mathcal{O}$ does not depend of x_3 , and is not proportional to x_1 because $(Z, 0)$ does not have any smooth irreducible component. Thus $\tilde{g}g'_{x_3}$ belongs to I. So the fact g'_{x_3} belongs to I comes from Lemma 2.2, taking $a = g'_{x_3}, h = \tilde{g}$ and $v = \sum_{i \neq 1,3} \tilde{\lambda}_i((\partial/\partial x_3)\tilde{h}_i - \partial/\partial x_i), \lambda_i \in \mathbf{C}$ generic. From (5), we have then $g'_{x_4}, \ldots, g'_{x_n} \in I$.

Now we consider (\ddagger) . Following the proof of the case $ii)$ above, it is enough to remark that the ideal $I' = \mathcal{D}[s](vg'_{x_1}, g'_{x_2}, \dots, g'_{x_n}, g) + \text{Ann}_{\mathcal{D}[s]} \delta_{\ell} x_1^{s+1}$ contains g'_{x_1} . Multiplying vg'_{x_1} by g'_{x_3} , we see that $v(g'_{x_3})g'_{x_1}$ belongs to I'. Then we conclude with Lemma 2.2 (with $h = v(g'_{x_3})$).

In the case $\delta = \tilde{v}(g)\delta_{\ell}f^{s}$, we can assume that $f = x_{1}$, $\tilde{v} = x_{1}(\partial/\partial x_{1}) + v$ where $v = \partial/\partial x_2$ and $\tilde{v}^N(g) = x_3 + h$, $h \in (x_1, \ldots, x_n)^2 \mathcal{O}$. Then the identities (†) and (‡) may be got similarly, using that the operators $(\tilde{v}-(s+1))g$, $(\tilde{v}-(s+1))g$ 1)) $g'_{x_2}, \ldots, (\tilde{v} - (s+1))g'_{x_n}$ belong to the ideal $I = \mathcal{D}[s]\tilde{v}(g) + \text{Ann}_{\mathcal{D}[s]}\delta_{\ell}x_1^{s+1}$. This comes from the identities:

$$
(s+1)g\delta_{\ell}x_{1}^{s+1} = \left[\left(x_{1} \frac{\partial}{\partial x_{1}} + \vartheta \right) g + (\ell - 1)(x_{1}g'_{x_{1}} + \vartheta(g)) \right] \delta_{\ell}x_{1}^{s+1}
$$

$$
(s+1)\vartheta(g)\delta_{\ell}x_{1}^{s+1} = \left[\left(x_{1} \frac{\partial}{\partial x_{1}} + \vartheta \right) g + \vartheta(x_{1}g'_{x_{1}} + \vartheta(g)) \right] \delta_{\ell}x_{1}^{s+1}
$$

for every vector field $\vartheta \in \mathbf{C}\{x_2,\ldots,x_n\} \langle \partial/\partial x_2,\ldots,\partial/\partial x_n \rangle$.

Remark 2.4. From these identities, we deduce the following ones:

$$
\mathcal{D}[s]_{\leq d} \mathcal{J} \delta_{\ell} f^{s+1} = \mathcal{D}[s]_{\leq d-1} f g'_{x_r} \delta_{\ell} f^{s+1} + \mathcal{D} \mathcal{J} \delta_{\ell} f^{s+1}
$$

$$
\mathcal{D}[s]_{\leq d} (\text{jac}(g), g) \delta_{\ell} f^{s+1} = \mathcal{D}[s]_{\leq d} g'_{x_r} \delta_{\ell} f^{s+1} + \mathcal{D} \mathcal{J} \delta_{\ell} f^{s+1}
$$

for every $d \in \mathbb{N}$, where r is an index such that f'_{x_r} is a unit and $\mathcal{D}[s]_{\leq d} \subset \mathcal{D}[s]$ is the subspace of the operators which the degree in s is less or equal to d . This may be done by induction, and using that $fg'_{x_r} \delta_{\ell} f^{s+1}$ belongs to $\mathcal{D}[s] \mathcal{J} \delta_{\ell} f^{s+1}$ for every $\ell \in \mathbb{N}^*$ (Remark 2.3).

Remark 2.5. The identity (†) is not always true if $(Z, 0)$ has an irreducible smooth component. For example, if $f = x_1, g = x_1^2 + x_2x_3, v = \partial/\partial x_2$ and $\ell = 1$, then $\mathcal{D}[s]v(g) + \text{Ann}_{\mathcal{D}[s]}\delta_{\ell}x_1^{s+1}$ is equal to $\mathcal{D}[s](x_1^2, x_3, (\partial/\partial x_2)x_2, s+$ $2-(\partial/\partial x_1)x_1$, and then it is different from the ideal $\mathcal{D}[s]\mathcal{J}+\text{Ann}_{\mathcal{D}[s]}\delta_\ell x_1^{s+1}$ $\mathcal{D}[s](x_1^2, x_2, x_3, s + 2 - (\partial/\partial x_1)x_1).$

*§***2.2. Some relations between Bernstein polynomials**

We start with some relations between the Bernstein polynomials of f associated with some elements of R and the polynomial $\tilde{b}_{\ell}(s)$, the minimal polynomial of the action of s on \mathcal{N}_{ℓ} .

Corollary 2.6. Let $f \in \mathcal{O}$ be a germ of a smooth function, and let $g \in \mathcal{O}$ be a germ which is neither a unit nor a multiple of f. Let us denote $(Z, 0) \subset (\mathbb{C}^n, 0)$, the complete intersection defined by (f, q) . Let $\ell \in \mathbb{N}^*$ be a non negative integer.

- i) The polynomial $\tilde{b}(\delta_{\ell}f^s, s)$ coincides with $\tilde{b}_{\ell+1}(s)$.
- ii) Let v be a regular vector field v such that $v(f)=0$. If v is not tangent to $(Z,0)$, then $\tilde{b}(v(g)\delta_{\ell}f^{s},s)$ coincides with $\tilde{b}_{\ell}(s)$. Moreover, when $(Z,0)$ does not have any irreducible smooth component, the equality is verified if v is not tangent to $(Sing(Z), 0)$.

BERNSTEIN POLYNOMIALS OF 805

- iii) Assume that $f = x_1$. Let $v \in \mathbf{C} \{x_2, \ldots, x_n\} \langle \partial / \partial x_2, \ldots, \partial / \partial x_n \rangle$ be a regular vector field. If v is not tangent to $(Z, 0)$, then $\tilde{b}((x_1g'_{x_1} + v(g))\delta_{\ell}f^{s}, s)$ coincides with $\tilde{b}_{\ell}(s)$. Moreover, when $(Z, 0)$ does not have any smooth component, this equality is true if v is not tangent to $(Sing(Z), 0)$.
- iv) Let $u \in \text{jac}(g) + g\mathcal{O}$ be a generator of the O-module $(\text{jac}(g) + g\mathcal{O})/\mathcal{J}$. Then the polynomial $b(u\delta_{\ell}f^s,s)$ is a multiple of $\tilde{b}_{\ell}(s-1)$.

Proof. The first 3 points are easy consequences of Theorem 2.1 and of the fact that $v(q)$ is not divisible by f for every v verifying the requisite conditions. The last point is a consequence of the surjectivity of the following $\mathcal{D}[s]$ -linear morphism:

$$
\frac{\mathcal{D}[s]u\delta_{\ell}f^{s+1}}{\mathcal{D}[s]u\delta_{\ell}f^{s+2}} \longrightarrow \frac{\mathcal{D}[s](\mathrm{jac}(g),g)\delta_{\ell}f^{s+1}}{\mathcal{D}[s]\mathcal{J}\delta_{\ell}f^{s+1}}
$$

which is well defined from Remark 2.3.

Hence, for every generic vector field v annihilating f , the polynomial $\tilde{b}(v(g)\delta_{\ell}, s)$ coincides with $\tilde{b}_{\ell}(s)$. However, because of *iv*), this is not true for every regular vector field v.

The following corollary gives a similar result for the classical Bernstein polynomial of a germ of function.

Corollary 2.7. Let $h \in \mathcal{O}$ be a germ neither zero nor a unit. Let us denote $(\mathcal{H}, 0) \subset (\mathbb{C}^n, 0)$ the hypersurface defined by h and $\tilde{b}(s) \in \mathbb{C}[s]$ its reduced Bernstein polynomial.

Let $v \in \mathcal{D}$ be a regular vector field. If v is not tangent to $(\mathcal{H}, 0)$, then the reduced Bernstein polynomial of $v(h)h^s$ is equal to $b(s + 1)$. Moreover, when $(\mathcal{H}, 0)$ does not have any smooth component, the equality is true if v is not tangent to the singular set of $(\mathcal{H}, 0)$.

This shifting in the roots of $\tilde{b}(s)$ is very clear in terms of poles of analytic continuation of distributions $\int_{\mathbf{C}^n} |h|^{2\lambda} \varphi$, where φ is a (n, n) -differential form with compact support around the origin, because:

$$
\int_{\mathbf{C}^n} v(h) |h|^{2\lambda} \varphi = -\frac{1}{\lambda+1} \int_{\mathbf{C}^n} h|h|^{2\lambda} ({}^t v.\varphi)
$$

for every vector field v .

In order to prove this corollary, we will use the following result. This is the first explicit example of computation of the polynomials $\tilde{b}_{\ell}(s), \ell \in \mathbb{N}^*$, and it generalizes a result of [19].

 \Box

Proposition 2.8. Let $h \in \mathcal{O}$ be a germ which is neither zero nor a unit. Let us denote $\tilde{b}(s)$ its reduced Bernstein polynomial. Let $N \in \mathbb{N}^*$ be a non negative integer and z a new variable.

Up to a multiplicative constant, the polynomial $\tilde{b}_{\ell}(s)$, $\ell \in \mathbb{N}^*$, associated with $f = z$ and $g = h - z^N \in \mathbf{C}\{x, z\}$ is equal to $\tilde{b}(1 - \ell + (s + 1)/N)$.

Proof. Without loss of generality, we will prove the result for $\tilde{h} = e^{\tau}h$, where τ is a new variable. In fact, it does not change the value of the studied Bernstein polynomials.

To prove that $\tilde{b}_{\ell}(s)$ is a multiple of $\tilde{b}(1 - \ell + (s+1)/N)$, we start with the 'Bernstein identity' of $\tilde{b}_{\ell}(s)$, *i.e.*:

$$
\tilde{b}_{\ell}(s)z^{N-1} \in \mathcal{D}_{z,\tau}[s](\tilde{h},\tilde{h}_{x_1},\ldots,\tilde{h}_{x_n},\tilde{h}-z^N) + \text{Ann}_{\mathcal{D}_{z,\tau}[s]} \delta_{\ell}z^{s+1}
$$

where $\mathcal{D}_{z,\tau}$ is the ring of differential operators $\mathbf{C}{x,z,\tau}\rangle\langle\partial/\partial x,\partial/\partial z,\partial/\partial \tau\rangle$. As the operator $N(\partial/\partial \tau) + z(\partial/\partial z) - s - 1 + N\ell$ annihilates $\delta_{\ell} z^{s+1}$, this equation may be rewritten:

$$
\tilde{b}_{\ell}\left(N\frac{\partial}{\partial \tau} + z\frac{\partial}{\partial z} - N + N\ell\right)z^{N-1} \in \mathcal{D}_{z,\tau}(\tilde{h}, \tilde{h}_{x_1}, \dots, \tilde{h}_{x_n}, z^N) + \text{Ann}_{\mathcal{D}_{z,\tau}}\delta_{\ell}z^{s+1}
$$

or:

$$
\tilde{b}_{\ell}\left(N\frac{\partial}{\partial \tau} - N - 1 + N\ell\right)z^{N-1} \in \mathcal{D}_{z,\tau}(\tilde{h}, \tilde{h}_{x_1}, \ldots, \tilde{h}_{x_n}, z^N) + \mathrm{Ann}_{\mathcal{D}_{z,\tau}}\delta_{\ell}z^{s+1}.
$$

Then we remark that $\text{Ann}_{\mathcal{D}_{z,\tau}} \delta_{\ell} z^{s+1}$ is generated by its operators which are not dependant of $\partial/\partial z$. Indeed, if $P = \sum_{i=0}^{d} (\partial/\partial z)^{i} P_i$ with $P_i \in \widetilde{\mathcal{D}}_{z,\tau}$ $\mathbf{C}\{x, z, \tau\} \langle \partial/\partial x, \partial/\partial \tau \rangle$ annihilates $\delta_{\ell} z^{s+1}$, so does $[P, z] = \sum_{i=1}^{d} i(\partial/\partial z)^{i-1} P_i$. So we prove by induction that the operators P_0, \ldots, P_d annihilate $\delta_{\ell} z^{s+1}$. The identity becomes:

(6)
$$
\tilde{b}_{\ell} \left(N \frac{\partial}{\partial \tau} - N - 1 + N \ell \right) z^{N-1} \in \widetilde{\mathcal{D}}_{z,\tau}(\tilde{h}, \tilde{h}_{x_1}, \dots, \tilde{h}_{x_n}, z^N) + \text{Ann}_{\widetilde{\mathcal{D}}_{z,\tau}} \delta_{\ell}.
$$

By division, an operator $P \in \text{Ann}_{\tilde{D}_{z,\tau}} \delta_{\ell}$ may be written:

$$
P = \widetilde{Q}\left(\frac{\partial}{\partial \tau}(\tilde{h} - z^N) + (\ell - 1)\tilde{h}\right) + \sum_{i=1}^n Q_i\left(\frac{\partial}{\partial x_i}(\tilde{h} - z^N) + (\ell - 1)\tilde{h}'_{x_i}\right)
$$

$$
+ q(\tilde{h} - z^N)^{\ell} + R' + \sum_{i=1}^{\ell} r_i(\tilde{h} - z^N)^{\ell - i}
$$

where $R' \in (\partial/\partial x, \partial/\partial \tau) \mathbf{C} \{x, \tau\} \langle \partial/\partial x, \partial/\partial \tau \rangle [z]$ and $r_1, \ldots, r_\ell \in \mathbf{C} \{x, \tau\} [z]$ have a degree in z strictly less than N, and \widetilde{Q} , $Q_i \in \widetilde{\mathcal{D}}_{z,\tau}$, $q \in \mathbf{C}\{x, z, \tau\}$. So we have:

$$
R\frac{1}{(\tilde{h}-z^N)^{\ell}} = \sum_{i=1}^d (-1)^i \frac{(\ell+i-1)!}{(\ell-1)!} \frac{r'_i}{(\tilde{h}-z^N)^{\ell+i}} + \sum_{i=1}^\ell \frac{r_i}{(\tilde{h}-z^N)^i}
$$

and

$$
R\tilde{h}^{s} = \sum_{i=1}^{d} s(s-1)\cdots(s-i+1)\frac{r'_{i}}{h^{i}}h^{s} + rh^{s}
$$

where $d = \deg R$ and $r'_i \in \mathbb{C}\lbrace x, \tau \rbrace [z]$ has a degree in z strictly less than N. As R annihilates δ_{ℓ} , all the germs r_i and r'_i are necessarily equal to zero, and then R annihilates \tilde{h}^s . Hence (6) implies that:

$$
\tilde{b}_{\ell}\left(N\frac{\partial}{\partial \tau} - N - 1 + N\ell\right)z^{N-1} \in \widetilde{\mathcal{D}}_{z,\tau}(\tilde{h}, \tilde{h}_{x_1}, \dots, \tilde{h}_{x_n}, z^N) + \widetilde{\mathcal{D}}_{z,\tau} \text{Ann}_{\mathcal{D}_{\tau}}\tilde{h}^s
$$

where $\mathcal{D}_{\tau} = \mathbf{C}\{x,\tau\}\langle\partial/\partial x,\partial/\partial \tau\rangle$. Consequently, $\tilde{b}_{\ell}(N(\partial/\partial \tau) - N - 1 + N\ell)$ belongs to the ideal $\mathcal{D}_{\tau}(\tilde{h}, \tilde{h}_{x_1}, \ldots, \tilde{h}_{x_n}) + \text{Ann}_{\mathcal{D}_{\tau}} \tilde{h}^s$ *i.e.* $\tilde{b}_{\ell}(Ns - N - 1 + N\ell)$ is definitely a multiple of $\tilde{b}(s)$.

The proof of the converse relation is similar (see [19]).

Proof of Corollary 2.7. By similar computations, we prove easily that the polynomial
$$
b(\dot{a}/(h-z)z^s, s)
$$
 coincides with the Bernstein polynomial of ah^s .
So the assertion is a direct consequence of Corollary 2.6 and Proposition 2.8. \Box

We end with a relation between the Bernstein polynomial of f associated with some particular element of $\mathcal{O}[1/g]$ and of $\mathcal{R} = \mathcal{O}[1/g]/\mathcal{O}$. From the point of view of the monodromy, it is very clear (because $\Phi_f(\mathcal{O})$ is zero when f is smooth).

Proposition 2.9. Let $f \in \mathcal{O}$ be a germ of a smooth function, and $g \in \mathcal{O}$ a germ which is neither a unit nor a multiple of f.

For every $\ell \in \mathbb{N}^*$, the Bernstein polynomial of $(1/g^{\ell})f^s$ coincides with $b(\delta_{\ell}f^s, s).$

Proof. We just prove that the Bernstein polynomial of $(1/g^{\ell})f^{s} \in$ $\mathcal{O}[1/fg,s]f^s$, denoted by $b((1/g^{\ell})f^s,s)$, is a factor of $b(\delta_{\ell}f^s,s)$ (the converse relation is evident). Let $R \in \mathcal{D}[s]$ be an operator realizing the functional equation of $\delta_{\ell} f^s$: $b(\delta_{\ell} f^s, s) \delta_{\ell} f^s = R \delta_{\ell} f^{s+1}$. So there are an integer $d \in \mathbb{Z}$ and

 \Box

 $a \in \mathcal{O}[s], a \notin f\mathcal{O}[s] - \{0\},\$ such that:

(7)
$$
b(\delta f^s, s) \frac{1}{g^{\ell}} f^s = R \frac{1}{g^{\ell}} f^{s+1} + af^{s+d}
$$

in $\mathcal{O}[1/fg,s]f^s$. If a is zero, $b((1/g^{\ell})f^s,s)$ divides definitely $b(\delta_{\ell}f^s,s)$. Otherwise, let us prove that af^{s+d} belongs to $\mathcal{D}[s]f^{s+1}$. If $d \geq 1$, it is trivial. So we suppose that $d \leq 0$. By specializations of s in $-1, 0, \ldots, -d-1$, we remark that $(s + 1)s \cdots (s + d + 1)$ is a factor of a. Hence af^{s+d} belongs to $\mathcal{D}[s]f^{s+1}$, because:

$$
\left[(f'_{x_r})^{-1} \left(\frac{\partial}{\partial x_r} \right) \right]^{-d+1} f^{s+1} = (s+1) \cdots (s+d+1) f^{s+d}
$$

where r is an index such that f'_{x_r} is a unit. So the equation (7) implies that $b(\delta_{\ell}f^{s},s)(1/g^{\ell})f^{s} \in \mathcal{D}[s](1/g^{\ell})f^{s+1},$ and our assertion is proved. □

*§***3. The Case of Isolated Singularities**

In this part, the germ $g \in \mathcal{O}$ defines an isolated singularity, and $f \in \mathcal{O}$ is a germ of smooth function such that $f(0) = 0$ and (f,g) defines a complete intersection isolated singularity.

Following [2], [21], we give an explicit description of $H^n_{DR}(\mathcal{N}_\ell)$ in order to study the polynomials $\tilde{b}_{\ell}(s)$ (Theorem 1.1). So we introduce the D-module $\sum_{k\geq 1} \mathcal{D}\delta_k f^{s+1}.$

*§***3.1. A suitable** D**-module**

First, we remark that for every $\ell \in \mathbb{N}^*$, the $\mathcal{D}[s]$ -module $\mathcal{D}[s] \delta_{\ell} f^{s+1}$ is a submodule of $\sum_{k\geq 1} \mathcal{D}\delta_k f^{s+1}$. This comes from the identities:

$$
(8) \quad (s+2)\delta_k f^{s+1} = (f'_{x_r})^{-1} \frac{\partial}{\partial x_r} f \delta_k f^{s+1} - (f'_{x_r})^{-1} g'_{x_r} f \delta_{k+1} f^{s+1}, \ k \in \mathbb{N}^*
$$

where r is an index such that the germ f'_{x_r} is a unit. Indeed, the D-module $\sum_{k\geq 1} \mathcal{D}\delta_k f^{s+1}$ coincides with $\sum_{k\geq 1} \sum_{i\geq 0} \mathcal{D}\delta_k \xi_i \subset \mathcal{R}[1/f, s]f^{s+1}$, where $\delta_k \xi_i$ is the element $(s - i + 2) \cdots (s + 1) \delta_k f^{s-i+1}$, because:

$$
\delta_k \xi_i = (f'_{x_r})^{-1} \frac{\partial}{\partial x_r} \delta_k \xi_{i-1} - (f'_{x_r})^{-1} g'_{x_r} \delta_{k+1} \xi_{i-1}, \ k \in \mathbb{N}^*
$$

for $i \in \mathbb{N}$.

We give now some results about the D-module $\sum_{k\geq 1} \mathcal{D}\delta_k f^{s+1}$.

Lemma 3.1. For every non negative integer $\ell \in \mathbb{N}^*$, the D-module:

$$
\frac{\sum_{k\geq 1} \mathcal{D}\delta_k f^{s+1}}{\mathcal{D}\mathcal{J}\delta_\ell f^{s+1}}
$$

is supported by the origin.

Proof. Under our assumptions, the ideal J defines zero (see its definition page 798). So we have to prove that for every $P \in \mathcal{D}$ and every non negative integer $k > \ell$, there is an integer $m \in \mathbb{N}^*$ such that $h P \delta_k f^{s+1}$ belongs to $\mathcal{D}\mathcal{J}\delta_{\ell}f^{s+1}$ for every $h \in \mathcal{J}^m$. This may be done by induction on $k - \ell \in \mathbb{N}$ and on the degree d of the operator P, using that $hP \in \mathcal{DJ}$ for $h \in \mathcal{J}^{d+1}$ and that $u\delta_k f^{s+1} \in \mathcal{D}\delta_{k-1} f^{s+1}$ for $u \in \mathcal{J}$ (with the help of identities (2) & (3), page 801). page 801).

Let E be a **C**-vector subspace of \mathcal{O} isomorphic to \mathcal{O}/\mathcal{J} by projection, $D \subset \mathcal{D}$ the ring of differential operators with constant coefficients, $DE \subset \mathcal{D}$ the subspace generated by $\partial^{\beta}e, e \in E$, and $\mathcal{D} \mathcal{J} \subset \mathcal{D}$ the left ideal generated by \mathcal{J} .

Proposition 3.2. For every $\ell \in \mathbb{N}^*$, there is a decomposition:

$$
\sum_{k\geq 1} \mathcal{D}\delta_k f^{s+1} = \mathcal{D}\mathcal{J}\delta_\ell f^{s+1} \oplus \Big(\bigoplus_{k\geq \ell} DE\delta_k f^{s+1}\Big)
$$

Proof. First remark that the D-modules $\mathcal{D}\delta_k f^{s+1}$, $1 \leq k \leq \ell - 1$, are contained in $\mathcal{D}\mathcal{J}\delta_{\ell}f^{s+1}$ (since $g \in \mathcal{J}$). So, to get the existence of the decomposition, it is enough to prove it only for the elements $u\delta_k f^{s+1}, u \in \mathcal{O}, k \geq \ell$. By division by J, there exists a uniquely defined element $e \in E$, and $h, \lambda_{i,j} \in \mathcal{O}$, $1 \leq i < j \leq n$ such that $u = e + hg + \sum_{i < j} \lambda_{i,j} (f'_{x_j} g'_{x_i} - f'_{x_i} g'_{x_j}).$ Hence we have:

$$
u\delta_k f^{s+1} = e\delta_k f^{s+1} - (k-1)h\delta_{k-1}f^{s+1}
$$

$$
+ \left[\sum_{i < j} \left(\frac{\partial}{\partial x_i} f'_{x_j} - \frac{\partial}{\partial x_j} f'_{x_i} \right) \lambda_{i,j} - \left(f'_{x_j} \frac{\partial \lambda_{i,j}}{\partial x_i} - f'_{x_i} \frac{\partial \lambda_{i,j}}{\partial x_j} \right) \right] \delta_{k-1} f^{s+1}
$$

for $k \ge \ell + 1$. So, by induction on k, every element of $\sum_{k\ge 1} \mathcal{D}\delta_k f^{s+1}$ may be decomposed in $\mathcal{DJ}\delta_{\ell}f^{s+1} \oplus (\bigoplus_{k\geq \ell} DE\delta_{k}f^{s+1}).$

The proof of the uniqueness uses that the ideals $\text{Ann}_{\mathcal{D}} \delta_k f^{s+1}, k \in \mathbb{N}^*$, are contained in \mathcal{DJ} (see [19], [21]). Suppose that $V \delta_{\ell} f^{s+1} + \sum_{k=\ell}^{L} U_k \delta_k f^{s+1} = 0$

with $V \in \mathcal{DJ}$ and $U_k \in DE$. This may be written:

$$
\left[(-1)^{L+\ell}\frac{(\ell-1)!}{(L-1)!}Vg^{L-\ell} + U_L + \sum_{k=\ell}^{L-1}(-1)^{L+k}\frac{(k-1)!}{(L-1)!}U_kg^{L-k}\right]\delta_Lf^{s+1} = 0
$$

As $\text{Ann}_{\mathcal{D}} \delta_L f^{s+1} \subset \mathcal{D}\mathcal{J}$, the operator U_L belongs to DE and to $\mathcal{D}\mathcal{J}$ in the same time, and so it is zero. By induction, we prove that U_k , $\ell \leq k \leq L-1$, are zero too, and then $V \delta_{\ell} f^{s+1} = 0$. Consequently, we get the assertion. \Box

Let $D' \subset D$ be the ideal of operators without nonzero constant term. Given $\kappa \in \mathbb{N}^*$, we consider the linear morphism:

$$
c_{\kappa} : \sum_{k \geq 1} \mathcal{D} \delta_k f^{s+1} = \mathcal{D} \mathcal{J} \delta_{\kappa} f^{s+1} \oplus \Big(\bigoplus_{k \geq \kappa} DE \delta_k f^{s+1} \Big) \longrightarrow \bigoplus_{k \geq \kappa} E \delta_k f^{s+1}
$$

defined by $c_{\kappa}(\mathcal{D}\mathcal{J}\delta_{\kappa}f^{s+1}) = 0$ and if $Q = Q' + e$ with $Q' \in D'E, e \in E$, then $c_{\kappa}(Q\delta_k f^{s+1}) = e\delta_k f^{s+1}$ for every $k \geq \kappa$. Its kernel is $\mathcal{DJ}\delta_{\kappa} f^{s+1} \oplus$ $(\bigoplus_{k\geq \kappa} D'E\delta_k f^{s+1})$. So we have the inclusion: $\bigoplus_{k\geq 1} D'O\delta_k f^{s+1} \subset \ker c_{\kappa}$. Hence c_{κ} induces an isomorphism:

(9)
$$
\bar{c}_{\kappa}: H_{DR}^n\left(\frac{\sum_{k\geq 1} \mathcal{D}\delta_k f^{s+1}}{\mathcal{D}\mathcal{J}\delta_{\kappa} f^{s+1}}\right) \longrightarrow \bigoplus_{k\geq \kappa} E\delta_k f^{s+1}.
$$

§3.2. The spaces
$$
\mathcal{Z}_{\ell}
$$
, \mathcal{Z}'_{ℓ} and the polynomial $\tilde{b}_{\ell}(s)$

Given $\ell \in \mathbb{N}^*$, let us denote $\mathcal{Z}'_{\ell} = c_{\ell}(\mathcal{D}[s](\mathrm{jac}(g), g)\delta_{\ell}f^{s+1})$ and $\mathcal{Z}_{\ell} =$ $c_{\ell}(\mathcal{D}[s]\mathcal{J}\delta_{\ell}f^{s+1}) \subset \mathcal{Z}'_{\ell}$. Now we give some general results on these **C**-vector spaces.

Lemma 3.3. For every $\ell \in \mathbb{N}^*$, there are the following identifications:

$$
\mathcal{Z}_{\ell}^{\prime} = c_{\ell}(\mathcal{D}[s]g_{x_r}^{\prime}\delta_{\ell}f^{s+1}), \ \mathcal{Z}_{\ell} = c_{\ell}(\mathcal{D}[s]fg_{x_r}^{\prime}\delta_{\ell}f^{s+1})
$$

where r is an index such that f'_{x_r} is a unit.

It is a consequence of Remark 2.4.

Proposition 3.4. For every $\ell \in \mathbb{N}^*$, the dimensions of the spaces \mathcal{Z}_{ℓ} and \mathcal{Z}'_{ℓ} are finite.

Proof. From regularity of the holonomic \mathcal{D} -module \mathcal{R} , there exist good operators in s in the annihilator of δf^s , $\delta \in \mathcal{R}$, *i.e.* of the form $s^N + P_1 s^{N-1}$

 $+\cdots+P_N \in \mathcal{D}[s]$ where the degree of $P_i \in \mathcal{D}$ is less or equal to i (see [4], [18]). If N is the degree of such an operator annihilating $\delta_{\ell} f^{s+1}$, then:

$$
\mathcal{D}[s]\delta_{\ell}f^{s+1} = \sum_{i=0}^{N-1} s^i \mathcal{D}\delta_{\ell}f^{s+1} \subset \sum_{k=1}^{N+\ell-1} \mathcal{D}\delta_kf^{s+1}
$$

(see identity (8)). In particular, the dimension of $c_{\ell}(\mathcal{D}[s]\delta_{\ell}f^{s+1})$ is finite, and \Box the one of \mathcal{Z}'_{ℓ} , \mathcal{Z}_{ℓ} are finite too.

Remark that the dimension of \mathcal{Z}_{ℓ} , \mathcal{Z}'_{ℓ} and $\mathcal{Z}'_{\ell}/\mathcal{Z}_{\ell}$ depends on the integer ℓ (see the example studied in the last part).

Given $\ell \in \mathbb{N}^*$, we define the action of s on $\bigoplus_{k \geq \ell} E \delta_k f^{s+1}$ by $s.U = c_{\ell}(sU)$. Remark that $c_{\ell}(sU) \in \mathcal{Z}_{\ell}$ when $U \in \text{ker } c_{\ell}$. Indeed, $s \bigoplus_{k \geq \ell} D'E\delta_k f^{s+1}$ is contained in the kernel of c_{ℓ} . Hence, the action of s on $\bigoplus_{k\geq \ell} E\delta_k f^{s+1}$ is well defined on $\mathcal{Z}_{\ell}, \mathcal{Z}'_{\ell}$, and then on $\mathcal{Z}'_{\ell}/\mathcal{Z}_{\ell}$.

The proof of Theorem 1.1 is the very same as the one of [21], Theorem 1.1. It uses Lemma 3.1, the identification (9) and the fact that the functor H_{DR}^n , from the category of D-modules supported by zero to the category of **C**-vector spaces, is an exact and faithful functor ([11]).

*§***4. The Computational Algorithm for Non Degenerate Hypersurfaces**

Here we adapt to the case of polynomials $\tilde{b}_{\ell}(s)$ the algorithm of computation of Bernstein polynomial of a non-degenerate convenient germ with respect to its Newton boundary in the sense of Kouchnirenko (see [2]). We invite the reader to see [2] for the proof of some results which may be easily extended.

*§***4.1. Division by** J **and increase in weight**

Let $q \in \mathcal{O}$ be a nonzero germ of an holomorphic function with $q(0) = 0$. Its Taylor expansion is written $\sum_{A \in \mathbf{N}^n} g_A x^A$ where $g_A \in \mathbf{C}$ and $x^A = x_1^{a_1} \cdots x_n^{a_n}$ for $A = (a_1, ..., a_n) \in \mathbb{N}^n$.

Let $N(g) = \{A \in \mathbb{N}^n \mid g_A \neq 0\}$ be the Newton cloud of g and $\Gamma(g) \subset (\mathbb{R}^+)^n$ its Newton boundary, the union of compact faces of the convex hull of $N(g)$ + **N**ⁿ. For every face $\Delta \subset \Gamma(g)$ and every $u = \sum_{A \in \mathbf{N}^n} u_A x^A \in \mathcal{O}$, we denote $|u|_{\Delta} = \sum_{A \in \Delta} u_A x^A$ the restriction of u to Δ .

We make the following assumptions on q :

812 TRISTAN TORRELLI

- $-g$ is *convenient*: each coordinate line has a point contained in $\Gamma(g)$.
- g is non-degenerate with respect to its Newton boundary: for every face $\Delta \subset \Gamma(g)$, the system:

$$
\left(x_1 \frac{\partial g}{\partial x_1}\right)\Big|_{\Delta} = \dots = \left(x_n \frac{\partial g}{\partial x_n}\right)\Big|_{\Delta} = 0
$$

does not have any solution in $({\bf C}^*)^n$.

Under these conditions, g defines an isolated singularity. We will suppose that $f = x_1$. In particular, the ideal \mathcal{J} is $(g, g_{x_2}, \ldots, g_{x_n})\mathcal{O}$. Moreover the morphism (x_1, g) defines a isolated singularity too, because the restriction of g to $x_1 = 0$ is also convenient and non-degenerate.

Remark that the system of equations in the definition of the nondegeneracy condition is equivalent to the following one:

$$
g|_{\Delta} = \left(x_2 \frac{\partial g}{\partial x_2}\right)\Big|_{\Delta} = \dots = \left(x_n \frac{\partial g}{\partial x_n}\right)\Big|_{\Delta} = 0
$$

because $g|_{\Delta}$ is a weighted-homogeneous polynomial in restriction to every face $\Delta \subset \Gamma(g)$. Let us recall that a nonzero polynomial is *weighted-homogeneous* of weight $d \in \mathbf{Q}^+$ for a system $\alpha \in (\mathbf{Q}^{*+})^n$ if it is a **C**-linear combination of monomials x^A with $\langle \alpha, A \rangle = d$.

Now we introduce some notations before giving the division theorem by the ideal $\mathcal J$ which is adapted to our situation.

Notation 4.1. Let F be the set of $n-1$ dimensional faces of $\Gamma(q)$. Given $F \in \mathcal{F}$, we consider the vector $\alpha_F = (\alpha_{F,1}, \ldots, \alpha_{F,n}) \in (\mathbf{Q}^{*+})^n$ such that $\langle \alpha_F, A \rangle = 1$ for every $A \in F$. The weight $\rho_F(u)$ in relation to the face $F \in \mathcal{F}$ of a nonzero germ $u = \sum_{A \in \mathbb{N}^n} u_A x^A \in \mathcal{O}$ is also defined by $\rho_F(u) =$ $\inf\{\langle \alpha_F, A \rangle \mid u_A \neq 0\} \in \mathbf{Q}^+$. By agreement, we fix $\rho_F(0) = +\infty$. Then we define the weight of a germ $u \in \mathcal{O}$ in relation to $\Gamma(g)$ by $\rho(u) = \inf_{F \in \mathcal{F}} \rho_F(u)$.

For every rational $q \in \mathbf{Q}$, let us denote $\mathcal{O}_{\geq q} = \{u \in \mathcal{O} \mid \rho(u) \geq q\}, \mathcal{O}_{\geq q} =$ ${u \in \mathcal{O} \mid \rho(u) > q}$ and $gr\mathcal{O} = \bigoplus_{q \in \mathbf{Q}^+} \mathcal{O}_{\geq q} / \mathcal{O}_{>q}$.

We define another weight function, $\rho^* : \mathcal{O} \to \mathbf{Q}^+ \cup \{+\infty\}$, by $\rho^*(u) =$ $\inf_{F \in \mathcal{F}} \rho_F^*(u)$ where $\rho_F^*(u) = \rho_F(ux_2 \cdots x_n)$ for every $u \in \mathcal{O}$. As above, we have the spaces $\mathcal{O}_{\geq q}^*$, $\mathcal{O}_{\geq q}^*$, $q \in \mathbf{Q}$. If \mathcal{O}_q^* is the set of germs $u \in \mathcal{O}$ such that $ux_2 \cdots x_n$ is a polynomial supported by $q\Gamma(g)$, then $\mathrm{gr}^*\mathcal{O} = \bigoplus_q \mathcal{O}_{\geq q}^*/\mathcal{O}_{>q}^*$ may be identified to $\bigoplus_q \mathcal{O}_q^*$.

For every $u \in \mathcal{O}$ nonzero, let $\text{in}^*(u)$ be the coset of u in $\mathcal{O}_{\geq \rho^*(u)}^* / \mathcal{O}_{\geq \rho^*(u)}^*$ identified to $\mathcal{O}_{\rho^*(u)}^*$. For every $q \in \mathbf{Q}^+$, let $E_q^* \subset \mathcal{O}_q^*$ be a supplementary of

 $\mathcal{O}_q^* \cap \text{in}^*(\mathcal{J})$ in \mathcal{O}_q^* , where $\text{in}^*(\mathcal{J}) \subset \mathbf{C}[x]$ is the ideal generated by the initial parts of the elements of $\mathcal J$. Finally, let $E^*_{\geq q} \subset E$ be the space $\bigoplus_{q' \geq q} E^*_{q'}$.

Theorem 4.2. ([2], [9]) For every $u \in \mathcal{O}$, there exists a unique element $v \in E = \bigoplus_{q} E_q^*$ and $\lambda_1, \ldots, \lambda_n \in \mathcal{O}$ such that:

$$
u = v + \lambda_1 g + \sum_{i=2}^{n} \lambda_i g'_{x_i}
$$

where $\rho^*(v) \ge \rho^*(u)$, $\rho^*(\lambda_1) \ge \rho^*(u) - 1$, and for $2 \le i \le n$: $\rho^*(\lambda_i g'_{x_i}) \ge \rho^*(u)$, $\rho^*(\lambda_i) \geq \rho^*(u) - 1 + \rho(x_i), \ \rho^*(\partial \lambda_i/\partial x_i) \geq \rho^*(u) - 1.$

The proof is a direct adaptation of the one of Proposition B.1.2.2, B.1.2.3, B.1.2.6 of [2], which need Theorems 2.8 and 4.1 of [9]. In particular, the multiplication by $x_2 \cdots x_n$ induces a strict isomorphism λ from $(\mathcal{O}/\mathcal{J}, \rho^*)$ to $(\mathcal{O}x_2 \cdots x_n/\mathcal{O}x_2 \cdots x_n \cap I(g), \rho)$ where $I(g) = (g, x_2 g'_{x_2}, \ldots, x_n g'_{x_n})\mathcal{O}$.

Indeed, these Kouchnirenko results are true for every non-degenerate family $h_1, \ldots, h_n \in \mathcal{O}$, i.e. satisfying the non-degeneracy condition and such that $\rho(h_i) = 1$ for $1 \leq i \leq n$. In particular, the family $\{g, x_2 g'_{x_2}, \ldots, x_n g'_{x_n}\}\$ is non-degenerate.

Let us denote $\Pi^* = \{q \in \mathbf{Q}^+ \mid E_q^* \neq 0\}$ and $\sigma^* = \sup\{q \mid E_q^* \neq 0\}$. Rewriting [2, p. 566], we get:

$$
n - \sup_{F \in \mathcal{F}} \rho_F(x_1 \cdots x_n) \le \sigma^* < n
$$

The estimation is obtained by using the Rees function $\overline{\nu}_{I(q)}$, which coincides with the weight function ρ under our assumptions ([3], [17]).

We end by giving the technical lemmas at the root of the algorithm. First we give a filtered version of Proposition 3.2.

Lemma 4.3. Given $N, \ell \in \mathbb{N}^*, q \in \mathbb{Q}$, there is the following identity in $\sum_{k\geq 1} \mathcal{D} \delta_k x_1^{s+1}$:

$$
\sum_{k=1}^N \mathcal{D}\mathcal{O}_{\geq q+k}^* \delta_k x_1^{s+1} = \mathcal{D}\mathcal{J}_{\geq q+\ell} \delta_\ell x_1^{s+1} \oplus \bigoplus_{k=\ell}^N DE_{\geq q+k}^* \delta_k x_1^{s+1}
$$

where $\mathcal{J}_{\geq q+\ell} = \mathcal{J} \cap \mathcal{O}_{\geq q+\ell}^*$.

For every face $F \in \mathcal{F}$, let us denote $|\alpha_F| \in \mathbf{Q}^{*+}$ the sum $\sum_{i=1}^n \alpha_{F,i}$, $\chi_F = \sum_{i=1}^n \alpha_{F,i} x_i (\partial/\partial x_i)$ the Euler vector field associated with $F, \overline{\chi}_F = \sum_{i=1}^n \alpha_{F,i} (\partial/\partial x_i) x_i = \chi_F + |\alpha_F|$ and $h_F = \chi_F(q) - q \in \mathcal{O}$. $\sum_{i=1}^n \alpha_{F,i}(\partial/\partial x_i)x_i = \chi_F + |\alpha_F|$ and $h_F = \chi_F(g) - g \in \mathcal{O}$.

Lemma 4.4. Given $w \in \mathbb{C}$, $F \in \mathcal{F}$, $u \in \mathcal{O}$ and $k \in \mathbb{N}^*$, there is an identity:

$$
(\alpha_{F,1}(s+1) + |\alpha_F| + w)u\delta_k x_1^{s+1} = [\overline{\chi}_F u + [(w+k)u - \chi_F(u)]] \cdot \delta_k x_1^{s+1} - uh_F \delta_{k+1} x_1^{s+1}
$$

and the following identities, for every $F' \in \mathcal{F}$:

$$
\rho_{F'}^*(x_j u) > \rho^*(u), \ \rho_{F'}^*((w+k)u - \chi_F(u)) \ge \rho^*(u), \ \rho_{F'}^*(uh_F) \ge \rho^*(u) + 1
$$

If $F' = F$, then $\rho_F^*(uh_F) > \rho^*(u) + 1$. Moreover, if $\rho_F^*(u) > \rho^*(u)$ or $\rho_F^*(u) =$ $\rho^*(u) = w + k + |\alpha_F| - \alpha_{F,1}$, then $\rho_F^*((w + k)u - \chi_F(u)) > \rho^*(u)$.

For every monomial u, let $\mathcal{F}^*(u) \subset \mathcal{F}$ be the set of the faces F with $\rho_F^*(u) = \rho^*(u)$; if $u \in \mathcal{O}$ is nonzero, then $\mathcal{F}^*(u) \subset \mathcal{F}$ is the set of $F \in \mathcal{F}$ such that there exists a monomial v in $\text{in}^*(u)$ with $\rho_F^*(v) = \rho^*(u)$. Using Lemma 4.4, we get the following formula:

Lemma 4.5. For every $u \in \mathcal{O}$ nonzero and $k \in \mathbb{N}^*$:

$$
\left[\prod_{F \in \mathcal{F}^*(u)} (\alpha_{F,1}(s+2) + \rho^*(u) - k)\right] u \delta_k x_1^{s+1} \in \sum_{i=0}^{\#\mathcal{F}^*(u)} \mathcal{DO}^*_{> \rho^*(u) + i} \delta_{k+i} x_1^{s+1}
$$

Remark that the multiplicity of a factor $(\alpha_{F,1}(s+2) + \rho^*(u) - k)$ in the given polynomial may be arbitrarily high. The next result states the existence of a polynomial such that the multiplicities are strictly smaller than n .

Proposition 4.6. Let $u \in \mathcal{O}$ nonzero and $k \in \mathbb{N}^*$. Let $\mathcal{A}^*(u) \subset \mathbf{Q}^{*+}$ be the set of $\alpha_{F,1}$ with $F \in \mathcal{F}^*(u)$. Then:

$$
\left[\prod_{a\in\mathcal{A}^*(u)}(a(s+2)+\rho^*(u)-k)\right]^{n-1}u\delta_kx_1^{s+1}
$$

$$
\in \sum_{i=0}^{(n-1)\times\#\mathcal{A}^*(u)}\mathcal{DO}^*_{>\rho^*(u)+i}\delta_{k+i}x_1^{s+1}
$$

We prove this result in the next paragraph.

*§***4.2. Proof of Proposition 4.6**

We need some additional notations.

Let us attach to any face $F \in \mathcal{F}$ the closed cone $C(F) \subset (\mathbb{R}^+)^n$, the union of linear half-lines going through F. In particular, $A \in (\mathbf{R}^+)^n$ belongs to $C(F)$ if and only if $\inf_{F' \in \mathcal{F}} \langle \alpha_{F'}, A \rangle = \langle \alpha_F, A \rangle$. Let us denote C the fan with support in $(\mathbf{R}^+)^n$ associated with the Newton boundary $\Gamma(g)$. We recall that it is the smallest family of convex polyhedral rational convex cones of $(\mathbf{R}^+)^n$ which contains the cones $C(F)$, $F \in \mathcal{F}$, and verifies the conditions:

- if C is a facet of a cone of C then $C \in \mathcal{C}$:
- if $C_1, C_2 \in \mathcal{C}$, then $C_1 \cap C_2$ is a facet of C_1 and C_2 .

For every $A \in (\mathbf{R}^+)^n$ nonzero, we note $C(A) \in \mathcal{C}$ the cone of smallest dimension which contains A, and $d(A) \in \mathbb{N}$ its dimension. In particular, we have $1 \leq d(A) \leq n$ and $d(A) = n$ if and only if A belongs to the interior of a cone $C(F)$.

The proof of the proposition uses the following elementary results.

Lemma 4.7. Let $F \in \mathcal{F}$ and let $A, A' \in C(F)$ be two nonzero vectors such that $A' \notin C(A)$. Then $A, A' \in C(A + A')$ and so $d(A + A') \geq d(A) + 1$.

Lemma 4.8. Let $F_1, \ldots, F_m \in \mathcal{F}$ be faces such that $\alpha_{F_1,1}, \ldots, \alpha_{F_m,1}$ are equal. Let $A \in (\mathbf{R}^+)^n$ be a vector belonging to the cone $C(F_1, \ldots, F_m)$ $C(F_1) \cap \cdots \cap C(F_m)$ and such that $\inf_{F \mid A \in C(F)} \alpha_{F,1} = \alpha_{F_1,1}$. Then, for every $\epsilon \in \mathbf{R}^{*+}$ small enough, the vector $A + \epsilon(1, 0, \ldots, 0)$ belongs to $C(F_1, \ldots, F_m)$.

Proof of Proposition 4.6. Without loss of generality, we assume that u is a monomial; we denote $A \in \mathbb{N} \times (\mathbb{N}^*)^{n-1}$ the *n*-uplet such that $ux_2 \cdots x_n$ is **C**-proportional to x^A .

Let $F_1 \in \mathcal{F}^*(u)$. Using Lemma 4.4, we have:

$$
(\alpha_{F_1,1}(s+2) + \rho^*(u) - k)u\delta_k x_1^{s+1} = \overline{\chi}_{F_1} \cdot u\delta_k x_1^{s+1} - uh_{F_1}\delta_{k+1} x_1^{s+1}
$$

where $\overline{\chi}_{F_1} \cdot u \delta_k x_1^{s+1} \in \mathcal{DO}^*_{\geq \rho^*(u)} \delta_k x_1^{s+1}$. If $w_1 = x^{A'_1}$ is a monomial of the Taylor expansion of h_{F_1} , then two cases are possible:

- First case: $\rho^*(uw_1) > \rho^*(u) + 1$. Then $uw_1\delta_{k+1}x_1^{s+1} \in \mathcal{O}_{>\rho^*(u)+1}^*$ $\delta_{k+1} x_1^{s+1}$.
- Second case: $\rho^*(uw_1) = \rho^*(u) + 1$. As $\rho_F(h_{F_1}) \geq 1$ with an equality if and only if $F \neq F_1$, we have also $\mathcal{F}^*(uw_1) = \{ F \in \mathcal{F}^*(u) \mid A'_1 \in F \}$ and this set does not contain F_1 . From Lemma 4.7 applied with $A \in C(F_1) \cap C(F_2)$, $A' = A'_1 \in C(F_2) - C(F_1)$ for $F_2 \in \mathcal{F}^*(uw_1)$, we get $d(A + A'_1) \ge d(A) + 1$.

Hence, up to an element of the D-module $\sum_{i=0}^{1} DO^{*}_{> \rho^{*}(u)+i}\delta_{k+i}x_{1}^{s+1}$, the element $(\alpha_{F_1,1}(s+2)+\rho^*(u)-k)u\delta_kx_1^{s+1}$ is equal to a **C**-linear finite combination of terms $uw_1\delta_{k+1}x_1^{s+1}$ with weight $\rho^*(u) - k$ such that $\mathcal{F}^*(uw_1) \subset \mathcal{F}^*(u) - \{F_1\}$ and $d(A + A'_1) \ge 2$ if $w_1 u x_2 \cdots x_n = x^{A + A'_1}$.

Remark that if $d(A + A') = n$ then $\mathcal{F}^*(uw)$ has necessarily one element. So, when a polynomial $c(s) \in \mathbb{C}[s]$ allows to use *n* times this process, we prove that $c(s)u\delta_k x_1^{s+1}$ belongs to $\mathcal{D}[s]_{\leq \deg c(s)-n} \sum_{i=0}^n \mathcal{D}\mathcal{O}_{\geq \rho^*(u)+i}^* \delta_{k+i} x_1^{s+1}$ then to $\sum_{i=0}^{\deg c(s)} \mathcal{DO}^*_{> \rho^*(u)+i} \delta_{k+i} x_1^{s+1}$ (Lemma 4.4). In particular, the polynomial $\left(a\in A^*(u)\right)\left(a(s+2)+\rho^*(u)-k\right)\right]^n$ is suitable. We will prove that the power $n - 1$ is sufficient.

It is easy to see that it is true if $d(A) \geq 2$. Remark that it is again true when there exists $a \in \mathcal{A}^*(u)$ such that $\alpha_{F,1} = a$ for at most $n-1$ faces $F \in \mathcal{F}^*(u)$ (this is true if $n = 2$). Indeed, by taking such a face $F_1 \in \mathcal{F}^*(u)$, the polynomials of degree less or equal to n so used to get terms $uw_1 \cdots w_i \delta_{k+i} x_1^{s+1}, i \leq n$, with a weight strictly greater than $\rho^*(u) - k$, are multiples of $(a(s + 2) + \rho^*(u) - k)$, but they can not be equal to $(a(s+2) + \rho^*(u) - k)^n$. A similar argument allow us to conclude when there exists $F_1 \in \mathcal{A}^*(u)$ such that, for every monomial w_1 of the Taylor expansion of h_{F_1} with $\rho^*(uw_1) = \rho^*(u) + 1$, the set $\mathcal{A}^*(uw_1)$ is not reduced to $\{\alpha_{F_1,1}\}.$

So we have just to consider the following case: $n \geq 3$, $d(A) = 1$, and, for every $F \in \mathcal{F}^*(u)$, there exists at least one monomial $w = x^{A'}$ in the Taylor expansion of h_F such that $\rho^*(uw) = \rho^*(u) + 1$, $d(A + A') = 2$, $\mathcal{A}^*(uw) = {\alpha_{F,1}}$ and the set $\mathcal{F}^*(uw)$ has at least $n-1$ elements. We will prove that after at least $n-1$ iterations of the general process given above, we get a sum of terms $uw_1 \cdots w_i \delta_{k+i} x_1^{s+1}, i \leq n-1$ with a weight strictly bigger than $\rho^*(u) - k$.

Let $F_1 \in \mathcal{F}^*(u)$ such that $\alpha_{F_1,1}$ is the smallest element of $\mathcal{A}^*(u)$. Let $w_1 = x^{A'_1}$ be a monomial in the Taylor expansion of h_{F_1} which verifies the requisite conditions, and let $\mathcal{F}^*(uw_1) = \{F_2, \ldots, F_m\}$. Let us prove that $A + A'_1$ is necessarily in the cone $\{0\} \times (\mathbf{R}^+)^{n-1}$. Otherwise the vector $A + A'_1 \in (\mathbf{N}^*)^n$ is in the interior of the cone $C(F_2, \ldots, F_m) = C(F_2) \cap \cdots \cap C(F_m) \in \mathcal{C}$, i.e. $C(A + A'_1) = C(F_2, \ldots, F_m)$. As $A \in C(A + A'_1) \cap C(F_1)$ and $A'_1 \neq C(F_1)$, the cone $C(F_1, F_2, \ldots, F_m)$ is contained in a facet of $C(A + A'_1)$. Then for a dimensional argument, it coincides with $C(A)$. But, from Lemma 4.8, this is not possible because $d(A) = 1$ and $A \in \mathbb{N} \times (\mathbb{N}^*)^{n-1}$. So the assertion is proved.

Now we apply this process for the face F_2 . If $d(A + A'_1 + A'_2) \geq 4$, at least $n-3$ additional iterations are enough for ending. So we can assume that $d(A + A'_1 + A'_2) = 3$. But $d(A + A'_1) = 2$ and $C(A + A'_1) \subset \{0\} \times (\mathbf{R}^+)^{n-1}$.

So, using again the above argument, we obtain also that $A'_2 \in \{0\} \times (\mathbf{R}^+)^{n-1}$ necessarily, and then $C(A + A'_1 + A'_2) \subset \{0\} \times (\mathbf{R}^+)^{n-1}$. Iterating again at least $n-4$ times this process and the argument, if it is not finished, then $C(A+A'_1+\cdots+A'_{n-2})$ is a cone in $\{0\}\times({\bf R}^+)^{n-1}$ of dimension $n-1$. But also $\mathcal{F}^*(uw_1 \cdots w_{n-2})$ is reduced to $\{F\}$ and after a last iteration, $\rho^*(uw_1 \cdots w_{n-2})$ $h_F \delta_{k+n-1} x_1^{s+1}$) is strictly greater than $\rho^*(u) - k$. This ends the proof. \Box

§4.3. Filtrations and roots of $\tilde{b}_{\ell}(s)$

For every $\ell \in \mathbb{N}^*$, the weight function ρ^* may be extend to $\bigoplus_{k \geq \ell} E \delta_k x_1^{s+1}$ by $\rho^*(\sum_k u_k \delta_k x_1^{s+1}) = \min_k {\rho^*(u_k) - k}.$ It induces the decreasing filtration $(\bigoplus_{k\geq \ell} E\delta_k x_1^{s+1})_{\geq q} = \bigoplus_{k\geq \ell} E^*_{\geq q+k}\delta_k x_1^{s+1}, q\in \mathbf{Q}$. Then the spaces $\mathcal{Z}_{\ell}, \mathcal{Z}'_{\ell}$ and $\mathcal{Z}'_{\ell}/\mathcal{Z}_{\ell}$ get the induced filtrations and we have:

$$
\mathrm{gr}^*\mathcal{Z}_{\ell} \hookrightarrow \mathrm{gr}^*\mathcal{Z}'_{\ell} \hookrightarrow \mathrm{gr}^*\Big(\bigoplus_{k\geq \ell} E\delta_k x_1^{s+1}\Big) \cong \bigoplus_{q} \Big(\bigoplus_{k\geq \ell} E^*_{q+k}\delta_k x_1^{s+1}\Big)
$$

For every $U = \sum_k u_k \delta_k x_1^{s+1} \in \bigoplus_{k \geq \ell} E \delta_k x_1^{s+1}$ nonzero, the *initial part* of U is the element $\text{in}^*(U) \in \bigoplus_{k \geq \ell} E^*_{\rho^*(U)+k} \delta_k x_1^{s+1}$ defined by:

$$
in^*(U) = \sum_{\rho^*(u_k) - k = \rho^*(U)} in^*(u_k) \delta_k x_1^{s+1}
$$

If $G \subset \bigoplus_{k \geq \ell} E \delta_k x_1^{s+1}$ is a nonzero subspace, we will denote $\text{in}^*(G)$ the subspace of $\bigoplus_{q=0}^{\infty} (\bigoplus_{k\geq \ell} E_{q+k}^* \delta_k x_1^{s+1})$ generated by the initial parts of the nonzero vectors of G. For $q \in \mathbf{Q}$, let us denote $\mathcal{Z}_{\ell,q}^* = \text{in}^*(\mathcal{Z}_{\ell}) \cap \bigoplus_{k \geq \ell} E_{q+k}^* \delta_k x_1^{s+1}$, and $\mathcal{Z'}_{\ell,q}^* = \text{in}^*(\mathcal{Z}'_{\ell}) \cap \bigoplus_{k \geq \ell} E_{q+k}^* \delta_k x_1^{s+1}$. In particular, the rational numbers q with $\mathcal{Z'}_{\ell,q}^* \neq 0$ are contained in $\{q \in \mathbf{Q} \mid \exists k \in \mathbf{N}, q+k \in \Pi^*\}.$

Using (8) and Lemma 4.3, we prove that the action of s on $\mathcal{Z}'_{\ell}/\mathcal{Z}_{\ell}$ respects the filtration by ρ^* and induces an action of degree zero on $\mathrm{gr}^*(\mathcal{Z}'_{\ell}/\mathcal{Z}_{\ell})$. For every $q \in \mathbf{Q}$, let us denote $\tilde{b}_{\ell,q}(s)$ the minimal polynomial of s on $\operatorname{gr}_q^*(\mathcal{Z}'_{\ell}/\mathcal{Z}_{\ell})$. So, from Theorem 1.1, we have:

Theorem 4.9. The polynomial $\tilde{b}_{\ell}(s)$ is the l.c.m. of the polynomials $\tilde{b}_{\ell,q}(s)$:

$$
\tilde{b}_{\ell}(s) = \text{l.c.m.}_{\mathcal{Z}_{\ell,q}^* \subsetneq \mathcal{Z'}_{\ell,q}^*} \tilde{b}_{\ell,q}(s)
$$

Remark that, contrary to the classical case, the polynomials $\tilde{b}_{\ell,q}(s)$ are not a power of an affine form (see Lemma 4.5). In Proposition 4.6, we have proved that the multiplicities of their roots are strictly smaller than n . Thus:

818 TRISTAN TORRELLI

Theorem 4.10. The multiplicity of a root of $\tilde{b}_{\ell}(s)$ is at most $n-1$.

Remark 4.11. Up to a change of notations, the first part of the proof of Proposition 4.6 allows to prove in the case of a non-degenerate convenient germ that the multiplicities of its reduced Bernstein polynomial are raised by n .

*§***4.4. The effective computation**

Thus the determination of $\tilde{b}_{\ell}(s)$ needs the one of spaces $\mathcal{Z}_{\ell,q}^*$ and $\mathcal{Z'}_{\ell,q}^*$, $q \in \mathbf{Q}$. Here we adapt the method given in [2], and we apply it on an example. Using the following formula:

$$
(\alpha_{F,1}(s+1) + w - \langle \alpha_F, \beta \rangle - \overline{\chi}_F) \partial^{\beta} u \delta_k x_1^{s+1}
$$

= $\partial^{\beta}[(w+k-|\alpha_F|)u - \chi_F(u)]\delta_k x_1^{s+1} - \partial^{\beta} u h_F \delta_{k+1} x_1^{s+1}$

for $u \in \mathcal{O}$, $k \in \mathbb{N}^*$, $w \in \mathbb{C}$, $\beta \in \mathbb{N}^n$, and Lemma 4.3, we construct a sequence $(S_{\ell,m})_{1 \leq m \leq M_{\ell}}$ of good operators $S_{\ell,m}$ in s of degree m, a creasing sequence of rational numbers $(q_{\ell,m})_{1 \leq m \leq M_{\ell}-1}$ with $q_{\ell,1} \geq \rho^*(x_1 g'_{x_1})$ and a sequence $(H_{\ell,m})_{1 \leq m \leq M_{\ell}-1}$ of elements of $\bigoplus_{k \geq \ell} DE \delta_k x_1^{s+1}$ such that:

- $\circ S_{\ell,m} x_1 g'_{x_1} \delta_\ell x_1^{s+1} H_{\ell,m} \in \mathcal{DJ} \delta_\ell x_1^{s+1} \text{ for } 1 \leq m \leq M_\ell 1;$
- $\circ S_{\ell,M_{\ell}} x_1 g'_{x_1} \delta_{\ell} x_1^{s+1} \in \mathcal{DJ} \delta_{\ell} x_1^{s+1};$
- \circ $H_{\ell,m} = \sum_{\ell \leq k \leq \ell+n-2} H_{\ell,m,k} \delta_k x_1^{s+1}$ with $H_{\ell,m,k} \in DE^*_{\geq q_{\ell,m}+k-\ell}$ of degree at least $m + \ell - k - 1$.

Then this sequence $(H_{\ell,m})$ determines \mathcal{Z}_{ℓ} :

(10)
$$
\mathcal{Z}_{\ell} = \left\{ \sum_{m=1}^{M_{\ell}-1} c_{\ell}(a_m H_{\ell,m}) + c_{\ell}(a_0 x_1 g'_{x_1} \delta_{\ell} x_1^{s+1}) \, | \, a_m \in \mathcal{O} \right\}
$$

because \mathcal{Z}_{ℓ} coincides with $c_{\ell}(\mathcal{D}[s]x_1g'_{x_1}\delta_{\ell}x_1^{s+1})$ (Lemma 3.3) and, for every $P(s) \in \mathcal{D}[s]$:

$$
P(s)x_1g'_{x_1}\delta_{\ell}x_1^{s+1} \in \sum_{m=1}^{M_{\ell}-1}\mathcal{D}S_{\ell,m}x_1g'_{x_1}\delta_{\ell}x_1^{s+1} + \mathcal{D}x_1g'_{x_1}\delta_{\ell}x_1^{s+1} + \mathcal{D}\mathcal{J}\delta_{\ell}x_1^{s+1}
$$

Indeed, by division we have: $P(s) = P_{M_{\ell}}(s)S_{\ell,M_{\ell}} + \sum_{m=1}^{M_{\ell}-1} P_m S_{\ell,m} + P_0$ where $P_m \in \mathcal{D}, 0 \leq m \leq M_{\ell} - 1$, and $P_{M_{\ell}}(s) \in \mathcal{D}[s]_{\leq d-M_{\ell}}$ if $d \in \mathbf{N}$ is the degree in s of $P(s)$. An induction on d allows us to conclude, using Remark 2.4 and that $S_{\ell,M_{\ell}} x_1 g'_{x_1} \delta_{\ell} x_1^{s+1} \in \mathcal{DJ} \delta_{\ell} x_1^{s+1}.$

The determination of $\mathcal{Z}'_l = c_l(\mathcal{D}[s]g'_{x_1}\delta_\ell x_1^{s+1})$ is similar, using sequences $(S'_{\ell,m})_{1 \leq m \leq M'_{\ell}}$, $(q'_{\ell,m})_{1 \leq m \leq M'_{\ell}-1}$ with $q'_{\ell,1} \geq \rho^*(g'_{x_1})$, and $(H'_{\ell,m})_{1 \leq m \leq M'_{\ell}-1}$.

Remark 4.12. If the Newton polyhedron of g has only one $(n-1)$ dimensional face F - with normal vector $\alpha \in (\mathbf{Q}^{*+})^n$ -, the algorithm is very simple, exactly as in [2], part 2. In fact, it is enough to suppose that $g|_F$ and $(g|_F, x_1)$ define some isolated singularities, *i.e.* g, (g, x_1) are semi-weightedhomogeneous morphism. Then the division theorem used in [2], p. 593, is sufficient, and so the weight function $\rho = \rho_F$ is enough. Moreover, Π is also the set of the weights of a weighted-homogeneous co-basis of the ideal $\text{in}(\mathcal{J}) = (\text{in}(g), \text{in}(g_{x_2}), \ldots, \text{in}(g_{x_n}))\mathbf{C}[x]$, with $\sigma = n - 2|\alpha| + \alpha_1$, and the formula given in Lemma 4.4 ends in one time:

$$
(\alpha_1(s+1) + |\alpha| + \rho(u) - k)u\delta_k x_1^{s+1}
$$

\n
$$
\in \mathcal{DO}_{>\rho(u)}\delta_k x_1^{s+1} + \mathcal{DO}_{\geq \rho(u) + \rho(h)}\delta_{k+1} x_1^{s+1}
$$

where $h = \chi(g) - g$. Hence $(\alpha_1(s+1) + |\alpha| + q)$ annihilates $gr_q\mathcal{Z}'_l/\mathcal{Z}_l$, and the polynomial $\tilde{b}_{\ell}(s)$ is given by:

$$
\tilde{b}_{\ell}(s) = \prod_{\mathcal{Z}_{\ell,q} \subsetneq \mathcal{Z}'_{\ell,q}} \left(s + 1 + \frac{|\alpha| + q}{\alpha_1} \right)
$$

When g is in fact a weighted-homogeneous polynomial, we easily get:

$$
\tilde{b}_{\ell}(s) = \prod_{p \in \Pi'} \left(s + \frac{|\alpha| + 1 + p - \ell}{\alpha_1} \right)
$$

where $\Pi' \subset \mathbf{Q}^+$ is the set of the weights of a weighted homogeneous cobasis of $(x_1, g_{x_2}, \ldots, g_{x_n}) \mathcal{O}$ (see [22]).

Example. Let g be the germ $x_1^d + x_2^d + x_3^d + x_1^2 x_2^2 x_3^2$ with $d \ge 9$, and $f = x_1$. The computation of the Bernstein polynomial of g is done in [2]. Here we determinate the polynomials $\tilde{b}_{\ell}(s), \, \ell \in \mathbb{N}^*$.

The Newton polyhedron of g has exactly three 2-dimensional faces F_1, F_2 , F_3 , with normal vectors associated:

$$
\alpha_{F_1} = \left(\frac{1}{2} - \frac{2}{d}, \frac{1}{d}, \frac{1}{d}\right), \ \alpha_{F_2} = \left(\frac{1}{d}, \frac{1}{2} - \frac{2}{d}, \frac{1}{d}\right), \ \alpha_{F_3} = \left(\frac{1}{d}, \frac{1}{d}, \frac{1}{2} - \frac{2}{d}\right)
$$

So $|\alpha_{F_i}| = 1/2$ and $h_{F_i} = (d/2 - 3)x_i^d$, $1 \le i \le 3$.

The ideal $\mathcal J$ is generated by $g, g'_{x_2} = dx_2^{d-1} + 2x_1^2 x_2 x_3^2$ and $g'_{x_3} = dx_3^{d-1} +$ $2x_1^2x_2^2x_3$. By taking away the non multiple of x_2x_3 monomials from the monomial basis of $I(g) = (g, x_2 g'_{x_2}, x_3 g'_{x_3}) \mathcal{O}$ given in [2], B.4.2.2.3, we obtain (using the isomorphism λ) the following monomials:

820 TRISTAN TORRELLI

\mathcal{U}	$\rho^*(u)$	
$(x_1x_2x_3)^{\varepsilon}x_1$	$\frac{\epsilon + 1}{2}$	$0 \leq \varepsilon \leq 4$
	$(x_1x_2x_3)^{\epsilon}x_1x_{\theta}^i$ $(\epsilon+1)/2+i/d$	$0 \leq \varepsilon \leq 2, 1 \leq i \leq d-1, 1 \leq \theta \leq 3$
$(x_1x_2x_3)^{\varepsilon}x_2^ix_3^j$		$\lceil \varepsilon/2 + (i+j+2)/d \rceil$ $0 \le \varepsilon \le 1, 0 \le i, j \le d-2$
$x_1^{i+1}x_\theta^j$	$1/2 + (i+j)/d$	$1 \le i, j \le d-1, \ \theta = 2, 3$

So this gives a basis of a supplementary $E \subset \mathcal{O}$ of the ideal \mathcal{J} . Thus $\sigma^* = 5/2$, and $\Pi^* = \{1/2 + k/d \mid 0 \le k \le 2d\} \cup \{k/d \mid 2 \le k \le 2d\}.$

Now we determinate the space $\mathcal{Z}_{\ell} = c_{\ell}(\mathcal{D}[s]x_1 g'_{x_1} \delta_{\ell} x_1^{s+1})$. First we remark that the division of $x_1 g'_{x_1}$ by $\mathcal J$ is given by:

$$
x_1g'_{x_1} = dx_1^d + \frac{2}{d-4}(dg - x_2g'_{x_2} - x_3g'_{x_3})
$$

Without loss of generality, it is also enough to find the sequence $(H_{\ell,m})$ associated with $x_1^d \delta_\ell x_1^{s+1}$. We have the identities:

$$
\left(\frac{1}{d}(s+1) + \frac{3}{2} - \ell - \overline{\chi}_{F_2}\right) x_1^d \delta_\ell x_1^{s+1} = \left(\frac{6-d}{2}\right) x_1^d x_2^d \delta_{\ell+1} x_1^{s+1}
$$

$$
\left(\frac{1}{d}(s+1) + \frac{3}{2} - \ell - \overline{\chi}_{F_3}\right) x_1^d x_2^d \delta_{\ell+1} x_1^{s+1} = \left(\frac{6-d}{2}\right) x_1^d x_2^d x_3^d \delta_{\ell+2} x_1^{s+1}
$$

where $\rho^*((x_1x_2x_3)^d) = d/2 + 2/d > \sigma^* + 2$ because $d \geq 9$. Hence the term $(x_1x_2x_3)^d \delta_{\ell+2} x_1^{s+1}$ belongs to $\mathcal{D}\mathcal{J}\delta_{\ell} x_1^{s+1}$ and so $M_{\ell} = 2$. We get $H_{\ell,1}$ by rewriting $(d(6-d)/2)x_1^dx_2^d\delta_{\ell+1}x_1^{s+1}$. As $dx_1^dx_2^d = x_1^dx_2g'_{x_2} - 2(x_1x_2x_3)^2x_1^d$, we obtain:

$$
H_{\ell,1} = (d-6)(x_1x_2x_3)^2 x_1^d \delta_{\ell+1} x_1^{s+1} + d\left(\frac{d-6}{2}\right) \left[x_1^d - \frac{\partial}{\partial x_2} x_1^d x_2\right] \delta_{\ell} x_1^{s+1}
$$

Consequently, \mathcal{Z}_{ℓ} is equal to $c_{\ell}(\mathcal{O}x_1^d \delta_{\ell}x_1^{s+1} + \mathcal{O}(x_1x_2x_3)^2x_1^d \delta_{\ell+1}x_1^{s+1})$. So we find:

$$
\mathcal{Z}_{\ell} = G \delta_{\ell} x_1^{s+1} \oplus \mathbf{C} (x_1 x_2 x_3)^2 x_1^d \delta_{\ell+1} x_1^{s+1} \oplus \mathbf{C} (x_1 x_2 x_3)^4 x_1 \delta_{\ell+1} x_1^{s+1}
$$

where $G \subset E$ is the subspace generated by the monomials:

 $(x_1x_2x_3)^{\varepsilon}x_1$ $2 \leq \varepsilon \leq 4$ $(x_1x_2x_3)^{\varepsilon}x_1^i$ $\varepsilon = 0$, $i = d$, or $\varepsilon = 1$, $i = d - 1$, d, or $\varepsilon = 2$, $2 \le i \le d$ $(x_1x_2x_3)^{\varepsilon}x_1x_0^i \quad \varepsilon = 1, \ i = d - 1 \text{ or } \varepsilon = 2, \ 1 \le i \le d - 1 \ (\theta = 2, 3)$ $(x_1x_2x_3)^{\varepsilon}x_2^ix_3^j \quad \varepsilon = 0, \ i = j = d - 2 \text{ or } \varepsilon = 1, \ d - 3 \le i, j \le d - 2$ $x_1^i x_\theta^j$ $i = d, 1 \leq j \leq d - 1$ or $d - 2 \leq i, j \leq d - 1$ $(\theta = 2, 3)$.

The determination of the sequence $(H'_{\ell,m})$ associated with $g'_{x_1} \delta_{\ell} x_1^{s+1}$ is similar (for more details, see [22]). So we obtain that the quotient space $\mathcal{Z}'_{\ell}/\mathcal{Z}_{\ell}$ may be identified to:

$$
G'\delta_{\ell}x_{1}^{s+1}\oplus \mathbf{C}(x_{1}x_{2}x_{3})^{2}x_{1}^{d-1}\delta_{\ell+1}x_{1}^{s+1}
$$

where $G' \subset E$ is the **C**-vector space generated by the $d(d-2)$ monomials:

$$
(x_1x_2x_3)^{\varepsilon}x_1^i \quad \varepsilon = 0, \ i = d - 1, \text{ or } \varepsilon = 1, \ i = d - 2
$$

\n
$$
(x_1x_2x_3)x_2^i x_3^j \quad 1 \le i, j \le d - 2 \text{ except } d - 3 \le i, j \le d - 2
$$

\n
$$
x_1^ix_\theta^j \qquad i = d - 1, \ 1 \le j \le d - 3, \text{ or } i = d - 3, \ d - 1 \le j \le d - 2
$$

for every $\ell \in \mathbb{N}^*$, expect if d is even and $\ell = 2$. In this case, the four monomials $x_1^{d-1}x_{\theta}^{d/2+1}$, $x_{\theta}^{d/2+1}x_2x_3(x_1x_2x_3)$, $\theta = 2,3$, do not belong to G' , and G' have the following two vectors in addition $x_{\theta}^{d/2+1}g'_{x_1} = dx_1^{d-1}x_{\theta}^{d/2+1} +$ $2x_{\theta}^{d/2+1}x_2x_3(x_1x_2x_3), \theta = 2, 3.$

In order to study the action of s on nonzero spaces $\mathcal{Z'}_{\ell,q}^*/\mathcal{Z}_{\ell,q}^*$, we use the relation:

$$
(\alpha_{F_i,1}(s+2) + \rho^*(u) - k)u\delta_k x_1^{s+1} = \frac{6-d}{2}ux_i^d \delta_{k+1} x_1^{s+1}
$$

where u is a monomial and $F_i \in \mathcal{F}$ such that $\rho^*(u) = \rho^*_{F_i}(u)$, and we compute the image by c_{ℓ} after rewriting by division. For every $u\delta_{\ell}x_1^{s+1}$, $u \in G'$, the computation gives zero - in $gr^*_{\rho^*(u)-\ell} \mathcal{Z}'_{\ell}/\mathcal{Z}_{\ell}$ - with one exception if $u=x_1^{d-1}$:

$$
\begin{aligned} &\left(\frac{1}{d}(s+2) + \frac{3}{2} - \frac{2}{d} - \ell\right)x_1^{d-1}\delta_\ell x_1^{s+1} \\ &= \frac{d-6}{2d}(x_1^{d-1}\delta_\ell x_1^{s+1} + 2(x_1x_2x_3)^2x_1^{d-1}\delta_{\ell+1}x_1^{s+1}) \end{aligned}
$$

and $((1/d)(s+2) + 3/2 - 2/d - \ell)^2 \delta_\ell x_1^{s+1} = 0$. Consequently, $\tilde{b}_\ell(s)$ is the l.c.m. of $((1/d)(s+2)+3/2-2/d-\ell)^2$ and of $(\alpha_{F,1}(s+2)+\rho^*(u)-\ell)$ with $F \in \mathcal{F}^*(u)$, $u \neq x_1^{d-1}$ in the given basis of G'. Then in the general case, we have:

$$
\tilde{b}_{\ell}(s) = \text{l.c.m.} \left\{ s + d(2 - \ell) - 1, \left(s + d\left(\frac{3}{2} - \ell\right) \right)^2 \prod_{i=1}^{d-3} \left(s + d\left(\frac{3}{2} - \ell\right) + i \right), \frac{2d-8}{\prod_{i=0}^{2d-8} \left(s + \frac{d(3-2\ell) + 2i}{d-4} \right)} \right\}
$$

where the last polynomial is the one of the monomials u with $\mathcal{F}^*(u) = \{F_1\}.$

822 TRISTAN TORRELLI

References

- [1] Barlet, D. and Kashiwara, M., Le réseau L^2 d'un système holonome régulier, Invent. Math., **86** (1986), 35-62.
- [2] Briançon, J., Granger, M., Maisonobe, Ph. and Miniconi, M., Algorithme de calcul du polynôme de Bernstein: cas non dégénéré, Ann. Inst. Fourier, 39 (1989), 553-610.
- [3] Briançon, J. and Skoda, H., Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de \mathbb{C}^n , C. R. Acad. Sci. Paris, **278** (1974), 949-951.
- [4] Ginsburg V., Characteristic varieties and vanishing cycles, Invent. Math., **84** (1986), 327-402.
- [5] Grothendieck, A., On the de Rham cohomology of algebraic varieties, Pub. Math. I.H.E.S., **29** (1966), 95-105.
- [6] Kashiwara, M., On the holonomic systems of differential equations II, Invent. Math., **49** (1978), 121-135.
- [7] Kashiwara, M., Vanishing cycle sheaves and holonomic systems of differential equations, Lect. Notes in Math., **1016** (1983), 134-142.
- [8] , Quasi-unipotent constructible sheaves, J. Fac. Sci. Univ. Tokyo, Sect. I A, **28** (1981), 757-773.
- [9] Kouchnirenko, A. G., Poly`edres de Newton et nombres de Milnor, Invent. Math., **32** (1976), 1-31.
- [10] Lˆe, D.T., Le th´eor`eme de la monodromie singulier, C. R. Acad. Sci., Paris, Ser. A, **288** (1979), 985-988.
- [11] Malgrange, B., Le polynôme de Bernstein d'une singularité isolée, Lect. Notes in Math., **459** (1975), 98-119.
- [12] , Polynôme de Bernstein-Sato et cohomologie évanescente, Astérisque, **101-102** (1983), 243-328.
- [13] Maynadier, H., Polynômes de Bernstein-Sato associés à une intersection complète quasihomogène à singularité isolée, Bull. Soc. Math. France, 125 (1997), 547-571.
- [14] Mebkhout, Z., Local cohomology of analytic spaces, Publ. RIMS, Kyoto Univ., **12** (1977), 247-256.
- [15] Sabbah, C., Proximité évanescente. I. La structure polaire d'un D-module, Compositio Math., **62** (1987), 283-328.
- [16] , Proximité évanescente. II. Équations fonctionnelles pour plusieurs fonctions analytiques, Compositio Math., **64** (1987), 213-241.
- [17] Sawaya, J., *Divisions selon les puissances fractionnaires d'un idéal*, Thèse UNSA, 2001.
- [18] Torrelli, T., Equations fonctionnelles pour une fonction sur un espace singulier, Thèse UNSA, 1998.
- [19] $___\$, Équations fonctionnelles pour une fonction sur une intersection complète quasi homogène à singularité isolée, C. R. Acad. Sci. Paris, 330 (2000), 577-580.
- [20] , Un calcul de polynôme Bernstein associé à un faisceau de coniques non dégénéré, C. R. Acad. Sci. Paris, **331** (2000), 47-50.
- [21] , Polynômes de Bernstein associés à une fonction sur une intersection complète à singularité isolée, Ann. Inst. Fourier, **52** (2002), 221-244
- [22] , Polynômes de Bernstein d'une fonction lisse restreinte à une hypersurface à singularité isolée, prépublication 22/2002 de l'Institut Elie Cartan de Nancy.
- [23] , Sur les germes de fonctions méromorphes définis par un système différentiel d'ordre 1, prépublication 45/2002 de l'Institut Elie Cartan de Nancy.