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Q-reflexive Locally Convex Spaces

By

Christopher Boyd, Seán Dineen and Milena Venkova
∗

Abstract

For a locally convex space E we use the Aron-Berner extension to define canonical

mappings from
⊗̂

s,n,π

E′′
e into different duals of P(nE). We investigate necessary and

sufficient conditions for the continuity of these mappings, paying particular attention
to three special cases — Fréchet spaces, DF spaces and reflexive A-nuclear spaces.
We define Q-reflexive spaces as spaces where a certain canonical mapping can be

extended to an isomorphism between
⊗̂

s,n,π

E′′
e and (P(nE), τb)′i. We find examples of

such spaces.

§1. Introduction

In [3] R. Aron and S. Dineen considered the problem of obtaining a poly-
nomial functional representation of the bidual of the space of continuous n-
homogeneous polynomials on a Banach space E. More precisely, they asked
when the space P(nE)′′ is isomorphic to P(nE′′) in a canonical way. Spaces
with this property are called Q-reflexive. A reflexive Banach space E with the
approximation property is Q-reflexive if and only if P(nE) is reflexive.

In this article we consider the analogous problem when E is a locally
convex space. When E is a Banach space, P(nE) endowed with the topology
of uniform convergence over the unit ball of E is a Banach space. The situation
becomes complicated in the more general setting due to the increased choice
of topologies on P(nE) and the dual of E. To arrive at a suitable definition
of Q-reflexive locally convex space we examine three classes of spaces which
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8 Christopher Boyd, Seán Dineen and Milena Venkova

have shown themselves to be interesting from polynomial and holomorphic
viewpoints — Fréchet spaces, DF spaces and fully nuclear spaces. We refer to
[11] and [15] for background information on polynomials over locally convex
spaces and the theory of locally convex spaces respectively.

§2. Biduals of Spaces of Homogeneous Polynomials with
the Compact Open Topology

In this section we discuss spaces of polynomials endowed with the compact
open topology τ0. Biduality, when the domain space is either DF or Fréchet,
is relatively straightforward in this case. We first, however, introduce some
notation that will be used throughout the article. Let E be a locally convex
space over the complex numbers C. We will denote by E the completion of E,
and by E′ the space of all continuous linear functionals on E. If E′ is endowed
with the strong topology (i.e. the topology of uniform convergence over the
bounded subsets of E) we denote it by E′

β. We say that E is infrabarrelled (or
quasibarrelled) if the canonical inclusion of E into E′′

ββ := (E′
β)′β is continuous.

Let V be a fundamental 0-neighbourhood basis of E, the collection (V ◦◦)V ∈V
is a fundamental 0-neighbourhood basis for the natural topology on E′′. The
bidual of E endowed with the natural topology is denoted by E′′

e . It is well
known that E is infrabarrelled if and only if E′′

e = E′′
ββ, or, equivalently, if

and only if the bounded subsets of E′
β are equicontinuous. A locally convex

space E is barrelled if and only if the σ(E′, E)-bounded subsets in E′ are
equicontinuous (thus every barrelled space is infrabarrelled). A locally convex
space is distinguished if its strong dual is barrelled.

For E a locally convex space we let Pa(nE) denote the vector space of all n-
homogeneous polynomials on E, and P(nE) denote the space of all continuous
n-homogeneous polynomials on E. The topology on P(nE) of uniform conver-
gence over the compact (respectively bounded) subsets of E is denoted by τ0

(respectively τb). A third topology on P(nE) can be defined in the following
way. A semi-norm p on P(nE) is τω-continuous if for every zero neighbourhood
V in E there exists a positive constant C(V ) such that

p(P ) ≤ C(V )‖P‖V

for all P ∈ P(nE). The topology generated by all such semi-norms is de-
noted by τω. When n = 1, E′

i := (P(1E), τω) is the inductive dual of E,
E′

β := (P(1E), τb) is the strong dual of E and, if E is quasi-complete, E′
c :=

(P(1E), τ0).
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If
⊗̂
s,n,π

E denotes the completed symmetric n-fold tensor product of E

endowed with the projective tensor topology, then
( ⊗̂
s,n,π

E
)′
i

and (P(nE), τω)

are isomorphic. The space E has the (BB)n property if the closed convex hull

of ⊗n,sB forms a fundamental system of bounded subsets of
⊗̂
s,n,π

E as B ranges

over the bounded subsets of E. Clearly E has (BB)n if and only if
(⊗̂
s,n,π

E
)′
β

and (P(nE), τb) are isomorphic. A locally convex space in which all closed
bounded sets are compact is called semi-Montel. A semi-Montel Fréchet space
is called Fréchet-Montel and a semi-Montel DF space is called a DFM space.

Proposition 2.1. Let E be a Fréchet space and n a positive integer.
Then

(a) ((P(nE), τ0)′β)′β = (P(nE), τw) if and only if
⊗̂
s,n,π

E is a distinguished

Fréchet space.

(b) ((P(nE), τ0)′β)′β = (P(nE), τ0) if and only if E is a Fréchet-Montel space
with the (BB)n property.

Proof. By ([11], Proposition 2.20),

((P(nE), τ0)′β)′β =
( ⊗̂
s,n,π

E
)′
β
.(2.1)

Hence (a) holds if and only if
( ⊗̂
s,n,π

E
)′
i

=
(⊗̂
s,n,π

E
)′
β
. Since E is Fréchet

⊗̂
s,n,π

E is also Fréchet. As the strong and inductive duals of a Fréchet space

have the same bounded sets, a result of Grothendieck ([14], Theorem 3.16.1)

implies that
(⊗̂
s,n,π

E
)′
i

=
(⊗̂
s,n,π

E
)′
β

if and only if
⊗̂
s,n,π

E is distinguished. This

proves (a).

By (2.1), (b) holds if and only if
( ⊗̂
s,n,π

E
)′
β

and (P(nE), τ0) =
(⊗̂
s,n,π

E
)′
c

are

isomorphic, i.e. if and only if
⊗̂
s,n,π

E is Fréchet-Montel. By ([11], Proposition
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1.35) and [1],
⊗̂
s,n,π

E is Fréchet-Montel space if and only if E is a Fréchet-Montel

space with (BB)n. This completes the proof of (b).

Proposition 2.2. Let E be a complete infrabarrelled DF space. Then

(a) ((P(nE), τ0)′β)′β = (P(nE), τω) for every n.

(b) ((P(nE), τ0)′β)′β = (P(nE), τ0) for every n if and only if E is a DFM space.

Proof. (a) By ([16], p. 264), (P(nE), τ0)′ =
⊗̂
s,n,π

E algebraically. The

topology on
⊗̂
s,n,π

E is the topology of uniform convergence on the equicontinuous

subsets of the dual
(⊗̂
s,n,π

E
)′ = P(nE), while the topology on (P(nE), τ0)′β is

the topology of uniform convergence on the τ0-bounded, or, by ([11], Lemma
1.23), the τb-bounded subsets of P(nE). Let E be infrabarrelled, by ([15]),

Proposition 15.6.8)
⊗̂
s,n,π

E is infrabarrelled and hence the strongly bounded and

the equicontinuous subsets of its dual P(nE) coincide. Since every DF space
has (BB)n, this means that the τb-bounded subsets and the equicontinuous

subsets of P(nE) coincide and (P(nE), τ0)′β =
⊗̂
s,n,π

E. By ([4], Corollary 3.4)

( ⊗̂
s,n,π

E
)′
β

=
(⊗̂
s,n,π

E
)′
i
, hence

(P(nE), τ0)′′ββ =
( ⊗̂
s,n,π

E
)′
i
= (P(nE), τω).

This completes the proof of (a).
(b) Since E is a complete infrabarrelled DF space, by (a) ((P(nE), τ0)′β)′β =

(P(nE), τω) for every n. Suppose E is DFM, by ([11], Example 1.32) τ0 = τω

on P(nE), hence ((P(nE), τ0)′β)′β = (P(nE), τ0).
Conversely, suppose ((P(nE), τ0)′β)′β = (P(nE), τ0). By (a), ((P(nE),

τ0)′β)′β = (P(nE), τω), so τω = τ0 on P(nE). Since τω ≥ τb ≥ τ0, the Hahn-
Banach Theorem implies that E is a DFM space. This completes the proof.

Remark 1. The space E = lim
←−−−

(c0(Γ′), ‖ · ‖Γ′), where the projective limit

is over all countable Γ′ ⊂ Γ for an uncountable Γ, is a DF space which is not in-
frabarrelled. Nevertheless, it can be shown that ((P(nE), τ0)′β)′β = (P(nE), τω)
for every n.
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§3. The Canonical Map Jn

In this section we consider P(nE) endowed with the τω and τb topologies. If
P ∈ P(nE) let ABn(P ) denote the Aron-Berner extension of P to E′′ := (E′

β)′

(see [2]). If x′′ ∈ E′′ then there exists a bounded subset B of E such that

|ABn(P )(x′′)| ≤ ‖P‖B

for all P ∈ P(nE). Thus the mapping

Jn :
⊗
s,n,π

E′′ −−−→ (P(nE), τb)′,(3.1)

given by [Jn(⊗nx′′)](P ) = [ABn(P )](x′′) for all P ∈ P(nE) and all x′′ ∈ E′′,

and extended by linearity, is well defined. Since the topology τω is finer than
τb, the mapping Jn is also well defined with range space (P(nE), τω)′.

We are interested in turning Jn into a continuous mapping. To proceed we
need to label the different topologies that we consider. The following diagram
fixes our notation:

(P(nE), τb)′i
in ��

kn

��

(P(nE), τω)′i

Kn

��

⊗
s,n,π

E′′
e

Jbb
n

��� � �
� � �

� � �
�

Jww
n

�������������

Jbw
n

��� � � � � � � � � � �

Jwb
n

����
���

���
��

(P(nE), τb)′β
In �� (P(nE), τω)′β

(3.2)

The diagonal mappings are just the mapping Jn with superscripts used to
denote the structure of the range space. The mappings along the horizontal
and vertical arrows are always well defined and continuous.

Remark 2. The continuity of Jbb
1 : E′′

e −−−→ (P(1E), τb)′β = E′′
ββ implies

that E is infrabarrelled.

We first consider the lower diagonal mappings in Diagram (3.2).

Proposition 3.1. Let E be a locally convex space such that the τ -
bounded sets of P(nE), τ = τb or τω, are locally bounded for some n. Then the
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mapping

Jn :
⊗
s,n,π

E′′
e −−−→ (P(nE), τ )′β

is continuous. If τ = τω then Jwb
n can be extended to the completion

⊗̂
s,n,π

E′′
e .

Proof. By our hypothesis the topology on (P(nE), τ )′β is generated by
the semi-norms

αV (φ) = sup
{
|φ(P )| : ‖P‖V ≤ 1

}
,

where V ranges over the convex balanced neighbourhoods of zero in E. Let P ∈
P(nE) and

∨
ABn(P ) be the symmetric n-linear form associated with ABn(P ).

The mapping

jn : (x′′
1 , . . . , x′′

n) −−−→ [P → [
∨

ABn(P )](x′′
1 , . . . , x′′

n)],

where x′′
i ∈ E′′

e for 1 ≤ i ≤ n, is symmetric, n-linear, and has linearization Jn.
If V is a convex balanced neighbourhood of zero in E, then by ([11], Proposition
1.53) and the Polarization Formula,∣∣[ ∨

ABn(P )](x′′
1 , . . . , x′′

n)
∣∣ ≤ nn

n!
‖x′′

1‖V ◦◦ · · · ‖x′′
1‖V ◦◦‖P‖V

where x′′
i ∈ E′′

e for 1 ≤ i ≤ n and P ∈ P(nE). Hence

αV

(
jn(x′′

1 , . . . , x′′
n)

)
= sup{

(
[

∨
ABn(P )](x′′

1 , . . . , x′′
n)

)
: ‖P‖V ≤ 1}

≤ nn

n!
‖x′′

1‖V ◦◦ · · · ‖x′′
1‖V ◦◦ ,

and jn is continuous. By the definition of the projective tensor product this
implies that Jn is also continuous.

When τ = τω the space (P(nE), τω)′β is complete as the strong dual

of a bornological space, and consequently Jn can be extended to
⊗̂
s,n,π

E′′
e by

continuity.

Next we consider the mapping Jbw
n , concentrating on some special cases.

If E is a Fréchet space (P(nE), τω) is a barrelled DF space, hence its strong
and inductive duals coincide by [4]. Thus Kn is an isomorphism and Jwb

n = Jww
n

for every n. Moreover, the τω-bounded and the τb-bounded subsets of P(nE)
are locally bounded and hence, by Proposition 3.1, the mappings Jwb

n = Jww
n

and Jbb
n are continuous.
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Proposition 3.2. Let E be a Fréchet space with (BB)n for some n.
Then Jbw

n is continuous, kn is an isomorphism and Jbw
n = Jbb

n .

Proof. Since E has (BB)n we have

(P(nE), τb)′i =
((⊗̂

s,n,π

E
)′
β

)′
β

= (P(nE), τb)′β ,

hence Jbw
n = Jbb

n and, in particular, Jbw
n is continuous. Moreover, as

(P(nE), τb)′i = (P(nE), τb)′β ,

kn is an isomorphism and Jbw
n = Jbb

n .

Next suppose E is a DF space. By ([11], Example 1.32) τb = τω on P(nE)
for every n, hence in and In are isomorphisms. Thus Jwb

n = Jbb
n and Jbw

n = Jww
n

for every n.

Proposition 3.3. Let E be a DF space.

(a) The mapping

Jbb
n :

⊗
s,n,π

E′′
e −−−→ (P(nE), τb)′β

is continuous for every n if and only if E is infrabarrelled. In this case Jbb
n

can be extended to the completion
⊗̂
s,n,π

E′′
e =

⊗̂
s,n,π

E′′
ββ.

(b) The mapping

Jbw
n :

⊗
s,n,π

E′′
e −−−→ (P(nE), τb)′i

is continuous for every n if and only if E and E′′
ββ are infrabarrelled. In

this case Jbw
n can be extended to the completion

⊗̂
s,n,π

E′′
e =

⊗̂
s,n,π

E′′
ββ.

Proof. (a) If Jbb
n is continuous E is infrabarrelled by Remark 2. Con-

versely, if E is an infrabarrelled DF space then by ([15], Proposition 15.6.8)⊗
s,n,π

E is an infrabarrelled DF space and consequently the bounded subsets

of
(⊗
s,n,π

E
)′
β

are equicontinuous. As a DF space E has (BB)n, this implies
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( ⊗
s,n,π

E
)′
β

= (P(nE), τb). By Proposition 3.1, Jbb
n is continuous. Since (P(nE),

τb) is Fréchet, it is bornological. Hence (P(nE), τb)′β is complete and the con-

tinuous mapping Jbb
n can be extended to

⊗̂
s,n,π

E′′
ββ.

(b) Let E and E′′
ββ be infrabarrelled DF spaces. As E′′

ββ is the strong
dual of a metrizable space, it is barrelled and bornological ([15], Corollary
13.4.4). By ([15], 15.6.8)

⊗
s,n,π

E′′
ββ is a bornological DF space. By (a) Jbb

n is

continuous and hence maps the bounded sets of
⊗
s,n,π

E′′
ββ onto bounded sets

in (P(nE), τb)′β. Since
(⊗̂
s,n,π

E
)′
β

is Fréchet, (P(nE), τb)′β =
(( ⊗̂

s,n,π

E
)′
β

)′
β

and

(P(nE), τb)′i =
(( ⊗̂

s,n,π

E
)′
β

)′
i

have the same bounded sets ([11], Example 1.24).

Hence Jbw
n maps bounded sets onto bounded sets and by ([14], Proposition

3.7.1) is continuous.
Conversely, let Jbw

n be continuous. Then Jbb
n is continuous and E is in-

frabarrelled by Remark 2. When n = 1 we obtain that E′′
ββ = E′′

βi, and since
inductive duals are barrelled, E′′

ββ is barrelled and hence infrabarrelled. More-

over, since (P(nE), τb) =
(⊗̂
s,n,π

E
)′
β

is Fréchet, its inductive dual is complete

([15], Corollary 13.4.3). Hence we can extend Jbw
n from

⊗
s,n,π

E′′
ββ to

⊗̂
s,n,π

E′′
ββ by

continuity.

Now we consider polynomials on reflexive A-nuclear spaces (a number of
these results also hold for fully nuclear spaces and for fully nuclear spaces with
a basis). A locally convex space E is A-nuclear if it has an absolute basis (en)n

and there exists a sequence of positive real numbers (δn)n,
∑∞

i=1
1
δi

< ∞, such
that for each p ∈ cs(E) the semi-norm

q

( ∞∑
i=1

xiei

)
=

∞∑
i=1

δip(xiei)

is continuous. By the Grothendieck-Pietsch criterion every A-nuclear space is
nuclear. Since the closed bounded subsets of a complete A-nuclear space E are
compact, τ0 = τb on P(nE) for every n.
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A polynomial P ∈ P(nE) has finite rank if there exists a finite subset
{ϕi}l

i=1 in E′ such that

P (x) =
l∑

i=1

ϕn
i (x)

for all x ∈ E. We let Pf (nE) denote the space of all n-homogeneous polyno-
mials of finite rank on E. By ([7], p. 186),

Pf (nE) =
⊗
s,n

E′
β .(3.3)

Polynomials in PA(nE), the closure of Pf (nE) in (P(nE), τb), are called con-
tinuous approximable polynomials.

An element in Pa(nE, F ) is hypocontinuous if its restriction to each com-
pact set is continuous. We let PHY (nE, F ) denote the vector space of all
hypocontinuous n-homogeneous polynomials from E into F .

Proposition 3.4. If E is a reflexive A-nuclear space then Diagram
(3.2) takes the following form:

(P(nE′
β), τω) in ��

kn

��

(PHY (nE′
β), τ bor

0 )

Kn

��

(Pf (nE′
β), τ0)

Jbb
n

��� � �
� � �

� � �
� � �

Jww
n

���������������

Jbw
n

		� � � � � � � � � � � �

Jwb
n



���
����

����
��

(P(nE′
β), τω) In �� (PHY (nE′

β), τ bor
0 )

(3.4)

where kn and Kn are isomorphisms.

Proof. If E is a reflexive A-nuclear space then in a way similar to ([11],
Proposition 3.46) it can be shown that (P(nE), τ0) and (P(nE), τω) are A-
nuclear. Thus

(
P(nE), τ0

)
and

(
P(nE), τω

)
are complete A-nuclear and, by [4],

are reinforced regular, i.e.
(
P(nE), τ0

)′
β

=
(
P(nE), τ0

)′
i

and
(
P(nE), τω

)′
β

=(
P(nE), τω

)′
i
. By ([10], Corollary 5.7)

(
P(nE), τ0

)′
β

= (P(nE), τ0)′β and(
P(nE), τω

)′
β

=
(
P(nE), τω

)′
β
. Since similar equalities hold for the inductive

duals ([15], p. 200), kn and Kn are isomorphisms.
By ([10], Proposition 1.56) (P(nE), τ0)′β = (P(nE′

β), τω) and by ([10],
Proposition 1.48) the Borel transform is an algebraic isomorphism from



�

�

�

�

�

�

�

�

16 Christopher Boyd, Seán Dineen and Milena Venkova

(P(nE), τω)′ onto PHY (nE′
β) under which the equicontinuous subsets of

(P(nE), τω)′ can be identified with the τ0-bounded subsets of PHY (nE′
β). Let

(P(nE), τω)′β = (PHY (nE′
β), τ ) for some topology τ . Since (P(nE), τω) is bar-

relled, the equicontinuous subsets of its dual coincide with the τ -bounded sub-
sets of PHY (nE′

β). Hence τ and τ0 define the same bounded sets on PHY (nE′
β).

Since Kn is an isomorphism (P(nE), τω)′β is bornological and hence τ is the
bornological topology associated with τ0, τ bor

0 .
Finally, since E is infrabarrelled E′′

e = E′′
ββ , and, by (3.3),

⊗
s,n

E′′
ββ =

Pf (nE′
β). As E is a reflexive nuclear space,

⊗
s,n,π

E′′
ββ = (Pf (nE′

β), τ0) ([11],

Proposition 2.13).

Let E be a reflexive A-nuclear space and n a positive integer. By Dia-
gram (3.4) and the proof of Proposition 3.4 we have established the following
identifications:

(P(nE), τω)′β = (P(nE), τw)′i = (PHY (nE′
β), τ bor

0 ),(3.5)

(P(nE), τ0)′β = (P(nE), τ0)′i = (P(nE′
β), τω).(3.6)

By (3.5), (PHY (nE′
β), τ bor

0 ) is complete as a strong dual of bornological space.

Corollary 3.1. Let E be a reflexive A-nuclear space and n a positive
integer. Then

(a) Jwb
n is continuous if and only if τ0 = τ bor

0 on PHY (nE′
β).

(b) Jbw
n is continuous if and only if τ0 = τω on P(nE′

β).

(c) In is an isomorphism if and only if τ0 = τω on P(nE).

Proof. (a) If τ0 = τ bor
0 on PHY (nE′

β) then Jwb
n is continuous by Diagram

(3.4). Conversely, if Jwb
n is continuous then it extends to a continuous mapping

J̃wb
n from (PHY (nE′

β), τ0) into (PHY (nE′
β), τ bor

0 ). Since Jwb
n (P ) = P for all P

on a dense subspace of PHY (nE′
β), we have J̃wb

n (P ) = P for all P ∈ PHY (nE′
β).

Hence τ0 = τ bor
0 on PHY (nE′

β).
(b) The method used for (a) can be adapted to prove (b). We give, however,

an alternative proof. Clearly, by Diagram (3.4), if τ0 = τω on P(nE′
β) then

Jbw
n is continuous. Conversely, let Jbw

n be continuous. If p is a τω-continuous
semi-norm on P(nE′

β) then there exist a compact polydisc K ⊂ E′
β such that

p(P ) ≤ ‖P‖K for all P ∈ Pf (nE′
β). If δ = (δn)n is the sequence defining
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A-nuclearity, as in ([11], p. 205) it can be shown that there exists C(δ) > 0
such that ∑

m∈N(N), |m|=n

|am|‖zm‖K ≤ C(δ)
∥∥∥ ∑

m∈N(N), |m|=n

amzm
∥∥∥

δK

for all
∑

m∈N(N), |m|=n amzm ∈ P(nE′
β). The set δK is a compact polydisc in

E′
β. By the proof of ([11], Proposition 3.45) the semi-norm

p̃
( ∑

m∈N(N), |m|=n

amzm
)

:=
∑

m∈N(N), |m|=n

|am|p(zm)

is τω-continuous and p ≤ p̃. Hence for all P =
∑

m∈N(N), |m|=namzm ∈ P(nE′
β)

we have

p(P ) ≤ p̃(P ) =
∑

m∈N(N), |m|=n

|am|p(zm)

≤
∑

m∈N(N), |m|=n

|am|‖zm‖K ≤ C(δ)‖P‖δK .

Hence τω = τ0 on P(nE′
β).

(c) If In is an isomorphism then, by Diagram (3.4), P(nE′
β) = PHY (nE′

β).
By ([10], Propositions 1.47 and 1.48) this implies (P(nE), τ0)′ = (P(nE), τω)′.
Since the monomials form an absolute basis for both (P(nE), τ0) and (P(nE),
τω), by ([11], Lemma 4.41) τ0 = τω on P(nE).

Conversely, if τ0 = τω on P(nE) then, by Diagram (3.2), In is an isomor-
phism.

Proposition 3.5. If E is a reflexive A-nuclear space then the following
are equivalent:

(a) Jwb
n is continuous.

(b) The τω-bounded sets of P(nE) are locally bounded.

(c) (P(nE), τω)′β = (PHY (nE′
β), τ0).

(d) (P(nE), τω) is quasi-complete.

(e) (P(nE), τω) is semi-reflexive.

Proof. If the τω-bounded sets of P(nE) are locally bounded then Jwb
n is

continuous by Proposition 3.1, hence (b)⇒(a).
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Conversely, suppose Jwb
n is continuous. By Corollary 3.1, τ0 = τ bor

0 on
PHY (nE′

β) and (a)⇒(c) by (3.5).
(b)⇔(c) follows from ([10], Proposition 1.57). By the proof of ([10], Propo-

sition 5.37) conditions (b), (d) and (e) are equivalent.

Further equivalent conditions can be found in [12]. By Corollary 3.1(b)
and the proof of ([11], Corollary 4.46) we obtain the following result.

Proposition 3.6. If E is a reflexive A-nuclear space then the following
are equivalent:

(a) Jbw
n is continuous.

(b) The τ0-bounded sets of P(nE) are locally bounded.

(c) P(nE) = PHY (nE).

(d) (P(nE), τ0) is complete.

Remark 3.

(a) Proposition 3.5 shows that the hypothesis in Proposition 3.1 is both nec-
essary and sufficient when E is a reflexive A-nuclear space.

(b) If E is a reflexive A-nuclear space and Jwb
n (respectively Jbw

n ) is continuous,
then it extends to define an isomorphism onto PHY (nE′

β) (respectively
P(nE′

β)).

(c) If E is Fréchet nuclear (or DFN) with basis, then E is a reflexive A-nuclear
space and τ0 = τω on P(nE′

β) for every n ([11], Example 2.18). Hence both
Jwb

n and Jbw
n extend to isomorphisms from the respective completions of

their domains.

(d) Countable direct sums and products of reflexive A-nuclear spaces are again
reflexive A-nuclear spaces.

Example 1.

1. Let E =
∏∞

k=1 Ek where each Ek is a DFN space. Then Jwb
n is always con-

tinuous and Jbw
n is continuous if and only if each (Ek)′β admits a continuous

norm.

2. Let E =
⊕∞

k=1 Ej where each Ej is Fréchet nuclear space with a basis.
Then
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(a) Jwb
n is continuous if and only if E is isomorphic to one of the spaces

C(N), C(N) × CN or (CN)(N).

(b) Jbw
n is continuous if and only if E is isomorphic to C(N).

Proof. (1) The τω-bounded subsets of P(nE) are locally bounded ([11],
Example 3.24(c)), hence by Proposition 3.5 Jwb

n is continuous. By ([18], Propo-
sition 2) P(nE) = PHY (nE) if and only if there exists a continuous norm on
(Ek)′β for every k. It suffices to apply Proposition 3.6 to obtain the required
result for Jbw

n .
(2) Part (a) follows from Proposition 3.5 and ([8], Theorem 1); part (b)

follows from Proposition 3.6, ([8], Theorem 1) and ([11], Example 3.24(b)).

Example 2. Let D =
⊕∞

k=1 sj where each sj is the Fréchet nuclear
space of rapidly decreasing sequences. By Example 1 neither of Jbw

n or Jwb
n are

continuous. By ([6], Proposition 9) τ0 = τω on P(nD), hence, by Corollary,
3.1(c) In is an isomorphism.

§4. Continuity of Jn

In Section 3 we concentrated on continuity of the mappings J ··
n . In this

section we discuss injectivity. Let x′′ ∈ E′′
e and ϕ ∈ E′. Then ⊗nx′′ ∈

⊗
s,n,π

E′′
e ,

ϕn ∈ Pf (nE), and we have the duality

〈⊗nx′′, ϕn〉 = x′′(ϕ)n.(4.1)

Suppose

[Jn(⊗nx′′)](ϕn) = 0

for every ϕ ∈ E′. Then, by (4.1), x′′(ϕ)n = 0 for all x′′ ∈ E′′
e and hence

⊗nx′′ = 0. This motivates us to restrict our attention to Pf (nE), and our
results in Section 5 show that this is indeed a good choice. Let R(T ) := T |Pf (nE)

for T ∈ (P(nE), τb)′. We let Jf
n := R ◦ Jbw

n . By ([15], Proposition 10.3.4)

R : (P(nE), τb)′i −−−→ (Pf (nE), τb)′i

is continuous and open, hence if Jbw
n is continuous then Jf

n is continuous.
In order to investigate the continuity of Jf

n we require some further defi-
nitions. An n-homogeneous polynomial P on E is called nuclear if there exist
an equicontinuous sequence (ψi)i in E′ and (λi)i in l1 such that

P (x) =
∞∑

i=1

λiψi
n(x)
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for all x in E. Let PN (nE) denote the space of all nuclear polynomials on E.
If A is a subset of E let

πN,A(P ) = ‖P‖N,A := inf

[ ∞∑
i=1

|λi|‖ψi‖n
A : P =

∞∑
i=1

λiψ
n
i

]
As A ranges over the bounded sets of E we obtain the πb topology. We also let

(PN (nE), πω) = lim
−−−→

α∈cs(E)

(PN (nEα), πb).

The space of all n-homogeneous (algebraic) polynomials on E′ which are
bounded on the equicontinuous subsets of E′ is denoted by Pξ(nE′). An n-
homogeneous polynomial P on a locally convex space E is integral if there is
an absolutely convex closed neighbourhood of 0, U , and a finite regular Borel
measure µ on U◦ endowed with the w∗-topology, such that

P (x) =
∫

U◦
ψn(x)dµ(ψ)

for all x ∈ E. The space of all n-homogeneous integral polynomials on E

is denoted by PI(nE), and the topology τI is defined as the locally convex
inductive limit

(PI(nE), τI) = lim
−−−→

U∈U
(P(nEU ), ‖ · ‖U,I),

where

‖P‖U,I = inf
{
‖µ‖U◦ : P (x) =

∫
U◦

ψn(x)dµ(ψ)
}

.

Clearly every polynomial of finite rank is nuclear, hence Pf (nE) is a subset of
both PN (nE) and PI(nE). Moreover, by ([7], p. 186) the algebraic representa-
tion (3.3) can be extended to give

(Pf (nE), πb) =
⊗
s,n,π

E′
β.(4.2)

The space Pf (nE) is dense both in (PN (nE), πb) and (PN (nE), πw). This often
allows us to use finite polynomials in place of nuclear polynomials and to avoid
the approximation property. Clearly πω ≥ πb and, since in the Banach space
case ‖ · ‖I ≤ ‖ · ‖N , the topology πω is finer than τI .

Lemma 4.1. Let E be an infrabarrelled locally convex space and n be a
positive integer. The mapping Jf

n is continuous if and only if πb is finer then
τI on Pf (nE′

β).
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Proof. By ([7], Proposition 2)

(Pf (nE), τb)′i = (PA(nE), τb)′i = (PI(nE′
β), τI).

By (4.2),
⊗
s,n,π

E′′
ββ = (Pf (nE′

β), πb), and hence Jf
n is the identity mapping

(Pf (nE′
β), πb) −−−→ (Pf (nE′

β), τI).

This completes the proof.

A locally convex space E is locally Asplund if for every probability space
(Ω, Σ, µ) all operators T : L1(µ) → E′ which map some neighbourhood of 0
into an equicontinuous set are locally representable. By [9] locally Asplund
spaces include Schwartz spaces, reflexive quasinormable spaces and DF spaces
with separable duals. By [7] if E is locally Asplund then (PI(nE), τI) =
(PN (nE), πw). By Lemma 4.1 this implies the following result.

Corollary 4.1. If E is an infrabarrelled locally convex space and E′
β is

locally Asplund, then Jf
n is continuous if and only if πw = πb on Pf (nE′

β).

Proposition 4.1. If E is an infrabarrelled locally convex space. Then
πw = πb on Pf (nE′

β) if and only if Pξ(nE′′
ββ) = P(nE′′

ββ) and the subsets of
P(nE′′

ββ) which are bounded on the equicontinuous subsets of E′′
ββ are locally

bounded.
If these conditions are satisfied, Jf

n is continuous for every n.

Proof. See [10], Propositions 1.47 and 1.48. The final remark follows from
Lemma 4.1.

Proposition 4.2. Let E be a Fréchet space, then Jf
n is continuous for

every positive integer n and extends to
⊗̂
s,n,π

E′′
ββ.

Proof. If E is Fréchet then E′′
ββ is Fréchet. Thus every convergent se-

quence in E′′
ββ is equicontinuous (see [14], p. 293), hence Pξ(nE′′

ββ) = P(nE′′
ββ).

Moreover, subsets of P(nE′′
ββ) which are bounded on convergent sequences in

E′′
ββ are locally bounded by ([11], Example 1.24). By Proposition 4.1 this

implies the continuity of Jf
n .

Let θ ∈
⊗̂
s,n,π

E′′
ββ , the completion of

⊗
s,n,π

E′′
ββ . Then θ has a represen-

tation
∑∞

i=1 λi ⊗n xi, where (xi)i is a null sequence in E′′
ββ and (λi)i ∈ l1



�

�

�

�

�

�

�

�

22 Christopher Boyd, Seán Dineen and Milena Venkova

([15], Corollary 15.6.4). Since (xi)i is a countable bounded subset of E′′
ββ, it

is equicontinuous and hence there exists a bounded subset B in E such that
(xi)i ⊂ B◦◦. By ([13], Theorem 1.5)

|
(
Jf

n (⊗nxi)
)
(P )| ≤ ‖ABn(P )‖B◦◦ ≤ ‖P‖B

and consequently for each i ∈ N, Jf
n (⊗nxi) lies in

(
P ∈ Pf (nE) : ‖P‖B ≤ 1

)◦.
Therefore Jf

n (
∑∞

i=1 λi ⊗n xi) belongs to (Pf (nE), τb)′i. This completes the
proof.

§5. Definition and Basic Properties of Q-reflexive Locally Convex
Spaces

In this section we define Q-reflexive locally convex spaces and discuss their
basic properties.

Definition 5.1. The locally convex space E is Q-reflexive if for every
positive integer n:

1. The mapping Jbw
n is continuous.

2. The extension Jn of Jbw
n to the completion is an isomorphism between⊗̂

s,n,π

E′′
e and (P(nE), τb)′i.

By Remark 2 every locally convex Q-reflexive space E is infrabarrelled.
A locally convex space E has the strict approximation property if it admits

a fundamental system A of semi-norms such that Eα = (E, α)/α−1(0) has the
approximation property for each α ∈ A.

Proposition 5.1. If E is an infrabarrelled locally convex space whose
strong bidual has the strict approximation property, then the following condi-
tions are equivalent:

1. E is Q-reflexive.

2. (PN (nE′
β), πb) = (PI(nE′

β), τI) and P(nE) = PA(nE) for every positive
integer n.

Proof. (1)⇒(2) Since Jbw
n is continuous, Jf

n is continuous and can be
extended to a mapping

J
f

n :
⊗̂
s,n,π

E′′
e −−−→ (Pf (nE), τb)′i.
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Suppose PA(nE) �= P(nE). By the Hahn-Banach Theorem there exists a non-
zero functional ϕ ∈ (P(nE), τb)′ such that ϕ|Pf (nE) = 0. Since E is Q-reflexive

there exists z ∈
⊗̂
s,n,π

E′′
e such that J

f

n(z) = ϕ|Pf (nE) = 0. Since E′′
ββ = E′′

e

has the strict approximation property, E has a neighbourhood basis at the
origin, U , consisting of convex open balanced sets such that E′′

U◦◦ has the
approximation property for all U ∈ U . The space E can be written as lim

←−−−
U∈U

EU .

Then E′′
ββ = lim

←−−−
U∈U

E′′
U◦◦ , so for every U ∈ U there exists a sequence (xi)i in E′′

U◦◦

such that z =
∑∞

i=1 ⊗nxi and
∑∞

i=1(‖xi‖U◦◦)n < ∞. For all ξ ∈ (EU )′ we have

[
Jf

n (z)
]
(ξn) =

∞∑
i=1

xi
n(ξ) = 0.

By Goldstine’s Theorem for all ψ ∈ (E′′
U◦◦)′

∞∑
i=1

(
ψ(xi)

)n = 0

Hence ‖z‖U◦◦ = 0 for every U ∈ U . As each E′′
U◦◦ has the approximation

property, this implies z = 0 in
⊗̂
s,n,π

E′′
ββ, hence Jn(z) = ϕ = 0. This contradicts

our choice of ϕ and implies PA(nE) = P(nE).
Using Q-reflexivity and ([7], Proposition 2),

(PI(nE′
β), τI) =

(
PA(nE), τb

)′
i
=

(
P(nE), τb

)′
i
=

⊗̂
s,n,π

E′′
ββ = (PN (nE′

β), πb).

(2)⇒(1) By hypothesis

(P(nE), τb)′i =
(
PA(nE), τb

)′
i
= (PI(nE′

β), τI) = (PN (nE′
β), πb) =

⊗̂
s,n,π

E′′
ββ.

Corollary 5.1. If E is a Q-reflexive locally convex space whose strong
bidual has the strict approximation property, then Jf

n = Jbw
n for every positive

integer n.

Next we list some properties of Q-reflexive spaces. The proofs can be found
in [19].
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Proposition 5.2. Let E be a Q-reflexive locally convex space whose
strong bidual has the strict approximation property. Then

(a) l1 is not a subspace of E′
β or E.

(b) If E is complete then E′
β does not contain a copy of c0.

(c) If E′
β is barrelled then E does not contain a copy of c0.

(d) If E is a complete DF space or a Fréchet space with (BB)n for every n,
then l∞ is not a subspace of (P(nE), τb) for any n.

§6. Examples of Q-reflexive Spaces

In this section we give some examples of Q-reflexive locally convex spaces.
Further examples are given in [19].

Every Q-reflexive Banach space satisfies Definition 5.1. On the other end
of the spectrum, Fréchet nuclear and DFN spaces with a basis are Q-reflexive
by Remark 3(c). This also is a special case of the following proposition.

Proposition 6.1. Let E be a Fréchet-Montel space with (BB)n for
every n. Then E is Q-reflexive.

Proof. Since E is Fréchet-Montel it is reflexive, hence
⊗̂
s,n,π

E′′
ββ =

⊗̂
s,n,π

E

for every n. By ([11], Proposition 1.35) (P(nE), τb) =
(⊗̂
s,n,π

E
)′
β

is a DFM

space and in particular is reflexive and reinforced regular. Hence

(P(nE), τb)′i =
( ⊗̂
s,n,π

E
)′′
βi

=
(⊗̂
s,n,π

E
)′′
ββ

=
⊗̂
s,n,π

E.

Proposition 6.2. The space C(I) is Q-reflexive if and only if I is
countable.

Proof. Every bounded subset of C(I) is finite dimensional and conse-
quently every polynomial on C(I) is continuous on bounded sets. The nuclear
space CI is locally Asplund and consequently, by ([7], Theorem 3), (PN (nCI),
πω) = (PI(nCI), τI) for every n. Hence, by Proposition 5.1, C(I) is Q-reflexive
if and only if πω = πb on PN (nCI). If (PN (nCI), πω) = (PN (nCI), πb) then
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their duals will coincide, i.e. Pξ(nC(I)) = P(nC(I)). Since CI is barrelled,
the equicontinuous and the bounded sets of C(I) coincide, i.e. all equicontin-
uous sets are finite dimensional. Thus Pξ(nC(I)) = Pa(nC(I)) and therefore
P(nC(I)) = Pa(nC(I)), the space of all n-homogeneous (algebraic) polynomials
on C(I). Since P(nE) = Pa(nE) if and only if E = C(N), C(I) is Q-reflexive if
and only if C(I) = C(N).

The example C(N)×CN shows that Q-reflexivity is not in general preserved
by taking inductive or projective limits, direct sums or products. Indeed, C(N)×
CN is both a countable direct sum of Q-reflexive Fréchet spaces and a countable
product of Q-reflexive DF spaces, but is not Q-reflexive. The following example
shows that Q-reflexivity is preserved in the case of the Tsirelson-James space
TJ

∗.

Example 3. The direct sum E :=
⊕∞

k=1 TJ
∗ and the product F :=∏∞

k=1 TJ
∗ are Q-reflexive spaces.

Proof. We note first that E′′
ββ and F ′′

ββ have the strict approximation
property (see [3]). Let (TJ

∗)k := TJ
∗ × · · · × TJ

∗︸ ︷︷ ︸
k

. By ([20], Proposition 2.5.2),

(TJ
∗)k is a Q-reflexive Banach space. The space

(
(TJ

∗)k
)′ =

(TJ
∗)′ × · · · × (TJ

∗)′︸ ︷︷ ︸
k

is Asplund and consequently locally Asplund. Since

E′
β =

∞∏
k=1

(TJ
∗)′ = lim

←−−−
k

(
(TJ

∗)k
)′

,

and projective limits of locally Asplund spaces are locally Asplund (see [9]), by
([7], Theorem 3) (PN (nE′

β), πw) = (PI(nE′
β), τI) for every n. As a countable

inductive limit of Banach spaces E′′
ββ is a barrelled DF space, hence E′

β is a
distinguished Fréchet space and by ([10], Corollary 1.53) πw = πb on PN (nE′

β).
Hence (PN (nE′

β), πb) = (PI(nE′
β), τI).

Let P ∈ P(nE) and B be a bounded subset of E. The countable strict

inductive limit lim
−−−→
k

(̂⊗
n,π

(TJ
∗)k

)
is regular, hence there exists positive integer k

such that B ⊂ (TJ
∗)k. Since (TJ

∗)k is Q-reflexive P(n(TJ
∗)k) = PA(n(TJ

∗)k),
hence for every ε > 0 we can find R ∈ Pf (n(TJ

∗)k) such that∥∥R − P |(TJ
∗)k

∥∥
B

< ε.
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Let R̃(x + y) := R(x), where x ∈ (TJ
∗)k and y belongs to the complement of

(TJ
∗)k in E. Then R̃ ∈ Pf (nE) and∥∥R̃ − P

∥∥
B

=
∥∥R − P |(TJ

∗)k

∥∥
B

< ε.

Hence P(nE) = PA(nE) and, by Proposition 5.1, E is Q-reflexive.
Since the countable inductive limit of locally Asplund spaces is locally

Asplund ([9]), F ′
β is locally Asplund, therefore by ([7], Theorem 3) (PN (nF ′

β),
πω) = (PI(nF ′

β), τI). As a countable inductive limit of Banach spaces F ′
β is a

barrelled DF space, hence by ([10], Corollary 1.53) πω = πb on PN (nF ′
β). Thus

(PN (nF ′
β), πb) = (PI(nF ′

β), τI).
The implication P(nF ) = PA(nF ) can be proved in a way similar to that

used for E, where in place of the fact that the bounded subsets of E are con-
tained in a finite product we can use the fact that every continuous polynomial
factors through (TJ

∗)k for some integer k. Here we give an alternative proof.
By ([17], 44.5.6) E

⊗̂
ε

(⊕∞
j=1 Ej

)
and

⊕∞
j=1

(
E

⊗̂
εEj

)
are isomorphic.

Using this result n times and applying ([15], Theorem 8.8.5) we obtain

⊗̂
n,ε

F ′
β =

∞⊕
j=1

(̂⊗
n,ε

(TJ
∗)′

)
=

∞⊕
j=1

(̂⊗
n,π

TJ
∗)′ =

(̂⊗
n,π

(TJ
∗)

)′
β

=
(⊗̂
s,n,π

F
)′
β
.

Applying the symmetrization operator we obtain P(nF ) =
⊗̂
s,n,ε

F ′
β = PA(nF ).

By Proposition 5.1 the proof is complete.
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