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Abstract

We consider the following overdetermined boundary value problem: ∆u = −λu−
µ in Ω, u = 0 on ∂Ω and ∂u

∂n
= ψ on ∂Ω, where λ and µ are real constants and Ω is

a smooth bounded planar domain. A very interesting problem is to examine whether
one can identify the constants λ and µ from knowledge of the normal flux ∂u

∂n
on

∂Ω corresponding to some nontrivial solution. It is well known that if Ω is a disk
then such identification of (λ, µ) is completely impossible. Some partial results have
already been obtained. The purpose of this paper is to extend and to improve these
results. Moreover we also examine the interesting case where ψ is constant.

§1. Introduction

Consider the elliptic boundary value problem

∆u =−λu − µ in Ω,(1.1)

u = 0 on ∂Ω,(1.2)

where λ and µ are real constants and Ω is a smooth bounded planar domain.
An interesting problem is to examine whether one can identify the constants λ

and µ from knowledge of the normal flux ∂u/∂n on ∂Ω corresponding to some
nontrivial solution of (1.1)–(1.2). For more general right hand sides this inverse
problem arises for instance in plasma physics in connection with the modelling
of Tokamaks [2]. But even in the very particular case of an affine term the
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problem is difficult. It is well known that if Ω is a disk then such identification
of (λ, µ) is completely impossible, even in the case where a sign is imposed on
the right hand side of the equation: It is shown in [11] that there is a continuum
of coefficient pairs (λ, µλ) ∈ R

2, and therefore a continuum of affine functions,
which give rise to the same normal derivative on the boundary. We refer the
reader to paper [11] for a more detailed description of the problem in general
and the difficulties encountered.

A partial answer to this problem was first obtained by Vogelius in [11],
and more recently we have also given a contribution [6].

We briefly describe the results obtained in [11]. In the case where a sign is
imposed on the right hand side of the equation, Ω is a bounded, strictly convex
C3,α domain which is not a disk. Then it suffices to assume that the normal
derivative is not identically zero to show that there exist at most finitely many
pairs of coefficients. For the case of solutions without the sign condition im-
posed extra conditions on the domain and conditions on the normal derivative
are needed. The normal derivative is not identically constant and it has at most
countably many zeros. Ω is a bounded, convex C3,α domain whose boundary
curvature is only zero at a countable number of points. Moreover Ω is not of
constant width and has the so-called Schiffer property.

The width of a convex planar domain in a given direction is the distance
between two parallel supporting lines perpendicular to that direction. A set of
constant width has the same width in all directions. Clearly disks have constant
width. However there are plenty of smooth domains which have constant width
but which are not disks: See [3], [8] and [11].

A simply connected C2,α domain Ω (α ∈ (0, 1]) is said to have the Schiffer
property if (for any λ) the only solution to the overdetermined boundary value
problem

∆v =−λv − µ in Ω,(1.3)

v = 0,
∂v

∂n
= 0 on ∂Ω,(1.4)

is the trivial solution v = 0 (corresponding to µ = 0). We always consider
classical solutions. It is well known that disks do not have the Schiffer property.
Indeed let Jz denote the z-th Bessel function and let r > 0 be such that
J1(

√
r) = 0. Then the function

vr(x) =
1
r

(
J0(

√
r|x|)

J0(
√

r)
− 1

)
, x ∈ Ω

satisfies (1.3)–(1.4) with λ = r and µ = 1 when Ω is the unit disk.
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The Schiffer conjecture asserts that in any dimension balls are the only
C2,α domains with connected boundaries for which (1.3)–(1.4) has a nontrivial
solution for even a single value of λ.

If the above conditions are satisfied, then there exist at most finitely many
pairs of coefficients.

In [6] we have also obtained a “finiteness” result, which is much more
precise than in [11]. We have made some restrictions on the domain, but our
assumption on the normal derivative is in a sense optimal: We assume that
the normal flux is not identically constant. Indeed, we have the following well-
known conjecture (see Berenstein [1]): If (1.1)–(1.2) with µ = 0 has a nontrivial
solution with constant normal derivative, is Ω a disk? Our method of proof is
completely different. However any domain in the class that we consider in [6]
has the Schiffer property and is not of constant width.

In the present paper, we shall first study the case of domains with constant
width, for which the proof given in [11] fails. We first treat a particular class
of domains of constant width. Then we shall consider still other classes of
domains.

We need some notations and some definitions. When ∂Ω is at least C2 we
denote by n = (n1, n2) the exterior normal and by K the curvature. We first
define l : ∂Ω → R by

l(x) = x1n2(x) − x2n1(x) x ∈ ∂Ω.

Now let f : ∂Ω → R be such that f ∈ L2(∂Ω), then we set

dn(f) =
1
2π

∫
∂Ω

(n1(x) + in2(x))nf(x) dσ,

for n ∈ Z and

k1(f) = 2 inf{n ∈ N
∗; d2n+1(1)d3(f2) �= d2n+1(f2)d3(1)},

k2,r(f) = 2 inf{n ≥ r + 1; d2n+1(Kf) �= 0} − 1 , r ∈ N
∗,

k3,r(f) = 2 inf{n ≥ 2(r + 1); d2n(Kf) �= 0} − 1 , r ∈ N
∗,

k4(f) = 2 inf{n ∈ N
∗; d2n(l)d3(f2) �= d2n(f2l)d3(1)},

k5(f) = 2 inf{n ∈ N
∗; d2n(l)d2(f2l) �= d2n(f2l)d2(l)},

and
k6(f) = inf{n ∈ N

∗; d2(l)d2n+1(f2) �= d2n+1(1)d2(f2l)}.

(Notice that it may be the case that kj(f) = ∞).
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Definition 1.1. Ω ⊂ R2 is said to be of class B if the following condi-
tions hold:

i) Ω is a bounded convex open set and ∂Ω is a C∞ curve with positive cur-
vature K.

ii) d3(1) �= 0.

iii) d2n(1) = 0 for n ∈ Z∗.

iv) A = {n ∈ N∗; d2n+1(1) �= 0} is finite.

Remark 1. We shall show that any domain of class B is of constant
width.

Let Ω be a strictly convex planar domain. Given x ∈ ∂Ω, we denote by
x∗ ∈ ∂Ω\{x} the only point such that the tangent lines to ∂Ω through x and
x∗ are parallel.

Now we can state our first results.

Theorem 1.1. Let Ω ⊂ R2 be of class B. Let ψ ∈ C∞(∂Ω) be a real
valued function and assume that ψ is not identically constant and that

ψ2(x)
K(x)

�= ψ2(x∗)
K(x∗)

(*)

for some x ∈ ∂Ω. Let k0 be defined as follows:

1) If k1(ψ) < ∞, then k0 = k1(ψ);

2) If k1(ψ) = ∞, then k2,m(ψ) < ∞ or k3,m(ψ) < ∞ where m = max A. If
k2,m(ψ) < ∞, then k0 = k2,m(ψ). If k2,m(ψ) = ∞, then k0 = k3,m(ψ).

Then there exist at most k0 different pairs of coefficients (λk, µk) ∈ R2 such
that the Cauchy problem

∆u = −λku − µk in Ω, u = 0 and
∂u

∂n
= ψ on ∂Ω(1.5)

has a solution.

For domains of class B the inverse problem with a sign imposed on the
right hand side is an easy consequence of Theorem 1.1. We have the following
Corollary.
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Corollary 1.1. Let Ω ⊂ R2 be of class B. Let ψ ∈ C∞(∂Ω) be a real
valued function and assume that (∗) holds for some x ∈ ∂Ω. Let k0 be defined
as follows:

1) If k1(ψ) < ∞, then k0 = k1(ψ);

2) If k1(ψ) = ∞, then k2,m(ψ) < ∞ or k3,m(ψ) < ∞ where m = max A. If
k2,m(ψ) < ∞, then k0 = k2,m(ψ). If k2,m(ψ) = ∞, then k0 = k3,m(ψ).

Then there exist at most k0 different pairs of coefficients (λk, µk) ∈ R
2 such

that the Cauchy problem

∆u = −λku − µk ≤ 0 in Ω, u = 0 and
∂u

∂n
= ψ on ∂Ω(1.6)

has a solution.

We say that a convex planar domain is locally of constant width if there
exist ξ0 ∈ S1 and an open neighborhood U of ξ0 in S1 such that the width of
Ω is constant in all directions ξ ∈ U .

Definition 1.2. Ω ⊂ R2 is said to be of class C if the following condi-
tions hold:

i) Ω is a bounded convex open set and ∂Ω is a C∞ curve with positive cur-
vature K.

ii) d3(1) �= 0.

iii) There exists n ∈ Z∗ such that d2n(1) �= 0.

iv) Ω is not locally of constant width.

We have the following results.

Theorem 1.2. Let Ω ⊂ R2 be of class C. Let ψ ∈ C∞(∂Ω) be a real
valued function and assume that ψ is not identically constant. Then k1(ψ) < ∞
or k4(ψ) < ∞ and if k0 = min(k1(ψ), k4(ψ)), then there exist at most k0

different pairs of coefficients (λk, µk) ∈ R
2 such that the Cauchy problem (1.5)

has a solution.

For domains of class C we have the following Corollary.
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Corollary 1.2. Let Ω ⊂ R2 be of class C. Let ψ ∈ C∞(∂Ω) be a real
valued function and assume that ψ is not identically zero. Then k1(ψ) < ∞ or
k4(ψ) < ∞ and if k0 = min(k1(ψ), k4(ψ)), then there exist at most k0 different
pairs of coefficients (λk, µk) ∈ R

2 such that the Cauchy problem (1.6) has a
solution.

Definition 1.3. Ω ⊂ R2 is said to be of class D if the following condi-
tions hold:

i) Ω is a bounded convex open set and ∂Ω is a C∞ curve with positive cur-
vature K.

ii) Ω is not locally of constant width.

iii) d2(l) �= 0.

Now we can state our last results.

Theorem 1.3. Let Ω ⊂ R2 be of class D. Let ψ ∈ C∞(∂Ω) be a real
valued function and assume that ψ is not identically constant. Then k5(ψ) < ∞
or k6(ψ) < ∞ and if k0 = min(k5(ψ), k6(ψ)), then there exist at most k0

different pairs of coefficients (λk, µk) ∈ R
2 such that the Cauchy problem (1.5)

has a solution.

For domains of class D we have the following Corollary.

Corollary 1.3. Let Ω ⊂ R2 be of class D. Let ψ ∈ C∞(∂Ω) be a real
valued function and assume that ψ is not identically zero. Then k5(ψ) < ∞ or
k6(ψ) < ∞ and if k0 = min(k5(ψ), k6(ψ)), then there exist at most k0 different
pairs of coefficients (λk, µk) ∈ R

2 such that the Cauchy problem (1.6) has a
solution.

In Section 2 we give some preliminary results. In Section 3 we first show
that when Ω ⊂ R2 is of class B then Ω is of constant width. Then we prove
Theorem 1.1 and Corollary 1.1. In Section 4 we prove Theorem 1.2 and Corol-
lary 1.2. Theorem 1.3 and Corollary 1.3 are proved in Section 5. We begin
Section 6 with the following remark: we show that when Ω ⊂ R2 is of class B,
C or D then Ω has the Schiffer property. Then we give three particular results
in the case where ψ is a non zero constant. Finally we conclude with some
examples in Section 7.
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§2. Preliminaries

For v ∈ C∞(Ω) and i ∈ {1, 2} we write

vj =
∂v

∂xj
.

Throughout this Section Ω ⊂ R
2 denotes a bounded simply connected open

set with C∞ boundary ∂Ω and u ∈ C∞(Ω) is a solution of problem (1.1)–(1.2)
satisfying

∂u

∂n
= ψ on ∂Ω,

for some ψ ∈ C∞(∂Ω), where n = (n1, n2) is the exterior normal to ∂Ω.
Let x = x(s) = (x1(s), x2(s)), s ∈ [0, L], be a parametrization of ∂Ω by

arc length. We denote by τ (s) = (τ1(s), τ2(s)) the tangent to ∂Ω at x(s) and
by ν(s) = (ν1(s), ν2(s)) the exterior normal to ∂Ω at x(s). We have

τ1(s) = x′
1(s) , τ2(s) = x′

2(s) s ∈ [0, L],

and
ν1(s) = x′

2(s) , ν2(s) = −x′
1(s) s ∈ [0, L].

The Frenet formulas are

x′′(s) = −κ(s)ν(s) , ν′(s) = κ(s)x′(s) s ∈ [0, L],(2.1)

where κ = κ(s) is the curvature.
For any function f : ∂Ω → R, we define f̃ = f ◦ x.

Let p ≥ 1 be an integer. We define

ϕ(p) =
p∑

j=0

(
p

j

)
ij

∂pu

∂xp−j
1 ∂xj

2

.

Lemma 2.1. We have

ϕ(1)2 + iϕ(1)1 = −i(λu + µ)

and for p ≥ 1 we have

ϕ(p + 1)2 + iϕ(p + 1)1 =−iλϕ(p),

ϕ(p + 1) = ϕ(p)1 + iϕ(p)2.

Proof. The proof follows from elementary calculation.
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Lemma 2.2. We have

ϕ̃(1) = (ν1 + iν2)ψ̃,

ϕ̃(2) =−µ(ν1 + iν2)2 + 2i(ν1 + iν2)ϕ̃(1)′,

and for p ≥ 1

ϕ̃(p + 2) = −λ(ν1 + iν2)2ϕ̃(p) + 2i(ν1 + iν2)ϕ̃(p + 1)′.

Proof. Since u = 0 on ∂Ω, we have

uj = nj
∂u

∂n
= njψ on ∂Ω(2.2)

from which we get ϕ̃(1). Now we have

ϕ̃(p)′ = −ϕ̃(p)1ν2 + ϕ̃(p)2ν1.

Using Lemma 2.1 we deduce that

ϕ̃(1)1 = i(ν1 + iν2)(ϕ̃(1)′ + iµν1),

ϕ̃(1)2 = i(ν1 + iν2)(−iϕ̃(1)′ + iµν2),(2.3)

and for p ≥ 1

ϕ̃(p + 1)1 = i(ν1 + iν2)(ϕ̃(p + 1)′ + iλν1ϕ̃(p)),(2.4)

ϕ̃(p + 1)2 = i(ν1 + iν2)(−iϕ̃(p + 1)′ + iλν2ϕ̃(p)).

The result follows from (2.3), (2.4) and Lemma 2.1.

Lemma 2.3. Let k ≥ 3 be an integer.
1) If k = 2p + 1 we have

ϕ̃(k) =

[
(−1)pλpψ̃ + µ

p∑
j=1

aj,kλp−j +
p∑

j=1

bj,kλp−j

]
(ν1 + iν2)k,

in [0, L], where aj,k and bj,k are independent of λ and µ. Moreover

a1,k = (−1)p−1p(k + 1)κ.

2) If k = 2p we have

ϕ̃(k) =


(−1)pλp−1µ + µ

p∑
j=2

cj,kλp−j +
p∑

j=1

dj,kλp−j


 (ν1 + iν2)k,
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in [0, L], where cj,k and dj,k are independent of λ and µ. Moreover

d1,k = (−1)p−1ik(ψ̃′ + piκψ̃).

3) Finally we have:
3a) If k = 2p + 1

b1,k = 2i

p∑
j=1

(−1)p−j(d′1,2j + 2ijκd1,2j)

where d1,2 = 2i(ψ̃′ + iκψ̃).
3b) If k = 2p

c2,k = 2i

p−1∑
j=1

(−1)p−j−1(a′
1,2j+1 + (2j + 1)iκa1,2j+1).

Proof. The proof will be by induction on k. Assume first that k = 3.
Using Lemmas 2.1 and 2.2 we obtain

ϕ̃(3) = −(λψ̃ − 4µκ + 8iκ(ψ̃′ + iκψ̃) + 4(ψ̃′ + iκψ̃)′)(ν1 + iν2)3,

hence a1,3 = 4κ.

If k = 4, using what we have just proved and Lemma 2.2 we get

ϕ̃(4) = (λµ+2iµ(a′
1,3 +3iκa1,3)−4iλ(ψ̃′ +2iκψ̃)+2i(b′1,3 +3iκb1,3))(ν1 + iν2)4

hence d1,4 = −4i(ψ̃′ + 2iκψ̃).
Now assuming that the result holds for k ≥ 4, we shall prove that it holds

for k + 1. We have two cases to consider.
Case 1: k = 2p with p ≥ 2. Using the induction hypothesis, Lemma 2.2

and (2.1) we obtain

ϕ̃(k + 1) =


(−1)pλpψ̃ − µ

p−1∑
j=1

aj,k−1λ
p−j −

p−1∑
j=1

bj,k−1λ
p−j

+ 2i


ikκ(−1)pλp−1µ + µ

p∑
j=2

(c′j,k + ikκcj,k)λp−j

+
p∑

j=1

(d′j,k + ikκdj,k)λp−j





 (ν1 + ν2)k+1.
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Therefore
a1,k+1 = (−1)p−1p(k + 1)κ.

Case 2: k = 2p+1 with p ≥ 2. Using the induction hypothesis, Lemma 2.2
and (2.1) we obtain

ϕ̃(k + 1) =


(−1)p+1λpµ − µ

p∑
j=2

cj,k−1λ
p+1−j −

p∑
j=1

dj,k−1λ
p+1−j

+ 2i


(−1)pλp(ψ̃′ + ikκψ̃) + µ

p∑
j=1

(a′
j,k + ikκaj,k)λp−j

+
p∑

j=1

(b′j,k + ikκbj,k)λp−j





 (ν1 + ν2)k+1.

Therefore
d1,k+1 = (−1)pi(k + 1)(ψ̃′ + (p + 1)iκψ̃).

Now we can prove 3). From the proof above it follows that

b1,3 = 2i(d′1,2 + 2iκd1,2),

and for p ≥ 2
b1,2p+1 = 2i(d′1,2p + 2ipκd1,2p) − b1,2p−1,

from which we deduce 3a). Now we have

c2,4 = 2i(a′
1,3 + 3iκa1,3),

and for p ≥ 3

c2,2p = 2i(a′
1,2p−1 + (2p − 1)iκa1,2p−1) − c2,2p−2,

and 3b) follows.

Lemma 2.4. For all w ∈ C2(Ω) satisfying

∆w + λw = 0 in Ω,

we have ∫
∂Ω

wψ dσ + µ

∫
Ω

w dx = 0.
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Proof. Using Green’s formula we can write

λ

∫
Ω

wu dx =−
∫

Ω

u∆w dx

=−
∫

Ω

w∆u dx +
∫

∂Ω

wψ dσ

= λ

∫
Ω

wu dx + µ

∫
Ω

w dx +
∫

∂Ω

wψ dσ,

and the lemma follows.

Lemma 2.5.
1) We have ∫

∂Ω

ψ2(x1n2 − x2n1) dσ = 0.

2) We have

λ

∫ L

0

ψ̃2(x1ν2 − x2ν1)(ν1 + iν2)2 ds

+ µ2

∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2 ds + Aµ + B = 0,

where A and B are independent of λ and µ. Moreover

A = 2i

∫ L

0

ψ̃(2κ(x·ν + i(x1ν2 − x2ν1)) − 1)(ν1 + iν2)2 ds.

3) Let k = 2p with p ≥ 2. We have

0 = (−1)pλp−1

[
λ

∫ L

0

ψ̃2(x1ν2 − x2ν1)(ν1 + iν2)k ds

+ µ2

∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)k ds

]
+ µ2

p∑
j=2

Aj,kλp−j

+ µ

p∑
j=1

Bj,kλp−j +
p∑

j=1

Cj,kλp−j ,

where Aj,k, Bj,k and Cj,k are independent of λ and µ. Moreover

B1,k = (−1)pik

∫ L

0

ψ̃(κ(2x·ν + ik(x1ν2 − x2ν1)) − 1)(ν1 + iν2)k ds.
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Proof. 1) Taking w = x1u2 − x2u1 in Lemma 2.4 and integrating, we get

∫
∂Ω

ψ2(x1n2 − x2n1) ds = 0.

2) Take w = x1ϕ(2)2 −x2ϕ(2)1 in Lemma 2.4. Using (2.4) with p = 1 and
integrating we get

0 = µ

∫ L

0

(x1ν2 − x2ν1)ϕ̃(2) ds − λ

∫ L

0

ψ̃2(x1ν2 − x2ν1)(ν1 + iν2)2 ds

+
∫ L

0

ψ̃(x·ν + i(x1ν2 − x2ν1))ϕ̃(2)′ ds.

Using Lemma 2.2 we obtain

0 = λ

∫ L

0

ψ̃2(x1ν2 − x2ν1)(ν1 + iν2)2 ds + µ2

∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2 ds

+ 2iµ

∫ L

0

(κψ̃(x·ν) − ψ̃′(x1ν2 − x2ν1))(ν1 + iν2)2 ds − 2i

∫ L

0

ψ̃(x·ν

+ i(x1ν2 − x2ν1))(2iκ(ψ̃′ + iκψ̃) + (ψ̃′ + iκψ̃)′)(ν1 + iν2)2 ds.

Since

∫ L

0

ψ̃′(x1ν2 − x2ν1)(ν1 + iν2)2 ds

= −
∫ L

0

ψ̃(κ(x·ν + 2i(x1ν2 − x2ν1))) − 1)(ν1 + iν2)2

we obtain

A = 2i

∫ L

0

ψ̃(2κ(x·ν + i(x1ν2 − x2ν1)) − 1)(ν1 + iν2)2 ds.

3) Take w = x1ϕ(k)2−x2ϕ(k)1 in Lemma 2.4. Using (2.4) and integrating
we get

0 = µ

∫ L

0

(x1ν2 − x2ν1)ϕ̃(k) ds − λ

∫ L

0

ψ̃ϕ̃(k − 1)(x1ν2 − x2ν1)(ν1 + iν2) ds

+
∫ L

0

ψ̃(x·ν + i(x1ν2 − x2ν1))ϕ̃(k)′ ds.
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Using Lemma 2.3 we obtain

0 = (−1)pλp−1

[
λ

∫ L

0

ψ̃2(x1ν2 − x2ν1)(ν1 + iν2)k ds + µ2

∫ L

0

(x1ν2 − x2ν1)

×(ν1 + iν2)k ds

]
− µ

p−1∑
j=1

λp−j

∫ L

0

aj,k−1ψ̃(x1ν2 − x2ν1)

× (ν1 + iν2)k ds −
p−1∑
j=1

λp−j

∫ L

0

bj,k−1ψ̃(x1ν2 − x2ν1)(ν1 + iν2)k ds

+ µ2

p∑
j=2

λp−j

∫ L

0

cj,k(x1ν2 − x2ν1)(ν1 + iν2)k ds

+ µ

p∑
j=1

λp−j

∫ L

0

dj,k(x1ν2 − x2ν1)(ν1 + iν2)k ds

+ µ

p∑
j=2

λp−j

∫ L

0

(c′j,k + ikκcj,k)ψ̃(x·ν + i(x1ν2 − x2ν1))(ν1 + iν2)k ds

+
p∑

j=1

λp−j

∫ L

0

(d′j,k + ikκdj,k)ψ̃(x·ν + i(x1ν2 − x2ν1))(ν1 + iν2)k ds

+ (−1)pλp−1µik

∫ L

0

κψ̃(x·ν + i(x1ν2 − x2ν1))(ν1 + iν2)k ds.

The coefficient of λp−1µ is given by

∫ L

0

[(d1,k−((a1,k−1+(−1)pkκ)(x1ν2−x2ν1)+(−1)p−1ikκ(x·ν))ψ̃](ν1+iν2)kds

Since∫ L

0

(ψ̃′ + piκψ̃)(x1ν2 − x2ν1)(ν1 + iν2)k ds =
∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)p

× (ψ̃(ν1 + iν2)p)′ ds = −
∫ L

0

(κ(x·ν + ip(x1ν2 − x2ν1)) − 1)ψ̃(ν1 + iν2)k ds,

we obtain

B1,k = (−1)pki

∫ L

0

ψ̃(κ(2x·ν + ik(x1ν2 − x2ν1)) − 1)(ν1 + iν2)k ds.

The proof of the Lemma is complete.
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Lemma 2.6.
1) We have ∫

∂Ω

ψ2(n1 + in2) dσ = 0.

2) We have

λ

∫ L

0

ψ̃2(ν1 + iν2)3 ds + µ2

∫ L

0

(ν1 + iν2)3 ds + aµ + b = 0,

where a and b are independent of λ and µ. Moreover

a = −8
∫ L

0

κψ̃(ν1 + iν2)3 ds and b = −4
∫ L

0

(ψ̃′ + iκψ̃)2(ν1 + iν2)3 ds.

3) Let k = 2p + 1 with p ≥ 2. We have

0 = (−1)pλp−1

[
λ

∫ L

0

ψ̃2(ν1 + iν2)k ds + µ2

∫ L

0

(ν1 + iν2)k ds

]

+ µ2

p∑
j=2

αj,kλp−j + µ

p∑
j=1

βj,kλp−j +
p∑

j=1

γj,kλp−j ,

where αj,k, βj,k and γj,k are independent of λ and µ. Moreover

α2,k = (−1)p 2
3
(p − 1)p(p + 1)(p + 2)

∫ L

0

κ2(ν1 + iν2)k ds,

β1,k = (−1)p−1(k2 − 1)
∫ L

0

κψ̃(ν1 + iν2)k ds,

and

γ1,k = (−1)p−1 2p(p + 1)
3

∫ L

0

(3ψ̃′2 + 2(2p + 1)iκψ̃ψ̃′

− (p2 + p + 1)κ2ψ̃2)(ν1 + iν2)k ds.

Proof. 1) Taking w = ϕ(1) in Lemma 2.4 and integrating, we get∫
∂Ω

ψ2(n1 + in2) ds = 0.

2) Take w = ϕ(3) in Lemma 2.4. Using Lemmas 2.1 and 2.2 and integrating
we get

µ

∫ L

0

(ν1 + iν2)ϕ̃(2) ds−λ

∫ L

0

ψ̃2(ν1 + iν2)3 ds+2i

∫ L

0

ψ̃(ν1 + iν2)ϕ̃(2)′ ds = 0.
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Using Lemma 2.2 again we obtain

0 = λ

∫ L

0

ψ̃2(ν1 + iν2)3 ds + µ2

∫ L

0

(ν1 + iν2)3 ds − 2µ

∫ L

0

(κψ̃ + iψ̃′)

× (ν1 + iν2)3 ds + 4
∫ L

0

ψ̃(2iκ(ψ̃′ + iκψ̃) + (ψ̃′ + iκψ̃)′)(ν1 + iν2)3 ds.

Since ∫ L

0

ψ̃′(ν1 + iν2)3 ds = −3i

∫ L

0

κψ̃(ν1 + iν2)3 ds,

we obtain

a = −8
∫ L

0

κψ̃(ν1 + iν2)3 ds.

Now integrating by parts we have∫ L

0

(ψ̃′ + iκψ̃)′ψ̃(ν1 + iν2)3 ds = −
∫ L

0

(ψ̃′ + 3iκψ̃)(ψ̃′ + iκψ̃)(ν1 + iν2)3 ds,

and we obtain b.
3) Take w = ϕ(k) in Lemma 2.4. Using Lemmas 2.1 and 2.2 and integrating

we get

0 = µ

∫ L

0

ϕ̃(k − 1)(ν1 + iν2) ds − λ

∫ L

0

ψ̃ϕ̃(k − 2)(ν1 + iν2)2 ds

+ 2i

∫ L

0

ψ̃(ν1 + iν2)ϕ̃(k − 1)′ ds.

Using Lemma 2.3 we obtain

0 = (−1)pλp−1

[
λ

∫ L

0

ψ̃2(ν1 + iν2)k ds + µ2

∫ L

0

(ν1 + iν2)k ds

]

− µ

p−1∑
j=1

λp−j

∫ L

0

aj,k−2ψ̃(ν1 + iν2)k ds −
p−1∑
j=1

λp−j

∫ L

0

bj,k−2

× ψ̃(ν1 + iν2)k ds + µ2

p∑
j=2

λp−j

∫ L

0

cj,k−1(ν1 + iν2)k ds + µ

p∑
j=1

λp−j

×
∫ L

0

dj,k−1(ν1 + iν2)k ds + µ

p∑
j=2

λp−j

∫ L

0

2i(c′j,k−1 + i(k − 1)κcj,k−1)

× ψ̃(ν1 + iν2)k ds +
p∑

j=1

λp−j

∫ L

0

2i(d′j,k−1 + i(k − 1)κdj,k−1)

× ψ̃(ν1 + iν2)kds + 2(−1)p−1λp−1µ(k − 1)
∫ L

0

κψ̃(ν1 + iν2)k ds.
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We have

α2,k =
∫ L

0

c2,2p(ν1 + iν2)k ds.

Using Lemma 2.3 3b) we obtain

α2,k = 2i

p−1∑
j=1

(−1)p−j−1

∫ L

0

(a′
1,2j+1 + (2j + 1)iκa1,2j+1)(ν1 + iν2)k ds.

For j = 1, . . . , p − 1 we write∫ L

0

(a′
1,2j+1 + (2j + 1)iκa1,2j+1)(ν1 + iν2)k ds =

∫ L

0

(a1,2j+1(ν1 + iν2)2j+1)′

× (ν1 + iν2)k−2j−1 ds = −2i(p − j)
∫ L

0

a1,2j+1κ(ν1 + iν2)k ds,

hence using Lemma 2.3 1)

α2,k = 4
p−1∑
j=1

(−1)p−j−1(p − j)
∫ L

0

a1,2j+1κ(ν1 + iν2)k ds

= 8
p−1∑
j=1

(−1)pj(j + 1)(p − j)
∫ L

0

κ2(ν1 + iν2)k ds

= (−1)p 2
3
(p − 1)p(p + 1)(p + 2)

∫ L

0

κ2(ν1 + iν2)k ds.

Now the coefficient of λp−1µ is given by∫ L

0

((2(−1)p−1(k − 1)κ − a1,k−2)ψ̃ + d1,k−1)(ν1 + iν2)k ds.

Since ∫ L

0

(ψ̃′ + piκψ̃)(ν1 + iν2)k ds =
∫ L

0

(ν1 + iν2)p+1(ψ̃(ν1 + iν2)p)′ ds

=−(p + 1)i
∫ L

0

κψ̃(ν1 + iν2)k ds,

we obtain

β1,k = (−1)p−1(k2 − 1)
∫ L

0

κψ̃(ν1 + iν2)k ds.

Finally from the proof above we have

γ1,k = 2i

∫ L

0

(d′1,k−1 + i(k−1)κd1,k−1)ψ̃(ν1+iν2)k ds−
∫ L

0

b1,k−2ψ̃(ν1+iν2)k ds.
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Using Lemma 2.3 3a) we obtain

γ1,k = 2i

p∑
j=1

(−1)p−j

∫ L

0

(d′1,2j + 2ijκd1,2j)ψ̃(ν1 + iν2)k ds.

For j = 1, . . . , p we write

∫ L

0

(d′1,2j + 2ijκd1,2j)ψ̃(ν1 + iν2)k ds =
∫ L

0

(d1,2j(ν1 + iν2)2j)′

× ψ̃(ν1 + iν2)k−2j ds = −
∫ L

0

d1,2j(ψ̃′ + (k − 2j)iκψ̃(ν1 + iν2)k ds,

hence

γ1,k = 2i

p∑
j=1

(−1)p−j+1

∫ L

0

(ψ̃′ + (k − 2j)iκψ̃)d1,2j(ν1 + iν2)k ds,

and using Lemma 2.3 2) the result easily follows.
The proof of the Lemma is complete.

Lemma 2.7. Assume that condition ii) in Definition 1.1 holds. Given
any ψ ∈ C∞(∂Ω), and given any λ ∈ R there exist at most one µ ∈ R such that
the Cauchy problem

∆v = −λv − µ in Ω, v = 0 and
∂v

∂n
= ψ on ∂Ω,(2.5)

has a solution.

Proof. Assume that there exists a λ ∈ R for which (2.5) has a solution for
two different values µ1 and µ2. Denote by v1 and v2 two solutions corresponding
to µ1 and µ2 respectively. The function z = v1 − v2 satisfies

∆z = −λz + µ2 − µ1 in Ω, z = 0 and
∂z

∂n
= 0 on ∂Ω.

Let µ = µ1 − µ2 and ψ ≡ 0 in Lemma 2.6 2). We obtain

(µ1 − µ2)2
∫ L

0

(ν1 + iν2)3 ds = 0,

and we arrive at a contradiction.

The next lemma is an immediate consequence of Lemma 2.6 2).
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Lemma 2.8. Assume that condition ii) in Definition 1.1 holds. Given
any ψ ∈ C∞(∂Ω) satisfying d3(ψ2) �= 0, and given any µ ∈ R there exist at most
one λ ∈ R such that the Cauchy problem (2.5) has a solution.

Lemma 2.9. Assume that condition iii) in Definition 1.3 holds. Given
any ψ ∈ C∞(∂Ω), and given any λ ∈ R there exist at most one µ ∈ R such that
the Cauchy problem (2.5) has a solution.

Proof. Assume that there exists a λ ∈ R for which (2.5) has a solution for
two different values µ1 and µ2. Denote by v1 and v2 two solutions corresponding
to µ1 and µ2 respectively. The function z = v1 − v2 satisfies

∆z = −λz + µ2 − µ1 in Ω, z = 0 and
∂z

∂n
= 0 on ∂Ω.

Let µ = µ1 − µ2 and ψ ≡ 0 in Lemma 2.5 2). We obtain

(µ1 − µ2)2
∫ L

0

(ν1 + iν2)2(x1ν2 − x2ν1) ds = 0,

and we arrive at a contradiction.

The next lemma is an immediate consequence of Lemma 2.5 2).

Lemma 2.10. Assume that condition iii) in Definition 1.3 holds. Given
any ψ ∈ C∞(∂Ω) satisfying d2(ψ2l) �= 0, and given any µ ∈ R there exist
at most one λ ∈ R such that the Cauchy problem (2.5) has a solution.

§3. Proof of Theorem 1.1 and Corollary 1.1

Assume first that 0 ∈ Ω. Since ∂Ω has positive curvature, the curve ∂Ω
turns continuously. To each point x = x(s) ∈ ∂Ω we can associate a unique θ

(modulo 2π) and θ makes a complete circuit 0 ≤ θ ≤ 2π as 0 ≤ s ≤ L. For
each angle θ, 0 ≤ θ < 2π, let h(θ) denote the distance from the origin to the
supporting line of Ω with outward normal ν = (cos θ, sin θ). We have

h(θ) = x·ν,

and h has period 2π. From the Serret-Frenet formulas we can derive the follow-
ing second order ordinary differential equation involving the support function
h and the radius of curvature ρ:

h(θ) + h′′(θ) = ρ(θ).
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When 0 /∈ Ω, the support function is defined in the following way. By transla-
tion there exists a = (a1, a2) ∈ R2 such that 0 ∈ Ω̃ = a + Ω. If h̃ denotes the
support function of Ω̃ we have

h(θ) = −a1 cos θ − a2 sin θ + h̃(θ).

We refer the reader to Flanders [7] and the references therein for a detailed
discussion.

For any f : [0, 2π] → C such that f ∈ L2[0, 2π] we denote by

cn(f) =
1
2π

∫ 2π

0

f(θ)e−inθ dθ,

n ∈ Z, the Fourier coefficients.
We first show that when Ω ⊂ R2 is of class B, then Ω is of constant width.

Proposition 3.1. Let Ω ⊂ R2 be a bounded open set with C2 boundary
and positive curvature. Assume that condition iii) in Definition 1.1 holds. Then
Ω has constant width.

Proof. We have d2n(1) = c2n(ρ) = 0 for n ∈ Z∗. Since

cn(ρ) = cn(h + h′′) = (1 − n2)cn(h) ∀n ∈ Z,

we deduce that c2n(h) = 0 for n �= 0, hence

h(θ) + h(θ + π) = 2c0(h) ∀ θ ∈ [0, 2π]

and this means that Ω is of constant width.

Proof of Theorem 1.1. Let (λ, µ) ∈ R2 be such that (1.1)–(1.2) has a
solution u ∈ C∞(Ω) satisfying

∂u

∂n
= ψ on ∂Ω,

for some ψ ∈ C∞(∂Ω) satisfying the conditions of Theorem 1.1.
We shall need the following lemma.

Lemma 3.1. d2(2m+1)(l) �= 0, d2n+1(1) = 0 for n ≥ m + 1 and
d2n(l) = 0 for n ≥ 2(m + 1).
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Proof. We have seen in the proof of Proposition 3.1 that c2n(h) = 0 for
n ∈ Z∗. In the same way we can show that c2n+1(h) = 0 for n ≥ m + 1 and
c2m+1(h) �= 0. Therefore we can write

h(θ) = c0(h) +
m∑

n=−m−1

c2n+1(h)e(2n+1)iθ, 0 ≤ θ < 2π.

We have dn(l) = −cn(h′ρ) with h′ = −l ◦ x ◦ s. Since

cn(h′ρ) =
+∞∑

j=−∞
cn−j(h′)cj(ρ)

= cn(h′)c0(ρ) +
m∑

j=−m−1

cn−2j−1(h′)c2j+1(ρ),

the lemma follows easily.

Assume first that there exists n ∈ Z such that

d2n+1(1)d3(ψ2) �= d2n+1(ψ2)d3(1).(3.1)

Then we have
c2n+1(ρ)c3(Ψ2ρ) �= c3(ρ)c2n+1(Ψ2ρ),

for some n ∈ Z, where

Ψ(θ) = ψ(x(s(θ))) = ψ̃(s(θ)).

Since c1(ρ) = c−1(ρ) = 0, Lemma 2.6 1) implies that n ∈ Z\{−1, 0}. Then
k1(ψ) < ∞. If c3(Ψ2ρ) = 0, Lemma 2.6 2) implies that µ satisfies a polynomial
equation of degree 2. This equation has at most two real roots µ1 and µ2. (3.1)
and Lemma 2.6 3) with µ = µj , j = 1, 2, imply that λ satisfies two polynomial
equations of degree k1(ψ)/2. Therefore there exist at most k1(ψ) different λk.
Using Lemma 2.7 we conclude that there exist at most k1(ψ) different pairs of
coefficients (λk, µk) ∈ R2 such that the Cauchy problem (1.5) has a solution.
Now, if c3(Ψ2ρ) �= 0, Lemma 2.6 2) implies that λ is a polynomial of degree 2
in µ. Using (3.1) and Lemma 2.6 3) we deduce that µ satisfies a polynomial
equation of degree k1(ψ). Using Lemma 2.8 we conclude that there exist at
most k1(ψ) different pairs of coefficients (λk, µk) ∈ R

2 such that the Cauchy
problem (1.5) has a solution.

Now suppose that (3.1) does not hold. Then we have

c2n+1(Ψ2ρ) = αc2n+1(ρ) ∀ n ∈ Z,(3.2)
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with

α =
c3(Ψ2ρ)
c3(ρ)

.

Since c2j(h′) = 0 for j ∈ Z, using (3.2) we deduce that

c2n(Ψ2h′ρ) =
∞∑

j=−∞
c2(n−j)−1(Ψ2ρ)c2j+1(h′)(3.3)

= α

∞∑
j=−∞

c2(n−j)−1(ρ)c2j+1(h′) = αc2n(h′ρ),

for n ∈ Z.
Suppose that c3(Ψ2ρ) = 0. Then α = 0 and (3.2) implies that

c2n+1(Ψ2ρ) = 0 ∀n ∈ Z.(3.4)

We have

c2n+1(Ψ2ρ) = c2n+1(Ψ2)c0(ρ) +
m∑

j=−m−1

c2(n−j)(Ψ2)c2j+1(ρ),(3.5)

for n ∈ Z. We can write Ψ2 = A + B with

A(θ) =
∞∑

n=−∞
c2n(Ψ2)e2inθ and B(θ) =

∞∑
n=−∞

c2n+1(Ψ2)e(2n+1)iθ,

for θ ∈ [0, 2π]. (3.4) and (3.5) imply that

B(θ) =− 1
c0(ρ)

m∑
j=−m−1

c2j+1(ρ)e(2j+1)iθ

( ∞∑
n=−∞

c2(n−j)(Ψ2)e2(n−j)iθ

)

=
1

c0(ρ)
A(θ)(c0(ρ) − ρ(θ))

for θ ∈ [0, 2π]. Therefore

Ψ2(θ) =
1

c0(ρ)
A(θ)ρ(θ + π), 0 ≤ θ < 2π,

from which we deduce that

Ψ2(θ)ρ(θ) = Ψ2(θ + π)ρ(θ + π), 0 ≤ θ < 2π,

and we reach a contradiction with (∗). Therefore c3(Ψ2ρ) �= 0.
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We claim that k2,m(ψ) < ∞ or k3,m(ψ) < ∞. Indeed suppose the contrary.
Since ψ is not identically constant, there exists p ∈ {1, . . . , 2(2m + 1)} such
that

Ψ(θ) =
p∑

n=−p

cn(Ψ)einθ, 0 ≤ θ < 2π,

with cp(Ψ) �= 0. We have c2(m+p)+1(Ψ2ρ) = cp(Ψ)2c2m+1(ρ) �= 0. From
Lemma 3.1 and (3.2) we deduce that c2n+1(Ψ2ρ) = 0 for n ≥ m + 1. Then we
get a contradiction, and our claim is proved.

Since c3(Ψ2ρ) �= 0, Lemma 2.6 2) implies that λ is a polynomial of degree 2
in µ. Suppose first that k2,m(ψ) < ∞. Since c2n+1(Ψ2ρ) = 0 for n ≥ m + 1,
Lemma 2.6 3) implies that µ satisfies a polynomial equation of degree k2,m(ψ).
Using Lemma 2.8 we conclude that there exist at most k2,m(ψ) different pairs
of coefficients (λk, µk) ∈ R2 such that the Cauchy problem (1.5) has a solution.
Now assume that k2,m(ψ) = ∞. Then k3,m(ψ) < +∞. We can write

c2n(Ψ(h − h′′ + 2inh′)) = c2n(Ψ)c0(h) +
m∑

j=−m−1

ωj,nc2(n−j)−1(Ψ)c2j+1(h),

where ωj,n = 2(2j2 + (1 − n)(2j + 1)). If n ≥ 2(m + 1) we obtain

c2n(Ψ(h − h′′ + 2inh′)) = c2n(Ψ)c0(h),

and we conclude that there exists n ≥ 2(m + 1) such that c2n(Ψ(h − h′′ +
2inh′)) �= 0. (3.3) and Lemma 3.1 imply that c2n(Ψ2h′ρ) = 0 for n ≥ 2(m+1).
Then using Lemma 2.5 3) we deduce that µ satisfies a polynomial equation
of degree k3,m(ψ). With the help of Lemma 2.8 we conclude that there ex-
ist at most k3,m(ψ) different pairs of coefficients (λk, µk) ∈ R2 such that the
Cauchy problem (1.5) has a solution.

Remark 2. In fact the proof of Theorem 1.1 shows that we can give a
better result. Define

k̃2(ψ) = 2 inf{n ∈ N
∗; β1,2n+1d3(1) �= (−1)nad2n+1(1)} − 1,

and
k̃3(ψ) = 2 inf{n ∈ N

∗; B1,2nd3(1) �= (−1)nad2n(l)} − 1.

If k1(ψ) = ∞, then k̃2(ψ) < ∞ or k̃3(ψ) < ∞ and we can take

k0 = min(k̃2(ψ), k̃3(ψ)).
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Moreover, if c3(ψ2ρ) �= 0, then k1(ψ) < ∞ or k̃2(ψ) < ∞ or k̃3(ψ) < ∞
and

k0 = min(k1(ψ), k̃2(ψ), k̃3(ψ)).

Finally, if c3(ψ2ρ) = 0, then k1(ψ) < ∞.

Remark 3. Let Ω ⊂ R2 be of class B. Let ψ ∈ C∞(∂Ω) be a real valued
function and assume that

ψ =
p∑

j=−p

cj(n1 + in2)j ,

where p ≥ 1, cj ∈ C for j ∈ {−p, . . . , p} and cp �= 0. Then there exist
at most k1(ψ) different pairs of coefficients (λk, µk) ∈ R2 such that the Cauchy
problem (1.5) has a solution. It is enough to verify that (3.1) holds. Indeed
we have d2(m+p)+1(ψ2) = c2

p c2m+1(ρ) �= 0 and by Lemma 3.1 d2n+1(1) = 0
for n ≥ m + 1. Notice that condition (∗) is not needed, but it is satisfied.
Indeed, let φ(θ) = Ψ2(θ+π)ρ(θ+π) for θ ∈ [0, 2π]. We have c2(m+p)+1(Ψ2ρ) =
c2
pc2m+1(ρ) �= 0 and c2(m+p)+1(φ) = −c2

pc2m+1(ρ).

Proof of Corollary 1.1. By Theorem 1.1 it is enough to show that if (λ, µ) ∈
R2 and if v ∈ C∞(Ω) is a solution of the following Cauchy problem

∆v = −λv − µ ≤ 0 in Ω, v = 0 and
∂v

∂n
= ψ on ∂Ω,

where ψ ∈ C∞(∂Ω) satisfies condition (∗), then ψ cannot be identically con-
stant. Suppose the contrary. The Maximum Principle implies that v > 0 in
Ω or v ≡ 0 in Ω. Since ψ satisfies condition (∗), ψ �≡ 0, hence we have v > 0
in Ω. Then a result of Serrin [10] asserts that Ω is a disk, which represents an
obvious contradiction to ii) in Definition 1.1.

§4. Proof of Theorem 1.2 and Corollary 1.2

Proof of Theorem 1.2. Let (λ, µ) ∈ R2 be such that (1.1)–(1.2) has a
solution u ∈ C∞(Ω) satisfying

∂u

∂n
= ψ on ∂Ω,

for some ψ ∈ C∞(∂Ω), which is not identically constant.
We can write h = h1 + h2 with

h1(θ) =
+∞∑

n=−∞
c2n(h)e2inθ and h2(θ) =

+∞∑
n=−∞

c2n+1(h)e(2n+1)iθ.
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Assume first that there exists n ∈ Z such that

c2n+1(ρ)c3(Ψ2ρ) �= c3(ρ)c2n+1(Ψ2ρ).(4.1)

Using the same arguments as in the proof of Theorem 1.1 we obtain that
k1(ψ) < ∞ and we conclude that there exist at most k1(ψ) different pairs
of coefficients (λk, µk) ∈ R

2 such that the Cauchy problem (1.5) has a solution.
Now suppose that (4.1) does not hold. Then we have

c2n+1(Ψ2ρ) = αc2n+1(ρ) ∀ n ∈ Z,(4.2)

with

α =
c3(Ψ2ρ)
c3(ρ)

.

We claim that there exists n ∈ Z∗ such that

c2n(Ψ2h′ρ) �= αc2n(h′ρ).(4.3)

Indeed suppose the contrary. c0(h′ρ) = 0 and by Lemma 2.5 1) c0(Ψ2h′ρ) = 0,
hence

c2n(Ψ2h′ρ) = αc2n(h′ρ) ∀n ∈ Z.(4.4)

Using (4.2) and (4.4) we can write

0 = c2n(Ψ2h′ρ) − αc2n(h′ρ)

=
+∞∑

j=−∞
(c2n−j(Ψ2ρ) − αc2n−j(ρ))cj(h′)

=
+∞∑

j=−∞
(c2n−j(Ψ2ρ) − αc2n−j(ρ))cj(h′

1)

= c2n(Ψ2h′
1ρ) − αc2n(h′

1ρ)

for n ∈ Z. Now (4.2) implies that

c2n+1(Ψ2h′
1ρ) =

+∞∑
j=−∞

c2(n−j)+1(Ψ2ρ)c2j(h′
1)

= α
+∞∑

j=−∞
c2(n−j)+1(ρ)c2j(h′

1) = αc2n+1(h′
1ρ),

for n ∈ Z. We have thus proved that

cn(Ψ2h′
1ρ) = αcn(h′

1ρ) ∀n ∈ Z
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which implies that Ψ2h′
1ρ = αh′

1ρ. Using iv) in Definition 1.2 and the fact that ρ

is positive we deduce that Ψ is identically constant and we reach a contradiction.
Thus our claim is proved. Then k4(Ψ) < ∞. If c3(Ψ2ρ) = 0, Lemma 2.6 2)
implies that µ satisfies a polynomial equation of degree 2. This equation has
at most two real roots µ1 and µ2. Lemma 2.5 2) and 3) with µ = µj , j = 1, 2,
imply that λ satisfies two polynomial equations of degree k4(ψ)/2. Therefore
there exist at most k4(ψ) different λk. Using Lemma 2.7 we conclude that
there exist at most k4(ψ) different pairs of coefficients (λk, µk) ∈ R2 such
that the Cauchy problem (1.5) has a solution. Now, if c3(Ψ2ρ) �= 0, then
Lemma 2.6 2) implies that λ is a polynomial of degree 2 in µ. Using (4.3) and
Lemma 2.5 3) we deduce that µ satisfies a polynomial equation of degree k4(ψ).
Using Lemma 2.8 we conclude that there exist at most k4(ψ) different pairs of
coefficients (λk, µk) ∈ R2 such that the Cauchy problem (1.5) has a solution.

Remark 4. Assume that {n ∈ Z∗; d2n(1) �= 0} �= ∅ is finite. Then
condition iv) in Definition 1.2 is satisfied.

Proof of Corollary 1.2. By Theorem 1.2 it is enough to show that if
(λ, µ) ∈ R2 and if v ∈ C∞(Ω) is a solution of the following Cauchy problem

∆v = −λv − µ ≤ 0 in Ω, v = 0 and
∂v

∂n
= ψ on ∂Ω,

where ψ ∈ C∞(∂Ω), ψ �≡ 0, then ψ cannot be identically constant. Suppose
the contrary. The Maximum Principle implies that v > 0 in Ω or v ≡ 0 in Ω.
Since ψ �≡ 0, we have v > 0 in Ω. Then a result of Serrin [10] asserts that Ω is a
disk, which represents an obvious contradiction to ii) (or iv)) in Definition 1.2.

§5. Proof of Theorem 1.3 and Corollary 1.3

Proof of Theorem 1.3. Let (λ, µ) ∈ R2 be such that (1.1)–(1.2) has a
solution u ∈ C∞(Ω) satisfying

∂u

∂n
= ψ on ∂Ω,

for some ψ ∈ C∞(∂Ω), which is not identically constant.
Assume first that there exists n ∈ Z such that

d2n(l)d2(ψ2l) �= d2(l)d2n(ψ2l)(5.1)

Then we have
c2n(h′ρ)c2(Ψ2h′ρ) �= c2(h′ρ)c2n(Ψ2h′ρ)
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for some n ∈ Z. Since c0(h′ρ) = 0, Lemma 2.5 1) implies that n ∈ Z∗.
Then k5(ψ) < ∞. If c2(Ψ2h′ρ) = 0, Lemma 2.5 2) implies that µ satisfies a
polynomial equation of degree 2. This equation has at most two real roots µ1

and µ2. (5.1) and Lemma 2.5 3) with µ = µj , j = 1, 2, imply that λ satisfies two
polynomial equations of degree k5(ψ)/2. Therefore there exist at most k5(ψ)
different λk. Using Lemma 2.9 we conclude that there exist at most k5(ψ)
different pairs of coefficients (λk, µk) ∈ R2 such that the Cauchy problem (1.5)
has a solution. Now, if c2(Ψ2h′ρ) �= 0, Lemma 2.5 2) implies that λ is a
polynomial of degree 2 in µ. Using (5.1) and Lemma 2.5 3) we deduce that µ

satisfies a polynomial equation of degree k5(ψ). Using Lemma 2.10 we conclude
that there exist at most k5(ψ) different pairs of coefficients (λk, µk) ∈ R

2 such
that the Cauchy problem (1.5) has a solution.

Now suppose that (5.1) does not hold. Then we have

c2n(Ψ2h′ρ) = βc2n(h′ρ) ∀ n ∈ Z,(5.2)

with

β =
c2(Ψ2h′ρ)
c2(h′ρ)

.

We claim that there exists n ∈ Z\{−1, 0} such that

c2n+1(Ψ2ρ) �= βc2n+1(ρ).(5.3)

Indeed suppose the contrary. c1(ρ) = 0 and by Lemma 2.6 1) c1(Ψ2ρ) = 0,
hence

c2n+1(Ψ2ρ) = βc2n+1(ρ) ∀n ∈ Z.(5.4)

Using (5.2) and (5.4) with the notations introduced in Section 4, and arguing
as in the proof of Theorem 1.2 we obtain

cn(Ψ2h′
1ρ) = βcn(h′

1ρ) ∀n ∈ Z,

and we reach a contradiction in the same way. Thus our claim is proved.
Then k6(Ψ) < ∞. If c2(Ψ2h′ρ) = 0, Lemma 2.5 2) implies that µ satisfies a
polynomial equation of degree 2. This equation has at most two real roots µ1

and µ2. Lemma 2.6 2) and 3) with µ = µj , j = 1, 2, imply that λ satisfies two
polynomial equations of degree k6(ψ)/2. Therefore there exist at most k6(ψ)
different λk. Using Lemma 2.9 we conclude that there exist at most k6(ψ)
different pairs of coefficients (λk, µk) ∈ R2 such that the Cauchy problem (1.5)
has a solution. Now, if c2(Ψ2h′ρ) �= 0, then Lemma 2.5 2) implies that λ is a
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polynomial of degree 2 in µ. Using (5.3) and Lemma 2.5 3) we deduce that µ

satisfies a polynomial equation of degree k6(ψ). Using Lemma 2.10 we conclude
that there exist at most k6(ψ) different pairs of coefficients (λk, µk) ∈ R2 such
that the Cauchy problem (1.5) has a solution.

Remark 5. Assume that

a) d2n+1(1) = 0 for n ∈ Z;

b) l has at most countably many zeros.
It is clear from the proof that condition ii) in Definition 1.3 can be omitted
and then class D coincides with class A defined in [6]. Notice that in Defi-
nition 1.1 of [6] some conditions are in fact redundant. Indeed we first note
that problem (1.1)–(1.2) being invariant under translations we can assume that
c1(h) = 0. Then iv) in Definition 1.1 of [6] reduces to

c) d2p+1,q(1) = 0 for p ∈ N and q ∈ {0, . . . , 2p + 1}.

Now it is easy to see that c) is equivalent to a).

Proof of Corollary 1.3. The arguments are the same as in the proof of
Corollary 1.2, using Theorem 1.3 instead of Theorem 1.2. This time we obtain
a contradiction with ii) (or iii)) in Definition 1.3.

§6. A Remark and the Case of a Nonzero Constant

We will show first that when Ω ⊂ R2 is of class B, C or D then Ω has the
Schiffer property (see also [4]–[6]).

Proposition 6.1. Let Ω ⊂ R2 be a simply connected C2,α domain, α ∈
(0, 1]. If condition ii) in Definition 1.1 (resp. iii) in Definition 1.3) holds, then
Ω has the Schiffer property.

Proof. Let v ∈ C2,α(Ω) be a solution of problem (1.3)–(1.4) with µ �= 0.
By [7, Theorem 1′] ∂Ω is real analytic. Then v is also analytic. Since ψ ≡ 0,
using Lemmas 2.5 2) and 2.6 2) we obtain

µ2

∫ L

0

(x1ν2 − x2ν1)(ν1 + iν2)2 ds = 0,

and

µ2

∫ L

0

(ν1 + iν2)3 ds = 0,

and we have a contradiction in both cases.
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Now we shall study the case where ψ is a non zero constant. Assume that
Ω = {x = (x1, x2) ∈ R2; x2

1 + x2
2 < 1}. For any λ > 0 such that

√
λ is not a

zero of J1, the function

u(x) =
1√
λ

J0(
√

λ|x|) − J0(
√

λ)
J1(

√
λ)

x ∈ Ω,

satisfies the overdetermined Cauchy problem

∆u + λu + µ = 0 in Ω,

u = 0 and
∂u

∂n
= −1 on ∂Ω

with the constant µ given by

µ =

√
λJ0(

√
λ)

J1(
√

λ)
.

We refer the reader to [11] for more details.
Our purpose is to examine what happens when Ω is not a disk. In the

particular case where µ = 0, Berenstein ([1, Proposition 3]) has shown that,
when Ω is simply connected and Ω is not a disk, there exist at most finitely
many eigenfunctions for the Dirichlet problem which have constant normal
derivative. We give below some partial results in the general case where µ ∈ R.

Proposition 6.2. Let Ω ⊂ R2 be of class B. Let ψ be a non zero
constant. Then

k7 = 2 inf{n ≥ 2; 2d3(K2)d2n+1(1) �= n(n + 1)d3(1)d2n+1(K2)} − 2

is finite and there exist at most k7 different pairs of coefficients (λk, µk) ∈ R2

such that the Cauchy problem (1.5) has a solution.

Lemma 6.1. For all n ∈ N, there exists p ≥ n such that d2p+1(K2) �= 0.

Proof. For all n ∈ N∗ we have

0 = c2n(1) = c0(ρ)c2n

(
1
ρ

)
+

m∑
j=−m−1

c2(n−j)−1

(
1
ρ

)
c2j+1(ρ).(6.1)

Assume first that d2p+1(K2) = 0 for p ∈ Z. Then (6.1) implies that

c2n

(
1
ρ

)
= 0 ∀n ∈ N

∗,



�

�

�

�

�

�

�

�

An Inverse Problem 119

and we deduce that ρ is constant, a contradiction with ii) in Definition 1.1.
Therefore there exists p ∈ N such that d2p+1(K2) �= 0. Suppose that the set
{n ∈ N; d2n+1(K2) �= 0} is finite and define

r = max{n ∈ N; d2n+1(K2) �= 0}.

(6.1) implies that

c2n

(
1
ρ

)
= 0 ∀n ≥ m + r + 2.

Therefore there exists s ∈ {1, . . . , 2(m + r + 1)} such that

1
ρ(θ)

= c0

(
1
ρ

)
+

s∑
p=−s

cp

(
1
ρ

)
eipθ 0 ≤ θ < 2π,

where cs(1/ρ) �= 0. Since cs(1/ρ)c2m+1(ρ) = cs+2m+1(1) = 0, we reach a
contradiction and the lemma is proved.

Proof of Proposition 6.2. In Lemma 2.6 we have

a = 0, b = 8πψ2c3

(
1
ρ

)
,

and for k = 2p + 1, p ≥ 2

β1,k = 0

α2,k = (−1)p 4π

3
(p − 1)p(p + 1)(p + 2)ck

(
1
ρ

)

γ1,k = (−1)p 4π

3
p(p + 1)(p2 + p + 1)ψ2ck

(
1
ρ

)
.

By Lemma 6.1 k7 < ∞. Then, using Lemma 2.6 with the above formulas, we
deduce that µ satisfies a polynomial equation of degree k7. Using Lemma 2.8 we
conclude that there exist at most k7(ψ) different pairs of coefficients (λk, µk) ∈
R2 such that the Cauchy problem (1.5) has a solution.

Remark 6. In the setting of Proposition 6.2, condition (∗) in Theo-
rem 1.1 necessarily holds. Indeed suppose the contrary. Then we have

1
K(x)

=
1

K(x∗)
, ∀x ∈ ∂Ω.

Since Ω is of constant width this implies that Ω is a disk, a contradiction with
ii) in Definition 1.1.
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Definition 6.1. Ω ⊂ R2 is said to be of class C′ if the following condi-
tions hold:

i) Ω is a bounded convex open set and ∂Ω is a C∞ curve with positive cur-
vature K.

ii) d3(1) �= 0.

iii) There exists n ∈ Z∗ such that d2n(1) �= 0.

Remark 7. Notice that C ⊂ C′.

Proposition 6.3. Let Ω ⊂ R2 be of class C′. Let ψ be a non zero
constant. Define

k8 = 2 inf{n ∈ N
∗; d2n(1) �= 0} − 1

Then there exist at most k8 different pairs of coefficients (λk, µk) ∈ R2 such
that the Cauchy problem (1.5) has a solution.

Proof. In Lemma 2.6 2) a = 0. In Lemma 2.5 we have

A = 4iπψc2(h) and B1,2p = (−1)p4iπψc2p(h) for p ≥ 2.(6.2)

We deduce that µ satisfies a polynomial equation of degree k8. Using Lemma 2.8
we conclude that there exist at most k8 different pairs of coefficients (λk, µk) ∈
R2 such that the Cauchy problem (1.5) has a solution.

Definition 6.2. Ω ⊂ R2 is said to be of class D′ if the following condi-
tions hold:

i) Ω is a bounded convex open set and ∂Ω is a C∞ curve with positive cur-
vature K.

ii) d2(l) �= 0.

iii) {n ∈ N∗; d2n(1) �= 0} �= ∅ is finite.

Remark 8. Notice that, by Remark 4, D′ ⊂ D.

Proposition 6.4. Let Ω ⊂ R2 be of class D′. Let ψ be a non zero
constant. Then

k9(ψ) = 2 inf{n ≥ 2; B1,2nd2(l) �= (−1)nAd2n(l)} − 1 < ∞
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or
k10 = 2 inf{n ∈ N

∗; d2n+1(1) �= 0} − 1 < ∞,

and k9(ψ) < ∞ when c2(h) = 0. Let

k0 =

{
min(k9(ψ), k10) if c2(h) �= 0,

k9(ψ) if c2(h) = 0.

Then there exist at most k0 different pairs of coefficients (λk, µk) ∈ R2 such
that the Cauchy problem (1.5) has a solution.

Proof. We can write

h(θ) =
q∑

n=−q

c2n(h)e2inθ +
∞∑

n=−∞
c2n+1(h)e(2n+1)iθ, 0 ≤ θ < 2π,

where q ≥ 1 and c2q(h) �= 0. (6.2) holds. Since d2(l) �= 0, Lemma 2.5 2)
implies that λ is a polynomial of degree 2 in µ. If c2(h) = 0, then q ≥ 2 and
k9(ψ) < ∞ since B1,2q �= 0. With the help of Lemma 2.5 we deduce that µ

satisfies a polynomial equation of degree k9(ψ). Using Lemma 2.10 we conclude
that there exist at most k9(ψ) different pairs of coefficients (λk, µk) ∈ R2 such
that the Cauchy problem (1.5) has a solution. Now suppose that c2(h) �= 0. If
d2n+1(1) = 0 for n ∈ Z we have d4q(l) = 2iq(1−4q2)c2q(h)2 �= 0 and B1,4q = 0,
then k9(ψ) < ∞ and we conclude as before. Now suppose that there exists
n ∈ N such that d2n+1(1) �= 0. Since d1(1) = 0, n ≥ 1. Then k10 < ∞. In
Lemma 2.6 we have a = 0 and β1,2p+1 = 0 for p ≥ 2. Using Lemmas 2.5 2)
and 2.6 2) and 3) we deduce that µ satisfies a polynomial equation of degree
k10. With the help of Lemma 2.10 we conclude that there exist at most k10

different pairs of coefficients (λk, µk) ∈ R2 such that the Cauchy problem (1.5)
has a solution.

§7. Examples

We conclude this paper with some examples.

Example 1. Let m ∈ N∗ and a, aj , bj ∈ R, j = 1, . . . , m. Define

h(θ) = a +
m∑

n=1

an cos(2n + 1)θ + bn sin(2n + 1)θ, 0 ≤ θ < 2π,
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with |a1| + |b1| > 0 and

a > 4
m∑

n=1

n(n + 1)(|an| + |bn|).

h is of class C∞, and has period 2π and

ρ(θ) = a− 4
m∑

n=1

n(n + 1)(an cos(2n + 1)θ + bn sin(2n + 1)θ) > 0, 0 ≤ θ < 2π.

Then h must be the support function of a convex set Ω. Clearly Ω is of class
B.

Example 2. Let a, b, c ∈ R
∗ be such that a > 3|b| + 8|c|. Define

h(θ) = a + b cos 2θ + c cos 3θ, 0 ≤ θ < 2π.

h is of class C∞, and has period 2π and

ρ(θ) = a − 3b cos 2θ − 8c cos 3θ > 0, 0 ≤ θ < 2π.

Then h must be the support function of a convex set Ω. We can verify that
Ω is of class C ∩ D′. Notice that k8 = 1 in Proposition 6.3 and that k0 = 1 in
Proposition 6.4.

Example 3. Let a > 0 and define

h(θ) = a +
15 + 12 cos θ

17 − 8 cos 2θ
, 0 ≤ θ < 2π.

h is of class C∞, and has period 2π. With the notations of Section 4 we have

h1(θ) = a +
15

17 − 8 cos 2θ
= a +

+∞∑
n=−∞

2−2|n|e2inθ, 0 ≤ θ < 2π,

and

h2(θ) =
12 cos θ

17 − 8 cos 2θ
=

+∞∑
n=−∞

2−|2n+1|e(2n+1)iθ, 0 ≤ θ < 2π.

For a sufficiently large we easily show that

ρ(θ) > 0, 0 ≤ θ < 2π.

Then h must be the support function of a convex set Ω. We can verify that Ω
is of class C ∩ D.



�

�

�

�

�

�

�

�

An Inverse Problem 123

References

[1] Berenstein, C. A., An inverse spectral theorem and its relation to the Pompeiu problem,
J. Anal. Math., 37 (1980), 128-144.

[2] Blum, J., Numerical Simulation and Optimal Control in Plasma Physics, Wiley/
Gauthier-Villars, New York, 1989.

[3] Brown, L. and Kahane, J. P., A note on the Pompeiu problem for convex domains,
Math. Ann., 259 (1982), 107-110.

[4] Dalmasso, R., A new result on the Pompeiu problem, Trans. Amer. Math. Soc., 352
(2000), 2723-2736.

[5] , A note on the Schiffer conjecture, Hokkaido Math. J., 28 (1999), 373-383.
[6] , An inverse problem for an elliptic equation with an affine term, Math. Ann.,

316 (2000), 771-792.
[7] Flanders, H., A proof of Minkowski’s inequality for convex curves, Amer. Math. Monthly,

75 (1968), 581-593.
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