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Abstract

A Wegner estimate is proven for a Schrödinger operator with a bounded random
vector potential and a Gaussian random scalar potential. The estimate is used to
prove the strong dynamical localization and the exponential decay of the eigenfunc-
tions. For the proof, Klopp’s method using a vector field on a probability space and
Germinet and Klein’s bootstrap multiscale analysis are applied. Moreover Germinet
and Klein’s characterization of the Anderson metal-insulator transport transition is
extended to the above operator.

§1. Introduction

In this paper we give a Wegner estimate for a random Schrödinger operator

d∑
j=1

(i∂j + Aω
j )2 + Vω

on L2(Rd) and apply the estimate to study the spectral structure, where i =√
−1, ∂j = ∂/(∂xj) and {(Aω

1 (x), . . . ,Aω
d (x),Vω(x)), x ∈ Rd, ω ∈ Ω} are ran-

dom fields on Rd. For this subject, we have many works in the case that the
vector potential Aω(x) = (Aω

1 (x), . . . ,Aω
d (x)) is not random and the scalar po-

tential Vω(x) is of the alloy-type:
∑

m∈Zd λω
mum(x), where {λω

m, m ∈ Zd, ω ∈ Ω}
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30 Naomasa Ueki

is a family of independently and identically distributed real random variables
and um(x) are real deterministic functions on Rd [1], [5], [6], [7], [20], [22],
[24], [25], [36], [39]. For the case that the vector potential Aω(x) is also ran-
dom, Hislop and Klopp [20] recently give a Wegner estimate in the case that
Aω

j (x), j = 1, . . . , d, are alloy-type bounded random fields and Vω(x) = 0.
More recently Klopp, Nakamura, Nakano and Nomura [23] showed Anderson
localization for the corresponding discrete model. Apart from the alloy-type
potential, Fischer, Hupfer, Leschke and Müller [11] and Hupfer, Leschke, Müller
and Warzel [21] give a Wegner estimate for the case that the vector potential
Aω(x) is not random and the scalar potential Vω(x) is a random field which is
stationary in x ∈ Rd. Their most fundamental example of the random field is
a Gaussian random field. For other type of potentials, see [26]. The random
potential (Aω(x),Vω(x)) treated in this paper is a combination of a determin-
istic function and a Gaussian random field which is stationary in x ∈ Rd. For
this we extend Klopp’s method [22] used in [20] so that his method can be
applied to the Gaussian random potentials. The main idea is to represent the
random field as a random Fourier series by referring the spectral representation
(cf. [9]) of stationary random fields (see Lemma 2.2 below). This representation
has the same form with the alloy-type potential such that the support of each
single site potential um(x) is noncompact. Because of technical reasons, we
give only a weak form of the Wegner estimate only on a low energy interval
under the condition that the covariance function of the Gaussian random field
is compact. Under these restrictions, our estimate is a generalization of the
estimates in [11] and [21] to the case that the vector potential and the scalar
potential are correlated.

One difficulty of the random vector potential is same as that of the alloy
type scalar potential

∑
m∈Zd λω

mum(x) with nonsign definite single site poten-
tials {um(x)}m treated in [6], [20], [22] and [39]: the quadratic form associated
to the Schrödinger operator is not monotone as a function of random variables.
Then a standard method extending a parameter to the complex space used in
[5] and [27], which is used also for the Gaussian scalar potential in [11] and
[21], seems to be not applicable. For many of such cases, Klopp’s method
[22] using a vector field on a probability space is the only effective method
at present. This vector field is a number operator, whose eigenfunctions are
homogeneous polynomials. Therefore his method is effective when the main
part of the Schrödinger operator to give the Wegner estimate is a homogeneous
polynomial on the probability space. In [20] Hislop and Klopp applies Klopp’s
method [22] to the random vector potential by using only the effect from the
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linear part
∑

j(i∂jAω
j (x)+Aω

j (x)i∂j) and neglecting the effect from the square
part

∑
j(Aω

j (x))2 under the condition that the vector potential Aω is small
enough. The supremum norm of the vector potential Aω affects the energy
interval where we can show the Wegner estimate. In this paper we assume
that the vector potential is bounded and the scalar potential is the n-th power
W 0

ω(x)n of a Gaussian random field W 0
ω(x). We use only the effect from the

scalar potential to give the result. As n becomes larger, the effect from the
scalar potential becomes stronger and the energy interval where we can show
the Wegner estimate holds becomes wider (see (2.3) below). To clarify this
situation, we use a Birman-Schwinger type operator whose parts of the square
root are random (see (2.6) below). To treat this operator we need extra works
not needed in [20]: we should consider the differentiation of the square root of
the resolvent operator with respect to a parameter in the potential (see Lemma
2.3 below).

Our Wegner estimate can be used to prove the localization by the multi-
scale analysis. Since the pioneer work by Fröhlich and Spencer [13], this proof
of localization has been extended, improved and simplified by many works. For
this aspect, see [37] and the references therein. In particular Germinet and
Klein give an effective multiscale analysis to deduce the strong dynamical lo-
calization from a weak initial estimate for a wide class of operators with short
correlated potentials [14], [17]. In this paper we show that their methods are
applicable to our case. The only task is to extend their theory to the operators
unbounded below (see Corollary of Theorem 3.2 below). For this it is enough
to use a control of Gaussian random fields in Lemma 5.3 in Fischer, Leschke
and Müller [12] based on Fernique’s theory [10].

Moreover Germinet and Klein [16], [18] recently show that the strong dy-
namical localization is equivalent with the initial estimate under some condi-
tions. From this result, they show that some exponent β−(E), which is defined
as a function of the energy parameter E in (4.9) below, jumps from zero to a
positive value as the energy parameter changes from an insulator region to a
metallic region. Therefore this exponent gives a characterization of a transport
property. In this paper we show that this theory is also extended to our case
(see Theorem 4.1 and Proposition 4.3 below). For this we use again the esti-
mate of the scalar potential based on Fernique’s theory [10]. Since our Wegner
estimate is weaker than the estimate used in [16], the lower bound of the size of
the jump of the exponent β−(E) is different from that in [16]. We give a lower
bound of the size in terms of the exponents appeared in the Wegner estimate
(cf. Proposition 4.3 below).
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The organization of this paper is as follows. In Section 2 we give a Wegner
estimate. In Section 3 we modify Germinet and Klein’s theory on the multiscale
analysis [14] to show the strong dynamical localization. In Section 4 we modify
Germinet and Klein’s theory on a characterization of the transport transition
[16] so that their theory can be applied to the operators in this paper.

§2. Wegner Estimate

§2.1. Main theorem

Let {(W j
ω(x))j=0,1,... ,g, x ∈ Rd, ω ∈ Ω} be an Rg+1-valued stationary er-

godic Gaussian random field with mean zero and the covariance Rjk(x) =
E[W j

ω(x)W k
ω (0)] represented as

Rjk(x) =
r∑

ι=1

∫
σj

ι (x + y)σk
ι (y)dy

for some complex valued Cs functions σj
ι (x), 0 ≤ j ≤ g, 1 ≤ ι ≤ r, on Rd with

compact support and s ≥ d + 4. Let A(x, w) be an Rd valued C1 function of
(x, w) ∈ Rd × Rg such that ∇wA(x, w) is a C2 function of (x, w) and w · ∇wA

and ∇wA are bounded. For each L > 0, let ΛL := (−L/2, L/2)d be an open
box and, for L > 3, let χ̃L be a smooth function on Rd such that 0 ≤ χ̃L ≤ 1,
χ̃L = 1 on ΛL−3, χ̃L = 0 on Λc

L−1 and |∇χ̃L| ≤ 2. We consider a self-adjoint
operator on L2(Rd) defined by

H̃ω
L :=

d∑
j=1

(i∂j + χ̃LAj(x, Wω(x)))2 − χ̃LW 0
ω(x)n,(2.1)

where Wω(x) =t (W 1
ω(x), . . . , W g

ω(x)). If we define a positive operator by

Ĥω
L :=

d∑
j=1

(i∂j + χ̃LAj(x, Wω(x)))2,(2.2)

then we see that χ̃LW 0
ω(x)n is Ĥω

L -compact. Therefore the spectrum in (−∞, 0)
of the operator H̃ω

L consists only of its discrete spectrum. For the spectrum,
we will prove the following Wegner estimate in this section:

Theorem 2.1. For any

E0 < −(2‖w · ∇wA‖∞/n)2,(2.3)



�

�

�

�

�

�

�

�

Wegner Estimates 33

there exists a finite constant Q(E0) such that

P (dist(E, σ(H̃ω
L)) ≤ η) ≤ Q(E0)η1−d/sLd(2−d/(2s))(2.4)

for any E ≤ E0, L ≥ 4 and η > 0, where, for any self-adjoint operator A, σ(A)
is the spectral set of A.

This estimate can be used to show results on the spectral localization of
the self-adjoint operator

Hω :=
d∑

j=1

(i∂j + Aj(x, Wω(x)))2 − W 0
ω(x)n,(2.5)

on L2(Rd). This is the subject of the next section.

Remark 2.1. In the case that A is independent of w and n = 1, Fisher,
Hupfer, Leschke and Müller [11] and Hupfer, Leschke, Müller and Warzel [21]
give a strong form of the Wegner estimate under more general conditions, where
the compactness of the covariance function is not assumed. Their estimate is as
follows: let Hω

L,X be the restriction of the operator
∑d

j=1(i∂j +Aj(x))2−W 0
ω(x)

to L2(ΛL) by the Dirichlet or Neumann boundary conditions. Then there exists
an explicitly written function CW (E) such that

E[	(σ(Hω
L,X) ∩ [E − η, E + η])] ≤ CW (E + η)ηLd

for all E ∈ R and η ≥ 0. From this estimate, we see that the function CW (E)
is an upper bound of the density of states. This estimate is the first motivation
of Wegner’s estimate [40].

Remark 2.2. (i) Theorem 2.1 is extended to the operator

H̃ω
L,1 := H̃ω

L + χ̃LV (x, Wω(x)),

where V (x, w) be a real bounded continuous function of (x, w) ∈ Rd ×Rg such
that V (x, w) is C1 in w and ∇wV and w ·∇wV are bounded. For this operator,
(2.4) holds only for E0 < E0, where

E0 :=

{
−(2A/n)2 if V ≤ 0,

−{V/(
√

A2 + nV − A)}2 if V > 0,

A := ‖w · ∇wA‖∞ and V := sup(w · ∇wV − nV ).
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(ii) Theorem 2.1 is extended to the operator

H̃ω
L,2 := Ĥω

L + χ̃Lpn(W 0
ω(x))

without changing the statement, where pn(t1, . . . , th) is a real homogeneous
polynomial of degree n and {W 0

ω = (W 0,k
ω (x))k=1,2,... ,h : x ∈ Rd, ω ∈ Ω} is

an Rh valued random field such that {(W 0
ω(x), Wω(x)) : x ∈ Rd, ω ∈ Ω} is an

Rg+h valued random field satisfying the same conditions for the random field
{(W 0

ω(x), Wω(x)) : x ∈ Rd, ω ∈ Ω} stated at the front of this section.

(iii) Theorem 2.1 is extended to the operator

H̃ω
L,3 := Ĥω

L − χ̃Lqn(W 0
ω(x))

without changing the statement, where qn(t) is a polynomial such that tq′n(t) ≥
nqn(t). For example, we can take as q2m−1(t) = t2m + at2m−1.

§2.2. Proof of the Wegner estimate

For the proof of Theorem 2.1, we introduce a Birman-Schwinger type op-
erator by

Γ(ω, L, E) = (Ĥω
L − E)−1/2χ̃LW 0

ω(x)n(Ĥω
L − E)−1/2.(2.6)

It is a different point from [6], [20] and [22] that the operator (Ĥω
L − E)−1/2

depends on ω. We deduce (2.4) only by the effect from the part χ̃LW 0
ω(x)n.

For any p > 0, let Ip be the trace or super-trace class: a continuous linear
operator A on L2(Rd) is said to belong to Ip if |||A|||p := (Tr[|A|p])1/p < ∞,
where |A| := (A∗A)1/2 (cf. [6], [7], [20], [33]). We use ‖ · ‖p for the norm on
Lp(Rd) and ||| · ||| for the operator norm.

Then we have the following:

Lemma 2.1. Let q ≥ min{q ∈ 4N : q > d}. Let A ∈ L4
loc(R

d → Rd)
such that ∇ · A ∈ L2

loc(R
d). We set H(A) =

∑d
j=1(i∂j + Aj)2. Then we have

the following:
(i) There exists a finite constant c1 depending only on q and d such that

|||(H(A) − E)−1/2k|||q ≤ c1‖k‖q/|E|(q−d)/(2q)

for any E < 0 and k ∈ Lq(Rd).
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(ii) There exists a finite constant c2 depending only on q and d such that

|||(H(A) − E)−1/2k(H(A) − E)−1/2|||q/2 ≤ c2‖k‖q/2/|E|(q−d)/q

for any E < 0 and k ∈ Lq/2(Rd).
(iii) There exists a finite constant c3 depending only on q and d such that

|||(H(A) − E)−1/2h · (i∇ + A)(H(A) − E)−1/2|||q ≤ c3‖h‖q/|E|(q−d)/(2q)

for any E < 0 and Cd valued Lq function h on Rd.
(iv) There exists a finite constant c4 depending only on q and d such that

|||(H(A) − E)−1k|||q/2 ≤ c4‖k‖q/2/|E|(q−d)/q

for any E < 0 and k ∈ Lq/2(Rd).

Proof. (i) By the diamagnetic inequality, we have

|(H(A) − E)−1/2ϕ| ≤ (H(0) − E)−1/2|ϕ|(2.7)

for any ϕ ∈ C∞
0 (Rd) (see (4.9) in [29] and (A.23) in [21]). We now assume that

q ∈ 2N. By using (2.7) successively, we have

||(H(A) − E)−1/2k|qϕ| ≤ |(H(0) − E)−1/2|k||q|ϕ|,

where, for any operator L, |L| :=
√

L∗L. From this, Lemma 15.11 in [34] and
Theorem 4.1 in [33], we have

|||(H(A) − E)−1/2k|||q ≤ |||(H(0) − E)−1/2|k||||q ≤ c1‖k‖q/|E|(q−d)/(2q).

For q 
∈ 2N, we use the Stein interpolation theorem (cf. [32] Theorem IX.21).
(ii) Since

|||(H(A) − E)−1/2k(H(A) − E)−1/2|||q/2

≤ |||(H(A) − E)−1/2
√
|k||||q|||

√
|k|(H(A) − E)−1/2|||q,

(i) implies (ii).
(iii) Since

|||(i∂j + Aj)(H(A) − E)−1/2|||2 ≤ 1

for any j, we have

|||(H(A) − E)−1/2h · (i∇ + A)(H(A) − E)−1/2|||q

≤
d∑

j=1

|||(H(A) − E)−1/2hj |||q.
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Therefore (i) implies (iii).
(iv) For q ∈ 4N, as in (i), we have

||(H(A) − E)−1k|q/2ϕ| ≤ |(H(0) − E)−1|k||q/2|ϕ|

and

|||(H(A) − E)−1/2k|||q/2 ≤ |||(H(0) − E)−1/2|k||||q/2 ≤ c4‖k‖q/2/|E|(q−d)/q.

For q 
∈ 4N, we use the interpolation theorem.

In the following we fix q ∈ N such that q ≥ min{q ∈ 4N : q > d}. Lemma
2.1 (ii) implies Γ(ω, L, E) ∈ Iq/2. We take a smooth function ρ having the form
ρ = σq, where σ is a smooth function on R such that 0 ≤ σ ≤ 1 on R, σ = 1 on
(−∞,−1/2] and σ = 0 on [1/2,∞). For any self-adjoint operator A, let E(·; A)
be the spectral projection of A. As in [6], [20] and [22], we have

P (dist(E, σ(H̃ω
L)) ≤ η)

≤ E[Tr[E([1 − κ, 1 + κ] : Γ(ω, L, E))]]

≤ E[Tr[ρκ(Γ(ω, L, E)− 1 − 3κ/2) − ρκ(Γ(ω, L, E)− 1 + 3κ/2)]]

=
∫ 3κ/2

−3κ/2

dtE[Tr[(−ρκ)′(Γ(ω, L, E)− 1 + t)]],

where κ = η/|E| and ρκ(µ) = ρ(µ/κ).
To consider an associated vector field used in [6], [20] and [22], we refer

the theory of the spectral representation of stationary field (cf. [9]) to give the
following representation:

Lemma 2.2. The random field Wω(x) = (W j
ω(x))g

j=0 is represented as

W j
ω(x) =

2r∑
ι=1

∑
m∈Zd

W ι,m
ω ej

ι,m(x)(2.8)

in Lp(ΛL × Ω) for any 1 ≤ p < ∞, where {W ι,m
ω }1≤ι≤2r,m∈Zd is a family of

independently and identically distributed random variables with the standard
normal distribution and ej

ι,m, 1 ≤ ι ≤ 2r, m ∈ Zd, 0 ≤ j ≤ g, are Cs functions
such that, for any 0 ≤  ≤ s,

sup
x∈ΛL

|∇�ej
ι,m(x)| ≤ cLs−�−d/2|m|�−s

∞ ,(2.9)

where c is some finite constant depending only on the covariance R = (Rjk(x)).
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Proof. Let {Wι(h) : h ∈ L2(Rd)}1≤ι≤2r be 2r independent copies of the
isonormal Gaussian random field: for each h1, h2, . . . , hm ∈ L2(Rd), Wι(h1),
Wι(h2), . . . , Wι(hm) are Gaussian random variables with mean zero and

E[Wι(h1)Wι(h2)] =
∫

Rd

h1(ξ)h2(ξ)dξ

(cf. Definition 1.1.1 in Nualart [30]). We define the Fourier transform of f ∈
L1(Rd) by

f̂(ξ) =
∫

Rd

e−2πiξ·xf(x)dx.

Then the random field Wω(x) has the following representation:

W j
ω(x) =

r∑
ι=1

{Wι(Re(e2πiξ·xσ̂j
ι (ξ))) + Wr+ι(Im(e2πiξ·xσ̂j

ι (ξ)))}.

We here note that
e2πiξ·xσ̂j

ι (ξ) = ̂σj
ι (· + x)(ξ).

If supp σj
ι ⊂ ΛR and x ∈ ΛL, then supp σj

ι (· + x) ⊂ ΛR+L. Then we take a
complete orthonormal basis {hm(y) :=

∏d
k=1 kmk

(yk) : m ∈ Zd} of L2(ΛR+L),
where y = (y1, y2, . . . , yd), k0(y1) = 1/

√
R + L, and, for m1 > 0,

k−m1(y1) =

√
2

R + L
sin

2m1πy1

R + L
and km1(y1) =

√
2

R + L
cos

2m1πy1

R + L
.

We extend these functions to Rd by hm(y) = 0 on Λc
R+L. Then, for each

x ∈ ΛL, we have

σj
ι (y + x) =

∑
m∈Zd

hm(y)
∫

hm(z)σj
ι (z + x)dz

and
e2πiξ·xσ̂j

ι (ξ) =
∑

m∈Zd

ĥm(ξ)
∫

hm(y)σj
ι (y + x)dy

in L2(Rd). Let (Zd)e := {m = (m1, m2, . . . , md) ∈ Zd : 	{j : mj < 0} is
even} and (Zd)o := {m = (m1, m2, . . . , md) ∈ Zd : 	{j : mj < 0} is odd}.
Then ĥm(ξ) is real valued for m ∈ (Zd)e and is purely imaginary valued for
m ∈ (Zd)o. Thus we have

Re(e2πiξ·xσ̂j
ι (ξ)) =

∑
m∈(Zd)e

ĥm(ξ)ej
ι,m(x) +

∑
m∈(Zd)o

iĥm(ξ)ej
ι,m(x),
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where

ej
ι,m(x) :=


∫

hm(y) Reσj
ι (y + x)dy for m ∈ (Zd)e,∫

hm(y) Imσj
ι (y + x)dy for m ∈ (Zd)o.

Similarly we have

Im(e2πiξ·xσ̂j
ι (ξ)) =

∑
m∈(Zd)e

ĥm(ξ)ej
r+ι,m(x) −

∑
m∈(Zd)o

iĥm(ξ)ej
r+ι,m(x),

where

ej
r+ι,m(x) :=


∫

hm(y) Imσj
ι (y + x)dy for m ∈ (Zd)e,∫

hm(y) Reσj
ι (y + x)dy for m ∈ (Zd)o.

Then we have (2.8) for each x ∈ ΛL in L2(Ω), where

W ι,m
ω :=

{
Wι(ĥm) for m ∈ (Zd)e,

Wι(iĥm) for m ∈ (Zd)o

and

W r+ι,m
ω :=

{
Wr+ι(ĥm) for m ∈ (Zd)e,

Wr+ι(−iĥm) for m ∈ (Zd)o.

By the integration by parts, for each 0 
= m ∈ Zd and 0 ≤  < s, there exist
m′ ∈ Zd and k ∈ {1, 2, . . . , d}, such that∣∣∣∣ ∫ hm(y)∇�σj

ι (y + x)dy

∣∣∣∣
=
(

R + L

2π|m|∞

)s−� ∣∣∣∣ ∫ hm′(y)

(
∂

∂yk

)s−�

∇�σj
ι (y + x)dy

∣∣∣∣,
where |m|∞ is the maximum norm on Zd. Since |hm′(y)| ≤

√
2/(R + L)

d
,

we obtain (2.9). Then we see that {
∑2r

ι=1

∑
|m|∞≤N W ι,m

ω ej
ι,m}N is a Cauchy

sequence in Lp(ΛL × Ω). Therefore (2.8) holds in Lp(ΛL × Ω).

Remark 2.3. If 0 ≤  < s − d, we see that {
∑2r

ι=1

∑
|m|∞≤N W ι,m

ω

∇�ej
ι,m}N is a Cauchy sequence in Lp(ΛL × Ω) by (2.9). Therefore, for each

k ∈ Z+, if s ≥ d + 2 + k, then we see that {
∑2r

ι=1

∑
|m|∞≤N W ι,m

ω ∇kej
ι,m(x)}N

converges to ∇kW j
ω(x) uniformly on ΛL and W j

ω(x) is a Ck function of x almost
surely. Since we assume s ≥ d + 4, W j

ω(x) is a C2 function of x.
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We use the following lemma on differentiations in random variables:

Lemma 2.3. For any ε > 0, 1 ≤ ι ≤ 2r and m ∈ Zd, we set

W j
ω(x, ε; ι, m) := W j

ω(x) + εej
ι,m(x),

Ĥω
L(ε; ι, m) :=

d∑
j=1

(i∂j + χ̃LAj(x, Wω(x, ε; ι, m)))2

and

Γ(ω, L, E, ε; ι, m) := (Ĥω
L(ε; ι, m) − E)−1/2χ̃LW 0

ω(x, ε; ι, m)n

× (Ĥω
L(ε; ι, m) − E)−1/2.

Then we have the following:
(i) In the weak sense, we have{

∂

∂ε
(Ĥω

L(ε; ι, m)− E)−1/2

}
ε=0

= Ξ(ω, L, E; ι, m),

where Ξ(ω, L, E; ι, m) is a bounded operator defined by the following integral in
the weak sense:

Ξ(ω, L, E; ι, m) :=
−1√

π

∫ ∞

0

dt
√

tetE

∫ 1

0

du exp(−utĤω
L)

×
d∑

j=1

[χ̃Leι,m(x) · ∇wAj(x, Wω(x)), i∂j + χ̃LAj(x, Wω(x))]+

× exp(−(1 − u)tĤω
L),

where eι,m(x) :=t (e1
ι,m(x), . . . , eg

ι,m(x)) and [A, B]+ := AB + BA for any
operators A and B.

(ii) The operator Ξ(ω, L, E; ι, m) defined in (i) maps the elements of⋃
a>0 Ran E([a,∞) : Γ(ω, L, E)) to the domain of Ĥω

L , where, for any opera-
tor A, Ran A is the range of A.

(iii) On
⋃

a>0 Ran E([a,∞) : Γ(ω, L, E)), it holds that

[(Ĥω
L − E)1/2, Ξ(ω, L, E; ι, m)]+

= −(Ĥω
L − E)−1/2

d∑
j=1

[χ̃Leι,m(x) · ∇wAj(x, Wω(x)),

i∂j + χ̃LAj(x, Wω(x))]+(Ĥω
L − E)−1/2.
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(iv) For any f ∈ C1
0 ((0,∞)), we have

{
∂

∂ε
Tr[fq(Γ(ω, L, E, ε; ι, m))]

}
ε=0

= Tr[(fq)′(Γ(ω, L, E))Γ(ω, L, E; ι, m)],

where

Γ(ω, L, E; ι, m)

:= (Ĥω
L − E)−1/2χ̃Lne0

ι,m(x)W 0
ω(x)n−1(Ĥω

L − E)−1/2

− Γ(ω, L, E)(Ĥω
L − E)−1/2

d∑
j=1

[χ̃Leι,m(x) · ∇wAj(x, Wω(x)),

i∂j + χ̃LAj(x, Wω(x))]+(Ĥω
L − E)−1/2.

We postpone the proof of this lemma to the next subsection.
We use a vector field A on the space of sample paths defined by

AF (Wω(·)) =
2r∑

ι=1

∑
m∈Zd

W ι,m
ω

(
∂

∂ε
F (Wω(·, ε; ι, m))

)
ε=0

in L1(Ω), for any functional F of the sample path Wω(·), when the limit exists.
For this vector field, we have the following:

Lemma 2.4. For any f ∈ C1
0 ((0,∞)), we have

A Tr[fq(Γ(ω, L, E))] = Tr[(fq)′(Γ(ω, L, E))Γ(1)(ω, L, E)],

where

Γ(1)(ω, L, E)

:= Γ(ω, L, E)
{

n − (Ĥω
L − E)−1/2

d∑
j=1

[χ̃LWω(x) · ∇wAj(x, Wω(x)),

i∂j + χ̃LAj(x, Wω(x))]+(Ĥω
L − E)−1/2

}
.
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Proof. By Lemma 2.3 (iv), we have

∣∣∣∣ 2r∑
ι=1

∑
|m|∞≤M

W ι,m
ω

(
∂

∂ε
Tr[fq(Γ(ω, L, E, ε; ι, m))]

)
ε=0

−Tr[(fq)′(Γ(ω, L, E))Γ(1)(ω, L, E)]
∣∣∣∣

≤ |Tr[(fq)′(Γ(ω, L, E))(Ĥω
L − E)−1/2χ̃LnW 0

ω(x)n−1

× R0
ω(x, M)(Ĥω

L − E)−1/2]|
+ |Tr[(fq)′(Γ(ω, L, E))Γ(ω, L, E)(Ĥω

L − E)−1/2

×
d∑

j=1

[χ̃LRω(x, M) · ∇wAj(x, Wω(x)),

i∂j + χ̃LAj(x, Wω(x))]+(Ĥω
L − E)−1/2]|,

where

Rj
ω(x, M) :=

2r∑
ι=1

∑
|m|∞≤M

W ι,m
ω ej

ι,m(x) − W j
ω(x)

and Rω(x, M) :=t (R1
ω(x, M), . . . , Rd

ω(x, M)). By the Hölder inequality for the
norms ||| · |||p (cf. Theorem 2.8 in [33]), this is less than or equal to

|||(fq)′(Γ(ω, L, E))|||q/(q−2)|||(Ĥω
L − E)−1/2χ̃LnW 0

ω(x)n−1(2.10)

× R0
ω(x, M)(Ĥω

L − E)−1/2|||q/2

+|||(fq)′(Γ(ω, L, E))Γ(ω, L, E)|||q/(q−1)

× |||(Ĥω
L − E)−1/2

d∑
j=1

[χ̃LRω(x, M) · ∇wAj(x, Wω(x)),

i∂j + χ̃LAj(x, Wω(x))]+(Ĥω
L − E)−1/2|||q.

For any p > 1, we have

|||(fq)′(Γ(ω, L, E))|||p ≤ c Tr[E(supp f : Γ(ω, L, E))]1/p

≤ c|||Γ(ω, L, E)|||q/(2p)
q/2 .

Similarly we have

|||(fq)′(Γ(ω, L, E))Γ(ω, L, E)|||p ≤ c|||Γ(ω, L, E)|||q/(2p)
q/2 .
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Thus, by Lemma 2.1, the quantity in (2.10) is dominated by

‖χ̃LW 0
ω(x)n‖(q−2)/2

q/2 ‖χ̃LnW 0
ω(x)n−1R0

ω(x, M)‖q/2

+ ‖χ̃LW 0
ω(x)n‖(q−1)/2

q/2

d∑
j=1

‖χ̃LRω(x, M) · ∇wAj(x, W j
ω(x))‖q.

By the Hölder inequality on the probability space, we have

E

[∣∣∣∣ 2r∑
ι=1

∑
|m|∞≤M

W ι,m
ω

(
∂

∂ε
Tr[fq(Γ(ω, L, E, ε; ι, m))]

)
ε=0

− Tr[(fq)′(Γ(ω, L, E))Γ(1)(ω, L, E)]
∣∣∣∣]

≤ c

(
E[‖χ̃LW 0

ω(x)n‖q/2
q/2]

(q−2)/qE[‖χ̃LnW 0
ω(x)n−1R0

ω(x, M)‖q/2
q/2]

2/q

+ E[‖χ̃LW 0
ω(x)n‖q/2

q/2]
(q−1)/q

d∑
j=1

E[‖χ̃LRω(x, M) · ∇wAj(x, Wω(x))‖q
q]

1/q

)
.

This converges to 0 as M → ∞ since, for any p > 1, W 0
ω(x) ∈ Lp(ΛL ×Ω) and

Rω(x, M) converges to 0 in Lp(ΛL × Ω) by Lemma 2.2.

We now obtain

E[Tr[(−ρκ)′(Γ(ω, L, E)− 1 + t)Γ(1)(ω, L, E)]]

=
2r∑

ι=1

∑
m∈Zd

I(L, E, t; ι, m),

where

I(L, E, t; ι, m)(2.11)

:= E[W ι,m
ω Tr[(−ρκ)′(Γ(ω, L, E)− 1 + t)Γ(ω, L, E; ι, m)]].

Since (
ϕ, (Ĥω

L − E)−1/2
d∑

j=1

[χ̃LW j
ω(x) · ∇wAj(x, Wω(x)),

i∂j + χ̃LAj(x, Wω(x))]+(Ĥω
L − E)−1/2ϕ

)
≤ 2‖w · ∇wA‖∞/

√
|E|
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for any ϕ ∈ L2(Rd) such that ‖ϕ‖2 = 1, we obtain

2r∑
ι=1

∑
m∈Zd

I(L, E, t; ι, m) ≥ c(n, κ, E)E[Tr[(−ρκ)′(Γ(ω, L, E)− 1 + t)]]

for −3κ/2 ≤ t ≤ 3κ/2, where

c(n, κ, E) = (1 − 2κ)(n − 2‖w · ∇wA‖∞/
√
|E|)+.

If E is less than −(2‖w · ∇wA‖∞/n)2 defined in (2.4), then c(n, κ, E) does not
vanish for small enough κ and we have the following bound:

P (dist(E, σ(H̃ω
L)) ≤ η)(2.12)

≤ 1
c(n, κ, E)

∫ 3κ/2

−3κ/2

dt
2r∑

ι=1

∑
m∈Zd

I(L, E, t; ι, m).

We estimate the each term in the summation:

Lemma 2.5. There exists a finite constant c independent of L, E, m

and κ such that

sup
−3κ/2≤t≤3κ/2

|I(L, E, t; ι, m)| ≤ cLd/|E|(q−d)/2(2.13)

for any 1 ≤ ι ≤ 2r, m ∈ Zd and 0 < κ < 1/8.

Proof. Since Γ(ω, L, E) should be greater than 1−2κ for ρ′κ(Γ(ω, L, E)−
1 + t) to be nonzero, we have

I(L, E, t; ι, m) = E[W ι,m
ω Tr[(−ρκ)′(Γ(ω, L, E)− 1 + t)

× τ (Γ(ω, L, E) + 2κ)Γ(ω, L, E; ι, m)]],

where τ (µ) = υ(µ)q and υ is a smooth function on R such that 0 ≤ υ ≤ 1,
0 ≤ υ′ ≤ 3 on R, υ = 0 on (−∞, 1/2] and υ = 1 on [1,∞). This is rewritten as

I(L, E, t; ι, m) =
2∑

j=1

Ij(L, E, t; ι, m),

where

I1(L, E, t; ι, m) = E[W ι,m
ω Tr[{−ρκ(· − 1 + t)τ (· + 2κ)}′(Γ(ω, L, E))

× Γ(ω, L, E; ι, m)]]
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and

I2(L, E, t; ι, m) = E[W ι,m
ω Tr[ρκ(Γ(ω, L, E)− 1 + t)

×τ ′(Γ(ω, L, E) + 2κ)Γ(ω, L, E; ι, m)]].

By Lemma 2.3 (iv), we have

I1(L, E, t; ι, m)(2.14)

= E[(1 − (W ι,m
ω )2) Tr[ρκ(Γ(ω, L, E)− 1 + t)τ (Γ(ω, L, E) + 2κ)]].

In fact, if we denote Γι,m,λ(ω, L, E) the operator obtained by replacing W ι,m
ω

by λ in Γ(ω, L, E), then (2.14) is rewritten as

E

[ ∫
R

dλ√
2π

e−λ2/2λ
∂

∂λ
Tr[−ρκ(Γι,m,λ(ω, L, E)− 1 + t)

×τ (Γι,m,λ(ω, L, E) + 2κ)]
]

= E

[ ∫
R

dλ√
2π

e−λ2/2(1 − λ2) Tr[ρκ(Γι,m,λ(ω, L, E) − 1 + t)

× τ (Γι,m,λ(ω, L, E) + 2κ)]
]
.

We here simply estimate as

|Tr[ρκ(Γ(ω, L, E)− 1 + t)τ (Γ(ω, L, E) + 2κ)]|(2.15)

≤ Tr[E((1/2 − 2κ,∞) : Γ(ω, L, E))]

≤ (1/2 − 2κ)−q/2 Tr[E((0,∞) : Γ(ω, L, E))Γ(ω, L, E)q/2]

≤ (1/2 − 2κ)−q/2|||Γ(ω, L, E)|||q/2
q/2

≤ (1/2 − 2κ)−q/2cd,q‖χ̃LW 0
ω(x)n‖q/2

q/2/|E|(q−d)/2

by Lemma 2.1 (ii). Then we obtain

|I1(L, E, t; ι, m)|(2.16)

≤ (1/2 − 2κ)−q/2cd,q

∫
Rd

dx(χ̃L(x))q/2

× E[|1 − (W ι,m
ω )2||W 0

ω(x)|nq/2]/|E|(q−d)/2

≤ (1/2 − 2κ)−q/2cd,qL
dE[|1 − (W ι,m

ω )2|2]1/2

× E[|W 0
ω(0)|nq]1/2/|E|(q−d)/2.
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For I2(L, E, t; ι, m), we use Lemma 2.1 (ii) and (iii) to estimate parts of
Γ(ω, L, E; ι, m) as

|||(H̃ω
L − E)−1/2χ̃LW 0

ω(x)n(H̃ω
L − E)−1/2|||q/2

≤ cd,q‖χ̃LW 0
ω(x)n‖q/2/|E|(q−d)/q

and ∣∣∣∣∣∣∣∣∣∣∣∣(H̃ω
L − E)−1/2

d∑
j=1

[χ̃Leι,m(x) · ∇wAj(x, Wω(x)),

i∂j + χ̃LAj(x, Wω(x))]+(H̃ω
L − E)−1/2

∣∣∣∣∣∣∣∣∣∣∣∣
q

≤ cd,q‖χ̃Leι,m(x) · ∇wAj(x, Wω(x))‖q/|E|(q−d)/(2q).

On the other hand, as in (2.15), we have

|||ρκ(Γ(ω, L, E)− 1 + t)τ ′(Γ(ω, L, E) + 2κ)|||q/(q−2)

≤ 3(1/2 − 2κ)−(q−2)/2|||Γ(ω, L, E)|||(q−2)/2
q/2

and

|||ρκ(Γ(ω, L, E)− 1 + t)τ ′(Γ(ω, L, E) + 2κ)Γ(ω, L, E)|||q/(q−1)

≤ 3(1/2 − 2κ)−(q−3)/2|||Γ(ω, L, E)|||(q−1)/2
q/2 .

Then, as in (2.16), we obtain

|I2(L, E, t; ι, m)| ≤ (1/2 − 2κ)−(q−2)/2cd,qcRLd/|E|(q−d)/2,

where cR is a constant depending only on the covariance of W 0
ω(0).

This bound is simple and the growth as L → ∞ is not big. However this
does not decay as |m|∞ → ∞. To obtain the decay, we give another bound by
using the spectral shift function as in [6], [7] and [20]:

Lemma 2.6. For any  ∈ N such that  > q/2, there exists a finite
constant c independent of L, m and κ such that

sup
−3κ/2≤t≤3κ/2

|I(L, E, t; ι, m)|(2.17)

≤ c|E|−(q−d)/2(|E|−q/(4�) + 1)
(

Ls−d/2

κ|m|s∞

)q/(2�)

Ld

for any 1 ≤ ι ≤ 2r, m ∈ Zd and 0 < κ < 1/2.



�

�

�

�

�

�

�

�

46 Naomasa Ueki

Proof. (2.14) is rewritten as

I(L, E, t; ι, m)

= E[(1 − (W ι,m
ω )2) Tr[ρκ(Γ(ω, L, E)− 1 + t)

− ρκ(Γι,m(ω, L, E) − 1 + t)]],

where Γι,m(ω, L, E) is the operator obtained by replacing W ι,m
ω by 0 in

Γ(ω, L, E). In fact, E[1 − (W ι,m
ω )2] = 0 and Γι,m(ω, L, E) is statistically inde-

pendent of W ι,m
ω . By Lemma 2.7 below and Theorem 2.1 in [6], [7] and [20], we

have the spectral shift function ξ(λ : Γ(ω, L, E)�, Γι,m(ω, L, E)�) for the pair
(Γ(ω, L, E)�, Γι,m(ω, L, E)�) such that

‖ξ(· : Γ(ω, L, E)�, Γι,m(ω, L, E)�)‖2�/q

≤ |||Γ(ω, L, E)� − Γι,m(ω, L, E)�|||q/(2�)
q/(2�)

≤ {c1|E|−�(q−d)/q(|E|−1/2 + 1)Q(ω, L, ι, m)}q/(2�).

As in [6], [7] and [20], we apply the Birman-Krein identity [2], [41] as follows:

Tr[ρκ(Γ(ω, L, E)− 1 + t) − ρκ(Γι,m(ω, L, E)− 1 + t)]

=
∫

R

{
∂

∂λ
ρκ(λ1/� − 1 + t)

}
ξ(λ : Γ(ω, L, E)�, Γι,m(ω, L, E)�)dλ.

This is estimated as

|Tr[ρκ(Γ(ω, L, E)− 1 + t) − ρκ(Γι,m(ω, L, E)− 1 + t)]|

≤ {c1|E|−�(q−d)/q(|E|−1/2 + 1)Q(ω, L, ι, m)}q/(2�)

×
(∫

R

∣∣∣∣ ∂

∂λ
ρκ(λ1/� − 1 + t)

∣∣∣∣2�/(2�−q)

dλ

)(2�−q)/(2�)

Since (∫
R

∣∣∣∣ ∂

∂λ
ρκ(λ1/� − 1 + t)

∣∣∣∣2�/(2�−q)

dλ

)(2�−q)/(2�)

≤ c2

(∫
R

∣∣∣∣ ∂

∂λ
ρκ(λ − 1 + t)

∣∣∣∣2�/(2�−q)

dλ

)(2�−q)/(2�)

≤ c3

κq/(2�)

(∫
R

(
− ∂

∂λ
ρκ

)
(λ − 1 + t)dλ

)(2�−q)/(2�)

= c3/κq/(2�)
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and

E[|1 − (W ι,m
ω )2|Q(ω, L, ι, m)q/(2�)] ≤ c4

(
Ls−d/2

κ|m|s∞

)q/(2�)

,

we obtain (2.17).

We next show the estimate of the difference of the operators used in the
proof of the preceding lemma:

Lemma 2.7. For any  ∈ N, the operator Γ(ω, L, E)� − Γι,m(ω, L, E)�

belongs to the super trace class Iq/(2�) and satisfies

|||Γ(ω, L, E)� − Γι,m(ω, L, E)�|||q/(2�)

≤ c|E|−�(q−d)/q(|E|−1/2 + 1)Q(ω, L, ι, m),

where c is a finite constant,

Q(ω, L, ι, m)

:=
Ls−d/2

|m|s∞
|W ι,m

ω |Ld/q(‖χ̃LW 0
ω(x)n‖q + ‖χ̃LW 0

ω,ι,m(x)n‖q + Ld/q)

×
(
‖χ̃LW 0

ω(x)n‖q/2 + ‖χ̃LW 0
ω,ι,m(x)n‖q/2

+
∥∥∥χ̃L

n−1∑
k=0

W 0
ω(x)n−1+kW 0

ω,ι,m(x)k
∥∥∥

q/2
+ L2d/q

)

×
(
‖χ̃LW 0

ω(x)n‖q/2 + ‖χ̃LW 0
ω,ι,m(x)n‖q/2 + L2d/q

)�−2

and W 0
ω,ι,m(x) is the random field obtained by replacing W ι,m

ω by 0 in W 0
ω(x).

Proof. For simplicity, we treat only the case that V (x, w) = 0. We divide
the operator as

Γ(ω, L, E)� − Γι,m(ω, L, E)� =
�∑

j=0

Ij +
�∑

j=1

Jj ,
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where

I0 := (Ĥω
L − E)−1/2χ̃LW 0

ω(x)n{(Ĥω
L − E)−1χ̃LW 0

ω(x)n}�−1

× ((Ĥω
L − E)−1/2 − (Ĥω

L,ι,m − E)−1/2),

Ij := (Ĥω
L − E)−1/2{χ̃LW 0

ω(x)n(Ĥω
L − E)−1}�−1−jχ̃LW 0

ω(x)n

× ((Ĥω
L − E)−1 − (Ĥω

L,ι,m − E)−1)χ̃LW 0
ω,ι,m(x)n

× {(Ĥω
L,ι,m − E)−1χ̃LW 0

ω,ι,m(x)n}j−1(Ĥω
L,ι,m − E)−1/2

for 1 ≤ j ≤  − 1,

I� := ((Ĥω
L − E)−1/2 − (Ĥω

L,ι,m − E)−1/2){χ̃LW 0
ω,ι,m(x)n

× (Ĥω
L,ι,m − E)−1}�−1χ̃LW 0

ω,ι,m(x)n(Ĥω
L,ι,m − E)−1/2

Jj := (Ĥω
L − E)−1/2{χ̃LW 0

ω(x)n(Ĥω
L − E)−1}�−j

× χ̃L(W 0
ω(x)n − W 0

ω,ι,m(x)n){(Ĥω
L,ι,m − E)−1χ̃LW 0

ω,ι,m(x)n}j−1

×(Ĥω
L,ι,m − E)−1/2 for 1 ≤ j ≤ 

and Ĥω
L,ι,m is the operator obtained by replacing W ι,m

ω by 0 in Ĥω
L . By

the Hölder inequality for the norms ||| · |||p (cf. Theorem 2.8 in [33]), we
have

|||I0|||q/(2�)

≤ |||(Ĥω
L − E)−1/2χ̃LW 0

ω(x)n|||q × |||(Ĥω
L − E)−1χ̃LW 0

ω(x)n|||�−1
q/2

× |||(Ĥω
L − E)−1/2 − (Ĥω

L,ι,m − E)−1/2|||q.

By Lemma 2.1 (i) and (iv), we have

|||(Ĥω
L − E)−1/2χ̃LW 0

ω(x)n|||q ≤ c1‖χ̃LW 0
ω(x)n‖q/|E|(q−d)/(2q)

and

|||(Ĥω
L − E)−1χ̃LW 0

ω(x)n|||q/2 ≤ c2‖χ̃LW 0
ω(x)n‖q/2/|E|(q−d)/q.

By the expression

(Ĥω
L − E)−1/2 =

1√
π

∫ ∞

0

dt√
t
etE exp(−tĤω

L)
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((A.22) in [21]) and the Du Hamel formula (cf. [4]), we have

(Ĥω
L − E)−1/2 − (Ĥω

L,ι,m − E)−1/2(2.18)

=
1√
π

∫ ∞

0

dt
√

tetE

∫ 1

0

du exp(−utĤω
L)

×
d∑

k=1

{(i∂k + χ̃LAk(x, Wω(x)))

× χ̃L(Ak(x, Wω,ι,m(x)) − Ak(x, Wω(x)))

+ χ̃L(Ak(x, Wω,ι,m(x)) − Ak(x, Wω(x)))

× (i∂k + χ̃LAk(x, Wω,ι,m(x)))} exp(−(1 − u)tĤω,ι,m
L ).

Since ‖∇wA(x, w)‖∞ < ∞, this is estimated as

|||(Ĥω
L − E)−1/2 − (Ĥω

L,ι,m − E)−1/2|||q

≤ c3|W ι,m
ω |L

s−d/2

|m|s∞

∫ ∞

0

dt
√

tetE

∫ 1

0

du

×
d∑

k=1

(||| exp(−utĤω
L)(i∂k + χ̃LAk(x, Wω(x)))|||

× |||χ̃L exp(−(1 − u)tĤω
L,ι,m)|||q

+ |||χ̃L exp(−utĤω
L)|||q|||(i∂k + χ̃LAk(x, Wω(x)))

× exp(−(1 − u)tĤω
L,ι,m)|||).

Since

||| exp(−utĤω
L)(i∂k + χ̃LAk(x, Wω(x)))||| ≤ 1/

√
ut

and

|||χ̃L exp(−utĤω
L)|||q

≤ |||χ̃L(Ĥω
L − E)−1/2|||q|||(Ĥω

L − E)1/2 exp(−utĤω
L)|||

≤ c4L
d/q

√
−E + 1/(ut),

we have

|||(Ĥω
L − E)−1/2 − (Ĥω

L,ι,m − E)−1/2|||q

≤ c5|W ι,m
ω |L

s−d/2

|m|s∞
Ld/q/|E|1−d/(2q)
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and

|||I0|||q/(2�)

≤ c6|W ι,m
ω |L

s−d/2

|m|s∞
Ld/q‖χ̃LW 0

ω(x)n‖q

× ‖χ̃LW 0
ω(x)n‖�−1

q/2 /|E|�(q−d)/q+1/2.

|||I�|||q/(2�) is estimated similarly. By

(Ĥω
L − E)−1 − (Ĥω

L,ι,m − E)−1

= (Ĥω
L − E)−1

d∑
k=1

{(i∂k + χ̃LAk(x, Wω(x)))

× χ̃L(Ak(x, Wω,ι,m(x)) − Ak(x, Wω(x)))

+ χ̃L(Ak(x, Wω,ι,m(x)) − Ak(x, Wω(x)))

× (i∂k + χ̃LAk(x, Wω,ι,m(x)))}(Ĥω
L,ι,m − E)−1

and
|||(Ĥω

L − E)−1/2(i∂k + χ̃LAk(x, Wω(x)))||| ≤ 1,

we have

|||Ij |||q/(2�)

≤ c7|W ι,m
ω |L

s−d/2

|m|s∞
Ld/q{‖χ̃LW 0

ω(x)n‖�−1−j
q/2 ‖χ̃LW 0

ω(x)n‖q‖χ̃LW 0
ω,ι,m(x)n‖j

q/2

+ ‖χ̃LW 0
ω(x)n‖�−j

q/2 ‖χ̃LW 0
ω,ι,m(x)n‖q‖χ̃LW 0

ω,ι,m(x)n‖j−1
q/2 }/|E|�(q−d)/q+1/2.

It is also easy to show

|||Jj |||q/(2�)

≤ c8|Xι,m
ω |L

s−d/2

|m|s∞
Ld/q‖χ̃LW 0

ω(x)n‖q‖χ̃LW 0
ω(x)n‖�−1−j

q/2

×
∥∥∥∥ n∑

k=1

χ̃LW 0
ω(x)n−kW 0

ω,ι,m(x)k−1

∥∥∥∥
q/2

‖χ̃LW 0
ω,ι,m(x)n‖j−1

q/2 /|E|�(q−d)/q

for 1 ≤ j ≤  − 1 and

|||J�|||q/(2�)

≤ c9|W ι,m
ω |L

s−d/2

|m|s∞
Ld/q

∥∥∥∥ n∑
k=1

χ̃LW 0
ω(x)n−kW 0

ω,ι,m(x)k−1

∥∥∥∥
q/2

×‖χ̃LW 0
ω,ι,m(x)n‖�−2

q/2 ‖χ̃LW 0
ω,ι,m(x)n‖q/|E|�(q−d)/q,
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where a3(, q, d) is a number determined by , q and d.

To complete the proof of Theorem 2.1, we apply Lemma 2.5 to the terms
with |m|∞ ≤ L1−d/(2s)/κ1/s and Lemma 2.6 to other terms in (2.12). Then we
obtain (2.4).

§2.3. Proof of Lemma 2.3

(i) As in (2.18), we have

(Ĥω
L(ε; ι, m) − E)−1/2 − (Ĥω

L − E)−1/2(2.19)

=
1√
π

∫ ∞

0

dt
√

tetE

∫ 1

0

du exp(−utĤω
L(ε; ι, m))

×
d∑

j=1

{(i∂j + χ̃LAj(x, Wω(x, ε; ι, m)))

× χ̃L(Aj(x, Wω(x)) − Aj(x, Wω(x, ε; ι, m)))

+ χ̃L(Aj(x, Wω(x)) − Aj(x, Wω(x, ε; ι, m)))

× (i∂j + χ̃LAj(x, Wω(x)))} exp(−(1 − u)tĤω
L).

Using

Aj(x, Wω(x, ε; ι, m))− Aj(x, Wω(x))(2.20)

= εeι,m(x) ·
∫ 1

0

dv∇wAj(x, Wω(x, εv; ι, m))

= εeι,m(x) · ∇wAj(x, Wω(x))

+ εeι,m(x) ·
∫ 1

0

dv{∇wAj(x, Wω(x, εv; ι, m))−∇wAj(x, Wω(x))},

we expand as

(Ĥω
L(ε; ι, m) − E)−1/2 − (Ĥω

L − E)−1/2

= εΞ(ω, L, E; ι, m) +
3∑

j=1

Rj(ε, ω, L, E; ι, m),
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where

R1(ε, ω, L, E; ι, m) :=
−ε√

π

∫ ∞

0

dt
√

tetE

∫ 1

0

du exp(−utĤω
L(ε; ι, m))

×
d∑

j=1

{
(i∂j + χ̃LAj(x, Wω(x, ε; ι, m)))

× χ̃Leι,m(x) ·
∫ 1

0

dv{∇wAj(x, Wω(x, εv; ι, m))−∇wAj(x, Wω(x))}

+ χ̃Leι,m(x) ·
∫ 1

0

dv{∇wAj(x, Wω(x, εv; ι, m))−∇wAj(x, Wω(x))}

× (i∂j + χ̃LAj(x, Wω(x)))
}

exp(−(1 − u)tĤω
L),

R2(ε, ω, L, E; ι, m) :=
−ε2

√
π

∫ ∞

0

dt
√

tetE

∫ 1

0

du exp(−utĤω
L(ε; ι, m))

×
d∑

j=1

χ̃L
2
eι,m(x) · ∇wAj(x, Wω(x))

×
∫ 1

0

dv eι,m(x) · ∇wAj(x, Wω(x, εv; ι, m)) exp(−(1 − u)tĤω
L)

and

R3(ε, ω, L, E; ι, m)

:=
−ε√

π

∫ ∞

0

dt
√

tetE

∫ 1

0

du(exp(−utĤω
L(ε; ι, m))− exp(−utĤω

L))

×
d∑

j=1

[χ̃Leι,m(x) · ∇wAj(x, Wω(x)), i∂j + χ̃LAj(x, Wω(x))]+

× exp(−(1 − u)tĤω
L).

Since supp χ̃L is compact, for any ϕ and ψ ∈ L2(Rd), we have

|(ϕ,R1(ε, ω, L, E; ι, m)ψ)|

≤ o(ε)
∫ ∞

0

dt
√

tetE

∫ 1

0

du{‖(i∇ + χ̃LA(x, Wω(x, ε; ι, m)))

× exp(−utĤω
L(ε; ι, m))ϕ‖2‖ψ‖2

+‖ϕ‖2‖(i∇ + χ̃LA(x, Wω(x))) exp(−(1 − u)tĤω
L)ψ‖2}.
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Since

‖(i∇ + χ̃LA(x, Wω(x))) exp(−tĤω
L)ψ‖2

= (exp(−tĤω
L)ψ, Ĥω

L exp(−tĤω
L)ψ)1/2

≤ (2te)−1/2‖ψ‖2,

we have

(ϕ,Rj(ε, ω, L, E; ι, m)ψ) = o(ε)(2.21)

for j = 1. It is also easy to show (2.21) for j = 2. For R3(ε, ω, L, E; ι, m), we
use the Du Hamel formula again and apply similar estimates. Then we have
(2.21) for j = 3. By the same method, we can show that Ξ(ω, L, E; ι, m) is a
bounded operator.

(ii) It is enough to show that Ĥω
LΞ(ω, L, E; ι, m)E((a,∞) : Γ(ω, L, E)) is

a bounded operator for any a > 0. In this proof, we write Ej := χ̃Leι,m(x) ·
∇wAj(x, Wω(x)) and Aj := χ̃LAj(x, Wω(x)), for simplicity. Since ∇wA(x, w)
is a C2 function of (x, w) and Wω(x) is a C2 function of x by Remark 2.3, Ej

and Aj are C2 functions of x. Therefore, if we write [A, B]− = AB − BA for
any operators A and B, then we have

[
Ĥω

L ,
d∑

j=1

[Ej , i∂j + Aj ]+

]
−

=
d∑

j,k=1

(i∂j + Aj)E(j,k)(i∂k + Ak) +
d∑

k=1

E(k)(i∂k + Ak) + E(0),

where E(j,k), E(k) and E(0) are continuous functions with compact support. By
using this, we divide as follows:

Ĥω
LΞ(ω, L, E; ι, m) =

7∑
j=1

Hj ,
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where

H1 :=
−2√

π

∫ ∞

0

dt
√

tetE

∫ 1/2

0

du exp(−utĤω
L)

d∑
j=1

(i∂j + Aj)EjĤω
L

× exp(−(1 − u)tĤω
L),

H2 :=
1√
π

∫ ∞

0

dt
√

tetE

∫ 1/2

0

du exp(−utĤω
L)

d∑
j=1

(i∂jE
j)Ĥω

L

× exp(−(1 − u)tĤω
L),

H3 :=
−1√

π

∫ ∞

0

dt
√

tetE

∫ 1/2

0

du exp(−utĤω
L)

×
d∑

j,k=1

(i∂j + Aj)E(j,k)(i∂k + Ak) exp(−(1 − u)tĤω
L),

H4 :=
−1√

π

∫ ∞

0

dt
√

tetE

∫ 1/2

0

du exp(−utĤω
L)

d∑
k=1

E(k)(i∂k + Ak)

× exp(−(1 − u)tĤω
L),

H5 :=
−1√

π

∫ ∞

0

dt
√

tetE

∫ 1/2

0

du exp(−utĤω
L)E(0) exp(−(1 − u)tĤω

L),

H6 :=
−2√

π

∫ ∞

0

dt
√

tetE

∫ 1

1/2

duĤω
L exp(−utĤω

L)
d∑

j=1

Ej(i∂j + Aj)

× exp(−(1 − u)tĤω
L)

and

H7 :=
−1√

π

∫ ∞

1/2

dt
√

tetE

∫ 1

1/2

duĤω
L exp(−utĤω

L)

×
( d∑

j=1

i∂jE
j

)
exp(−(1 − u)tĤω

L).

As in the proof of (i), it is easy to show that H2, H3, H4, H5 and H7 are
bounded operators.

For H1, we estimate as∣∣∣∣(ϕ, exp(−utĤω
L)

d∑
j=1

(i∂j + Aj)EjĤω
L exp(−(1 − u)tĤω

L)ψ
)∣∣∣∣

≤ ‖(i∇ + A) exp(−utĤω
L)ϕ‖2‖E·‖∞‖Ĥω

L exp(−(1 − u)tĤω
L)ψ‖2,
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and
‖(i∇ + A) exp(−utĤω

L)ϕ‖2 ≤ c1(ut)−1/2‖ϕ‖2.

It is also easy to see that

‖Ĥω
L exp(−(1 − u)tĤω

L)ψ‖2 ≤ c2((1 − u)t)−1‖ψ‖2.

However this bound is too big to integrate with respect to the variable t. We
now take ϕ from the range of E((a,∞) : Γ(ω, L, E)). For this we have

‖(Ĥω
L − E)1/2ψ‖2 = ‖χ̃LX0

ω(x)n(Ĥω
L − E)1/2Γ(ω, L, E)−1ψ‖2

≤ c3‖Γ(ω, L, E)−1ψ‖2 ≤ c3‖ψ‖2/a.

Then we have

‖(Ĥω
L − E) exp(−(1 − u)tĤω

L)ψ‖2 ≤ c4(((1 − u)t)−1/2 + 1)‖ψ‖2/a

and

‖Ĥω
L exp(−(1 − u)tĤω

L)ψ‖2 ≤ c4(((1 − u)t)−1/2 + 1)‖ψ‖2/a + |E|‖ψ‖2.

Therefore H1E((a,∞) : Γ(ω, L, E)) is bounded. Similarly H6E((a,∞) :
Γ(ω, L, E)) is bounded.

(iii) We take ψ ∈ L2(Rd) and an element φ of the domain of Ĥω
L . We first

show that

(ψ, ((Ĥω
L − E)1/2 − (Ĥω

L(ε; ι, m) − E)1/2)φ) = O(ε)(2.22)

as ε → 0. For this, we divide the left hand side as

(ψ, ((Ĥω
L − E)−1/2 − (Ĥω

L(ε; ι, m) − E)−1/2)(Ĥω
L − E)φ)

+ (ψ, ((Ĥω
L(ε; ι, m) − E)−1/2((Ĥω

L − E) − (Ĥω
L(ε; ι, m) − E))φ).

By (i), the first term is O(ε). The second term is dominated by

ε‖ψ‖2(‖(i∇ + χ̃LA(x, Wω(x)))φ‖2 + ‖φ‖2).

Therefore we obtain (2.22).
We take ϕ ∈

⋃
a>0 Ran E([a,∞] : Γ(ω, L, E)). By (i), (ii) and (2.22), we

have

(ψ, [(Ĥω
L − E)1/2, Ξ(ω, L, E; ι, m)]+ϕ)

=
1
ε
(ψ, ((Ĥω

L(ε; ι, m) − E)1/2((Ĥω
L(ε; ι, m) − E)−1/2 − (Ĥω

L − E)−1/2)

+ ((Ĥω
L(ε; ι, m) − E)−1/2 − (Ĥω

L − E)−1/2)(Ĥω
L − E)1/2)ϕ) + O(ε).
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Since (Ĥω
L − E)1/2(Ĥω

L − E)−1/2 = (Ĥω
L − E)−1/2(Ĥω

L − E)1/2 = 1, the right
hand side is equal to

−1
ε

(ψ, ((Ĥω
L(ε; ι, m) − E)1/2 − (Ĥω

L − E)1/2)(Ĥω
L(ε; ι, m) − E)−1/2

+ (Ĥω
L(ε; ι, m) − E)−1/2((Ĥω

L(ε; ι, m) − E)1/2 − (Ĥω
L − E)1/2)ϕ)

+ O(ε)

=
−1
ε

(ψ, (Ĥω
L(ε; ι, m) − E)−1/2(Ĥω

L(ε; ι, m) − Ĥω
L)

× (Ĥω
L − E)−1/2ϕ) + O(ε).

By (i) and (ii), we see that this is equal to

−
(

ψ, (Ĥω
L − E)−1

d∑
j=1

[χ̃Leι,m(x) · ∇wAj(x, Wω(x)),

i∂j + χ̃LAj(x, Wω(x))]+(Ĥω
L − E)−1/2ϕ

)
+ o(1).

(iv) As in [35], by the Fourier transform and the Du Hamel formula, we
write as

f(Γ(ω, L, E, ε; ι, m))− f(Γ(ω, L, E))(2.23)

=
∫

R

dζf̂ ′(ζ)
∫ 1

0

du exp(u2πiζΓ(ω, L, E, ε; ι, m))

× (Γ(ω, L, E, ε; ι, m)− (Γ(ω, L, E, ε)) exp((1 − u)2πiζΓ(ω, L, E)).

By (i), we have

Γ(ω, L, E, ε; ι, m)− Γ(ω, L, E, ε) = εΓ′(ω, L, E; ι, m) + o(ε),

where

Γ′(ω, L, E; ι, m) := (Ĥω
L − E)−1/2χ̃LW 0

ω(x)nΞ(ω, L, E; ι, m)

+ (Ĥω
L − E)−1/2χ̃Lne0

ι,m(x)W 0
ω(x)n−1(Ĥω

L − E)−1/2

+ Ξ(ω, L, E; ι, m)χ̃LW 0
ω(x)n(Ĥω

L − E)−1/2.

Then we obtain

f(Γ(ω, L, E, ε; ι, m))− f(Γ(ω, L, E))(2.24)

= ε

∫
R

dζf̂ ′(ζ)
∫ 1

0

du exp(u2πiζ(Γ(ω, L, E))

× Γ′(ω, L, E; ι, m) exp((1 − u)2πiζ(Γ(ω, L, E)) + o(ε).
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We expand the trace as

Tr[fq(Γ(ω, L, E, ε; ι, m))]− Tr[fq(Γ(ω, L, E))] =
q∑

k=1

Ik,

where

Ik :=
∑

1≤�1<···<�k≤q

Tr[f(Γ(ω, L, E)) · · ·

× (f(Γ(ω, L, E, ε; ι, m))
�1	
− f(Γ(ω, L, E)))

× · · · (f(Γ(ω, L, E, ε; ι, m))
�k	
− f(Γ(ω, L, E))) · · ·f(Γ(ω, L, E))]

Since supp f ⊂ (0,∞), the rank of f(Γ(ω, L, E)) is finite. Thus, using (2.24),
we have

I1 = q Tr[{f(Γ(ω, L, E; ι, m))− f(Γ(ω, L, E))}fq−1(Γ(ω, L, E))]

= ε Tr[(fq)′(Γ(ω, L, E))Γ′(ω, L, E; ι, m)] + o(ε).

By changing the order of the operators, we have

Tr[(fq)′(Γ(ω, L, E))Γ′(ω, L, E; ι, m)]

= Tr[(fq)′(Γ(ω, L, E))(Ĥω
L − E)−1/2χ̃Lne0

ι,m(x)W 0
ω(x)n−1(Ĥω

L − E)−1/2]

+ Tr[(fq)′(Γ(ω, L, E))Γ(ω, L, E)[(Ĥω
L − E)1/2, Ξ(ω, L, E; ι, m)]+].

By using also (iii), we obtain

I1 = ε Tr[(fq)′(Γ(ω, L, E))Γ(ω, L, E; ι, m)] + o(ε).

Similarly we obtain
Ik = O(εk)

for 2 ≤ k ≤ q − 1. By (2.23), we have

Iq ≤ ‖f̂ ′‖q
1|||Γ(ω, L, E, ε; ι, m)− Γ(ω, L, E)|||qq.

We divide the second factor as

|||Γ(ω, L, E, ε; ι, m)− Γ(ω, L, E)|||q
≤ |||(Ĥω

L − E)−1/2χ̃LW 0
ω(x)n|||q

× |||(Ĥω
L − E)−1/2 − (Ĥω

L(ε; ι, m) − E)−1/2|||
+ |||(Ĥω

L − E)−1/2 − (Ĥω
L(ε; ι, m) − E)−1/2|||

× |||χ̃LW 0
ω(x, ε; ι, m)n(Ĥω

L(ε; ι, m) − E)−1/2|||q.
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By Lemma 2.1 (i), we have

|||(Ĥω
L − E)−1/2χ̃LW 0

ω(x)n|||q = O(1),

|||(Ĥω
L − E)−1/2χ̃L(W 0

ω(x)n − W 0
ω(x, ε; ι, m)n)|||q = O(ε)

and
|||χ̃LW 0

ω(x, ε; ι, m)n(Ĥω
L(ε; ι, m) − E)−1/2|||q = O(1).

By (2.19) and (2.20), we have

|||(Ĥω
L − E)−1/2 − (Ĥω

L(ε; ι, m) − E)−1/2||| = O(ε).

Therefore we obtain

|||Γ(ω, L, E, ε; ι, m)− Γ(ω, L, E)|||q = O(ε)

and
Iq = O(εq).

Lemma 2.3 is now proven.

§3. Bootstrap Multiscale Analysis and Localization

In this section we modify the theory in Germinet and Klein [14] so that
the operator (2.5) can be treated. For this we weaken the assumptions on
the Wegner estimate and the semiboundedness of the operator in [14]. In this
section we treat a random operator

Hω :=
d∑

j=1

(i∂j + Aω
j (x))2 + Vω(x)(3.1)

with a general random field (Aω(x),Vω(x)). We do not use the specific form
of (Aω(x),Vω(x)) in the last section. The application to the operator (2.5) is
discussed in Subsection 3.4 below. As in [14], we write C = C(a, b, . . . ) if C is
a positive finite constant depending only on the parameters a, b, . . . .

§3.1. Main theorems

We first assume the following regularity and stationarity:
(R) For a.e. ω, Vω ∈ L2

loc(R
d) and Aω = A(1),ω + A(2),ω, where A(1),ω

and A(2),ω are satisfying the following:
(i) A(1),ω ∈ L4

loc(R
d → Rd) and ∇ · A(1),ω ∈ L2

loc(R
d);
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(ii) A(2),ω ∈ C(Rd → Rd), ∇ · A(2),ω ∈ L2
loc(R

d) and dA(2),ω ∈ C(Rd →
Λ2(Rd)), where d is the exterior derivative of A(2),ω regarded as the 1-form∑d

j=1 A
(2),ω
j (x)dxj and Λ2(Rd) is the 2-fold exterior power of Rd.

(S) The random field (A(1),ω(x), dA(2),ω(x),Vω(x)) is stationary with
respect to the shift in the variable x ∈ Zd.

As in [14], we assume the independence at distance:
(IAD) There exists ρ > 0 such that for any finite number of bounded

subsets B1, B2, . . . , Bm of Rd with dist(Bi, Bj) > ρ for i 
= j, the random fields
{(A(1),ω(x), dA(2),ω(x),Vω(x)) : x ∈ Bi}, i = 1, 2, . . . , m, are independent.

Referring Lemma 3.5 below, we assume that a Fernique type estimate holds:
(F) There exist finite positive constants β, δ1 and δ2 such that

P

(
ess sup

x∈ΛL

Vω
−(x) > η

)
≤ δ1 exp(−δ2η

β/ log L)(3.2)

for any L ≥ 2 and η ≥ 0, where Vω
−(x) := max{−Vω(x), 0}.

Under these assumptions the operator Hω in (3.1) is essentially self-adjoint
on C∞

0 (Rd) by Lemma 3.1 below (cf. Leinfelder and Simader [29]).
Moreover, since the bound in Theorem 2.1 is not linear in the variable of

energy, we assume that the Wegner estimate holds in a weaker form than that
of [14]. For any L > 0, let Hω

L be the self-adjoint operator on L2(ΛL) defined by
the restriction of Hω with the Dirichlet boundary condition. In the following
we fix an open interval Ĩ0 and assume the following:

(W) There exist 1 ≤ b < ∞, 0 < h ≤ 1 and 0 < QĨ0
< ∞ such that

P (dist(σ(Hω
L), E) ≤ η) ≤ QĨ0

ηhLbd

for any E ∈ Ĩ0, η > 0 and L ∈ 2N.
For any x ∈ Rd and L > 0, let ΛL(x) be the open box of side L centered

at x. Let Hω
x,L be the self-adjoint operator on L2(ΛL(x)) defined by the re-

striction of Hω with the Dirichlet boundary condition. Let χx,L and Γx,L be
the characteristic functions of ΛL(x) and ΛL−1(x)−ΛL−3(x), respectively. We
use the following definitions in [14]:

Definition 3.1. Let θ > 0, E ∈ R, x ∈ Zd and L ∈ 6N. A box ΛL(x)
is called (θ, E)-suitable for ω if E 
∈ σ(Hω

x,L) and

|||Γx,L(Hω
x,L − E)−1χx,L/3||| ≤ L−θ.

Definition 3.2. Let m > 0, E ∈ R, x ∈ Zd and L ∈ 6N. A box ΛL(x)
is called (m, E)-regular for ω if E 
∈ σ(Hω

x,L) and

|||Γx,L(Hω
x,L − E)−1χx,L/3||| ≤ exp(−mL/2).
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We fix a compact interval I0 included in Ĩ0 and we set MI0 := max I0.
Then the bootstrap multiscale analysis in [14] is modified as follows:

Theorem 3.1 (Bootstrap Multiscale Analysis, cf. Theorem 3.4 in [14]).
For any θ > bd/h, there exists Lθ = Lθ(d, ρ, MI0 , QĨ0

, β, δ1, δ2, b, h, θ) ∈ 6N

satisfying the following: if there exist E0 ∈ I0 and Lθ ≤ L ∈ 6N such
that

P (ΛL is (θ, E0) − suitable) > 1 − 841−d,(3.3)

then there exists δ0 = δ0(d, ρ, MI0 , QĨ0
, β, δ1, δ2, θ,L) > 0 such that, for any

0 < ζ < 1 and 1 < α < ζ−1, there are L0 = L0(d, ρ, MI0 , QĨ0
, β, δ1, δ2, θ,L, ζ, α)

∈ 6N and mζ = mζ(ζ, L0) > 0 satisfying

P (R(mζ , Lk, I0(E0, δ0), x, y)) > 1 − exp(−Lζ
k)

for any k ∈ Z+ and x, y ∈ Zd with |x−y|∞ > Lk +2ρ, where Lk+1 = [Lα
k ]6N :=

max{N ∈ 6N : N ≤ Lα
k}, I0(E0, δ0) := [E0 − δ0, E0 + δ0] ∩ I0 and

R(m, L, I, x, y)

:= {ω : for every E ∈ I, either ΛL(x) or ΛL(y) is (m, E)-regular}.

As in [14], the following is obtained from Theorem 3.1 (cf. Theorem 3.8 in
[14]):

Theorem 3.2 (Decay of the kernel, cf. Theorem 3.8 in [14]). Let Lθ

and I0(E0, δ0) be the number and the interval given in Theorem 3.1. If there
exists E0 ∈ I0 such that (3.3) holds for some L ≥ Lθ and θ > bd/h, then, for
any 0 < ζ < 1, there exists a finite constant Cζ = Cζ(ζ, d, ρ, MI0 , QĨ0

, β, δ1, δ2,

b, h, θ) such that

E

[
sup

f∈B1(R)

|||χxf(Hω)E(I0(E0, δ0) : Hω)χy|||22
]

≤ Cζ exp(−|x − y|ζ∞)

for any x, y ∈ Zd, where | · |∞ is the maximal norm, χx is the operator of the
multiplication with the characteristic function of the open box Λ1(x) with side
1 centered at x and B1(R) is the set of all real valued Borel functions f on R

with sup |f | ≤ 1.
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From this theorem, we obtain the strong dynamical localization in the
Hilbert-Schmidt norm

E

[
sup
t∈R

||||X|n/2E(I0(E0, δ0) : Hω) exp(−itHω)χ0|||22
]

< ∞(3.4)

for any n ≥ 0 (cf. Corollary 3.10 in [14]) and the strong dynamical localization
in the operator norm

E

[
sup
t∈R

||||X|n/2E(I0(E0, δ0) : Hω) exp(−itHω)χ0|||
]

< ∞(3.5)

for any n ≥ 0 (cf. (1.8) in [14]), where |X|n/2 is the operators of multiplication
with |x|n/2. The equivalence of these two notions shown in [16] holds also in
our case as we discuss in Subsection 4.1 below. From these, we obtain the weak
dynamical localization,

sup
t∈R

||||X|n/2E(I0(E0, δ0) : Hω) exp(−itHω)χ0||| < ∞ for a.e. ω,

and the absence of the continuous spectrum

σc(Hω) ∩ I0(E0, δ0) = ∅ for a.e. ω

as is explained in [14] (cf. [37]).
On the other hand, we obtain the following from Theorem 3.1 as in [14]:

Theorem 3.3. (Semi Uniformly Localized Eigenfunction, cf. Theorem
3.11 in [14]). Let Lθ and I0(E0, δ0) be the number and the interval given in
Theorem 3.1. If there exists E0 ∈ I0 such that (3.3) holds for some L ≥ Lθ

and θ > bd/h, then, for any ε > 0, there exists mε > 0 satisfying the follow-
ing for a.e. ω : σc(Hω) ∩ I0(E0, δ0) = ∅ and, if {φj,ω}j∈N is the normalized
eigenfunctions of Hω with energy Ej,ω in I0(E0, δ0), then, for any ν > d/4,
there exist Cε,ω, C̃ω ∈ (0,∞) and {xj,ω}j∈N ⊂ Zd such that

‖χxφj,ω‖2 ≤ Cε,ω exp(mε(log |xj,ω|∞)1+ε
+ − mε|x − xj,ω|∞)(3.6)

and

|xj,ω|∞ ≥ C̃ωj1/(4ν)

for any j ∈ N and x ∈ Zd.
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Moreover we assume that the coefficients belongs to the local Kato class
Kloc(Rd) defined as follows: a real function f on Rd is said to be in the Kato
class K(Rd) if

lim
α↓0

sup
x∈R

∫
|x−y|≤α

gd(x − y)|f(y)|dy = 0

and is said to be in the local Kato class Kloc(Rd) if χKf ∈ Kloc(Rd) for all
compact K ⊂ Rd, where

gd(x) :=

{
− log |x| if d = 2,

|x|2−d if d ≥ 3.

Then we obtain the following as in Lemma 2.5 in [22]:

Proposition 3.1. We assume

d∑
j=1

(A(1),ω
j )2,∇ · Aω

j , |Vω| ∈ Kloc(Rd).(K)

Then, in the situation of Theorem 3.3, the eigenfunction φj,ω is a continuous
function satisfying

|φj,ω(x)| ≤ Cd,ε,ω exp(m′
ε(log |xj,ω|∞)1+ε

+ − m′
ε|x − xj,ω|∞),

where Cd,ε,ω and m′
ε are finite constants independent of j.

§3.2. Verification of Assumptions in [14]

The theory in Germinet and Klein [14] is discussed under several as-
sumptions in an abstract setting. We have already introduced some of these
conditions. In this subsection we show that the other assumptions hold in their
forms or in weakened forms.

We first prepare the following proposition, which we often use in the
following:

Lemma 3.1. Under the assumption (F), we have the following:
(i) For any 1 ≤ p < ∞, there exists a finite constant c = c(δ1, δ2, β, p) such

that

E

[
ess sup

x∈ΛL

Vω
−(x)p

]
≤ c(log L)p/β

for any L ≥ 2.
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(ii) For almost all ω, there exists a finite constant cω such that

Vω
−(x) ≤ cω{log(|x|∞ + 2)}2/β

for almost every x ∈ Rd.

Proof. (i) By Fubini’s theorem, we have

E
[
ess sup

x∈ΛL

Vω
−(x)p

]
=
∫ ∞

0

λdλP
(

ess sup
x∈ΛL

Vω
−(x)p ≤ λ

)
=
∫ ∞

0

P
(

ess sup
x∈ΛL

Vω
−(x)p > η

)
dη.

By applying (3.2) to the right hand side we obtain the result.
(ii) By taking δ3 > 1/

√
δ2, we have

∑
L∈N

P

(
ess sup

x∈ΛL

Vω
−(x) > (δ3 log L)2/β

)
< ∞.

By the Borel-Cantelli lemma, we see that, for almost all ω, there exists Lω ∈ N

such that
ess sup

x∈ΛL

Vω
−(x) ≤ (δ3 log L)2/β

for any L ≥ Lω Then for any L ≥ Lω and almost every x ∈ ΛL − ΛL−1, we
have

Vω
−(x) ≤ (δ3 log L)2/β ≤ {δ3 log(2|x|∞ + 1)}2/β.

Therefore we obtain the result.

We write ΛL(x) � ΛL′(x′) if ΛL(x) ⊂ ΛL′−3(x′). Then the assumption
(SLI) in [14] relating the Simon-Lieb inequality is verified in the following weak-
ened form:

Proposition 3.2. There exists a finite constant c = c(d, MI0) such that,
for any L, ′, ′′ ≥ 2, x, y, y′ ∈ Rd with Λ�′′(y) � Λ�′(y′) � ΛL(x) and any
E ∈ I0 − σ(Hx,L) − σ(Hy′,�′),

|||Γx,L(Hx,L − E)−1χy,�′′ |||(3.7)

≤
((

ess sup
Γy′,�′

Vω
−

)1/2

+ c
)
|||Γy′,�′(Hy′,�′ − E)−1χy,�′′ |||

×|||Γx,L(Hx,L − E)−1Γy′,�′ |||.
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The assumption (SLI) in [14] requires that the first factor in the right
hand side of (3.7) is bounded in ω. Instead of the boundedness, we use the
assumption (F).

To prove this proposition, we modify Lemma 2.5.3 in [37] as follows:

Lemma 3.2. There exists a finite constant c = c(d) satisfying the fol-
lowing: let B̃, B be bounded open regions in Rd such that B̃ ⊂ B and δ :=
dist(∂B̃, ∂B) > 0. Let g ∈ L2(B) and u ∈ L2(B) such that (i∇+Aω)u ∈ L2(B)
and ((i∇ + Aω)u, (i∇ + Aω)ϕ) + (u,Vωϕ) = (g, ϕ) for any ϕ ∈ C∞

0 (B). Then
it holds that

‖(i∇ + Aω)u‖L2(B̃) ≤
((

ess sup
B

Vω
−

)1/2

+
c

δ

)
‖u‖L2(B) + ‖g‖L2(B).

Then Lemma 2.5.2 in [37] is modified as follows:

Lemma 3.3. There exists a finite constant c = c(d, MI0) satisfying
the following: let ΛL′(x′) ⊂ ΛL(x) and A′ ⊂ ΛL′(x′), A ⊂ ΛL(x). Let
φ ∈ C1

0(ΛL(x)) and B be an open neighborhood of supp∇φ such that δ1 :=
dist(∂B, supp∇φ) > 0, B ∩ A = ∅ and B ⊂ ΛL(x). Then it holds that

|||χA′(φ(Hx,L − E)−1 − (Hx′,L′ − E)−1φ)χA|||

≤
((

ess sup
B

Vω
−

)1/2

+
c

δ1

)
|||χA′(Hx′,L′ − E)−1χB|||

× |||χB(Hx,L − E)−1χA|||

for any E ∈ I0 − σ(Hx,L) − σ(Hx′,L′).

Proof of Proposition 3.2. We have only to take ΛL′(x′) = Λ�′(y′), A′ =
Λ�′′(y), A = ΛL−1(x)−ΛL−3(x), B = Λ�′−1(y′)−Λ�′−3(y′) and φ so that φ = 1
on Λ�′−5/2(y′) and φ = 0 on Λ�′−3/2(y′)c in Lemma 3.3.

Let T be the operator of multiplication with the function (1+|x|2)ν , where
ν is a fixed number greater than d/4. Let H± be the weighted spaces defined
by

H± := L2(Rd, (1 + |x|2)±2νdx).

The set Dω
+ := {φ ∈ D(Hω)∩H+, Hωφ ∈ H+} is dense in H+ and an operator

core for Hω, for a.e. ω, where D(Hω) is the domain of Hω.
ψ ∈ H− is called a generalized eigenfunction of Hω with generalized eigen-

value E if ∫
Hωϕψ dx = E

∫
ϕψ dx
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for any ϕ ∈ Dω
+. Then the assumption (EDI) in [14] on an eigenfunction decay

inequality is verified in the following weakened form:

Proposition 3.3. There exists a finite constant c = c(d, MI0) satisfy-
ing the following: for any generalized eigenfunction ψ of Hω with generalized
eigenvalue E ∈ I0, x ∈ Rd and L ≥ 4 such that E 
∈ σ(Hω

x,L), it holds that

‖χxψ‖2 ≤ c

((
ess sup
ΛL(x)

Vω
−

)1/2

+ 1
)
|||Γx,L(Hω

x,L − E)−1χx||| × ‖Γx,Lψ‖2.

(3.8)

As in the assumption (SLI), the assumption (EDI) in [14] requires that the
second factor in the right hand side of (3.8) is bounded in ω. This proposition
is proven by Lemma 3.2.

The assumption (NE) in [14] on the average number of eigenvalues is ver-
ified by the following:

Proposition 3.4. For any a ∈ R, there exists a finite constant Ca =
Ca(a, d, β, δ1, δ2) such that

E[	{(−∞, a) ∩ σ(Hω
L)}] ≤ CaLd(3.9)

for any L ≥ 1.

Proof. Let Hω,a
L be the operator obtained by replacing Vω by −(Vω −a−

1)− in the definition of Hω
L . Then, since Hω

L − a − 1 ≥ Hω,a
L , we have

	{(−∞, a) ∩ σ(Hω
L)} ≤ 	{(−∞,−1) ∩ σ(Hω,a

L )}.

Let H̃ω,a
L+3 be the operator obtained by replacing A(x, Wω(x)) and Wω

0 (x)n by

Aω and (Vω − a − 1)−, respectively, in the definition of H̃ω
L+3 in (2.1). Then,

since σ(Hω,a
L ) ⊂ σ(H̃ω,a

L+3), we have

	{(−∞,−1) ∩ σ(Hω,a
L )} ≤ 	{(−∞,−1) ∩ σ(H̃ω,a

L+3)}.

Let Ĥω,−
L+3 be the operator obtained by replacing A(x, Wω(x)) by Aω in the

definition of Ĥω
L+3 in (2.2), and Γa(ω, L + 3) be the operator obtained by

replacing Ĥω
L+3, E and Wω

0 (x)n by Ĥω,−
L+3, −1 and (Vω − a− 1)−, respectively,

in the definition of Γ(ω, L + 3, E) in (2.6). Then, by the Birman-Schwinger
principle (cf. Theorem 8.1 in [34]), we have

	{(−∞,−1) ∩ σ(H̃ω,a
L+3)} ≤ 	{(1,∞) ∩ σ(Γa(ω, L + 3))}.
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This is less than or equal to

|||Γa(ω, L + 3)|||q/2
q/2.

By Lemma 2.1 (ii), we see this is dominated by

‖χ̃L+3(Vω − a − 1)−‖q/2
q/2.

By Lemma 3.1 (i), we have

E[‖χ̃L+3(Vω − a − 1)−‖q/2
q/2]≤

∑
b∈ΛL+3∩Zd

E
[
ess sup
x∈Λ2(b)

|(Vω − a − 1)−|q/2
]

≤C(δ1, δ2, β, a, q)	{ΛL+3 ∩ Zd}.

Therefore we obtain (3.9).

The following ensures that the assumption (SGEE) in [14] relating a gen-
eralized eigenfunction expansion holds:

Proposition 3.5. For any a < b and p > 0, we have

E[Tr[T−1E([a, b] : Hω)T−1]p] < ∞.(3.10)

The assumption (SGEE) in [14] requires (3.10) only for p = 2. However we
need (3.10) for some p > 2 since our scalar potential Vω is not bounded below.

Proof of Proposition 3.5. By taking a complete orthonormal system {ϕm}
of L2(Rd), we write the trace as

Tr[T−1E([a, b] : Hω)T−1] =
∑
m

‖E([a, b] : Hω)T−1ϕm‖2
2.(3.11)

Since (Hω − a + 1)−1 ≥ (b − a + 1)−1 on the range of E([a, b] : Hω), we have

‖E([a, b] : Hω)T−1ϕm‖2(3.12)

≤ (b − a + 1)‖(Hω − a + 1)−1E([a, b] : Hω)T−1ϕm‖2.

Since

(Hω − a + 1)−1E([a, b] : Hω) = E([a, b] : Hω)(Ĥω,+ + 1)−1

+ (Hω − a + 1)−1E([a, b] : Hω)(a + Vω
−)(Ĥω,+ + 1)−1,
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we have

‖(Hω − a + 1)−1E([a, b] : Hω)T−1ϕm‖2(3.13)

≤ ‖E([a, b] : Hω)(Ĥω,+ + 1)−1T−1ϕm‖2

+‖(Hω − a + 1)−1E([a, b] : Hω)(a + Vω
−)(Ĥω,+ + 1)−1T−1ϕm‖2,

where Ĥω,+ = (i∇ + Aω)2 + Vω
+. The second term is less than of equal to

‖(a + Vω
−)(Ĥω,+ + 1)−1T−1ϕm‖2,

since (Hω −a+1)−1 ≤ 1 on the range of E([a, b] : Hω). Therefore the quantity
in (3.11) is dominated by

Tr[T−1(Ĥω,+ + 1)−2T−1] + Tr[T−1(Ĥω,+ + 1)−1(a + Vω
−)2(Ĥω,+ + 1)−1T−1].

By using the diamagnetic inequality as in the proof of Lemma 2.1, we see that
this is less than or equal to

Tr[T−1(−∆ + 1)−2T−1] + Tr[T−1(−∆ + 1)−1(a + Vω
−)2(−∆ + 1)−1T−1].

By the explicit representation of the resolvent kernel we see that the first term
is finite if d < 4. By using also the boundedness of E[

∏2N
ι=1(a + Vω

−(xι))2], we
see that

E[Tr[T−1(−∆ + 1)−1(a + Vω
−)2(−∆ + 1)−1T−1]2N ]

is finite for any N ∈ N if d < 4. For the higher dimensional case, we take  ∈ N

so that  > d/4. By repeating the estimates as in (3.12) and (3.13), we have

‖E([a, b] : Hω)T−1ϕm‖2

≤ C
∑

j1,j2,... ,j�∈{1,2}
‖(a + Vω

−)j1(Ĥω,+ + 1)−1(a + Vω
−)j2(Ĥω,+ + 1)−1 · · ·

× (a + Vω
−)j�(Ĥω,+ + 1)−1T−1ϕm‖2.

The rest of the proof is similar.

§3.3. Proof of the main theorems

Theorem 3.1 is proven by extending the four theorems in Section 5 in [14]
and combining them as in [14]. The first one of them is extended as follows:
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Proposition 3.6 (cf. Theorem 5.1 in [14]). For any E0 ∈ I0, θ >

bd/h, odd integer Y with Y ≥ 11 and 0 < p < hθ − bd, there exists Zθ =
Zθ(d, ρ, MI0 , QĨ0

, β, δ1, δ2, b, h, θ, p, Y ) ∈ 6N satisfying the following: if there
exists Zθ ≤ L0 ∈ 6N such that

P (ΛL0 is (θ, E0)-suitable) > 1 − (3Y − 4)−2d,

then there exists κ = κ(p, Y, L0) ∈ Z+ such that

P (ΛLk
is (θ, E0)-suitable) > 1 − L−p

k

for any k ≥ κ, where Lk+1 = Y Lk for any k ∈ Z+.

Proof. In the proof of Theorem 5.1 in [14], we require s satisfies

(p + bd)/h < s and s < θ.(3.14)

As in [14], we set

qL = L−p, tL = L−s, uL = L−θ,

pL = P (ΛL is not (θ, E0)-suitable).

Let  ∈ 6N,  > 6ρ, Y ∈ 2N + 1 and L = Y . We set

ΞL,� = ΛL ∩ 

3
Zd, CL,� = {Λ�(y) : y ∈ ΞL,�, Λ�(y) � ΛL}.

In the definition of the event FL,� in [14], we add the conditions on Vω
− as

follows:

FL,� = {ω : there exist two (θ, E0)-nonsuitable boxes

Λ�1(y1), Λ�2(y2) in CL,� such that

dist(Λ�1(y1), Λ�2(y2)) > 2ρ}
∪ {ω : dist(σ(Hω

x,3�), E0) ≤ tL for some x ∈ Ξ′
L,�}

∪ {ω : dist(σ(Hω
0,L), E0) ≤ tL}

∪
{

ω : ess sup
ΛL

Vω
− ≥ {2p(log L)2/δ2}1/β

}
.

By Lemma 3.2, we have

{ω : ΛL is not (θ, E0)-suitable} ⊂ FL,�
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for L > Z1 = Z1(d, β, δ1, δ2, θ, p, Y, s). By the assumptions (W), (F) and
Lemma 3.4 below, we have

P (FL,�) ≤
(3Y − 4)2d

2
p2

� + {(6Y )d + 1}QĨ0
LbdthL + δ1L

−2p

≤ (3Y − 4)2d

2
p2

� +
1
2
qL

for L > Z2 = Z2(d, QĨ0
, β, δ1, δ2, b, h, θ, p, Y, s). The rest of the proof is same.

Lemma 3.4. Let Λ�1(y1), Λ�2(y2), . . . , Λ�m
(ym) be finite number of

boxes such that dist(Λ�i
(yi), Λ�j

(yj)) > 2ρ for i 
= j. Then, for any θ and
E, the events {ω : Λ�i

(yi) is (θ, E)-suitable}, i = 1, 2, . . . , m, are independent.

Proof. Let ζi ∈ C∞
0 (Rd → [0, 1]) such that ζi ≡ 1 on Λ�i

(yi) and ζi ≡ 0
on Λ�i+ρ/2(yi)c. We define

A[i],ω
j (x) :=

−Γ(d/2)
2πd/2

∫ ∑
k �=j

xk − yk

|x − y|d d(ζiA(2),ω)j,k(y)ζi(y)dy.

Since A(2),ω and dA(2),ω are continuous in x, A[i],ω is also continuous in x and
we can integrate A(2),ω and A[i],ω along any C1 curves. Since dA[i],ω = dA(2),ω

on Λ�i
(yi), we can construct Φ[i],ω ∈ C1(Λ�i

(yi)) such that dΦ[i],ω = A(2),ω −
A[i],ω by the Stokes theorem. By the unitary operator exp(iΦ[i],ω), the op-
erators Hω

�i,yi
and H

[i],ω
�i,yi

are unitary equivalent, where H
[i],ω
�i,yi

is the operator
obtained by replacing A(2),ω by A[i],ω in the definition of Hω

�i,yi
. Since the coef-

ficients of H
[i],ω
�i,yi

are determined by the random field {(A(1),ω, dA(2),ω,Vω(x)) :
x ∈ Λ�i+ρ/2(yi)}, the desired independence follows from the assumption (IAD).

The rest of the theorems in Section 5 in [14] are also modified by using the
assumptions (F) and (IAD) as above. We omit the detail.

Theorems 3.2 and 3.3 are proven similarly as in [14] by using Lemma 3.1
and the propositions in the last subsection.

Proposition 3.1 is proven by using the subsolution estimate (Theorem 8.17
in [19]) as in [28]. For this, we use Kato’s inequality (Theorem X.33 in [32]) to
show (−∆ + (Vω − Ej,ω)−)|φj,ω(x)| ≤ 0 in the weak sense.
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§3.4. The case of Section 2

In the case of Section 2, the assumptions (R), (S) and (IAD) hold. More-
over the assumption (K) in Proposition 3.1 is also satisfied. For any open
interval Ĩ0 such that sup Ĩ0 < −(2‖w · ∇wA‖∞/n)2), the assumption (W) with
Ĩ0 is ensured by Theorem 2.1. The assumption (F) is ensured by the follow-
ing lemma by Fischer, Leschke and Müller [12], which is based on Fernique’s
theorem [10]:

Lemma 3.5 (Lemma 5.3 in [12]). There exists a positive finite constant
L0 = L0(R00(0), ‖∇R00‖∞) such that

P

(
sup

x∈ΛL

|W 0
ω(x)| ≥ η

)
≤ 22(d+1) exp

(
− η2

200R00(0) log L

)
for any L ≥ L0 and η ≥ 0.

The initial estimate (3.3) is also proven by using this lemma and a Combes-
Thomas estimate, Lemma A.1 in [12] as in Lemma 5.5 in [12]:

Lemma 3.6. There exist positive constants c1 = c1(d), c2 = c2(d) and
a universal finite constant c3 such that for any θ > 0, 12 ≤ L ∈ 6N and
E ≤ −E(L), we have

P (ΛL is (θ, E)-suitable) > 1 − 841−d,

where
E(L): = {c3L

−1 log(c1L
θ+d+1)}2 + (c2R

00(0) log L)n/2.

Therefore the results in Subsection 3.1 hold for

E0 < {−(2‖w · ∇wA‖∞/n)2} ∧
{
− inf

θ>bd/h
E(Lθ)

}
,(3.15)

where Lθ is the constant given in Theorem 3.1.
These results are meaningful since the interval determined by (3.15) is

included in the spectrum as is shown in the following:

Proposition 3.7 (Theorem 5.34 in [31]). We have

σ(Hω) ⊃
{

inf σ(H(, w)) − (w0)n

:  > 0, w0 ∈ R, w ∈ supp P (Wω(0) ∈ ·|W 0
ω(0) = w0)

}
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for a.e. ω, where H(, ω) is the self-adjoint operator on L2(Λ�) obtained by
restricting

d∑
j=1

(i∂j + Aj(x,w))2

to Λ� by the Dirichlet boundary condition. In particular, if

sup{|A(x,w)|:x ∈ Λ�,w ∈ Rg} < ∞

for any  > 0, then we have
σ(Hω) = R

for a.e. ω.

Proof. For any w0 > 0, w ∈ supp P (Wω(0) ∈ ·|W 0
ω(0) = w0),  > 0 and

|w0| > ε > 0, we have

P

(
sup
x∈Λ�

|(Wω(x), W 0
ω(x)) − (w, w0)| < ε

)
> 0.

If the event in this probability occurs, then by using

|A(x, Wω(x)) − A(x, w)| ≤ ε‖∇wA‖∞,

we have

inf σ(Hω
0,�) ≤ (1 + ε) inf σ(H(w, )) + ε(1 + ε)‖∇wA‖2

∞ − (w0 − ε)n =: W(ε)

and

inf σ(Hω
0,�) ≥ (1 − ε) inf σ(H(w, )) − ε(1 − ε)‖∇wA‖2

∞ − (w0 + ε)n =: W(ε).

Since inf σ(Hω
0,�) ⊂ σ(Hω), we have

P ((W(ε),W(ε)) ∩ σ(Hω) 
= ∅) > 0.

By the ergodicity, this probability is one. Therefore we obtain

1 = P ((W(1/n),W(1/n)) ∩ σ(Hω) 
= ∅ for any 1/w0 < n ∈ N)

= P (inf σ(H(w, )) − (w0)n ∈ σ(Hω)).

By the same method we can prove this for w0 ≤ 0.
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We next take an Rg-valued continuous function w(w0) of w0 ∈ R so that
w(w0) ∈ supp P (Wω(0) ∈ ·|W 0

ω(0) = w0) and w(0) = 0. Then s(w0, ) :=
inf σ(H(w(w0), )) − (w0)n is continuous in w0. If

α� := sup{|A(x, w)| : x ∈ Λ�, w ∈ Rg} < ∞

for any  > 0, then

s(w0, ) ≤ 2 inf σ(−∆�) + 2α2
� − (w0)n,

where ∆� is the Dirichlet Laplacian on Λ�. By this we see that s(w0, ) tends
to −∞ as w0 tends to ∞. Therefore we have (−∞, s(0, )) ⊂ σ(Hω). By the
diamagnetic inequality we have

s(0, ) ≥ inf σ(−∆�).

Then we see that s(0, ) tends to ∞ as  tends to 0. Therefore we have σ(Hω) =
R.

Remark 3.1. In the case that Aj is independent of w and n = 1, Fischer,
Leschke and Müller [12] proves the absence of the continuous spectrum in a low
energy interval under more general conditions on the Gaussian random field.

Remark 3.2. The results in this subsection are extended to the cases
stated in Remark 2.2.

§4. A Characterization of the Anderson Metal-insulator Transport
Transition

In this section we extend the theory in Germinet and Klein [16]. As in
the last section, we treat a random operator (3.1) with a general random field
(Aω(x),Vω(x)). In [16], Aω = 0, Vω is relatively form bounded below with
respect to the negative Laplacian and the Wegner estimate (W) holds with
h = b = 1. In this section we remove this restrictions so that the operator in
the preceding sections can be treated.

§4.1. Main theorem

We use the notations in the last section. We assume (R), (IAD), (F) and
(W) on an open interval Ĩ0. Moreover we assume the ergodicity:

(E) The random field (A(1),ω(x), dA(2),ω(x),Vω(x)) is stationary and
ergodic, with respect to the shift in the variable x ∈ Rd or Zd.
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Then we have a nonrandom set Σ such that σ(Hω) = Σ with probability
one (cf. [31], [38]). Referring Theorem 3.1, we modify the definition of the
multiscale analysis region ΣMSA in [16] as

ΣMSA := {E ∈ Σ : there exist θ > bd/h, a compact interval I0

and L ∈ 6N such that E ∈
◦
I0 ⊂ I0 ⊂ Ĩ0,L ≥ Lθ and

P (ΛL : (θ, E)− suitable) > 1 − 841−d,

where Lθ is the number given in Theorem 3.1}.

As in [16], we consider moments defined as follows: for any n ≥ 0, f ∈ C∞
0 (R →

[0,∞)), t ∈ R and T ≥ 0, we set

Mω(n, f, t) := |||〈X〉n/2 exp(−itHω)f(Hω)χ0|||22(4.1)

M(n, f, t) := E[Mω(n, f, t)](4.2)

and

M(n, f, T ) :=
2
T

∫ ∞

0

e−2t/T M(n, f, t)dt,(4.3)

where 〈X〉 := (1 + |X|2)1/2. The strong insulator region ΣSI is defined by

ΣSI :=
{

E ∈ Σ : there exists an open interval I including E

such that E

[
sup
t∈R

Mω(n, f, t)
]

< ∞

for any f ∈ C∞
0 (I → [0,∞)) and n ≥ 0

}
.

By Theorem 3.2, we have ΣMSA ∩ Ĩ0 ⊂ ΣSI . Moreover, if E ∈ ΣSI and I is an
open interval appeared in the definition of E ∈ ΣSI , then it is easy to see that

sup
T≥0

M(n, f, T ) < ∞

for any n ≥ 0 and f ∈ C∞
0 (I → [0,∞)). Conversely, we have the following,

which is an extension of Theorem 2.11 in [16]:

Theorem 4.1. Let f ∈ C∞
0 (R → [0,∞)) such that f ≡ 1 on some open

interval J ⊂ Ĩ0, α ≥ 0 and

n > 2bdα/h + (2 + 9b/h)d.(4.4)
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If
lim

T→∞
M(n,f,T )/Tα < ∞,

then J ∩ Σ ⊂ ΣMSA.

We prove this theorem in the next subsection. In [16], many results are
deduced from this result. Some of the results are stated in terms of an ex-
ponent defined in (4.9) below. To define the exponent in our case, we extend
Proposition 3.1 in [16] as follows:

Proposition 4.1. Let f ∈ C∞
0 (R → [0,∞)) such that f(Hω) 
= 0 with

probability one. Then we have

0 ≤ Mω(0, f, 0) ≤ Mω(n, f, t) ≤ C(d, β, f, n, ω)〈t〉[[n+(5d+1)/2]]+2(4.5)

0 < M(0, f, 0) ≤ M(n, f, t) ≤ C(d, β, f, n)〈t〉[[n+(5d+1)/2]]+2(4.6)

and

0 < M(0, f, 0) ≤ M(n, f, T ) ≤ C ′(d, β, f, n)〈T 〉[[n+(5d+1)/2]]+2(4.7)

for any t ∈ R and n, T ≥ 0, where [[m]] is the smallest integer greater than m

for any m ≥ 0.

We prove this proposition in Subsection 4.3 below. In the situation of
Proposition 3.1 in [16], the exponents of 〈t〉 and 〈T 〉 in the right hand sides of
(4.5)–(4.7) are taken as [n + 3d/2] + 3 and the constant C(d, β, f, n, ω) in (4.5)
is independent of ω.

As in [16] we define the n-th upper and lower transport exponents as
follows: for f ∈ C∞

0 (R → [0,∞)) with f(Hω) 
= 0 with probability one, we set

β+(n, f) := lim
T→∞

logM(n, f, T )
n log T

and
β−(n, f) := lim

T→∞

logM(n, f, T )
n log T

.

For f ∈ C∞
0 (R → [0,∞)) with f(Hω) 
= 0 with probability one, we set

β±(n, f) = 0. For any open interval I and E ∈ R, we set

β±(n, I) := sup{β±(n, f)|f ∈ C∞
0 (I → [0,∞))}

and
β±(n, E) := inf{β±(n, I)|I is an open interval including E}.

For these exponents we obtain the following by the entirely same proof of
Proposition 3.2 in [16]:
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Proposition 4.2. For any f ∈ C∞
0 (R → [0,∞)), any open interval I

and any E ∈ R, we have the following:
(i) β±(n, f), β±(n, I) and β±(n, E) are monotone increasing in n > 0.
(ii) 0 ≤ β±(n, f), β±(n, I), β±(n, E) ≤ 1.

Therefore, as in [16], we can define

β±(I) = lim
n→∞

β±(n, I) = sup
n

β±(n, I)(4.8)

β±(E) = lim
n→∞

β±(n, E) = sup
n

β±(n, E)

and we have 0 ≤ β±(I), β±(E) ≤ 1 and β±(E) = 0 for E 
∈ Σ.
From Theorem 4.1 we have the following as in Theorem 2.10 in [16]:

Proposition 4.3. If E ∈ Ĩ0 and β−(E) > 0, then β−(n, E) ≥ h/(2bd)−
(2h + 9b)/(2nb) for all n > (2h + 9b)d/h and β−(E) ≥ h/(2bd).

Therefore the size of the jump of the exponent β− at the transition point
is greater than or equal to h/(2bd).

Theorems 2.8 and 4.2 in [16] are also extended appropriately.

§4.2. Proof of Theorem 4.1

To prove Theorem 4.1, we first modify Theorem A.5 in [16] (Theorem 2 in
[15]) as follows:

Proposition 4.4. There exist finite constants C(d) and C such that

|||χxf(Hω)χy|||(4.9)

≤ C(d)‖f‖(k+1)

(
ess sup

ΛRL

Vω
− + 1

)(2k+d−3)/4 (Ck)k

〈x − y〉(2k−d−3)/2

for any f ∈ C∞(R → C), (d + 5)/2 ≤ k ∈ N, L ≥ 2 and x, y ∈ ΛL−1, where
R = 2

√
d + 4 and

‖f‖(n) :=
n∑

r=0

∫
R

|f (r)(u)|〈u〉r−1du

for n ∈ N.

The number R = 2
√

d + 4 can be replaced by any number greater than
2
√

d + 2 if L is large enough.
To prove this proposition, we first show the following:
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Lemma 4.1. There is a finite constant C(d) such that

|||χx(Hω − z)−1χy|||(4.10)

≤ C(d)
ηRL

z

{1 + ((ηz + |z| + ess sup
ΛRL

Vω
− + 1)1/2/ηz)

× ((ηRL
z + |z| + ess sup

ΛRL

Vω
− + 1)/ηRL

z )(d−1)/2}

× exp

(
− mRL

z

2 +
√

ηRL
z

|x − y|
)

for any z ∈ C − R, L ≥ 2 and x, y ∈ ΛL−1, where ηz := dist(z, σ(Hω)),
ηRL

z := dist(z, σ(Hω
RL)) and

mRL
z :=

ηRL
z

32

(
63

ess supΛRL
Vω
− + ηRL

z + |z|

)1/2

.

Proof. We take φ ∈ C∞
0 (ΛRL → [0, 1]) so that φ ≡ 1 on ΛL and supp∇φ

⊂ Λ2(
√

d+1)L+3 − Λ2(
√

d+1)L+2. Then we have

φ(Hω
RL − z)−1 − (Hω − z)−1φ(4.11)

= 2(Hω − z)−1(i∇φ)(i∇ + Aω)(Hω
RL − z)−1

− (Hω − z)−1(∆φ)(Hω
RL − z)−1

and

|||χx(Hω − z)−1χy||| ≤ |||χx(Hω
RL − z)−1χy|||(4.12)

+ (2|||χx(Hω − z)−1(i∇φ)(i∇ + Aω)ψ|||

+ |||χx(Hω − z)−1(∆φ)|||)|||ψ(Hω
RL − z)−1χy|||,

where ψ ∈ C∞
0 (ΛRL → [0, 1]) such that ψ ≡ 1 on Λ2(

√
d+1)L+3 − Λ2(

√
d+1)L+2

and ψ ≡ 0 on (Λ2(
√

d+1)L+4 − Λ2(
√

d+1)L+1)
c. By the same proof of Corollary

1 of Theorem 1 in [15], we have

|||χx0(H
ω
RL − z)−1χy0 ||| ≤

9
ηRL

z

exp

(
C
√

d − mRL
z

2 +
√

ηRL
z

|x0 − y0|
)

(4.13)
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for some finite constant C and any x0, y0 ∈ ΛRL−1. Since |x0 − y| ≥ (
√

d+1)L
for any x0 
∈ Λ2(

√
d+1)L+1 and y ∈ ΛL−1, we have

|||ψ(Hω
RL − z)−1χy|||(4.14)

≤
{ ∑

x0∈(Λ2(
√

d+1)L+4−Λ2(
√

d+1)L+1)∩Zd

|||χx0(H
ω
RL − z)−1χy|||2

}1/2

≤ C ′′(d)
ηRL

z

L(d−1)/2 exp

(
− mRL

z (
√

d + 1/2)L
2 +

√
ηRL

z

)

≤ C ′(d)
ηRL

z

(
2 +

√
ηRL

z

mRL
z

)(d−1)/2

exp

(
− mRL

z

√
dL

2 +
√

ηRL
z

)

≤ C(d)
ηRL

z

{(
ηRL

z + |z| + ess sup
ΛRL

Vω
− + 1

)
/ηRL

z

}(d−1)/2

× exp

(
− mRL

z

√
dL

2 +
√

ηRL
z

)
.

Since |x − y| ≤
√

dL for any x, y ∈ ΛL−1, we have

exp

(
− mRL

z

√
dL

2 +
√

ηRL
z

)
≤ exp

(
− mRL

z

2 +
√

ηRL
z

|x − y|
)

.

On the other hand we have

|||ψ(i∇ + Aω)(Hω − z)−1||| ≤ C

ηz

(
ηz + |z| + ess sup

ΛRL

Vω
− + 1

)1/2

(4.15)

for some finite constant C. In fact, for any φ ∈ C∞
0 (Rd), we have

‖ψ(i∇ + Aω)(Hω − z)−1φ‖2

= ((Hω − z)−1φ, (i∇ + Aω)ψ2(i∇ + Aω)(Hω − z)−1φ).

Since

(i∇ + Aω)ψ2(i∇ + Aω)

= ψ2(Hω − z) + ψ2(z − Vω) + 2ψ(i∇ψ)(i∇ + Aω),

and |||(Hω − z)−1||| ≤ 1/ηz, we have

‖ψ(i∇ + Aω)(Hω − z)−1φ‖2

≤ 1
ηz

{
1 +

1
ηz

(
|z| + ess sup

ΛRL

Vω
− +

1
s

sup |∇ψ|2
)}

‖φ‖2

+ s‖ψ(i∇ + Aω)(Hω − z)−1φ‖2
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for any s > 0. By taking s < 1, we obtain (4.15).
By applying (4.13), (4.15), (4.15), |||(Hω − z)−1||| ≤ 1/ηz and |||(Hω

RL −
z)−1||| ≤ 1/ηRL

z to the right hand side of (4.12), we obtain (4.11).

Proof of Proposition 4.4. As in the proof of Theorem 2 in [15], we use the
Helffer-Sjöstrand formula (cf. [8] Section 2.2):

f(Hω) =
1
π

∫
R2

∂f̃k(z)
∂z

(Hω − z)−1dudv,

where z = u + iv, k ∈ N,

f̃k(z) =

{
k∑

r=0

1
r!

f (r)(u)(iv)r

}
σ(u, v),

σ(u, v) = τ (v/〈u〉) and τ ∈ C∞(R → [0, 1]) such that τ (s) = 1 on |s| ≤ 1 and
τ (s) = 0 on |s| ≥ 2. Then we have

|||χxf(Hω)χy||| ≤ C(I1 + I2),

where

I1 :=
k∑

r=0

1
r!

∫
〈u〉≤|v|≤2〈u〉

|f (r)(u)| |v|
r

〈u〉 |||χx(Hω − z)−1χy|||dudv

and
I2 :=

1
k!

∫
|v|≤2〈u〉

|f (k+1)(u)||v|k|||χx(Hω − z)−1χy|||dudv.

As in [15], by (4.11) and |ηRL
z |, |ηz| ≥ |v|, we have

|||χx(Hω − z)−1χy|||

≤ C(d)
|v|

{
1 +

((
|v| + |z| + ess sup

ΛRL

Vω
− + 1

)1/2

/|v|
)

×
((

|v| + |z| + ess sup
ΛRL

Vω
− + 1

)1/2

/|v|
)(d−1)/2}

× exp
(
− C

|v||x − y|√
|v| + ess supΛRL

V− + |z|(
√
|v| + 2)

)
.

If 〈u〉 ≤ |v| ≤ 2〈u〉, then we have |v| ≥ 1, |z| ≤
√

2|v| and

|||χx(Hω − z)−1χy|||

≤ C(d)
|v|

(
ess sup

ΛRL

Vω
− + 1

)d/2

exp

(
− C

|x − y|√
ess supΛRL

Vω
− + 1

)
.
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Therefore we have

I1 ≤ C(d)
(

ess sup
ΛRL

Vω
− + 1

)d/2
(

max
0≤r≤k

2r

r · r!

)
‖f‖(k)

× exp

(
− C

|x − y|√
ess supΛRL

Vω
− + 1

)
.

If |v| ≤ 2〈u〉, then we have |z| ≤ 3〈u〉 and

|||χx(Hω − z)−1χy|||

≤ C(d)
|v|

{
1 +

1√
|v|

(
〈u〉

(
ess sup

ΛRL

Vω
− + 1

)
/|v|

)d/2}

× exp

(
− C

|v||x − y|
〈u〉

√
ess supΛRL

Vω
− + 1

)
.

Since

∫ 2〈u〉

0

vr exp

(
− C

|v||x − y|
〈u〉

√
ess supΛRL

Vω
− + 1

)

≤ (2〈u〉)r+1

(
Cr

√
ess supΛRL

Vω
− + 1

〈x − y〉

)r

for any r ≥ 1, we have

I2 ≤ C(d)
k!

(
ess sup

ΛRL

Vω
− + 1

)(2n+d−3)/4 (Ck)k

〈x − y〉(2k−d−3)/2

∫
|f (k+1)(u)|〈u〉kdu

for any k ≥ (d + 5)/2. Therefore we obtain (4.9).

We should also modify Lemma 6.4 in [16] as follows:

Lemma 4.2. There exists a finite constant C(d, h) satisfying the fol-
lowing: for any γ > bd/h, ε > 0, a > 0, E ∈ Ĩ0, 0 < ε ≤ 1, 4 ≤ L ∈ 2N and
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0 < b1 < b2 < b3 ≤ 1 such that b2 − b1 > 1/4, we have

P

(
|||(χ0,b3L − χ0,b2L)(Hω

L − E − iε)−1χ0,b1L||| > a/4,(4.16)

ess sup
ΛRL

Vω
− ≤ (log RL)(ε+1)/β

)
≤ Lγ

a
E

[
|||(χ0,b2L − χ0,b2L−1)(Hω − E − iε)−1χ0,b1L|||

: ess sup
ΛRL

Vω
− ≤ (log RL)(ε+1)/β

]
+ QĨ0

C(d, h)(1 + |E|)h/2(log RL)(ε+1)h/(2β)
/

Lγh−bd

and

P

(
E 
∈ σ(Hω

L), |||(χ0,b3L − χ0,b2L)(Hω
L − E)−1χ0,b1L||| > a/2,(4.17)

ess sup
ΛRL

Vω
− ≤ (log RL)(ε+1)/β

)
≤ Lγ

a
E

[
|||(χ0,b2L − χ0,b2L−1)(Hω − E − iε)−1χ0,b1L|||

: ess sup
ΛRL

Vω
− ≤ (log RL)(ε+1)/β

]
+ QĨ0

C(d, h)(1 + |E|)h/2(log RL)(ε+1)h/(2β)
/

Lγh−bd

+ QĨ0
(2
√

ε/a)hLbd.

Proof. We take φ ∈ C∞
0 (ΛL → [0, 1]) so that φ = 1 on Λb1L, φ = 0 on

Λc
b2L, supp∇φ ⊂ Λb2L −Λb2L−1, |∇φ| ≤ 3

√
d and |∇2φ| ≤ 7d. As in (4.11) and

(4.12), we have

φ(Hω
L − E + iε)−1 − (Hω − E + iε)−1φ

= 2(Hω − E + iε)−1(i∇φ)(i∇ + A)(Hω
L − E + iε)−1

− (Hω
L − E + iε)−1(∆φ)(Hω

L − E + iε)−1

and

|||(χ0,b3L − χ0,b2L)(Hω
L − E − iε)−1χ0,b1L|||

≤ (2|||(χ0,b3L − χ0,b2L)(Hω − E − iε)−1(i∇ + A)(∇φ)|||
+ |||(χ0,b3L − χ0,b2L)(Hω

L − E − iε)−1(∆φ)|||)
× |||(χ0,b2L − χ0,b2L−1)(Hω − E − iε)−1χ0,b1L|||.
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As in (4.15), we have

|||(∇φ)(i∇ + A)(Hω
L − E + iε)−1|||

≤ C(d)
dist(σ(Hω

L), E)

(
dist(σ(Hω

L), E) + |E + iε| + ess sup
ΛL

Vω
− + 1

)1/2

.

Therefore we have

|||(χ0,b3L − χ0,b2L)(Hω
L − E − iε)−1χ0,b1L|||

≤ C(d)
dist(σ(Hω

L), E)

(
dist(σ(Hω

L), E) + |E + iε| + ess sup
ΛL

Vω
− + 1

)1/2

× |||(χ0,b2L − χ0,b2L−1)(Hω − E − iε)−1χ0,b1L|||

and the right hand side of (4.16) is dominated by

P

(
|||(χ0,b2L − χ0,b2L−1)(Hω − E − iε)−1χ0,b1L||| > a/Lγ ,

ess sup
ΛRL

Vω
− ≤ (log RL)(ε+1)/β

)
+P (dist(σ(Hω

L), E) ≤ C(d)(|E + iε| + (log RL)(ε+1)/β + 1)1/2/Lγ).

Then, by the Chebyshev inequality and the Wegner estimate, we obtain (4.16).
If E 
∈ σ(Hω

L), then

(Hω
L − E)−1 = (Hω

L − E − iε)−1 − iε(Hω
L − E)−1(Hω

L − E − iε)−1

and

|||(χ0,b3L − χ0,b2L)(Hω
L − E)−1χ0,b1L|||

≤ |||(χ0,b3L − χ0,b2L)(Hω
L − E − iε)−1χ0,b1L||| + ε/ dist(σ(Hω

L), E)2.

Therefore the right hand side of (4.18) is dominated by

P
(
|||(χ0,b3L − χ0,b2L)(Hω

L − E − iε)−1χ0,b1L||| > a/4,

ess sup
ΛRL

Vω
− ≤ (log RL)(ε+1)/β

)
+ P (dist(σ(Hω

L), E) ≤ 2
√

ε/a).

Then, by (4.16) and the Wegner estimate, we obtain (4.18).
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Proof of Theorem 4.1. Let I be a compact interval included in J and
θ > bd/h specified later. For any E ∈ I and 36 < L ∈ 6N, we set

PE,L := P (E ∈ σ(Hω
L))

+P (E 
∈ σ(Hω
L), |||Γ0,L(Hω

L − E)−1χ0,L/3||| > 1/(2Lθ)).

If E 
∈ σ(Hω
L), then, by using the resolvent identity and χ0,L = χ0,2L/3+(χ0,L−

χ0,2L/3) as in [16], we have

|||Γ0,L(Hω
L − E)−1χ0,L/3|||

≤ |||Γ0,L(Hω
L − E − iε)−1χ0,L/3|||

+ ε|||Γ0,L(Hω
L − E)−1χ0,2L/3|||/ dist(σ(Hω

L), E)

+ ε|||(χ0,L − χ0,2L/3)(Hω
L − E − iε)−1χ0,L/3|||/ dist(σ(Hω

L), E).

Therefore we have

PE,L ≤
5∑

j=1

Ij ,

where

I1 := P
(
|||Γ0,L(Hω

L − E − iε)−1χ0,L/3||| > 1/(4Lθ),

ess sup
ΛRL

Vω
− ≤ (log RL)(ε+1)/β

)
,

I2 := P
(
E 
∈ σ(Hω

L), |||Γ0,L(Hω
L − E)−1χ0,2L/3||| > 1/2,

ess sup
ΛRL

Vω
− ≤ (log RL)(ε+1)/β

)
,

I3 := P
(
|||(χ0,L − χ0,2L/3)(Hω

L − E − iε)−1χ0,L/3||| > 1/4,

ess sup
ΛRL

Vω
− ≤ (log RL)(ε+1)/β

)
,

I4 := P
(

dist(σ(Hω
L), E) ≤ 3εLθ

)
,

I5 := P
(

ess sup
ΛRL

Vω
− > (log RL)(ε+1)/β

)
and ε > 0 is taken arbitrarily. By the assumptions (W) and (F), we have

I4 := QĨ0
(3ε)hLθh+bd

and
I5 := δ1 exp(−δ2(log RL)ε).
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By taking a = L−θ, b1 = 1/3, b2 = (L − 3)/L and b3 = (L − 1)/L in
Lemma 4.2, we have

I1 ≤ I ′1 + QĨ0
C(I, d, h)(log L)(ε+1)h/(2β)/Lγh−bd,

where

I ′1 := Lγ+θE
[
|||Γ0,L−2(Hω − E − iε)−1χ0,L/3|||

: ess sup
ΛRL

Vω
− ≤ (log RL)(ε+1)/β

]
and γ > bd/h is specified later. This is estimated as

I ′1 ≤ I11 + I12,

where
I11 := Lγ+θE[|||Γ0,L−2(Hω − E − iε)−1f(Hω)χ0,L/3|||]

and

I12 := Lγ+θE
[
|||Γ0,L−2(Hω − E − iε)−1(1 − f(Hω))χ0,L/3|||

: ess sup
ΛRL

Vω
− ≤ (log RL)(ε+1)/β

]
.

As in [16], we have

I11 ≤ Lγ+θ
∑

y∈Zd∩ΛL/3

E[|||Γ0,L−2(Hω − E − iε)−1f(Hω)χy|||]

= Lγ+θ
∑

y∈Zd∩ΛL/3

E[|||Γ−y,L−2(Hω − E − iε)−1f(Hω)χ0|||]

≤ Lγ+θ

(
L

3

)d(
L

3
− 3

2

)−n/2

E[|||〈X〉n/2(Hω − E − iε)−1f(Hω)χ0|||]

≤ 12n/2

3dL(n/2)−d−γ−θ
Oε(n, f, E)1/2,

where
Oε(n, f, E) := E[|||〈X〉n/2(Hω − E − iε)−1f(Hω)χ0|||22].

By using Proposition 4.4, we have

I12 ≤ C(c, f, k, I, β, ε)(logL)(ε+1)(2k+d−3)/(4β)
/

Lk−1−γ−θ−3d/2

for any (d + 5)/2 ≤ k ∈ N.
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I2 and I3 are also estimated similarly by using Lemma 4.2 appropriately.
Therefore we obtain

PE,L ≤
3∑

j=1

P j
E,L

where

P 1
E,L :=

C(n, d)
L(n/2)−d−γ−θ

Oε(n, f, E)1/2,

P 2
E,L := C(d, f, k, I, β, ε)(logL)(ε+1)(2k+d−3)/(4β)

/
Lk−1−γ−θ−3d/2

+ QĨ0
C(I, d, h)(log L)(ε+1)h/(2β)

/
Lγh−bd

+ δ1 exp(−δ2(log RL)ε)

and
P 3

E,L := QĨ0
{2h

√
εhL2bd + (3ε)hLθh+bd}.

For any ε > 0 and 0 < p0 < 1, we set

L(ε, p0) :=
[(

p0

(3ε)h

)1/(θh+bd)

∧
(

p0

εh

)1/(2bd)]
6N

.

Then, since (3ε)hL(ε)θh+bd, εhL2bd ≤ p0, we have

P 3
E,L(ε,p0) ≤ QĨ0

(2h√p0 + p0).

By Proposition 6.1 in [16], we have

O := lim
ε↓0

ε1+α

∫
R

Oε(n, f, E)dE < ∞.

Then there exists a sequence {εm}m such that εm ↘ 0 as m → ∞, L(εm, p0) >

36 and
ε1+α
m

∫
R

Oεm
(n, f, E)dE ≤ 2O.

For any m ∈ N and M > 0, we set

Am.M := {E ∈ I : ε1+α
m Oεm

(n, f, E) ≤ M}.

Then we have |I − Am,M | ≤ 2O/M . Since

εm ≥ C(θ, h, b, d)

(
p0

L(εm, p0)θh+bd

)1/h

,
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we have

P 1
E,L(εm,p0) ≤

C(d, n, θ, h, b)
√

M

p
(1+α)/(2h)
0 L(εm, p0)(n/2)−d−γ−θ−(1+α)(θh+bd)/(2h)

for any E ∈ Am,M . Taking v > 0 arbitrarily, we set M(m) := 2OL(εm, p0)v.
For any E′ ∈ I, there exists E ∈ Am,M(m) such that |E−E′| ≤ L(εm, p0)−v.

Then the quantity

P ′
E′,L(εm,p0)

:= P (E′ ∈ σ(Hω
L(εm,p0)))

+ P (E′ 
∈ σ(Hω
L(εm,p0)),

|||Γ0,L(εm,p0)(Hω
L(εm,p0) − E′)−1χ0,L(εm,p0)/3||| > L(εm, p0)−θ)

is dominated by

PE,L(εm,p0) + P (dist(E, σ(Hω
L(εm,p0))) < CL(εm, p0)−(v−θ)/2).

Therefore we obtain

P ′
E′,L(εm,p0)

≤ C(n, d, θ, h, b)
√
O

p
(1+α)/(2h)
0 L(εm, p0)(n/2)−d−γ−θ−(1+α)(θh+bd)/(2h)−v/2

+ C(d, f, k, I, β, ε)(logL(εm, p0))(ε+1)(2k+d−3)/(4β)
/

L(εm, p0)k−1−γ−θ−3d/2

+ QĨ0
C(d, h, I)(log L(εm, p0))(ε+1)h/(2β)

/
L(εm, p0)γh−bd

+ δ1 exp(−δ2(log RL(εm, p0))ε)

+ QĨ0
(2h√p0 + p0)

+ QĨ0
C(h)

/
L(εm, p0)h(v−θ)/2−bd.

If we can take n ≥ 0, γ, θ > bd/h, v > 0 and (d + 5)/2 ≤ k ∈ N so that

n/2 > d + γ + θ + (1 + α)(θh + bd)/(2h) + v/2,

k > γ + θ + 3d/2 − 1,(4.18)

hv/2 > hθ/2 + bd,

then we have
lim

m→∞
P ′

E′,L(εm,p0) ≤ QĨ0
(2h√p0 + p0)

and
lim

L→∞
P (E′ 
∈ σ(Hω

L), |||Γ0,L(Hω
L − E′)−1χ0,L/3||| ≤ L−θ) = 1,
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from which we have E′ ∈ ΣMSA. For (4.18) to be satisfied, (4.4) is necessary
and sufficient.

§4.3. Proof of Proposition 4.1

To prove Proposition 4.1, we use the following instead of Lemma A.4 in
[16]:

Lemma 4.3. For L > 0 and a compact set B in R, we set Θω :=
1 − (min B ∧ ess infΛ2L

Vω). Then, for any d/2 < m ∈ N, there exists a finite
constant C(d, m) such that

Tr[χ0,LE(B : Hω)(Hω + Θω)−mχ0,L] ≤ C(d, m)Ld.

Proof. We take {φj}j∈N ⊂ C∞
0 (Λ2L → [0, 1]) so that φ1 ≡ 1 on ΛL and

φj+1 ≡ 1 on supp φj for any j ∈ N. Then we have

E(B : Hω)(Hω + Θω)−1φj = E(B : Hω)φj(Hω
2L + Θω)−1(4.19)

+ E(B : Hω)(Hω + Θω)−1(i∇ + Aω)(2i∇φj)(Hω
2L + Θω)−1

+ E(B : Hω)(Hω + Θω)−1(∆φj)(Hω
2L + Θω)−1

for any j ∈ N. By this, we have

χ0,LE(B : Hω)(Hω + Θω)−mχ0,L(4.20)

= χ0,LE(B : Hω)(Hω + Θω)−m+1φ1(Hω
2L + Θω)−1χ0,L

+ χ0,LE(B : Hω)(Hω + Θω)−m(i∇ + Aω)(2i∇φ1)

× (Hω
2L + Θω)−1χ0,L

+ χ0,LE(B : Hω)(Hω + Θω)−m(∆φ1)(Hω
2L + Θω)−1χ0,L.

By using (4.19) again, the third term is rewritten as

χ0,LE(B : Hω)(Hω + Θω)−mφ2(Hω
2L + Θω)−1(∆φ1)(Hω

2L + Θω)−1χ0,L

+ χ0,LE(B : Hω)(Hω + Θω)−m(i∇ + Aω)(2i∇φ2)(Hω
2L + Θω)−1

× (∆φ1)(Hω
2L + Θω)−1χ0,L

+ χ0,LE(B : Hω)(Hω + Θω)−m(∆φ2)(Hω
2L + Θω)−1

× (∆φ1)(Hω
2L + Θω)−1χ0,L.

We repeat this calculation also for the other terms of the right hand side of
(4.20).



�

�

�

�

�

�

�

�

Wegner Estimates 87

By the Feynman-Kac-Itô formula and the diamagnetic inequality, we have

Tr[exp(−t(Hω
2L + Θω))] ≤ e−t Tr[exp(t∆2L)]

≤ C(d)Lde−t
/

td/2,

where exp(−t(Hω
2L + Θω)) and exp(t∆2L) are the heat semigroups generated

by Hω
2L + Θω and the negative Dirichlet Laplacian −∆2L on Λ2L, respectively

(cf. [3]). Thus, for any p > d, we have

|||(Hω
2L + Θω)−1/2|||pp ≤ C(d, p)Ld.

By applying this and

|||(i∇ + Aω)(Hω
2L + Θω)−1/2||| ≤ 1

to the expansion of χ0,LE(B : Hω)(Hω + Θω)−mχ0,L, we have

Tr[χ0,LE(B : Hω)(Hω + Θω)−mχ0,L]

≤ C ′(d, m)|||(Hω
2L + Θω)−1/2|||2m

2m ≤ C(d, m)Ld

for m > d/2.

Proof of Proposition 4.1. We can prove (4.7) and the first and the second
inequalities in (4.5) and (4.6) by the same argument as in [16].

For the third inequalities of (4.5) and (4.6), we estimate as

Mω(n, f, t) ≤ C(d, n)
∑
a∈Zd

〈a〉n|||χaY(Hω)χ0||| × |||χ0Y(Hω)χa|||1

as in [16], where Y(u) = e−ituf(u) for u ∈ R. By Proposition 4.4, we have

|||χaY(Hω)χ0||| ≤ C(d, k, f)〈t〉k+1
(

ess sup
ΛRL(a)

Vω
− + 1

)(2k+d−3)/4

〈a〉−(2k−d−3)/2

for any (d + 5)/2 ≤ k ∈ N, where L(a) = 2|a|+ 1. On the other hand, we have

|||χ0Y(Hω)χa|||1 ≤ 4 Tr[χ0,L(a)|Y(Hω)|χ0,L(a)]

≤ C(f, m)|Θω|[[d/2]] Tr[χ0,L(a)E(supp f : Hω)(Hω + Θω)−[[d/2]]χ0,L(a)],

where Θω := 1 − (min supp f ∧ ess infΛ2L(a) Vω). Then we have

|||χ0Y(Hω)χa|||1 ≤ C(f, d)
(

ess sup
Λ2L(a)

Vω
− + 1

)[[d/2]]

〈a〉d
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by Lemma 4.3. Therefore we obtain

Mω(n, f, t) ≤ C(d, n, k, f)〈t〉k+1
∑
a∈Zd

〈a〉(2n+3d+3−2k)/2

×
(

ess sup
ΛRL(a)

Vω
− + 1

)(4[[d/2]]+2k+d−3)/4

.

For (4.5), we use Lemma 3.2 (ii) to obtain

ess sup
ΛRL(a)

Vω
− + 1 ≤ C(β, ω)(log〈a〉 + 1)2/β .

Then we have

Mω(n, f, t) ≤ C(d, n, k, f, β, ω)〈t〉k+1
∑
a∈Zd

〈a〉(2n+3d+3−2k)/2

× (log〈a〉 + 1)(4[[d/2]]+2k+d−3)/(2β).

The right hand side is finite if k > (2n + 5d + 3)/2. Therefore, by taking
k = [[n + (5d + 1)/2]] + 1, we obtain (4.5).

For (4.6), we use Lemma 3.2 (i) to obtain

E

[(
ess sup
ΛRL(a)

Vω
− + 1

)(4[[d/2]]+2k+d−3)/4]
≤ C(d, k, β)(log〈a〉 + 1)(4[[d/2]]+2k+d−3)/(4β).

Then we have

M(n, f, t) ≤ C(d, n, k, f, β)〈t〉k+1
∑
a∈Zd

〈a〉(2n+d+3−2k)/2

× (log〈a〉 + 1)(4[[d/2]]+2k+d−3)/(4β).

Therefore, by taking k = [[n + (5d + 1)/2]] + 1, we obtain (4.6).
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