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Wegner Estimates and Localization for
Gaussian Random Potentials

By

Naomasa UEKI*

Abstract

A Wegner estimate is proven for a Schrédinger operator with a bounded random
vector potential and a Gaussian random scalar potential. The estimate is used to
prove the strong dynamical localization and the exponential decay of the eigenfunc-
tions. For the proof, Klopp’s method using a vector field on a probability space and
Germinet and Klein’s bootstrap multiscale analysis are applied. Moreover Germinet
and Klein’s characterization of the Anderson metal-insulator transport transition is
extended to the above operator.

8§1. Introduction

In this paper we give a Wegner estimate for a random Schrédinger operator

(i0; + AY)? + V¥

d
=1

J

on L?(R%) and apply the estimate to study the spectral structure, where i =
V-1, 8; = 9/(0z;) and {(A{(),...,AY(x),V*(x)), » € RY w € Q} are ran-
dom fields on R?. For this subject, we have many works in the case that the
vector potential A% (x) = (AY(z), ..., AY(z)) is not random and the scalar po-
tential V¥ () is of the alloy-type: >, <70 A%ty (@), where {\%,,m € Z%,w € Q}
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is a family of independently and identically distributed real random variables
and u,,(z) are real deterministic functions on R? [1], [5], [6], [7], [20], [22],
[24], [25], [36], [39]. For the case that the vector potential A% (z) is also ran-
dom, Hislop and Klopp [20] recently give a Wegner estimate in the case that
A%(z), j = 1,...,d, are alloy-type bounded random fields and V¥ (x) = 0.
More recently Klopp, Nakamura, Nakano and Nomura [23] showed Anderson
localization for the corresponding discrete model. Apart from the alloy-type
potential, Fischer, Hupfer, Leschke and Miiller [11] and Hupfer, Leschke, Miiller
and Warzel [21] give a Wegner estimate for the case that the vector potential
A% (z) is not random and the scalar potential V¥ (x) is a random field which is
stationary in x € R%. Their most fundamental example of the random field is
a Gaussian random field. For other type of potentials, see [26]. The random
potential (A“(x), V¥ (x)) treated in this paper is a combination of a determin-
istic function and a Gaussian random field which is stationary in z € R?. For
this we extend Klopp’s method [22] used in [20] so that his method can be
applied to the Gaussian random potentials. The main idea is to represent the
random field as a random Fourier series by referring the spectral representation
(cf. [9]) of stationary random fields (see Lemma 2.2 below). This representation
has the same form with the alloy-type potential such that the support of each
single site potential w,,(z) is noncompact. Because of technical reasons, we
give only a weak form of the Wegner estimate only on a low energy interval
under the condition that the covariance function of the Gaussian random field
is compact. Under these restrictions, our estimate is a generalization of the
estimates in [11] and [21] to the case that the vector potential and the scalar
potential are correlated.

One difficulty of the random vector potential is same as that of the alloy
type scalar potential ;4 A, um(2) with nonsign definite single site poten-
tials {u,, (z)}, treated in [6], [20], [22] and [39]: the quadratic form associated
to the Schrodinger operator is not monotone as a function of random variables.
Then a standard method extending a parameter to the complex space used in
[5] and [27], which is used also for the Gaussian scalar potential in [11] and
[21], seems to be not applicable. For many of such cases, Klopp’s method
[22] using a vector field on a probability space is the only effective method
at present. This vector field is a number operator, whose eigenfunctions are
homogeneous polynomials. Therefore his method is effective when the main
part of the Schrédinger operator to give the Wegner estimate is a homogeneous
polynomial on the probability space. In [20] Hislop and Klopp applies Klopp’s
method [22] to the random vector potential by using only the effect from the
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linear part _,(i0;A% () + A4 (2)i0;) and neglecting the effect from the square
part E](A;’(x))Q under the condition that the vector potential A% is small
enough. The supremum norm of the vector potential A“ affects the energy
interval where we can show the Wegner estimate. In this paper we assume
that the vector potential is bounded and the scalar potential is the n-th power
WO(x)™ of a Gaussian random field W0(z). We use only the effect from the
scalar potential to give the result. As n becomes larger, the effect from the
scalar potential becomes stronger and the energy interval where we can show
the Wegner estimate holds becomes wider (see (2.3) below). To clarify this
situation, we use a Birman-Schwinger type operator whose parts of the square
root are random (see (2.6) below). To treat this operator we need extra works
not needed in [20]: we should consider the differentiation of the square root of
the resolvent operator with respect to a parameter in the potential (see Lemma
2.3 below).

Our Wegner estimate can be used to prove the localization by the multi-
scale analysis. Since the pioneer work by Frohlich and Spencer [13], this proof
of localization has been extended, improved and simplified by many works. For
this aspect, see [37] and the references therein. In particular Germinet and
Klein give an effective multiscale analysis to deduce the strong dynamical lo-
calization from a weak initial estimate for a wide class of operators with short
correlated potentials [14], [17]. In this paper we show that their methods are
applicable to our case. The only task is to extend their theory to the operators
unbounded below (see Corollary of Theorem 3.2 below). For this it is enough
to use a control of Gaussian random fields in Lemma 5.3 in Fischer, Leschke
and Miiller [12] based on Fernique’s theory [10].

Moreover Germinet and Klein [16], [18] recently show that the strong dy-
namical localization is equivalent with the initial estimate under some condi-
tions. From this result, they show that some exponent 3~ (F), which is defined
as a function of the energy parameter E in (4.9) below, jumps from zero to a
positive value as the energy parameter changes from an insulator region to a
metallic region. Therefore this exponent gives a characterization of a transport
property. In this paper we show that this theory is also extended to our case
(see Theorem 4.1 and Proposition 4.3 below). For this we use again the esti-
mate of the scalar potential based on Fernique’s theory [10]. Since our Wegner
estimate is weaker than the estimate used in [16], the lower bound of the size of
the jump of the exponent 7 (E) is different from that in [16]. We give a lower
bound of the size in terms of the exponents appeared in the Wegner estimate
(cf. Proposition 4.3 below).
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The organization of this paper is as follows. In Section 2 we give a Wegner
estimate. In Section 3 we modify Germinet and Klein’s theory on the multiscale
analysis [14] to show the strong dynamical localization. In Section 4 we modify
Germinet and Klein’s theory on a characterization of the transport transition
[16] so that their theory can be applied to the operators in this paper.

8§2. Wegner Estimate
§2.1. Main theorem

Let {(Wi(2))j=0.1,.. g»7 € R%,w € Q} be an R9*1-valued stationary er-
godic Gaussian random field with mean zero and the covariance R/*(z) =
E[WJ(z)WE(0)] represented as

R*2) = [ alta+ w)akdy
=1

for some complex valued C* functions o7 (x), 0 < j < g, 1 <1 <r, on R? with
compact support and s > d + 4. Let A(z,w) be an R? valued C! function of
(z,w) € R? x RY such that V,,A(z,w) is a C? function of (z,w) and w - V,, 4
and V,, A are bounded. For each L > 0, let A;, := (—L/2,L/2)? be an open
box and, for L > 3, let X7, be a smooth function on R? such that 0 < x7 < 1,
Xt =1onAp_3, X, =0o0n A§_, and |VxL| < 2. We consider a self-adjoint
operator on L?(R?) defined by

d
(2.1) Hy == (i0; + XL A; (z, Wo,(2))) — XL W ()",
j=1

where W, (z) =t (Wl(x),...,WY(z)). If we define a positive operator by

w

d
(2.2) Hy == (i0; + Xp.A; (2, Wa(2)))?,
j=1

then we see that x7 W0 (z)" is ﬁg—compact. Therefore the spectrum in (—o0, 0)
of the operator H{ consists only of its discrete spectrum. For the spectrum,
we will prove the following Wegner estimate in this section:

Theorem 2.1.  For any

(2.3) Eo < —(2||w - VpAlloo/n)?,
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there exists a finite constant Q(Eg) such that
(2.4) P(dist(E, o (HE)) <) < Q(Eo)y' /s L4C~/ @)

for any E < Eg, L > 4 and n > 0, where, for any self-adjoint operator A, o(A)
is the spectral set of A.

This estimate can be used to show results on the spectral localization of
the self-adjoint operator

d
(2.5) H® = (i + Aj(, Wo(2)))? = Wi(a)",

=1
on L?(R9). This is the subject of the next section.

Remark 2.1.  In the case that A is independent of w and n = 1, Fisher,
Hupfer, Leschke and Miiller [11] and Hupfer, Leschke, Miiller and Warzel [21]
give a strong form of the Wegner estimate under more general conditions, where
the compactness of the covariance function is not assumed. Their estimate is as
follows: let Hf y be the restriction of the operator Z?:l(iaj +A;(2))?=WI(x)
to L?(Ar) by the Dirichlet or Neumann boundary conditions. Then there exists
an explicitly written function Cy (E) such that

Elf(o(HE x) N [E =0, B +1))] < Cw (E +n)nL?

for all E € R and n > 0. From this estimate, we see that the function Cy (E)
is an upper bound of the density of states. This estimate is the first motivation
of Wegner’s estimate [40].

Remark 2.2. (i) Theorem 2.1 is extended to the operator

—

HY | = Hy + X1V (z, Wo(2)),

where V(z,w) be a real bounded continuous function of (z,w) € R? x RY such
that V(x,w) is C' in w and V,,V and w-V,,V are bounded. For this operator,
(2.4) holds only for Ey < &, where

—(22/n)? if B <0,
0=

—{T/ (VA2 +nT —A)}? if T > 0,

A= |lw- VyA| e and T := sup(w - V, V —nV).
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(ii) Theorem 2.1 is extended to the operator
Hf’z = EIE + )?ipn(v(g(x))

without changing the statement, where p,(t1,...,ts) is a real homogeneous
polynomial of degree n and {W0 = (WO (x))p=12. . n: o € RLw € Q} is
an R valued random field such that {(WO(x), W, (x)) : # € R%,w € Q} is an
R9*" valued random field satisfying the same conditions for the random field

{(W0o(x), W, (x)) : » € R, w € Q} stated at the front of this section.
(iii) Theorem 2.1 is extended to the operator

—

HY 5= Hf — X1.qn(W)())

without changing the statement, where gy, (¢) is a polynomial such that tq), (¢) >
ngn(t). For example, we can take as qop,_1(t) = t2™ + at®>™ 1.

§2.2. Proof of the Wegner estimate

For the proof of Theorem 2.1, we introduce a Birman-Schwinger type op-
erator by

(2.6) I'w,L,E) = (Hf — E)"?\tWi(a)"(HY — E)~'/2.

It is a different point from [6], [20] and [22] that the operator (ﬁ% — E)~1/?
depends on w. We deduce (2.4) only by the effect from the part x7 W0 (x)".

For any p > 0, let Z,, be the trace or super-trace class: a continuous linear
operator A on L2(R%) is said to belong to Z, if |||A]||, := (Tr[|A|P])"/? < oo,
where |A| := (A*A)Y/2 (cf. [6], [7], [20], [33]). We use || - [, for the norm on
LP(R?) and ||| - ||| for the operator norm.

Then we have the following:

Lemma 2.1. Let ¢ > min{qg € 4N : ¢ > d}. Let A € L} (R? — R%)

loc

such that V- A € L2 (R%). We set H(A) = Z?Zl(zﬁj + Aj)2. Then we have

loc
the following:
(i) There exists a finite constant ¢; depending only on q and d such that

I1(H(A) = E)~ k||, < eallkllq/1B| 9/ CD

for any E <0 and k € LY(R?).



WEGNER ESTIMATES 35

(ii) There exists a finite constant co depending only on q and d such that
II((A4) = B)~2K(H(A4) = B)~2]llyy2 < callklly o/ B0/

for any E <0 and k € LY/?(R9).
(iii) There exists a finite constant c3 depending only on q and d such that

II(H(A) — B)"Y2h- (iV + A)(H(A) — E)"Y2(||, < eal|hlly/|E|@~D/CD

for any E < 0 and C? valued LY function h on R?.
(iv) There exists a finite constant c4 depending only on q and d such that

ICH(A) = B) " Klllg/2 < callkllgpo/EIa=/

for any E < 0 and k € LY/?(R%).

Proof. (i) By the diamagnetic inequality, we have
(2.7) ((H(A) = E)™2¢| < (H(0) = E)™"/?|¢]

for any ¢ € C$°(RY) (see (4.9) in [29] and (A.23) in [21]). We now assume that
q € 2N. By using (2.7) successively, we have

I(H(A) — E)~k|%]| < [(H(0) — E)~'/2 k|||,

where, for any operator L, |L| := v/ L*L. From this, Lemma 15.11 in [34] and
Theorem 4.1 in [33], we have

I[(H(A) = B)=2k]lly < [1(H(0) = B)~2[k]|lly < eallkllq/ | B9~/

For g ¢ 2N, we use the Stein interpolation theorem (cf. [32] Theorem IX.21).
(ii) Since
|||(H(A) E)"'?k(H(A) — E)” 1/2|||q/2

< NCH(A) = BY 2RI [11VIRI(H (A) = E) 72,

(i) implies (ii).
(iii) Since
11005 + Aj)(H(A) = B)"?|> < 1

for any j, we have

II(H(A) — E)~2h- (iV + A)(H(A) - B)"2ll,

d
Z )R-
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Therefore (i) implies (iii).
(iv) For ¢ € 4N, as in (i), we have

I(H(A) = E)'k|9%0] < [(H(0) — E) ' k]|*% ||
and
II(H(A) = E)" 2kl s2 < II(H©) = B) 21k [llq2 < callkllqpa/ BP9,
For q ¢ 4N, we use the interpolation theorem. ]

In the following we fix ¢ € N such that ¢ > min{q € 4N : ¢ > d}. Lemma
2.1 (ii) implies I'(w, L, E') € Z,/,. We take a smooth function p having the form
p = o4, where o is a smooth function on R such that 0 <o <1onR, 0 =1 on
(—00,—1/2] and o = 0 on [1/2,00). For any self-adjoint operator A, let E(-; A)
be the spectral projection of A. As in [6], [20] and [22], we have

P(dist(E, o(H)) < 1)
< E[TY[E([1 — &k, 1+ K] : T'(w, L, E))]]
< E[Tr[px(T(w, L, E) = 1 = 3k/2) — pu(T'(w, L, E) — 1 + 3k/2)]]

3k/2
- / o, W0 (M 1, 2) — 15 )

where & = 1/|E| and p.(p) = p(p/k).

To consider an associated vector field used in [6], [20] and [22], we refer
the theory of the spectral representation of stationary field (cf. [9]) to give the
following representation:

Lemma 2.2.  The random field W, (z) = (W$($))?:o is represented as

2r

(2.8) Wi) =3 > Wemel (@)

t=1 mezd

in LP(Ar x Q) for any 1 < p < oo, where {W ™ <, <ormeza is a family of
independently and identically distributed random wvariables with the standard
normal distribution and e{’m, 1<:<2r,me Zd, 0<j<g, are C* functions

such that, for any 0 < £ <'s,

(2.9) Sup Vel (@) < cL*™ 2 |m| 57,
z€AL

where ¢ is some finite constant depending only on the covariance R = (R7*(z)).
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Proof. Let {W,(h) : h € L>(R%)}1<,<2, be 2r independent copies of the

isonormal Gaussian random field: for each hy, ha, ..., hy, € LE2(RY), W, (hy),
W, (hs2), ..., W,(h,,) are Gaussian random variables with mean zero and
E[W.(h)W.(h2)] = y h1(§)h2(§)dE

(cf. Definition 1.1.1 in Nualart [30]). We define the Fourier transform of f €
LY(R?) by

fie) = [ e oo

Then the random field W, (z) has the following representation:
= D {W.(Re(77 07 (€))) + Wy, (Im(*™ 70 (£))).
=1

We here note that

—

PTG (€) = ol (- + 2)(9).

If suppo/ C Ag and = € Ap, then suppo?(- + ) C Aryr. Then we take a
complete orthonormal basis {h,(y) := Hi=1 Em, (yx) : m € Z%} of L2(Agy1),
where y = (y1,y2,--- ,¥d), ko(y1) = 1/vVR+ L, and, for m; > 0,

2 . 2mymy 2 2mymy
Koy (1) =) g s RiLl and - km, (y1) =\ g7 o0 R:LLl'

We extend these functions to R? by h,,(y) = 0 on A%, - Then, for each
x € Ap, we have

ol(y+z) = /h ol (z + x)dz

mGZd

and

Tl (€) = > ﬁ(é)/hm(y)af(wx)dy

mezd
in L2(RY). Let (Z%), :== {m = (m1,ma,... ,mq) € Z% : §{j : m; < 0} is
even} and (Z%), := {m = (mi,ma,...,mq) € Z¢ : 4{j : m; < 0} is odd}.
Then ﬁ;(f) is real valued for m € (Z%). and is purely imaginary valued for
m € (Z%),. Thus we have

Re(ezﬂf'w J Z h (z) + Z iﬁn\l(f)e{’m(m)7

me(Z%). me(Z%),
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where
/ y) Reo? (y + x)dy for m € (Z%),,
/ y)Imo? (y 4 x)dy for m € (Z9),.
Similarly we have

(€270 (£) Z el ym@) = Y ihm(©)ely, m(2),

€(zd me(Z4),

where

. /hm(y) Imoy (y + z)dy for m € (2%).,
J —
er+L,m(x) L .
/hm(y) Re o’ (y + x)dy for m € (29),.
Then we have (2.8) for each € A, in L?(£2), where

Woem .— WL(H;L) for m € (Zd)e7
v Wb(zl;;l) for m € (Z4),

and

WrJrL,m — WTJrL(ﬁr\n) for m € (Zd)e7
’ Wyt (—ihy,) for m € (Z9),.

By the integration by parts, for each 0 # m € Z¢ and 0 < £ < s, there exist

m’ € Z% and k € {1,2,... ,d}, such that

‘/ YVl ( y+x)dy‘

[ R+L\
-\ 27|m| e
d
where |m|,, is the maximum norm on Z<¢. Since |h,(y)] < /2/(R+ L),

we obtain (2.9). Then we see that {Zf; D mlew <N W,™mel | }n is a Cauchy
sequence in LP(Ap x Q). Therefore (2.8) holds in LP(Ap x Q). O

s—/
9 .
ha (y) <—8yk> Viol(y + x)dy|,

Remark2.3. If 0 < ¢ < s — d, we see that {Zfil D imle<n WS
Vtel .}~ is a Cauchy sequence in LP(Ap x Q) by (2.9). Therefore, for each
ke€Zi,if s>d+2+k, then we see that {ZL 1 Z\m| N W5Vl (@)}
converges to V¥ (z) uniformly on Az, and Wi (z) is a C* function of 2 almost
surely. Since we assume s > d + 4, WJ(z) is a C? function of .
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We use the following lemma on differentiations in random variables:
Lemma 2.3. Foranye >0,1<.:<2r andm € Zd, we set

Wj(gc, gL, m) = Wj}(:r) + Ee{’m(l‘),
— d [
H¢(g50,m):= Z(iaj + XA (x, W (€50, m)))?
=1
and

—

I'w,L,E,e;t,m):=(HY(g;0,,m) — E)~ 1/2XLW (z,e50,m)"
x (H?(g;1,m) — E)~/2,

Then we have the following:
(i) In the weak sense, we have

{Q(EE(E;L,m)—E)_lﬂ} =Z(w, L, E;t,m),
86 e=0

where Z(w, L, E;1,m) is a bounded operator defined by the following integral in
the weak sense:

_ 71 oo 1 o
E(w,L,E;i,m) = T/o dt\/%etE/ duexp(—utHY)

0
d
X Z XLeL m V Aj (x,m(l‘)),laj + )?iAj(x?Ww(x))]-‘r
Jj=1

x exp(—(1 — u)tHf)7

where €, (z) =" (e} ,,(2),... €, (x)) and [A,B]y := AB + BA for any
operators A and B.

(ii) The operator E(w, L, E;1,m) defined in (i) maps the elements of
U.soRan E([a, 00) : T'(w, L, E)) to the domain of EIE, where, for any opera-
tor A, Ran A is the range of A.

(iii) On U, Ran E([a,0) : T'(w, L, E)), it holds that

[(HY — B)'/?,2(w, L, E;1,m)] 4
- (HF - UQZXLebm -V Aj(z, W(z)),

i0; + X1 A;(x W( )]s (Hy — B)~/2.
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(iv) For any f € C4((0,00)), we have
2”,[‘r[fq(l"(w L,E,&;1,m))]
as ) b ) Y EZO
= Tr[(f*)'(T(w, L, E))T(w, L, E; 0, m)],
where

DNw, L, E;t,m)
_ (HZ) _ E) 1/20— Lne ( )WO( )n—l(Hf _E)—1/2

F( L E) I/QZXLebm v A; ( (1’)),

19 +ﬁAj(x,Ww(z))}+(Hf —E)72

We postpone the proof of this lemma to the next subsection.
We use a vector field A on the space of sample paths defined by

=3y wen (Zronenm)

t=1 mezd e=0

in L}(9), for any functional F of the sample path W,,(-), when the limit exists.
For this vector field, we have the following:

Lemma 2.4.  For any f € C3((0,00)), we have
AT[f4(T(w, L, B))] = Te[(f*)'(C(w, L, )TV (w, L, E)],
where

rYw, L, E)
d
=02 B) = (7 — )72 Y REWL ) - Vo, W o),

j=1

i + XLA; (2, Wo (2))]+ (HF — E>1/2}.
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Proof. By Lemma 2.3 (iv), we have

5 S e (g LB )

t=1|m|eo

=0
Tr[(f‘l)’(r(w,L,E»r“)(w,L,En'

< | Tr[(f9) (D(w, L, B))(Hf — B)~Y/2XznW3(x)"!
x RO (x, M)(Hf — E)™'/?]

+ | Te[(f?) (D(w, L, E)T(w, L, E)(Hf — E)~'/?
d
X Z[S(\iR_w(xv M) : vaj(xam(x))a
i0; + Xp.Aj (2, Wo(2))]4 (Hf — E)~V2],

where

RI (2, M) : Z > Wil (x) - W)

=1 |m|oec <M

and Ry (z, M) :=* (RL(z,M),... ,R%(x, M)). By the Holder inequality for the

norms ||| - |||p (cf. Theorem 2.8 in [33]), this is less than or equal to
(210) U (C(w, L EDllg/q-2 | I(HE — B) 7/ 2XznW) (@)
x R),(x, M)(H“* E)"llg)2
HII( (T (w, L, BN (w, L, E)lllg/(q-1)
d
x |||(H ZXLR -V Aj(z, W(x)),

i0; + X1 Aj (z, w(w))]+(Hf —E)"?|lg-
For any p > 1, we have

I1(£9) (C(w, L, E))lllp < ¢ Te[E(supp f : T(w, L, E))]"/?

2
<c|lI0(w, L, E)[||4/$P.

Similarly we have

G (e, L B)E(w, Ly Bl < el 0w, L B35
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Thus, by Lemma 2.1, the quantity in (2.10) is dominated by

—~ n(g—2)/2, ~ n—
XL WO ()™ 149,22 XL WS ()"~ B (2, M) |

+ I ()" g‘;;)”anLR (2, M) - Vo A (2, W (2)) |
Jj=1

By the Holder inequality on the probability space, we have

[Z Z W“”( e[ f4(T <w,L,E,a;L,m>>])

=1 |

e=0
- Tr[(fq>’<r<w7L,E»r“)(w,LE)]H
C<E[II>’<EW3(w)”Zﬁ}(q‘”/qE[ﬂnWE(w)"‘le(%M)IIZ@]?/Q
d
Bl WS ()" |23~ 0/4 3" BNz Ru(z, M) - Vi Az, mw»ngr/q)

Jj=1

This converges to 0 as M — oo since, for any p > 1, W2(z) € LP(AL x Q) and
R, (z, M) converges to 0 in LP(A x Q) by Lemma 2.2. O

We now obtain

E[Tr[(—px) (T(w, L, E) =1+ )T Y (w, L, B)]]

2r
= Z Z I(L,E,t;t,m),

=1 mezd

where

(2.11) I(L,E t;t,m)
= E[W," Tr[(—pk) (T(w, L, E) — 1+ t)T(w, L, E; 1, m)]].

Since

(%H“’— l/zzwi VA (o, o)),

W
i0; + X1 A; (2, Wo(2))]+ (H? — E) 1/2)

< 9w - VoAl /v/TE]
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for any ¢ € L?(R?) such that ||p||2 = 1, we obtain

>N (L, E t;,m) > c(n, 5, B)E[Tx[(—p,) (D(w, L, E) — 1+ 1)]]

=1 mezd

for —3k/2 <t < 3k/2, where

c(n, i, B) = (1 = 2r)(n = 2w - VuwAlloo / V| E]) +-
If E is less than —(2||w -V, Al s /n)? defined in (2.4), then ¢(n, x, E) does not

vanish for small enough x and we have the following bound:

(2.12) P(dist(E, o0 (HY)) < 1)

1 3Ii/2
< —m= dt I(L, E, t; .
o e O DD SR (AXIND

—3k/2 =1 mezd
We estimate the each term in the summation:

Lemma 2.5.  There exists a finite constant ¢ independent of L, E, m
and k such that

(2.13) sup  |[I(L,E,t;i,m)| < cL4/|E|0=9/2
—3K/2<t<3Kk/2

forany1<:<2r, meZand 0 <k < 1/8.

Proof.  Since I'(w, L, FE) should be greater than 1— 2« for p/ (I'(w, L, E) —
1+ t) to be nonzero, we have
I(L,E,t;t,m) = E[WL™ Tr[(—ps) (T(w, L, E) — 1+ t)
x 7(Iw, L, E) + 25)w, L, E; t,m)]],
where 7(u) = v(p)? and v is a smooth function on R such that 0 < v < 1,
0<v <3onR,v=0o0n(—o00,1/2] and v =1 on [1,00). This is rewritten as

2
I(L,E,t;t,m) = ZI]'(L,E,t; t,m),
j=1

where

L(L,E, t;e,m) = EW," Tr[{—pu(- = 1+ )7(- + 26)} (T(w, L, F))
x T'(w, L, E;t,m)]]
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and

I(L,E,t;te,m) = E[W." Tr[pe(T(w, L, E) — 1 + 1)
x7'(T(w, L, E) + 26)T(w, L, E; 1, m)]].

By Lemma 2.3 (iv), we have

(2.14) Li(L,E,t;t,m)
= E[(1 — (W5™)?) Tr[p(T(w, L, E) — 1+ t)7(T'(w, L, E) + 2k)].

In fact, if we denote I', ,, x(w, L, E') the operator obtained by replacing W5™
by A in I'(w, L, E), then (2.14) is rewritten as

d\ 2,0 0
E e N2\ r L .E)—1
|: R \/— )‘a)\ [ pn( L,m7x\(wa ; ) +t)

X7y ma(w, L, E) + 25)]}

d\ 2
=EB| | =201 = ) Tr|p (T, mr(w, L E) — 1+t
[ e ) D L B) = 14

X 7(Lyma(w, L, E) + 2/@)]} )

We here simply estimate as

(2.15) |T [p,i(l“( L E) -1+ t)T(F(w, L, E) + 2/@)]|
<Tr[E((1/2 — 2k,00) : I(w, L, E))]
< (1/2 — 26)" Y2 Tr[E((0,00) : ['(w, L, E))T(w, L, E)¥/?]
< (1/2 - 20)79/%||[T(w, L, E)||%/3

< (1/2-20)7"" HOR KAl

by Lemma 2.1 (ii). Then we obtain

(2.16) [Ii (L, B, t;0,m)|
<(1/2 - 2/-@)_‘1/20,1,,1/ dr (X (x))?
Rd
x E[|1 = (W™ |[W(@)|"9/?] /| B| =72
<(1/2- 2/{)7q/28d,qLdE[|l _ (W:,’m)2|2]1/2
x E[[W(0)[*"/2/|B|a=D/2,
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For Iy(L, E,t;t,m), we use Lemma 2.1 (ii) and (iii) to estimate parts of
D(w, L, E;t,m) as
II(Hy = B)T A Wd@) (Hy = E) [l
< caql e W (@) g2/ |E|O= D/

and

'H(F{E -~ BT Zd:[’?im(x) -V dj(@, W (),

Jj=1

i0; + Xp.Aj (2, Wa(2))] 4 (Hy — B)~1/?

q
< CaglINT8m (@) - Vad (2, Wos () o/ | E| T~/ ).

On the other hand, as in (2.15), we have
llpw(T(w, L, B) = 1+ )7 (T(w, L, E) + 26)|llq/(g-2)
< 3(1/2 = 26) D0 (w, L, B[,
and
[lpe(T(w, L, E) = 1+ t)7"(T(w, L, E) 4+ 26)T(w, L, E)|||¢/(g—1)
< 3(1/2 - 26)" @I/ [D(w, L, B)|||'%, V7.
Then, as in (2.16), we obtain
|Io(L, B, t;0,m)| < (1/2 = 26)~ 72/ 2¢, gL/ |E|4=D/2]
where cp is a constant depending only on the covariance of W2(0). O

This bound is simple and the growth as L. — oo is not big. However this
does not decay as |m|,, — 0o0. To obtain the decay, we give another bound by
using the spectral shift function as in [6], [7] and [20]:

Lemma 2.6.  For any ¢ € N such that ¢ > q/2, there exists a finite
constant ¢ independent of L, m and k such that

(2.17) sup |I(L, E, t;i,m)|
—3k/2<t<3k/2

s— q/(2¢)
L d/2) Ld

Rlml3

< o[ B|- /2| B0/ 4 1) (

forany1<:<2r, meZand0< k < 1/2.
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Proof. (2.14) is rewritten as
I(L,E,t;t,m)
= E[(1 - (Wy™)?) Tr[pa(P(w, L, E) =1 +1)
— Pe(Tom(w, L, B) =1+ 1)]],

where T, ,,(w, L, E) is the operator obtained by replacing W5™ by 0 in
[(w, L, E). In fact, E[1 — (W5™)?] =0 and T, ,,,(w, L, E) is statistically inde-
pendent of W5™. By Lemma 2.7 below and Theorem 2.1 in [6], [7] and [20], we
have the spectral shift function £(\ : T'(w, L, E)*, T, ,u(w, L, E)?) for the pair
(D(w, L, E), T, u(w, L, E)*) such that

Hg( : F(w7 L7 E)[7 Fb,m(w7 La E)e) ||2€/q
2¢
< |IP(w, L, B)* = Ty m(w, L, B39
<Al B @ D(EITY2 1 1)Q(w, Ly t,m) 0.
As in [6], [7] and [20], we apply the Birman-Krein identity [2], [41] as follows:

Tr[pw(T(w, L, E) =1 4 t) — pu(Tym(w, L, E) = 1 4 1)]

= / {%pﬂ(wf —1 +t)}§(>\ :T(w, L, B), T, (w, L, B))dA.
R
This is estimated as
| Tr[pK(F(w, L7 E) -1+ t) - pm(FL,m(w7 La E) -1+ t)]l

< Aar|B|" V(BT + 1)Qw, L, ,m)} 20

(U

(/
< Cz(/
R
(2¢—q)/(20)

C3 0

— oy /K20

2¢/(20—q) (26—9)/(20)
d/\)

%pn()‘l/z —1+1)

Since

AE_141) dX

2¢/(26—q) (2¢—q)/(20)
5@@( )

i

P 20/(2~q)  \ (2~)/(20)
L pe(A— 1+t
el +1) )
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and

Ls_d/2>q/<2e>

Rlml%

Bl — (W5™2(Q(w, L1y m)?/ 0] < ¢ (

we obtain (2.17). O

We next show the estimate of the difference of the operators used in the
proof of the preceding lemma:

Lemma 2.7.  For any ¢ € N, the operator I'(w, L, E)* — T, ;(w, L, E)*
belongs to the super trace class Ly 20y and satisfies

|||F(w7 L?E)é - Fb,m(w,La E)e|||q/(25)
< | B|7M /(| BTV 4 1)Q(w, Ly, m),

where ¢ is a finite constant,

Q(w7 La Ly m)
Ls—d/2

WE™ LY (IXEWE @) lg + IXZWE 1 (2)" [l + L)

Iml3e

x (IlﬁWf(w)"q/z HIXZWE 1 (@) g2

n—1
|z Yo W)W, ()
k=0

)
” a/2

-2
< (IR + W o)+ 2297

and W0, . (z) is the random field obtained by replacing W5™ by 0 in WO (z).

w,t,m

Proof. For simplicity, we treat only the case that V(z,w) = 0. We divide
the operator as

4
T(w,L,E) =Ty (w, LB =YL+ > 7,
j=0
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where
Iy = (Hy — B)" A Wi(@)"{(Hf — E) ' xaWl(@)") !
x (Hf - B2 = (g, — E)'?),
1 = (I = ) 2Eawl(@) (3 — B) Y W (@)

x (Hy —E)™' - (Hy,,

L,e,m

X{( L,u,m E)_IN wt,m( ) }] 1( _E)_1/2

for1<j<e-1,

— E) )XW ()"

I = ((Hf = B)™? = (A, = B) ) {REWE ()"

yL,m

x (H? —EB)7Y2

L,.,m

_E) 1}[ XL Wu(J)Lm( ) (Hz)bm

Jj = (Hy — BE)"{xpWi(@)"(Hy — B)~'}

< XL(WO(2)" = WO, (@) W(HE 0 — E) XE WO, (@)}

x(Hf .~ E) Y2 for1<j <t
and HY .m s the operator obtained by replacing W5™ by 0 in EE By
the Holder inequality for the norms ||| - |||, (cf. Theorem 2.8 in [33]), we
have
[Holllg/ (20
< ICHE = B) 2 Wi @)lllg x NHE = B) 7 XeWd@)"lllg

x|||(Hy = B)"'/? = (A,

L,.,m

E)~ 2l
By Lemma 2.1 (i) and (iv), we have

1(HF — B)"Y2W5(@) llg < erIXe W)™ |14/ | Bl D/ 0
and

IN(TE - B) TaW2)llgs2 < eI TEWE ()2 | Bl @D/
By the expression

(HY — E)~Y/? = E exp(—tH?)

7l
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((A.22) in [21]) and the Du Hamel formula (cf. [4]), we have
(2.18)  (HY — E)"\/*— (HY,

L,e,m

1 /OO —
= — dt\/fetE/ du exp(—ut HY
VT Jo 0 ( £)

_ E)fl/Z

d
< Y {(i0 + XL Ak (2, Wo(2)))

k=1
X ﬁ(Ak(x7Ww,L,m(x)) —-A ( W( )))
+ XL (Ak (2, W im (7)) — Ak(, (x)))
X (10 + X1 Ak(T, W i,m())) } exp(—(1 _u)tHg’L’m)~

Since ||V A(z, w)||00 < 00, this is estimated as

I(HE — B)~'/ — (B¢,

L,.,m

Ls—d/2 1
< cg|Wh™| =y / dt\/fetE/ du
0 0

d
X Z ||| exp(—ut HY) (i0k + X1 Ak (z, We,(2)))]|]
k=1

- B)72,

< 11Xz exp(—(1 — w)tTz, )|llg
- 111XE exp(—utEE) |11 6% + XL Aw(w, W ()
x exp(—(1 — w7, )I)-

Since
| exp(—ut HP ) (i) + X7 Aw(z, Wa(2)))]]] < 1/Vul
and
IIIXz exp(—utH?)l|lq
< |[IXe(Hg — E)" V2| |[|(HE — E)'/? exp(—utHY)||
< e LY/ —E +1/(ut),
we have

II(H — >—1/2 (H7

L,.,m

E)7 2l
—d/2
L)\ p|t=4/ (0

IIOC

< CS‘WL m‘



50 Naomasa UEKI

and
[ Zolllq/(26)

—d/2
< el X L g W () llq

\ |5
x IXe W ()" ||q/21/|E|f(q—d)/q+1/2.
e[/ (20 is estimated similarly. By

(Hf —E)™' —(Hf,, —B)~}
d

= (Hy — E)™ Y _{(i0 + Xz Ak (2, Wo(2)))
k=1

x X1 (Ax(z, Ww,b,m(x)) - Ak(x,m(x)))

+ X (A, W om(2)) — Ap(z, Wo(2)))

% (10 + Xz Ak (@, Worrm (@) }HE . — E) 7!

and
I[(HY — E)~Y2(i0), + XL Ak(z, W (2)))]]] < 1,
we have
1125 1lg/20)
<C7|W””\ Ld/q{IIXLWO( )" Hiﬁ_jllﬁWf( ) lalXZW s (@)1

IIS

+ I W2@)" 13 INEWE 1o (@) T W o (@)1 5 3/ | B0 D 012,

It is also easy to show

H‘ijq/(%)
< eslxm B pnyrwe XLWo@)" e,
< el X" e IXEWo ()" lg XL W (2)" [l /2

D oXAW @) WY (@) NI ()" 175 /| B 0D/

q/2

for1<j</¢—1and
11 Jelllq/c20)

s—d/2
L=/ Ld/4
Im|3,

<AREWE, ()1 2RI,

Zﬁwf( )" W L (@)
k=1

< co| W5

q/2

o (@) g/ | BI04,
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where a3(¢, g, d) is a number determined by ¢, ¢ and d. O

To complete the proof of Theorem 2.1, we apply Lemma 2.5 to the terms
with |[m|s < L'~ () /k/* and Lemma 2.6 to other terms in (2.12). Then we
obtain (2.4).

§2.3. Proof of Lemma 2.3

(i) As in (2.18), we have

(2.19) (H (z:0,m) — B)™V? — (Hy — B)™\/?

1 /OO 1 o
= dt\/EetE/ duexp(—utHY (g5¢,m))
77 Jy : P

d
X Z{(Zaj + X\I//Aj (xa Ww(xa &L, m)))

x XL (A (, Woo(x)) = Aj (2, We(x, 1,m)))
+ XL (A (2, Wo (@) — Aj (2, Wo(,€10,m)))

x (i0; + XL A; (x, W (2))) } exp(—(1 — w)tHY).
Using

(2.20)  Aj(z, Wy (z,g50,m)) — Aj(x, Wy (x))
1
= c€, m () ./0 dvV ., Aj(z, Wy, (2, ev;1,m))
= cem (@) - Vud;(z, Wo ()

1
+ e m(x)- / dv{VpAj(z, Wy (z,ev;0,m)) — Vi Aj(x, W ()},
0
we expand as

(Hf(g50,m) — E)"Y/2 — (Hf — E)™'/?

eE(w, L, E5t,m) + ZR]'(E,QJ,L7E; L,m),

Jj=1
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where

_ e8] 1 .
Ri(e,w, L, E5t,m) := \/—i/ dt\/ZetE/ duexp(—utHY (;1,m))
T Jo 0

d
<3 {(iaj + XL A; (2, Wo (w231, m)))

Jj=1

1
X XiEr(x) - / AoV o A; (2, W (2, 203 1, m)) — Vo A, (2, Wo ()}
0
1
+ Xrem(z) - / dv{VAj(z, Wy (z,ev;1,m)) — Vi Aj (2, W (2))}
0
< (10; + XA, o, W (a)) f exp( (1~ W),
_52 [e’e) 1 .
Ra(e,w, L, E;1,m) := —/ dt\/fetE/ duexp(—utHY (e51,m))
NZ 0
d
X SN o (#) - VA (2, Wo(w))
j=1
1 L _
X / dve, ,(z) - VyA(x, Wy (z, ev;e,m)) exp(—(1 — w)tHY)
0
and

Rs(e,w, L, E;t,m)

_ o0 1 . .
—— dt\/z_fetE/ du(exp(—utH¢ (51, m)) — exp(—utHY))
VT Jo 0

x zd:[ﬁm(if) VA, W (2)),i0; + XL A; (2, Wo ()] +
=1
xjexp(—(l - u)tﬁf)
Since supp X7z, is compact, for any ¢ and ¢ € L?(R?), we have
(¢, Ra(e, w, L, B, m))|
< o(e) /000 dtv/'te!? /01 du{||(iV + Xz A(x, W, (2, &5 1,m)))

x exp(—ut HY (g51,m)) |2 ]| ¢ 2
Hlellall 0V + XL Az, Wa(2))) exp(— (1 — u)tHE )i |2}
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Since
16V + XL A(z, Wi (2))) exp(—tHF )b |2
= (exp(—tH? )b, HY exp(—tH )yp) />
< (2te) 2 [[ ]l

we have

(2.21) (¢, R (e, w, L, B; 1, m)v) = o(c)

for j = 1. Tt is also easy to show (2.21) for j = 2. For Rs(e,w, L, E;i,m), we
use the Du Hamel formula again and apply similar estimates. Then we have
(2.21) for j = 3. By the same method, we can show that Z(w, L, E;¢,m) is a
bounded operator.

(ii) It is enough to show that @E(W,L,E;L,m)E((a,oo) :T(w, L, E)) is
a bounded operator for any a > 0. In this proof, we write B/ := &, () -
VwAj(z,W,(z)) and A; := X1 A;j(x, W,(x)), for simplicity. Since V,,A(z, w)
is a C? function of (z,w) and W, (x) is a C? function of z by Remark 2.3, E7
and A7 are C? functions of z. Therefore, if we write [4, B]- = AB — BA for
any operators A and B, then we have

d
{H 72 ,10; + Aj] ]
Jj=1 -
d d
= > (i0; + Aj) By (i0k + Ax) + Y Ey(i0k + Ax) + Eg),
7,k=1 k=1

where E(; 1), Exy and E(gy are continuous functions with compact support. By
using this, we divide as follows:

E[\

e
m
&

h
=
g
I
=
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where

_9 [o° 1/2 U o
H, = ﬁ/o dt\/fetE/O duexp(—utHj—j)Z(i@j + A;)E’HY
J

P

x exp(—(1 — u)t@),

1 /oo 1/2 o d ) e
Hy = — dt\/fetE/ duexp(—utHY) Y (i0,E7)HY
2 77 )y ; L ; j L
x exp(—(1 — u)t@),
Hj

-1 /oo 1/2 o
= dt\/%etE/ duexp(—utHY)
v Jo 0 r

d

X Z (105 + Aj) E(j 1) (i0k + Ax) exp(—(1 — u)tﬁ%),
7,k=1

] [ 1/2 . d
Hy = ﬁ/o dt\/1etP i duexp(futHf)ZE(k)(iak+Ak)

k=1
x exp(—(1 — u)tﬁ?),

1 0o 1/2 _ /\
Hy = —/ dt\/fetE/ duexp(—utHy)E gy exp(—(1 —u)tHY),
v Jo 0

_2 o0 1 o d

S — dt\/fetE/ duH¢ exp( utH“’ (10; + Aj)
VT 1/2 L sz

x exp(—(1 — u)tﬁ%)

and

1 [ o —
H; = —/ dtv/tet? duHY exp(—utHY)
VT 1) 1/2 g t

x (zd: if)jEJ) exp(—(1 — u)tH).

=1

As in the proof of (i), it is easy to show that Hs, Hsz, Hy, Hs and Hy are
bounded operators.
For H;, we estimate as

\ (1p-exp(- i) Sy + Ay BT expl—(1 - W) \

j=1

<GV + A) exp(—ut HE )2 ]| B[ oo | HE exp(—(1 — w)tH )2,
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and
1V + A) exp(—utH? )¢l < e1(ut) ™[]
It is also easy to see that

[HF exp(—(1 — u)tHZ )l|a < ea((1 — u)t) "H[o]2.

However this bound is too big to integrate with respect to the variable t. We
now take ¢ from the range of E((a,00) : I'(w, L, E)). For this we have

(g — B)2yls = XL X5 (2)" (HY — B)'/?T(w, L, B) |2
< ¢e3|[D(w, L, B) "1ll2 < sl ]l2/a.
Then we have
I(HF — E) exp(—(1 — u)tHP )ll2 < ea((1 - w)t) "2 + 1) |[¢2/a
and
1HZ exp(—(1 — wtH)$ll2 < ca(((1 —u)t) ™2 + 1)|lgo]l2/a + |E||]|2.

Therefore H1E((a,00) : I'(w, L, E)) is bounded. Similarly HgF((a,00) :
Iw, L, E)) is bounded.

(iii) We take ¢ € L?(R?) and an element ¢ of the domain of EE We first
show that

(2.22) (W, (HF — B)'/? — (Hf (c:,m) — B)/?)¢) = O(e)
as € — 0. For this, we divide the left hand side as

(. (Hf = E)™"? = (Hg (530, m) — B)/*)(Hf — E)9)

+ (¢, (Hf (g50,m) — E)"2((Hf = B) = (Hf (5:0,m) — E))9).
By (i), the first term is O(e). The second term is dominated by

ell¢ll2(IGV + XL Az, Wes (2))) |2 + [|]]2)-

Therefore we obtain (2.22).
We take ¢ € |J,.oRan E([a,o0] : T'(w, L, E)). By (i), (ii) and (2.22), we
have

a>0

(. [(Hf — E)/? Z(w, L, By, m)] )
= (0, (7 (5 1,m) — BYV(HF (e30,m) — B) ™7 — (B ~ B)™/?)

+ ((H (e50,m) — B)™V2 — (Hy — B)™V?)(H — E)?)p) + O(e).
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Since (HY — E)Y2(HY — E)~Y/2 = (HY — E)~Y2(HY — E)Y/2 = 1, the right
hand side is equal to

@ ([ e50m) — B2 — (HF — B) ) (H (e51,m) — B) ™

+ (Hf (550,m) — B)"V2((H (e:0,m) — B)'/? — (Hf — B)"/?)p)
+ O(e)
= 0, (75 0m) — B)2(H (e51,m) — H)
x (Hy — E)™%p) + O(e).
By (i) and (ii), we see that this is equal to

(X£eom(2) - Vi A (2, W (@),

d
=1

—(wffE—Erl

J

i, + VLA, (2, o (o) (7 — E)*%) o).

(iv) As in [35], by the Fourier transform and the Du Hamel formula, we

write as
(2.23) f(T(w,L,E,e50,m)) — f(T'(w, L, E))
= /Rdgff(g) /01 duexp(u2miCT(w, L, E, £;1,m))
x (D(w, L, E, &;0,m) — (T(w, L, B, £)) exp((1 — u)2wi(T (w, L, E)).
By (i), we have
T(w, L, E,&;1,m) —T(w, L, B &) = eI (w, L, E; 1,m) + o(e),
where

M(w, L, E;1,m) := (EE — B V20 Wh(2)"E(w, L, E; 1, m)
+ (Hf — E)"V2xnel (o) W0(x)" L (Hf — E)~V/?
+E(w, L, B; ., m)\iW(x)" (Hy — E)~Y/2,

Then we obtain
(224) f(I‘(w,L,E,s; Lam))ff(r(vavE))

~ 1 .
=< [ a0 [ duesplumic(C. 1. )
x I'(w, L, E;t,m) exp((1 — u)27mil(T(w, L, E)) + o(¢).
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We expand the trace as

Te[f(T(w, L, E, £;¢,m))] — Tr[f4([(w, L, E)) ka,

where

L= Y TfTwLE)--

1<l <<y <q
x (f(D(w, L, E,e50,m)) — f(T(w, L, E)))

x - (f(D(w, L, E,e50,m)) — f(D(w, L, E))) - f(T(w, L, E))]

Since supp f C (0, 00), the rank of f(I'(w, L, E)) is finite. Thus, using (2.24),

we have
I = ¢ Te[{ f(T(w, L, B;¢e,m)) — f(D(w, L, )} 7 (T (w, L, B))]
=eTr[(f)(T(w, L, E))I(w, L, E; 1,m)] + o(e).

By changing the order of the operators, we have
Tr[(f*)' (D(w, L, B)T(w, L, Es1,m)]
= Tr[(f*)(D(w, L, B))(Hf — E)~"/*Xzne ,, («)W (@) (Hy — B) /]
+ Tr[(fq)/(r(wv L? E))F(w7 L’ E)[(HL - E)1/27 E(w’ L7 E; Ly m)}-f—}

By using also (iii), we obtain
I = e Tx[(f9) (U(w, L, E)L(w, L, E5 ¢, m)] + o(e).

Similarly we obtain
Y I, = O(c")

for 2 < k < g—1. By (2.23), we have
Iq < ||f’||‘11|\|1"(w,L,E,5;L,m) - F(W7LﬂE)|||Z'

‘We divide the second factor as
10w, L, B, &;0,m) = T(w, L, B)|[]
< |[|(Hg - B)"V2 W),
< [[|(Hy — B)~? — (Hg (g;1,m) — B)~'/2|||
+|II(Hg — BE)=2 — (Hg (50,m) — B) /7]

< IXZ W (x, 5 0,m)" (HE (50,m) — B) ™2l
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By Lemma 2.1 (i), we have
II(HE — B)"awi(@) |l = 0(1),
II(HE = B)" X (Wi (@)" = W, &:0,m)")[|q = O(e)
and
IIXE W (@, &50,m)" (HE (£0,m) — E)72]||, = O(1).
By (2.19) and (2.20), we have

[|(HF — E)™Y/2 — (H? (e;0,m) — E) ™| = O(e).
Therefore we obtain
[|IT(w, L, E,e50,m) — I'(w, L, E)|[|, = O(¢)

and
I, =0(e?).

Lemma 2.3 is now proven.

§3. Bootstrap Multiscale Analysis and Localization

In this section we modify the theory in Germinet and Klein [14] so that
the operator (2.5) can be treated. For this we weaken the assumptions on
the Wegner estimate and the semiboundedness of the operator in [14]. In this
section we treat a random operator

d
(3.1) HY =) (i0; + AY(2))* + V¥ ()

Jj=1

with a general random field (A“(z), V¥ (z)). We do not use the specific form
of (A¥(x),V¥(z)) in the last section. The application to the operator (2.5) is
discussed in Subsection 3.4 below. As in [14], we write C = C(a,b,...) if C is
a positive finite constant depending only on the parameters a, b, .. ..

§3.1. Main theorems

We first assume the following regularity and stationarity:
(R) For a.e. w, V€ L2 (R%) and A = AN« + AP« where AN

loc

and A are satisfying the following:
(i) AD« e L} (RY— R?) and V- ADw € L2 (RY);
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(i) A®w € OR? - RY), V- AP« ¢ [2 (R?) and dA®P~ € C(R? —
A2(R9)), where d is the exterior derivative of A(® regarded as the 1-form
Z?:l A;2)7w(x)d1:j and A%2(RY) is the 2-fold exterior power of R

(S) The random field (AM~(x), dA®«(z), V¥ (x)) is stationary with
respect to the shift in the variable z € Z¢.

As in [14], we assume the independence at distance:

(IAD) There exists p > 0 such that for any finite number of bounded
subsets By, Ba, ..., By, of R? with dist(B;, Bj) > p for i # j, the random fields
{(AW«(2), dAP«(2), V¥(2)) : @ € B;}, i = 1,2,... ,m, are independent.

Referring Lemma 3.5 below, we assume that a Fernique type estimate holds:

(F) There exist finite positive constants 3, §; and d9 such that

(3.2) P(ess sup V¥ (z) > 77) < 81 exp(—dn°/log L)
zEAL

for any L > 2 and n > 0, where V¥ (z) := max{—V*“(z),0}.

Under these assumptions the operator H* in (3.1) is essentially self-adjoint
on C§°(R%) by Lemma 3.1 below (cf. Leinfelder and Simader [29]).

Moreover, since the bound in Theorem 2.1 is not linear in the variable of
energy, we assume that the Wegner estimate holds in a weaker form than that
of [14]. For any L > 0, let HY be the self-adjoint operator on L?(A ) defined by
the restriction of H* with the Dirichlet boundary condition. In the following
we fix an open interval f{) and assume the following:

(W) There exist 1 <b<o00,0<h<1and0<Qf < oo such that

P(dist(o(HY), E) < 1) < Qpn"L"

foranyEEINO,n>0andL€2N.

For any 2 € R% and L > 0, let Ar(x) be the open box of side L centered
at x. Let HY; be the self-adjoint operator on L?(Ar(x)) defined by the re-
striction of H* with the Dirichlet boundary condition. Let x,r and I'; 1 be

the characteristic functions of Az (x) and Ar_1(z) — Ap_3(x), respectively. We
use the following definitions in [14]:

Definition 3.1. Let >0, E € R, 2 € Z¢ and L € 6N. A box Ar(z)
is called (0, E)-suitable for w if £ ¢ o(H} ;) and

[T, r (H 1 — E)_1Xa:,L/3|H <L’
Definition 3.2. Letm >0, E€R, z € Z% and L € 6N. A box Ar(z)
is called (m, E)-regular for w if £ ¢ o(HY ;) and
1T, (Hy = E)'Xa,r3lll < exp(—mL/2).
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We fix a compact interval Iy included in fE) and we set My, := maxIj.
Then the bootstrap multiscale analysis in [14] is modified as follows:

Theorem 3.1 (Bootstrap Multiscale Analysis, cf. Theorem 3.4 in [14]).
For any 6 > bd/h, there exists Ly = Lg(d, p, MIO,QfO,ﬁ,(Fl,&g,b,h,@) € 6N
satisfying the following: if there exist By € Iy and Lo < L € 6N such
that

(3.3) P(Ag is (0, Eo) — suitable) > 1 — 8417%,

then there exists 09 = do(d, p, MIO,Qfo,ﬂ,él,ég,G,L) > 0 such that, for any

0<({<landl<a<( ', there are Lo = Lo(d, p, M1, Qf, 8,01,02,0, L, (, )
€ 6N and m¢ = m¢ (¢, Lo) > 0 satisfying

P(R(m¢, Ly, In(Eo, d0),x,y)) > 1 — exp(—Li)

forany k € Zy and z,y € Z* with |z —y|s > L +2p, where L1 = [Len :=
max{N €6N: N § L(g}, I()(Eo,ao) = [Eo - 50,E0 + 50] N I() and

R(m’ L7 ‘[7 x’ y)
= {w: for every E € I, either Ar(x) or Ar(y) is (m, E)-regular}.

As in [14], the following is obtained from Theorem 3.1 (cf. Theorem 3.8 in
[14]):

Theorem 3.2 (Decay of the kernel, cf. Theorem 3.8 in [14]).  Let Ly
and Iy(Ep, dg) be the number and the interval given in Theorem 3.1. If there
exists By € Iy such that (3.3) holds for some L > Lq and 6 > bd/h, then, for
any 0 < ¢ < 1, there exists a finite constant C; = C¢(¢, d, p, MIO,QfO,ﬁ,&l,(Sg,
b, h,0) such that

E| sup |l[xof(H*)E(Io(Eo,d0) : H)xylll5
feBi(R)

< Ceexp(—|z —ylS)

for any x, y € Z2, where | - |« is the mazimal norm, X, is the operator of the
multiplication with the characteristic function of the open box Ai(x) with side
1 centered at x and By (R) is the set of all real valued Borel functions f on R
with sup | f] < 1.
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From this theorem, we obtain the strong dynamical localization in the
Hilbert-Schmidt norm

(3.4) E [sup||||X|”/2E(IO(EO,50) : H“’)exp(—itH“)XOH@} < o0
teR

for any n > 0 (cf. Corollary 3.10 in [14]) and the strong dynamical localization
in the operator norm

(3.5) E[suﬂg X" 2B (Lo (Eo, 60) : H) exp(z‘tHﬂxM < oo
te

for any n > 0 (cf. (1.8) in [14]), where | X|*/? is the operators of multiplication

with |2|"/2. The equivalence of these two notions shown in [16] holds also in

our case as we discuss in Subsection 4.1 below. From these, we obtain the weak
dynamical localization,

sup ||[X|"/?E(Io(Eo, 80) : H) exp(—itH*)xol|| < oo for a.e. w,
teR

and the absence of the continuous spectrum
o.(H?)NIy(Ey,d9) =0 for a.e. w

as is explained in [14] (cf. [37]).
On the other hand, we obtain the following from Theorem 3.1 as in [14]:

Theorem 3.3.  (Semi Uniformly Localized Eigenfunction, cf. Theorem
3.11 in [14]). Let Lg and Io(Eo,d0) be the number and the interval given in
Theorem 3.1. If there exists Eq € Iy such that (3.3) holds for some L > Lg
and 6 > bd/h, then, for any € > 0, there exists m. > 0 satisfying the follow-
ing for a.e. w : o.(H¥) N Iy(Eo,d0) = 0 and, if {¢;w}jen is the normalized
eigenfunctions of HY with energy E;,, in Io(Ey,do), then, for any v > d/4,
there exist Cg ,, CNL, € (0,00) and {z;.,}jen C Z% such that

(3.6) ||Xx¢j,w”2 <Cew exp(m. (log |17j,w|<><>)-1|-—~_E —me|x — JUj,cd|<>¢)
and
|xj,w|oo > aujl/(4u)

for any j €N and x € Z2.
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Moreover we assume that the coefficients belongs to the local Kato class
Kioc(RY) defined as follows: a real function f on R? is said to be in the Kato
class KC(R?) if

hmsup/ | ga(r —y)|f(y)ldy =0
rz—y|<a

al0 zeRr

and is said to be in the local Kato class Kjoe(R?) if xxf € Kioe(R?) for all
compact K C R?, where

() —log |z| if d = 2,
ga(x) =
! 2|2~ if d > 3.

Then we obtain the following as in Lemma 2.5 in [22]:

Proposition 3.1. We assume

d
(K) STAM2 VAL V] € Kioo(RY).

j=1

Then, in the situation of Theorem 3.3, the eigenfunction ¢; ., is a continuous
function satisfying

|6j.w(@)| < Caew exp(m/ (log |5'3j,w|00)}-+6 —m_|z — Tjwloo),

where Cqc ., and m. are finite constants independent of j.

§3.2. Verification of Assumptions in [14]

The theory in Germinet and Klein [14] is discussed under several as-
sumptions in an abstract setting. We have already introduced some of these
conditions. In this subsection we show that the other assumptions hold in their
forms or in weakened forms.

We first prepare the following proposition, which we often use in the
following:

Lemma 3.1. Under the assumption (F), we have the following:
(i) For any 1 < p < oo, there exists a finite constant ¢ = ¢(d1, 02, 3,p) such
that

E {ess sup Vf(x)p} < ¢(log L)P/P
TeAL

for any L > 2.
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(ii) For almost all w, there exists a finite constant c,, such that
V() < coflog(|z]e +2)}%/P

for almost every x € R?,

Proof. (i) By Fubini’s theorem, we have

E[eiseitzp Vi’(z)p} = /Ooo Ad/\P(este/S\gp Ve (z)P < )\)

= / P(ess sup V¥ (x)? > 77) dn.
0 zEAL
By applying (3.2) to the right hand side we obtain the result.
(ii) By taking d3 > 1/+/82, we have

Z P(ess sup V¥ (z) > (3 log L)z/ﬂ) < 0.

LeN TEAL

By the Borel-Cantelli lemma, we see that, for almost all w, there exists L,, € N
such that

ess sup V¥ (x) < (03log L)*/?
zeEAL

for any L > L, Then for any L > L, and almost every x € Ay, — Ap_1, we
have
V¥ (z) < (63log L)2/P < {831og(2|z|e + 1)}2/P.

Therefore we obtain the result. O

We write Ap(x) T Ap(2’) if Ap(x) C Ap/—3(2’). Then the assumption
(SLI) in [14] relating the Simon-Lieb inequality is verified in the following weak-
ened form:

Proposition 3.2.  There exists a finite constant ¢ = ¢(d, My,) such that,
for any L, 0/, 0" > 2, 2, y, vy € R with Ap(y) C Ap(y') © Ap(x) and any
Eely— O'(Hx7L) — O'(Hy/j/),

(3~7) H‘FI’L(HI,L - E)_le,Z”m
1/2
< ((esrs supr) + c)|||Fy/7e,(Hy/,¢/ —BE) Yyl
,y/,e/

| p(Ho,p — B) "' Tyr |-
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The assumption (SLI) in [14] requires that the first factor in the right
hand side of (3.7) is bounded in w. Instead of the boundedness, we use the
assumption (F).

To prove this proposition, we modify Lemma 2.5.3 in [37] as follows:

Lemma 3.2.  There exists a finite constant ¢ = ¢(d) satzsfymg the fol-
lowmg let B B be bounded open regions in R? such that B C B and§ :
dist(9B,0B) > 0. Let g € L*(B) and u € L*(B) such that (iV+A%)u € LQ(B)
and ((iV + A¥)u, iV + A)@) + (u, V¥p) = (g,¢) for any ¢ € C§°(B). Then
it holds that

/2
¢
1V + A)ul| 2 5 < ess SupV > 3) lull 2By + 19/l 2(B)-
Then Lemma 2.5.2 in [37] is modified as follows:

Lemma 3.3.  There exists a finite constant ¢ = c(d, My,) satisfying
the following: let Ap(x') C Ap(x) and A" C Ap(2'), A C Ap(z). Let
¢ € C(AL(x)) and B be an open neighborhood of supp V¢ such that §; :=
dist(0B,suppV¢) >0, BN A =0 and B C Ar(x). Then it holds that

xar (B(Ha g — E)™ — (Har s — )" 6)xall|
1/2
C
< (( sup Vf) + a) (o 1o — E) s |

B
< |lIxa(He,L — E) xall

forany E € Iy —o(Hy,1) — o(Hy ).

Proof of Proposition 3.2. We have only to take Ar/ (z') = Ap(y'), A" =
Ag//( ) A= AL 1( ) AL 3( ) B:Ag/_l( ) Ag/ ( )and¢sothat¢—1
on Ay _5,5(y') and ¢ = 0 on Ay _3/5(y’)¢ in Lemma 3.3. O

Let T be the operator of multiplication with the function (1+|z|?)", where
v is a fixed number greater than d/4. Let Hi be the weighted spaces defined
by
Ha = L*(RY, (1 4 |z|*) ¥ dx).
The set DY := {¢ € D(HY)N'Hy,H*¢$ € H,} is dense in H4 and an operator
core for HY, for a.e. w, where D(H¥) is the domain of H*.

1 € H_ is called a generalized eigenfunction of H* with generalized eigen-
value I if

/H—‘*’gmbdx:E/@i/)dx
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for any ¢ € DY. Then the assumption (EDI) in [14] on an eigenfunction decay
inequality is verified in the following weakened form:

Proposition 3.3.  There exists a finite constant ¢ = c(d, My,) satisfy-
ing the following: for any generalized eigenfunction v of HY with generalized
eigenvalue E € Iy, x € R? and L > 4 such that E ¢ o(HY ), it holds that

(3.8)

1/2
el < (( supvw) n 1)|||PI,L< © .~ B) x|l % [Tactll.

Ar(z)

As in the assumption (SLI), the assumption (EDI) in [14] requires that the
second factor in the right hand side of (3.8) is bounded in w. This proposition
is proven by Lemma 3.2.

The assumption (NE) in [14] on the average number of eigenvalues is ver-
ified by the following:

Proposition 3.4.  For any a € R, there exists a finite constant C, =
Cu(a,d, B,61,02) such that

(3.9) E[t{(~00,a) No(H})}] < Col?

for any L > 1.

Proof. Let H;" be the operator obtained by replacing V¥ by — (V¥ —a—
1)_ in the definition of HY. Then, since HY —a — 1> H;"*, we have

#{(—o00,a) No(HE)} < #{(—00, —1) No(H )}

Let H7:"; be the operator obtained by replacing A(z, W,,(z)) and W§ ()™ by

e~ —

A and (V¥ —a — 1)_, respectively, in the definition of HY 5 in (2.1). Then,

since o(H;™*) C o(H}Y's), we have

#{(—00, 1) No(Hy")} < §{(—00, —1) No(H[ )}

Let H’ 5 be the operator obtained by replacing A(x, W, (z)) by A in the
definition of H/f; in (2.2), and I'*(w, L + 3) be the operator obtained by

replacing E‘*’E, E and W' (z)" by H} 3, —1 and (V¥ —a — 1)_, respectively,
in the definition of I'(w, L + 3, FE) in (2.6). Then, by the Birman-Schwinger
principle (cf. Theorem 8.1 in [34]), we have

{(~o0, —1) N (B} < ${(1,00) No(I%(w, L +3))}.
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This is less than or equal to

2
[T (w, L + 3)[]|%2.
/

By Lemma 2.1 (ii), we see this is dominated by

—~— W 2
IXTrs(V —a—1)_||%.

By Lemma 3.1 (i), we have

Bl —a— 1231 > Eless sup |V —a—1)|*/2]

qa/2
beAp y3NZI z€A2(b)

< C(61,62, 8, a,q)4{Ar+3 N Z%}.
Therefore we obtain (3.9). O

The following ensures that the assumption (SGEE) in [14] relating a gen-
eralized eigenfunction expansion holds:

Proposition 3.5.  For any a < b and p > 0, we have
(3.10) E[Tr[T"*E([a,b] : H*)T™ '] < .

The assumption (SGEE) in [14] requires (3.10) only for p = 2. However we
need (3.10) for some p > 2 since our scalar potential V¥ is not bounded below.

Proof of Proposition 3.5. By taking a complete orthonormal system {., }
of L2(R%), we write the trace as

(3.11) Te[T'E([a,b] : H*)T™'] = Z | E([a,b] : H)YT o, |3

Since (H¥ —a+1)"t > (b—a+1)~! on the range of E([a,b] : H*), we have

(3.12) |E([a,b] : H)YT Yol
<(b—a+D)[(HY —a+ 1) E([a,b] : H*)T ™ op]l2.

Since

(H* —a+1)""E([a,b] : H*) = E(|a,b] : H*)(H~+ + 1)~
F(H® —a+ 1) E([a,b] : HY)(a + V) (HF +1)7L,
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we have

(3.13)  [[(HY —a+1)"*E([a,b] : H*)T o2
< | B(la,b) : H*)(HF +1)7 T ol
HI(HY = a+ 1) E(la,b] : H)(a + V) (HT + 1) T o,

where HwF = (iV + A¥)? + V%. The second term is less than of equal to
I(a+V2)(H + 1) T ppl2,

since (H* —a+1)"! < 1 on the range of E([a,b] : H*). Therefore the quantity
in (3.11) is dominated by

Te[ T~ (HoF +1)727 ) + Te[T (HoF + 1)~ (a + V)2 (HeF + 1)~ 771,

By using the diamagnetic inequality as in the proof of Lemma 2.1, we see that
this is less than or equal to

T[T =A+ D) 2T+ T[T (A +1)"YHa+ V) (—A+ 1) 1T 1.

By the explicit representation of the resolvent kernel we see that the first term

is finite if d < 4. By using also the boundedness of E[[[2,(a + V*(z,))?], we

see that
E[Te[T Y =A+1)"Ya+ V)2 (-A+ 1) 17712

is finite for any N € N if d < 4. For the higher dimensional case, we take ¢ € N
so that £ > d/4. By repeating the estimates as in (3.12) and (3.13), we have

1B([a,8] : H)T ™ o2
<C > (@ + V) (HY+ +1) " Ha+ V)2 (H+ +1)71- -
J1,g2,e--,30€{1,2}

% (a+ V)i (HF + 1) T op]fo.

The rest of the proof is similar. O

83.3. Proof of the main theorems

Theorem 3.1 is proven by extending the four theorems in Section 5 in [14]
and combining them as in [14]. The first one of them is extended as follows:
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Proposition 3.6 (cf. Theorem 5.1 in [14]).  For any Ey € Iy, 0 >
bd/h, odd integer Y with Y > 11 and 0 < p < h# — bd, there exists Zy =
Zo(d, p, MIO,QE),ﬂ,él,ég,b,h,G,p, Y) € 6N satisfying the following: if there
exists Zy < Lo € 6N such that

P(Ay, is (0, Eo)-suitable) > 1 — (3Y — 4)~24,
then there exists k = k(p,Y, Lo) € Zy such that
P(Ap, is (0, Ey)-suitable) > 1 — L,/®

for any k > K, where Ly =Y Ly, for any k € Z...

Proof. In the proof of Theorem 5.1 in [14], we require s satisfies
(3.14) (p+bd)/h < sand s < 0.
As in [14], we set

qu=L7"7 tp=L"" u,=1L",
pr = P(Ay is not (6, Ep)-suitable).

Let £€6N, £ >6p, Y € 2N+ 1 and L = Y/. We set

- 14 -
Ere=ArN gZd, Cre={M(y) -y € Epe, Ae(y) T ALY}

In the definition of the event Fy,, in [14], we add the conditions on V¥ as

follows:

Fre={w: there exist two (6, Ey)-nonsuitable boxes
Ag, (1), Aoy (y2) in Cpy such that

diSt(Ah (yl)a A€2 (yQ)) > QP}
U {w : dist(a(Hy 50), Eo) < tr, for some z € Z ,}
U{w : dist(o(Hg ), Eo) < tr}

U {w : ess sup V¥ > {2p(log L)Q/(;?}l/ﬁ}'
Ar

By Lemma 3.2, we have

{w: AL is not (0, Ep)-suitable} C Fp,
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for L > Z; = Z,(d,[3,01,02,0,p,Y,s). By the assumptions (W), (F) and
Lemma 3.4 below, we have
37 — 4)%d _
P(Fre) < %pi +{(6Y)? + 13Qf L*t} + 6, L2
By -9, 1

> #Pe + EQL

for L > Z5 = Zg(d,Qf(ﬂﬂ,él,é%b, h,0,p,Y,s). The rest of the proof is same.
O

Lemma 3.4.  Let Ay, (y1), Mo, (y2),... , A, (ym) be finite number of
bozes such that dist(Ag, (i), Ae;(yj)) > 2p for i # j. Then, for any 0 and
E, the events {w : Ay, (yi) is (0, E)-suitable}, i = 1,2,... ,m, are independent.

Proof. Let ¢; € C°(RY — [0,1]) such that ¢; = 1 on Ay, (y;) and ¢; = 0
on Ay, 1 ,/2(y:)¢. We define

A (o) = 2 [ AD) ()Gl dy

kséj

Since A®)¥ and dA® are continuous in z, Al1¥ is also continuous in z and
we can integrate A and Al along any C' curves. Since dAM = d AR«

on Ay, (y:), we can construct ®1% € C1(Ay, (y;)) such that ddllw = AR —
Al by the Stokes theorem. By the unitary operator exp(zq)[’]*‘*’), the op-
erators Hy ~ and H, [ ]w_ are unitary equivalent, where H H Y 1S the operator
obtained by replacing .A (2) by Al in the definition of H&-Jn Since the coef-
ficients of HZ}; are determined by the random field {(AM« d AR« V& (z))

x € Ay, p/2(yi)}, the desired independence follows from the assumption (IAD).
O

The rest of the theorems in Section 5 in [14] are also modified by using the
assumptions (F) and (IAD) as above. We omit the detail.

Theorems 3.2 and 3.3 are proven similarly as in [14] by using Lemma 3.1
and the propositions in the last subsection.

Proposition 3.1 is proven by using the subsolution estimate (Theorem 8.17
n [19]) as in [28]. For this, we use Kato’s inequality (Theorem X.33 in [32]) to
show (=A+ (V¥ — E;,)-)|¢j.u(x)] <0 in the weak sense.
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83.4. The case of Section 2

In the case of Section 2, the assumptions (R), (S) and (IAD) hold. More-
over the assumption (K) in Proposition 3.1 is also satisfied. For any open
interval Iy such that sup Iy < —(2[|w - VoyAl|oe/n)?), the assumption (W) with
INO is ensured by Theorem 2.1. The assumption (F) is ensured by the follow-
ing lemma by Fischer, Leschke and Miller [12], which is based on Fernique’s
theorem [10]:

Lemma 3.5 (Lemma 5.3 in [12]).  There exists a positive finite constant
Lo = Lo(R%(0), ||[VR®||») such that

2
P W(z)| 2 n) <22 Vexp (-
(f;l,ﬂ @)z ") = P T 200R9(0) log L

for any L > Lo and n > 0.

The initial estimate (3.3) is also proven by using this lemma and a Combes-
Thomas estimate, Lemma A.1 in [12] as in Lemma 5.5 in [12]:

Lemma 3.6.  There exist positive constants ¢; = c1(d), ca = ca2(d) and
a universal finite constant cs such that for any 6 > 0, 12 < L € 6N and
E < —¢€(L), we have

P(Ay is (0, E)-suitable) > 1 — 84174,

where
&(L): = {esL ™ og(er LIT4H1)}2 1 (¢, R (0) log L)™/2.

Therefore the results in Subsection 3.1 hold for

(315) By < {~(2lw- Vudo/n)?} A { - G;g;/he@},

where Ly is the constant given in Theorem 3.1.
These results are meaningful since the interval determined by (3.15) is
included in the spectrum as is shown in the following:

Proposition 3.7 (Theorem 5.34 in [31]).  We have
o(H*) D {ian(H(f, w)) — (w)"

0> 0,w’ € R,w € supp P(W,,(0) € -|[W2(0) = wo)}
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for a.e. w, where H({,w) is the self-adjoint operator on L?(Ay) obtained by
restricting

(10; + A;(z,w))?

M&

J=1

to Ay by the Dirichlet boundary condition. In particular, if
sup{|A(z,w)|:x € Ay,w € RI} < 0

for any € > 0, then we have
o(H*)=R

for a.e. w.

Proof. For any w® > 0, w € supp P(W,,(0) € -|[W2(0) = wP), £ > 0 and
|w®| > & > 0, we have

P( sup |(W,,(z), Wo(x)) — (w,w?)| < 5) > 0.

€N,
If the event in this probability occurs, then by using
A, W () — Az, @)| < ]| VAl oo,
we have
inf o(Hg,) < (1+¢)inf o(H (@, 0)) + (1 +€)[|VaAll3, — (w” — )" = W(e)
and
inf o (H,) > (1— &) inf o (H(@, ) — =(1 — ) [V, — (w° +2)" = W(e).
Since inf o(Hg,) C o(H*), we have
P(W(e), W(e)) No(H) #0) >0

By the ergodicity, this probability is one. Therefore we obtain

1= P(W(1/n), W(1/n)) No(H*) # () for any 1/wy < n € N)
= P(inf o(H (w,£)) — (w°)™ € o(H¥)).

By the same method we can prove this for w® < 0.
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We next take an R9-valued continuous function w(w®) of w® € R so that
w(w®) € supp P(W,(0) € [W2(0) = w®) and w(0) = 0. Then s(w® () =
inf o(H (w(w°), £)) — (w®)™ is continuous in wyg. If

ag = sup{|A(z,w)| : z € Ay, w € R} < 0
for any ¢ > 0, then
s(w®, 0) < 2inf o(—Ag) + 205 — (w°)",

where Ay is the Dirichlet Laplacian on A,. By this we see that s(w®, £) tends
to —oo as w” tends to co. Therefore we have (—o0,5(0,/)) C o(H%). By the
diamagnetic inequality we have

5(0,¢) > inf o (—Ay).

Then we see that s(0, £) tends to co as £ tends to 0. Therefore we have o(H¥) =
R. O
Remark 3.1.  In the case that A; is independent of w and n = 1, Fischer,

Leschke and Miiller [12] proves the absence of the continuous spectrum in a low
energy interval under more general conditions on the Gaussian random field.

Remark 3.2.  The results in this subsection are extended to the cases
stated in Remark 2.2.

84. A Characterization of the Anderson Metal-insulator Transport
Transition

In this section we extend the theory in Germinet and Klein [16]. As in
the last section, we treat a random operator (3.1) with a general random field
(A¥(x),V¥(z)). In [16], AY = 0, V¥ is relatively form bounded below with
respect to the negative Laplacian and the Wegner estimate (W) holds with
h = b = 1. In this section we remove this restrictions so that the operator in
the preceding sections can be treated.

84.1. Main theorem

We use the notations in the last section. We assume (R), (IAD), (F) and
(W) on an open interval Iy. Moreover we assume the ergodicity:
(E) The random field (AN« (z),dA®«(z), V¥ (x)) is stationary and
ergodic, with respect to the shift in the variable z € R? or Z.
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Then we have a nonrandom set ¥ such that o(H*) = X with probability
one (cf. [31], [38]). Referring Theorem 3.1, we modify the definition of the
multiscale analysis region g4 in [16] as

Yymsa:={E €X: there exist § > bd/h, a compact interval I
and £ € 6N such that F € Iy C I CI~0,£ > Lo and
P(Ar : (0, F) — suitable) > 1 — 84177,
where Ly is the number given in Theorem 3.1}.
As in [16], we consider moments defined as follows: for any n > 0, f € C*(R —
[0,00)), t € R and T > 0, we set
(4.1) M (n, fot) == ||[{X)"/* exp(—itH*) f(H*)xolll5

and

(4.3) M(n, f,T) = % / h e 2/TM(n, f,t)dt,

0

where (X) := (14 |X|?)"/2. The strong insulator region Xg; is defined by
Ygr = {E € X : there exists an open interval [ including F

such that {sup M, (n, f, t)} < oo
teR

for any f € C3°(I — [0,00)) and n > O}.

By Theorem 3.2, we have X3;54 N fg) C Yg7. Moreover, if £ € ¥g; and [ is an
open interval appeared in the definition of F € ¥Xg;, then it is easy to see that

sup M(n, f,T) < 0o
T>0

for any n > 0 and f € C§°(I — [0,00)). Conversely, we have the following,
which is an extension of Theorem 2.11 in [16]:

Theorem 4.1.  Let f € C§°(R — [0,00)) such that f =1 on some open
interval J C Iy, a > 0 and

(4.4) n > 2bde/h + (2 + 9b/h)d.
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If
lim M(n,f,T)/T" < oo,

T—o0

then JNX C Xps4.

We prove this theorem in the next subsection. In [16], many results are
deduced from this result. Some of the results are stated in terms of an ex-
ponent defined in (4.9) below. To define the exponent in our case, we extend
Proposition 3.1 in [16] as follows:

Proposition 4.1.  Let f € C§°(R — [0,00)) such that f(H¥) # 0 with
probability one. Then we have

(4.5)  0< My(0,f,0) < My(n, f,t) < C(d, B, f,n,w)(t) [+ Gd+1)/2)]+2
(4.6)  0<M(0, f,0) < M(n, f,t) < C(d, B, f,n) )+ Gd+1)/20]+2

and
(4.7) 0 < M(0, f,0) < M(n, f,T) < C'(d, 3, f,n)(T)In+(>d+1)/2]]+2

for any t € R and n, T > 0, where [[m]] is the smallest integer greater than m
for any m > 0.

We prove this proposition in Subsection 4.3 below. In the situation of
Proposition 3.1 in [16], the exponents of (¢) and (T") in the right hand sides of
(4.5)—(4.7) are taken as [n+ 3d/2] + 3 and the constant C(d, 3, f,n,w) in (4.5)
is independent of w.

As in [16] we define the n-th upper and lower transport exponents as
follows: for f € C§°(R — [0, 00)) with f(H“) # 0 with probability one, we set
+ T log M(n, f,T)

Ar(n. )= Yllinoo nlogT

and log M(n, f,T)
— . 0og n,J,
=1 _—
g, 1) lerr(lm nlogT
For f € C§°(R — [0,00)) with f(H“) # 0 with probability one, we set
B%(n, f) = 0. For any open interval I and E € R, we set

B (n, 1) = sup{F*(n, f)|f € C5°(I — [0,00))}

and
G%(n, E) := inf{8%(n, I)|I is an open interval including E}.

For these exponents we obtain the following by the entirely same proof of
Proposition 3.2 in [16]:
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Proposition 4.2.  For any f € CP(R — [0,00)), any open interval I
and any E € R, we have the following:

(i) BE(n, f), BE(n,I) and B*(n, E) are monotone increasing in n > 0.

() 0 < 8(n, f), B=(n, 1), 5 (n, E) < 1.

Therefore, as in [16], we can define

(48) BE(I) = Tim §¥(n, 1) = sup 5% (1, 1)
ﬂi(E) = T}Ln;oﬂi(na E) = Supﬂi(n, E)

and we have 0 < 8%(I), f*(E) < 1 and BF(E) =0 for E ¢ X.
From Theorem 4.1 we have the following as in Theorem 2.10 in [16]:

Proposition 4.3. IfE € Iy and 3~ (E) > 0, then 8~ (n, E) > h/(2bd)—
(2h 4+ 9b)/(2nb) for allm > (2h + 9b)d/h and B~ (E) > h/(2bd).

Therefore the size of the jump of the exponent 5~ at the transition point
is greater than or equal to h/(2bd).
Theorems 2.8 and 4.2 in [16] are also extended appropriately.

84.2. Proof of Theorem 4.1

To prove Theorem 4.1, we first modify Theorem A.5 in [16] (Theorem 2 in
[15]) as follows:

Proposition 4.4.  There exist finite constants C(d) and C such that
(4.9)  xaf(H?)xylll

<@ fllk+1) (esi sup V¥ + 1

RL

(2k+d—3)/4 (Ch)
(x — y)(2h=d=3)/2

forany f € C*°(R — C), (d+5)/2<keN,L>2andz, ye Ar_1, where

R=2Vd+4 and
= (r) r—ld
I £1l () ;ZO/RIf (u)[{u)" ™ du

forn € N.

The number R = 2v/d + 4 can be replaced by any number greater than
2v/d + 2 if L is large enough.
To prove this proposition, we first show the following:
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Lemma 4.1.  There is a finite constant C(d) such that

(4.10) 1z (H” = 2) " xy

C(d
(L) {1+ ((m= + |2] +ess sup Ve +1)1/2 /)

RL

<
nk

X ((UEL + |2| + ess sup V¥ + 1)/,75L)(d—1)/2}

ARL

mRL
X e - —: |z —

forany z € C—R, L > 2 and z, y € Ap_1, where n, := dist(z,0(HY)),
nBl = dist(z,0(HY;)) and

1/2
mith = n:” 03 :
* 32 \ ess supy,, V¥ +nltt + 2|

Proof. We take ¢ € C3°(Arr — [0,1]) so that ¢ =1 on Az and supp V¢
C Ayvasnres — Mo(vasiyny2- Then we have

(4.11) ¢(Hpgp —2)7H = (HY —2)7'¢
=2(HY — 2) 1 (iV¢)(iV + A*)(Hg, — 2) 7"
—(HY = 2)" (A¢)(Hf — )"
and
(412) lxa(HY = 2) " x|l < xe(Hgz — 2) " x|
+ @llIxa(H* = 2) 71 (V) iV + A)y |

+lxa (H? = 2) T ANV (HiL — 2) ™ Xyl
where ¢ € C§°(Arr — [0,1]) such that » =1 on Ay g, 1105 = Mo vaiiynse

and ¢ =0 on (Ay gy 1yr4a = Mo(vayiyns1)”- By the same proof of Corollary
1 of Theorem 1 in [15], we have

_ 9 mitL
(4.13)  lIxao(HEL = 2) "Xl < JRE P <C\/— T T |>

S RL|$0 — Yo
z +V77z
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for some finite constant C' and any zg, yo € Agr_1. Since |z¢g —y| > (Vd+1)L
for any o & Ay /g, 1yp41 and y € Ap_y, we have
(4.14) llv(Hiz, — 2)" 'l
1/2
S{ > ||Xwo(Hz“éL—2)_1Xy|2}
Z()G(A

2(\/E+1)L+47A2(\/E+1)L+1)mzd

C"(d) | (a2 exp <_ mit(Vd+1/2)L
2+ /it

d—1)/2
C'(d) {2+ /nRL v mit/dL
< exp| — ————
2+ /it

C(d w o
< 77;(%) { <77§L + |z| + ess sup V¥ + 1)/77§L}

ARL

o mBLN/dL
X ey —————1 I
P\ 2 vt

Since |z — y| < VdL for any z,y € A;_1, we have
me\/EL < mbE | |
exp| ——2—— | <exp| - —2—lr—19||.
2+ /nftt 2+ y/nftt

On the other hand we have

c 1/2
(4.15) ||V + A“)(HY —2)7 Y| < 0 (772 + |z| + ess sup V¥ + 1)

RL

for some finite constant C. In fact, for any ¢ € C5°(R?), we have
[ (iV + A“)(H” = 2)" |
= ((H” = 2)7', (iV + A )W (iV + AY)(HY — 2)7'9).
Since
(iV + A2 (iV 4 A¥)
=¢*(HY = 2) + 9% (2 = V) + 24(iV) (iV + AY),
and |||(H* — 2)71]|| < 1/n., we have
[ (iV + A“)(H” — 2)" o]

1 1 1
< —{1 +— (Iz +ess sup V2 + —sup |V¢I2> }Ilcbll2

P z ARL

+ sllp(iV + A°)(HY — 2) ol
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for any s > 0. By taking s < 1, we obtain (4.15).
By applying (4.13), (4.15), (4.15), |[[(H* — 2)~ ||| < 1/n. and |||(Hf;, —
2)7H|| < 1/nfE to the right hand side of (4.12), we obtain (4.11). O

Proof of Proposition 4.4. As in the proof of Theorem 2 in [15], we use the
Helffer-Sjostrand formula (cf. [8] Section 2.2):

f(H?) = 1 /]R af’“—(z)(H“’ — 2) " Ydudv,

T 0z

where z = u + v, k € N,

k
filz) = { > %f(”(U)(iv)T}U(u,v),
r=0""

o(u,v) = 7(v/{u)) and 7 € C>°(R — [0,1]) such that 7(s) =1 on |s| < 1 and
7(s) =0 on |s| > 2. Then we have

Xz f(H?) x|l < C(11 + I2),

where

k

1 |v|"” -1

n=Y 10w o M = 2)7 | dude
;0” (u) <[] <2(u) {u) !

and )
= y/|<2< >|f('““)(U)||v|kH|Xx(H“’ — 2) " x| dudo.

As in [15], by (4.11) and |[pfE|, |n.| > |v|, we have

11X (H = 2)" x|
c(d v

< ( ){1 + <(|v| + |z| 4 ess sup V¥ + 1) /|U|)
| Anr

1/2 (d—1)/2
X <<v+|z+ess supr+1> /v) }
A

RL

Ip;

vl -yl )
xexp| —C .
( Vvl +ess supy Vo + [2[(v/|v] 4 2)
If (u) < |v] < 2(u), then we have |v| > 1, |z| < v/2Jv| and

[lIxa (H” = 2) " x|l
d/2 B
<@<esssupvw+l> exp(—C ] )

[v] AnL Vess supy ., V2 + 1
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Therefore we have

/2
< w
I C(d)(ess SupV+1) <0< X r')”f”(k

ARL

[z —yl
xexp| —C .
p( Vesssupy ., V2 + 1

If |v| < 2(u), then we have |z| < 3(u) and

X (H” = 2) 7 xy
<G (4 1)m) 7}

[ollz — vl
X -C .
P ( (u)\/ess supy ., V< +1

Since

/2<u> v e C |7}||.T — y|
<o | —
0 P (u)\/ess supy ., V< +1

e Cry/ess supy ., V¥ +1 "
< (2(u) ( — )

for any r > 1, we have

(2n+d—3)/4
I, < C(d) (ess sup V¢ + 1)
k! ARL

(k+1)
(x — (2k d— 3/2/|f

for any k > (d + 5)/2. Therefore we obtain (4.9).

We should also modify Lemma 6.4 in [16] as follows:

79

kdu

Lemma 4.2.  There exists a finite constant C(d,h) satisfying the fol-
lowing: for any v > bd/h, € >0,a >0, E €I, 0<e<1,4<L€2N and
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0 < by < by <bz <1 such that by — by > 1/4, we have
@10)  P(II0ms ~ xorn) (7 — £~ ) ol >/t

ess sup VY < (log RL)(E“)/ﬁ)

Arr

L7 .
< 2|10t~ X0 s ) (2 = B~ ) el

s ess sup V¥ < (log RL)(EH)/B]

ARrL

+ Q7 C(d, h)(1 + |E|)"?(log RL)(CH)”/(?'@)/LW*W

and
(4.17) P(E ¢ o(HE), (ot — Xouar) HE — B) xomzlll > a/2,

ess sup V“ < (log RL)(€+1)/'B>

ARL

LY o
< zE [|||(XO,sz — X0.bor—1)(HY — E —ie) "xo., 1]

: ess sup V¥ < (log RL)(€+1)/5}

ARL

+QpC(d.h)(1 + |E|)"?(log RL)(G“)W(M)/LV"‘W

+Qz (2y/z/a)" L™

Proof. We take ¢ € C§°(Ar — [0,1]) so that ¢ = 1 on Ay, 1, ¢ = 0 on
A§ . supp Vo C Ay, — Apyr—1, [Vo| < 3Vd and [V2¢| < 7d. Asin (4.11) and
(4.12), we have
p(HY —E+ie) ' — (HY — E +ie) ¢
=2(H*” — E +ie) ' (iVp)(iV + A)(HY — E +ig)~!
— (HY — E+ie) " (A¢)(HY — E +ie)™!
and
(X065 = X0,6,2) (HE — E —ig) " x0,6, 1
< (X065 = X0,05£) (H” = E —ie) " (iV + A) (Vo)

+ 1(X0,052 — Xo,por)(Hf — E — i)~ (Ag)]])
X |I[(x0,60 — X0,0a2—1)(H” — E —ie) " x0,, |-
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As in (4.15), we have

(Vo) iV + A)(HY — E + i)~ ||
C(d)

1/2
<Y (Gist(o(HY),E)+ |E+i v 1)
dist(o(Hf),E)( ist(o(HE), B) +|B + el + ess sup V= + )

Therefore we have

1 (x0,6s2 — X0,602) (HE — E —i€) " x0,6, L]
C(d)

= dist(o(H2), B)

X |I[(X0,b22 = X0,002—1)(HY — E —ie) " X0, L]

1/2
(dist(o(H‘L”),E) + |E + ie| + ess sup V¥ + 1)
Ar

and the right hand side of (4.16) is dominated by

P(|<><o7b2L  Xomr ) (H® — B —i&) xomzlll > a/I7,
ess sup V¥ < (log RL)(6+1)/5>
ARL

+P(dist(a(HY), E) < C(d)(|E + ie| + (log RL)(“FV/8 4 1)1/2 /7).

Then, by the Chebyshev inequality and the Wegner estimate, we obtain (4.16).
If E¢o(HY), then

(HY —B) ™' =(HY —E —ie)™! —ig(HY — E)"Y(HY — F —ie)™?
and

1(x0,6s2 — X0,6o2) (HE — E) " "X0,, |
< |1(x0,b5 1. = X0,0o1.) (HE — E —ie) *xo, ||| + &/ dist(a(HY), E)?.

Therefore the right hand side of (4.18) is dominated by

P<|||(X0,b3L — Xo,bo1.)(HY — B —ie) " xo0,|| > a/4,

ess sup V¥ < (log RL)(E“)/’B)

ARrL

+ P(dist(c(HY), E) < 2+/e/a).

Then, by (4.16) and the Wegner estimate, we obtain (4.18). O
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Proof of Theorem 4.1. Let I be a compact interval included in J and
6 > bd/h specified later. For any F € I and 36 < L € 6N, we set
PE7L = P(E S O'(Hz}))
+P(E ¢ o(HE), |[|[To,.(HE — E) ' xo0,1/3ll| > 1/(2L7)).

If E ¢ 0(HY), then, by using the resolvent identity and xo,c = Xo,2/3+(X0,L —
Xo,21,/3) as in [16], we have

11T, (HE — E)™"x0,/3]l]
<||ITo,L(Hf — E —ie) ™ xo,L/3ll]
+ell[Lo,(HE — E) 'xo0,013lll/ dist(o(Hf), E)
+elll(xo.L — x0,2L/3)(Hf — E — Z'5)_1><0,L/3|||/OliSt(U(Hf)a E).

Therefore we have

where
I, = P(‘HFO,L(Hf —F— iE)_1X0,L/3||| > 1/(41’6)7

ess sup V¥ < (log RL)(EH)/’B),

ARL
I == P(E & o(H), V0. (HE — E) o215l > 1/2,

ess sup V¥ < (log RL)(e'H)/B),

ARL
Iy == P(Ill(xo,1. = Xo/3)(HE — E = i2) xo sl > 1/4,

ess sup V¥ < (log RL)(GH)/B),

ARL

1= P(dist(o(H), B) < 3L,

Iy = (ess sup V“ > (1ogRL)(5+1)/f6)

ARrL

and € > 0 is taken arbitrarily. By the assumptions (W) and (F), we have
Iy = Qf (3e)" LM+

and
I := 6, exp(—d2(log RL)¢).
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By taking a = L7% b = 1/3, by = (L —3)/L and b3 = (L — 1)/L in
Lemma 4.2, we have

Iy < I + Q7 C(I,d, h)(log L)(<+ DM/ (20) b
where
h= LWHE[H‘PO*L‘Z(HUJ — E —ie) " xo,Ly3ll]

s ess sup V¥ < (log RL)(<+1)/8

ARL

and «y > bd/h is specified later. This is estimated as
I < I + I,

where
Iy o= L"YE[|||Do,p—2(HY — E —ig) ™' f(H*)x0,1/3l]

and
Iz i= L7OE|[[Do,2(H* = B — i) (1 = F(H*))xo,z3]l

s ess sup V¥ < (log RL)(GH)/B]

ARL

As in [16], we have

I <D N E[|||Top—o(HY — E —ie) ™ f(H*)xyll]

YEZINAL /3
=L 37 B[Py a(HY — B —ie) ™ f(H?)xoll]
yEZdﬂAL/g
/L 3\ "
<L <§> (3 B 5) B|[[(X)"/2(H* — E — ie) ™ [ (H*)xoll]
127/2

- = 1/2
S 3dL(n/2)fd7’Y*GOE(n’ f’ E) 9

where
Oc(n, f, E) := E[||(X)"*(H* — E — ig) " f(H*)xol|[3]-

By using Proposition 4.4, we have
Iy < Cle. £k, 1, 8,€)(log L)( D CR+=/(49) [pk=tm=0=a/2

for any (d+5)/2 <k e N.
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I and I3 are also estimated similarly by using Lemma 4.2 appropriately.
Therefore we obtain

3
Pp 1 < Z PL

j=1
where
C(n,d)
L= ’ 1/2
Ph.1 = Frm—imy=a 0= [ B)2,
PZ . :=C(d, f,k,I,5,6)(logL)(e+1)(2k+d—3)/(46)/Lk—1—7—9—3d/2
+Qf C(I,d, h)(log L)t<H1"/ () / [h—bd
+ 81 exp(—d2(log RL)®)
and

Pl = Qq {2V L7 + (32) L),

For any ¢ > 0 and 0 < pg < 1, we set

1/(0h+bd) 1/(2bd)
o Po Po
“&m”{Q%w> A<?> Joe

Then, since (3¢)"L(g)?"+bd eh 24 < py. we have

P%,L(s,pg) < Qfo (Qh\/p_o +p())

By Proposition 6.1 in [16], we have

O := lim 51+0‘/ O.(n, f, E)dE < .
el0 R

Then there exists a sequence {&,, }r, such that €, \, 0 as m — 00, L(g;, po) >
36 and
glta / 0., (n, f, E)dE < 20.
R

For any m € N and M > 0, we set
Amari={E€I:elf*0., (n, f, E) < M}.

Then we have |I — A, m| < 20/M. Since

1/h
Po
em > C(0,h,b,d) (W) ;
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we have

pl < C(d,n,0,h,b)v M
E,L(em.po) = p(()lJra)/(Qh)L(Em’pO)(n/2)—d—’y—0—(1+a)(9h+bd)/(2h)

for any E € A, pr. Taking v > 0 arbitrarily, we set M (m) := 20L(€y,,p0)"-
Forany £’ € I, there exists E' € A, yr(m) such that |[E—E'| < L(ep, po) ™"
Then the quantity

Pp L o)
= P(F € U(HZ’(EWPO)))
+P(E' ¢ J(sz(sm,po))’
L0, L(emp0) (HE (1 o) — E) " "Xo,1(emp0)/3]ll > L(Emsp0) %)
is dominated by
Pg L(em o) + P(ist(E, o (Hg . 1)) < CL(gm,po)~~972).
Therefore we obtain

/
PE L p0)

C(n,d,0,h,b)v/O
pé”a)/(Zh)L(Em, o) (M/2)=d=y=0—=(1+0)(Oh-+bd)/(2h)—v/2

+C(d, f,k, 1,4, ¢€)(log L(gm,po))(e+1)(2k+d73)/(45)/L(gm’po)kflfvfefisd/z

+ Q7 C(d b, 1) (10g L(zgm, po))“HV ) [ L2y, po) "=
+ 01 exp(—d2(log RL(€m, po)))
+ Q7 (2" /po + po)
+ Q7 C(h) [ Llzm, po)" =020,
If we can take n > 0, 7, @ > bd/h, v > 0 and (d + 5)/2 < k € N so that
n/2>d+v+60+ (1+a)0h+bd)/(2h)+v/2,
(4.18) k>~+0+3d/2—1,
hv/2 > h6/2 + bd,
then we have
771L11>1100 Pé/aL(Emvpo) S QfO(Qh\/p_o—Fpo)

and
im P(E' ¢ o(Hy),||[Cor(Hf —E') 'xorslll <L7%) =1,

L—oo
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from which we have E' € ¥j;54. For (4.18) to be satisfied, (4.4) is necessary
and sufficient. O

84.3. Proof of Proposition 4.1

To prove Proposition 4.1, we use the following instead of Lemma A.4 in
[16]:

Lemma 4.3. For L > 0 and a compact set B in R, we set ©¥ =
1 — (min B Aess infp,, V¥). Then, for any d/2 < m € N, there exists a finite
constant C(d, m) such that

Tr[xo, L E(B : H*)(H* + ©“) ™x0..] < C(d,m)L".

Proof. We take {¢;}jen C C3°(A2r, — [0,1]) so that ¢1 =1 on Az, and
¢j+1 =1 on supp ¢; for any j € N. Then we have

(4.19) E(B:HY)(HY+0*)"'¢; = E(B: H*)¢;(Hs, +6%)~*
+ E(B: H)(H* +0“)" iV + A,)(2iV ;) (HS, +©6<)~*
+ E(B: H*)(H* + 0“) ' (A¢;)(Hyy, +©0%)~*

for any j € N. By this, we have

(4.20)  xo,LE(B:H*)(H+0Y) "x0,L
= xo.LB(B : HY)(H* + ©“)"" ¢, (Hg, +©0“) 'x0,L
+ x0..E(B: HY)(H* 4+ ©“)"™(iV + A,)(2iV¢1)
X (Hsy, +0“) 'xo.L
+x0,.LE(B: H*)(H” + ©“)""™(A¢1)(Hsy, +©%) ' xo,L-

By using (4.19) again, the third term is rewritten as

X0, E(B: HY)(H* + ©¥) "o (Hsy, + 0%) "1 (A¢1)(HS, + 0%) xo,r
+xo0.LE(B: H?)(HY + 0¥)™™(iV + A,)(2iV o) (Hyy, + 0%) !

X (Ad1)(Hs, +©%)'xo,L
+xo0.LE(B: H?)(HY + 0¥)"™(A¢q)(Hyy, +60%) !

x (Ag1)(Hyp + @w)71X0,L-

We repeat this calculation also for the other terms of the right hand side of
(4.20).
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By the Feynman-Kac-It6 formula and the diamagnetic inequality, we have

Trlexp(—t(Hs, +0“))] < e ' Trlexp(tAar)]
< C(d)Lde_t/td/2,
where exp(—t(Hy, + ©“)) and exp(tAqyr) are the heat semigroups generated

by HS; 4+ ©¢ and the negative Dirichlet Laplacian —Asy, on Asp, respectively
(cf. [3]). Thus, for any p > d, we have

I1(Hsy, +©“) 2|l < O(d, p) L.
By applying this and
11V + AL) (Hsy, +0) 72| < 1
to the expansion of xo . E(B : H¥)(HY +©%¥)""x0,, we have

Tr[X07LE(B N Hw)(Hw + @w)—mX(LL}
< C'(d,m)|||(Hsy, +©%) V2|57 < C(d,m)L?

2m —=

for m > d/2. O

Proof of Proposition 4.1. 'We can prove (4.7) and the first and the second
inequalities in (4.5) and (4.6) by the same argument as in [16].
For the third inequalities of (4.5) and (4.6), we estimate as

M(n, f,t) < C(dyn) > (@)™ [lIxaY(H)xolll * [0V (H?)Xalllx

a€Zd
as in [16], where Y(u) = e~ f(u) for u € R. By Proposition 4.4, we have

(2k+d—3)/4
XY (H=)xoll| < C(d, b, £)(1)+ (ess sup V= +1) O

ARL(a)

for any (d+5)/2 <k € N, where L(a) = 2|a|] + 1. On the other hand, we have

IHXOJJ(H‘“)xaHh < 4Tr[XO,L(a)|y(Hw)|XO,L(a)}
< C(f,m)|©°[1/A Ty o E(supp f : H)(H” +6<)~ 142y 1 0],

where ©“ := 1 — (minsupp f Aess infy,, ,, V). Then we have

) ([a/2]]

X0V (H)xal 1t < C(f,d) (ess sup V= +1) 7 (a)?

Aar(a)
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by Lemma 4.3. Therefore we obtain

M,(n, f,t) < C(d,n, k, f){t) Z (q)(@n+3d+3-2k)/2
a€Z?

(4[[d/2]]+2k+d—3) /4

X (ess supr+1) '

ARL(a)

For (4.5), we use Lemma 3.2 (ii) to obtain

ess sup V¥ + 1 < C(6,w)(log(a) + 1)%/7.
ARL(a)

Then we have

M (n, f,t) < C(d,n, k, f, 3,w)(t)*+ Z (a) (2nt3d+3-2k)/2
a€Zd
x (log{a) + 1)(4[[d/2ﬂ+2k+d73)/(2ﬁ)'

The right hand side is finite if & > (2n + 5d + 3)/2. Therefore, by taking
k=|n+ (5d+1)/2]] + 1, we obtain (4.5).

For (4.6), we use Lemma 3.2 (i) to obtain
) (4[[d/2]]+2k+d3)/4:|

E[ ess sup V¥ + 1
ARL(a)
<

C(d, k, B)(log{a) + 1)(4[[d/2]]+2k+d73)/(4ﬁ).

Then we have

M(n, f,t) < C(d,n, k, f, 3)(t)*+1 Z (a)@r+d+3-2k)/2
a€Zd
x (log(a) 4 1)@lld/2+2k+d=3)/(45)

Therefore, by taking k = [[n + (5d + 1)/2]] + 1, we obtain (4.6). O
References
[1] Barbaroux, J.-M., Combes, J. M. and Hislop, P. D., Localization near band edges for

random Schrodinger operators, Helv. Phys. Acta, 70 (1997), 16-43.

Birman, M. S. and Yafaev, D. R., The spectral shift function. The work of M. G. Krein
and its further development, St. Petersburg Math. J., 4 (1992), 833-870.

Broderix, K., Hundertmark, D. and Leschke, H., Continuity properties of Schrédinger
semigroups with magnetic fields, Rev. Math. Phys., 12 (2000), 181-225.



(4]
(5]

(7]

(8]
[9]
(10]
(11]

(12]

(13]
14]
(15]
[16]
(17]

[18]
(19]

20]

(21]

[22]
23]
[24]
[25]
[26]
[27]

(28]

WEGNER ESTIMATES 89

Cycon, H. L., Froese, R. G., Kirsch, W. and Simon, B., Schréidinger operators, Springer,
Berlin-Heidelberg-New York, 1987.

Combes, J. M. and Hislop, P. D., Localization for some continuous, random Hamiltonians
in d-dimensions, J. Funct. Anal., 124 (1994), 149-180.

Combes, J. M., Hislop, P. D., Klopp, F. and Nakamura, S., The Wegner estimate
and the integrated density of states for some random operators, Proc. Indian
Acad. Sci. Math. Sci., 112 (2002), 31-53.

Combes, J. M., Hislop, P. D. and Nakamura, S., The LP-theory of the spectral shift
function, the Wegner estimate, and the integrated density of states for some random
operators, Comm. Math. Phys., 218 (2001), 113-130.

Davies, E. B., Spectral theory and differential operators, Cambridge University Press,
Cambridge, 1995.

Doob, J. L., Stochastic processes, Wiley, New York, 1953.

Fernique, X., Regularité des trajectoires des fonctions aléatoires gaussiennes, In: Hen-
nequin, P.-L., (ed.), Ecole d’Eté de Probabilités de Saint-Flour, IV-1974, Lecture Notes
in Math., 480 (Springer, Berlin, 1975), 1-96.

Fischer, W., Hupfer, T., Leschke, H. and Miiller, P., Existence of the density of states for
multi-dimensional continuum Schrédinger operators with Gaussian random potentials,
Comm. Math. Phys., 190 (1997), 133-141.

Fischer, W., Leschke, H. and Miiller, P., Spectral localization by Gaussian random
potentials in multi-dimensional continuous space, J. Statist. Phys., 101 (2000), 935-
985.

Frohlich, J. and Spencer, T., Absence of diffusion in the Anderson tight binding model
for large disorder or low energy, Comm. Math. Phys., 88 (1983), 151-184.

Germinet, F. and Klein, A., Bootstrap multiscale analysis and localization in random
media, Comm. Math. Phys., 222 (2001), 415-448.

Germinet, F. and Klein, A., Operator kernel estimates for functions of generalized
Schrodinger operators, Proc. Amer. Math. Soc., 131 (2003), 911-920.

, A characterization of the Anderson metal-insulator transport transition,
Preprint.

, Explicit finite volume criteria for localization in continuous random media and
applications, Preprint.

, The Anderson metal-insulator transport transition, Preprint.

Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order,
Second edition, Springer, Berlin, 1983.

Hislop, P. D. and Klopp, F., The integrated density of states for some random operators
with non-sign definite potentials, J. Funct. Anal., 195 (2002), 12-47.

Hupfer, T., Leschke, H., Miiller, P. and Warzel, S., The absolute continuity of the
integrated density of states for magnetic Schrédinger operators with certain unbounded
random potentials, Comm. Math. Phys., 221 (2001), 229-254.

Klopp, F., Localization for some continuous random Schrodinger operators, Comm.
Math. Phys., 167 (1995), 553-569.

Klopp, F., Nakamura, S., Nakano, F. and Nomura, Y., Anderson localization for 2D
discrete Schrédinger operator with random vector potential, Preprint.

Kirsch, W., Wegner estimates and Anderson localization for alloy-type potentials,
Math. Z., 221 (1996), 507-512.

Kirsch, W., Stollmann, P. and Stolz, G., Anderson localization for random Schrédinger
operators with long range interactions, Comm. Math. Phys., 195 (1998), 495-507.
Kirsch, W. and Veseli¢, 1., Wegner estimate for sparse and other generalized alloy type
potentials, Proc. Indian Acad. Sci. (Math. Sci.), 112 (2002), 131-146.

Kotani, S. and Simon, B., Localization in general one-dimensional random systems. II.
continuous Schrodinger operators, Comm. Math. Phys., 112 (1987), 103-119.

Kurata, K., Local boundedness and continuity for weak solutions of —(V —ib)?u+Vu =
0, Math. Z., 224 (1997), 641-653.




90

(29]

[30]
(31]

(32]
(33]
(34]
(35]
(36]

(37]
(38]

(39]
[40]

[41]

Naomasa UEKI

Leinfelder, H. and Simader, C. G., Schrédinger operators with singular magnetic vector
potentials, Math. Ann., 294 (1992), 195-221.

Nualart, D., The Malliavin calculus and related topics, Springer, New York, 1995.
Pastur, L. and Figotin, A., Spectra of random and almost-periodic operators, Springer,
Berlin, 1992.

Reed, M. and Simon, B., Methods of modern mathematical physics II Fourier analysis,
self-adjointness, Academic Press, New York, 1975.

Simon, B., Trace ideals and their applications, Cambridge University Press, Cambridge-
New York, 1979.

, Functional integration and quantum physics, Academic Press, New York-
London, 1979.

, Spectral averaging and the Krein spectral shift, Proc. Amer. Math. Soc., 126
(1998), 1409-1413.

Stollmann, P., Wegner estimates and localization for continuum Anderson models with
some singular distributions, Arch. Math., 75 (2000), 307-311.

, Caught by disorder, Bound states in random media, Birkhauser, Boston, 2001.
Ueki, N.; On spectra of random Schrédinger operators with magnetic fields, Osaka
J. Math., 31 (1994), 177-187.

Veseli¢, 1., Wegner estimate and the density of states of some indefinite alloy-type
Schrodinger operators, Lett. Math. Phys., 59 (2002), 199-214.

Wegner, F.; Bounds on the density of states in disordered systems, Z. Phys. B, 44
(1981), 9-15.

Yafaev, D. R., Mathematical scattering theory, general theory, American Mathematical
Society, Providence, RI, 1992.




