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Abstract

We obtain the fermionic formulas for the characters of (k, r)-admissible configu-
rations in the case of r = 2 and r = 3. This combinatorial object appears as a label
of a basis of certain subspace W (Λ) of level-k integrable highest weight module of ŝlr.
The dual space of W (Λ) is embedded into the space of symmetric polynomials. We
introduce a filtration on this space and determine the components of the associated
graded space explicitly by using vertex operators. This implies a fermionic formula
for the character of W (Λ).

§1. Introduction

Let ŝlr be the affine Lie algebra slr ⊗ C[t, t−1] ⊕ Cc ⊕ Cd and L(Λ) the
integrable highest weight module for dominant integral weight Λ of level k. We
denote by a the commutative Lie subalgebra of ŝlr generated by the elements

e21[n], e31[n], . . . ,er1[n], n ∈ Z.
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Consider the a-submodule

W (Λ) := U(a)vΛ,(1.1)

where vΛ ∈ L(Λ) is the highest weight vector satisfying eij [n]vλ = 0, (n > 0).
Our problem is to find some formulas for the character of W (Λ). In [P], Primc
constructed a basis of W (Λ). His basis consists of vectors parametrized by the
combinatorial object called (k, r)-admissible configurations. We can introduce
some degrees on (k, r)-admissible configurations and define the character, which
is equal to that of W (Λ). In [FJLMM1] certain formulas, called ‘bosonic for-
mulas’, for the character of (k, r)-admissible configurations are obtained (see
also [FJLMM2]). Connections to Jack and Macdonald polynomials are dis-
cussed in [FJMM1], [FJMM2], [FJMMT1]. In this paper we find another type
of formulas in the cases of r = 2 and r = 3.

We start from an algebra EΛ isomorphic to W (Λ) as vector spaces. The
algebra EΛ is constructed by generators e21[n], . . . ,er1[n], (n ≤ 0) with some
relations. We will obtain the Gordon-type (or ‘fermionic’) formulas for the
character of EΛ by using vertex operators.

Let W be a vector space with non-degenerate quadratic form 〈·, ·〉, and
let Γ be an integral lattice in W , i.e., 〈γ1, γ2〉 ∈ Z for any γ1, γ2 ∈ Γ. With
such data we can associate a lattice vertex operator algebra VΓ. The algebra
VΓ is generated by vertex operators V (γ, z) (γ ∈ Γ, z ∈ C). Let us take a set
{p1, . . . ,pn} of linearly independent vectors from W , and consider the subalge-
bra C generated by the vertex operators a1(z), . . . ,an(z) where ai(z) = V (pi, z).
The operators ai(z) satisfy quadratic relations. It can be easily formulated in
the case when 〈pi, pj〉 ≥ 0 for all i, j. In this case, we have

[aα(z), aα(w)]± = 0,(1.2)

where + (resp., −) if 〈pα, pα〉 is odd (resp., even),

[aα(z), aβ(w)] = 0, if α �= β,(1.3)

aα(z)∂l
zaβ(z) = 0 for l < 〈pα, pβ〉.(1.4)

If 〈pα, pβ〉 < 0, then the relations are also quadratic, but aα(z) and aβ(w) are
not commutative.

Let us continue the discussion under the condition 〈pi, pj〉 ≥ 0. It is
important that the relations (1.2)–(1.4) are the set of defining relations. This
fact actually is equivalent to the following statement about representations of
C. Let aα[i] be components of aα(z), i.e., aα(z) =

∑
i∈Z

aα[i]zi. Choose the
irreducible representation of VΓ with the vacuum vector v satisfying aα[i]v = 0
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for i ≤ 0. Consider the space W = Cv. Let θ : W → C be a linear functional.
Define the function

Ψα1,...,αm

θ (z1, . . . ,zm) = 〈θ, aα1(z1) · · · aαm
(zm)v〉.

It has a form

Ψα1,...,αm

θ (z1, . . . ,zm) = F (z1, . . . ,zm)
∏

i

zi

∏
i<j

(zi − zj)
〈pαi

,pαj
〉,(1.5)

where F is a polynomial which is symmetric with respect to the transposition
of zi with zj if αi = αj .

Let S be the space of functions of the form (1.5). More precisely, we have
a direct sum S = ⊕Sα1,...,αm

, where the set of indices (α1 . . . ,αm) is defined up
to permutations. The statement is that the map W ∗ → S is an isomorphism.
This fact is equivalent to the relations (1.2)–(1.4), and also gives a possibility
of writing down the character of the space W . The space W is naturally graded
by deg aα[i] = i as well as the function space S by deg zi = 1, and we have the
equality of the corresponding characters: ch W =

∑
(α1,...,αm) ch Sα1,...,αm

. We
have

ch Sα1,...,αm
=

∑
m1,...,mn≥0

q
∑

j mj+
∑

i<j 〈pαi
,pαj

〉mimj

(q)m1 · · · (q)mn

,

where mj is the number of i such that αi = j. Using this formula, we get a
Gordon-type formula for the character of the space W .

Our strategy is to compare the more complicated algebras with the algebras
like C. Let us consider the simplest example.

In the algebra E = C[e[0], e[−1], e[−2], . . . ] there are a sequence of ideals
E ⊃ J1 ⊃ J2 · · · . Here Js is the ideal generated by the components e(s)[i] of
the current e(z)s = (

∑
e[i]zi)s =

∑
e(s)[i]zi. We want to study the quotient

E/Jk+1 = Ek. Filter Ek by ideals

Ek ⊃ Jk ⊃ J2
k ⊃ · · · ,

and construct the corresponding associated graded algebra

E
(1)
k = Ek/Jk ⊕ Jk/J2

k ⊕ J2
k/J3

k ⊕ · · · .

We denote by the same symbol Jk the image of Jk ⊂ E in Ek. Note that
Ek/Jk � Ek−1 and the algebra E

(1)
k is generated by the components of the

currents e(z) ∈ Ek/Jk and e(k)(z) ∈ Jk/J2
k . The current e(k)(z) corresponds
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to the current e(z)k from E. In the algebra Ek/Jk � Ek−1 we have ideals
Ek−1 ⊃ J1 ⊃ J2 ⊃ · · · ⊃ Jk−1. Let J

(1)
s be an ideal in E

(1)
k generated by

Js ⊂ Ek−1. In E
(1)
k there are ideals J

(1)
1 ⊃ J

(1)
2 ⊃ · · · ⊃ J

(1)
k−1. We can repeat

such a construction and get the algebra

E
(2)
k = E

(1)
k /J

(1)
k−1 ⊕ J

(1)
k−1/(J (1)

k−1)
2 ⊕ · · · .

Obviously, the algebra E
(2)
k is generated by the component of the currents

e(z), e(k)(z) ∈ E
(1)
k /J

(1)
k−1 and e(k−1)(z) ∈ J

(1)
k−1/(J (1)

k−1)
2. In Ek−2 = E(1)/J

(1)
k−1

we have its own sequence of ideals Ek−2 ⊃ J1 ⊃ J2 ⊃ · · · ⊃ Jk−2, and we can
repeat what we did before. As a result we get an algebra E

(2)
k which is generated

by e(z), e(k−1)(z), e(k)(z). Then, filter E
(2)
k again, and so on. In the end we

construct an algebra E
(k)
k , which we denote by Bk. The algebra Bk is generated

by e(z) = e(1)(z), e(2)(z), . . . ,e(k)(z). It has many gradings. Surely, it inherits
the q-grading, degei = i. It has also Zk-grading: each of the generators e(α)(z)

is homogeneous and has grading (0, . . . ,
α−th

1 , . . . ,0). By a simple calculation,
one can check that the generators e(α)(z) satisfy the quadratic relations,

e(α)(z)∂l
ze

(β)(z) = 0 for l < 2 min(α, β).(1.6)

Actually, these relations are defining relations for Bk. One way to prove this
statement is to compare Bk with some algebra generated by vertex operators.
Now, we explain how to do it.

Consider an integrable representation of ŝl2 of level k. It is known that
in such a representation the current e21(z) satisfies the relation e21(z)k+1 = 0.
Here e21 is the nilpotent generator of sl2 and e21(z) is the corresponding current.

The explicit construction of such an e21(z) uses the so-called vertex opera-
tor realization. To do it consider the vector space W with a base p1, . . . ,pk and
a bilinear form 〈pi, pj〉 = 2δi,j . Let ai(z) = V (pi, z) and bi(z) = V (−pi, z). Let
e21(z) = a1(z) + · · · + ak(z) and e12(z) = b1(z) + · · · + bk(z). It is well-known
that such e21(z) and e12(z) generate ŝl2 of level k. The whole construction
is nothing but the tensor product of k copies of the standard vertex operator
realization of ŝl2 of level 1.

The representation of the corresponding vertex operator algebra after re-
striction to ŝl2 is a sum of integrable representations of level k. Choose the
vacuum vector v in the representation F of the vertex operator algebra which
generates the vacuum module for ŝl2. (Our convention is such that eij [n]v = 0
for n > 0.) There is a map ϕ : Ek → F such that P (e[0], e[−1], . . . )

ϕ→
P (e[0], e[−1], . . . )v. We will prove that ϕ is an embedding.
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Consider the family of maps ϕε : Ek → F where ε ∈ C, ε �= 0 which
send e21[i] to the i-th component of the current eε(z) = a1(z) + εa2(z) + · · · +
εk−1ak(z). Let ϕ0 be the limit of ϕε when ε → 0. More precisely, we want to
study the limit W0 of the image of ϕε when ε → 0. First consider the limit of
operators

lim
ε→0

eε(z) = a1(z),

lim
ε→0

ε−1eε(z)2 = 2a1(z)a2(z),

. . . ,

lim
ε→0

ε1−seε(z)s = s! a1(z) . . . as(z).

Note that ρs(z) = a1(z) . . . as(z) are vertex operators V (qs, z) where qs’s are
vectors such that 〈qα, qβ〉 = 2min(α, β). It means that they satisfy the same
quadratic relations as generators e

(α)
21 (z) in the algebra Bk. Looking more

carefully at the limit ε → 0, it is possible to show that we have a surjection
Bk → limε→0ϕε(Ek). It means that there is a family of algebras Uε such that
U0 � Bk, Uε � Ek for ε �= 0, and ϕε : Uε → F . Therefore, we have a surjection
Bk → W0, and in W0 there is a subspace W̃0 = Cv where C is the algebra
generated by ρs(z).

Comparing the characters of Bk, W̃0 and W0 we get that actually they are
all isomorphic. As a corollary, we establish the Gordon-type formula for the
character of Ek.

There are many cases that can be studied in a similar manner. We can
replace ŝl2 by ĝ for any simply-laced semi-simple Lie algebra g. Let n be a
maximal nilpotent subalgebra in g, Lk the vacuum representation of ĝ of level
k, v the vacuum vector of Lk and W0 = U(n̂)v ⊂ Lk.

Following [FK] we can realize L1 as a representation of some lattice vertex
operator algebra. In this construction, simple root generators gα(z) ∈ n̂ are just
vertex operators (up to some twisting, which is not essential in our argument).
Operators gα(z) in representation of level k can be represented as a sum of
vertex operators: gα(z) = g

(1)
α (z) + g

(2)
α (z) + · · · + g

(k)
α (z). Now let us use the

same ε-method. Namely, introduce operators

gα,ε(z) = g(1)
α (z) + εg(2)

α (z) + · · · + εk−1g(k)
α (z).

Again, we consider the limit ε → 0, and repeating the process in the ŝl2 case
we get the following result, which was formulated in [FS].

ch W0 =
∑

m1,...,mkr

q
1
2 〈Dm,m〉

(q)m1 · · · (q)mkr

.
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Here r is the rank of g and D is the tensor product of two matrices C ⊗ G,
where C is the Cartan matrix of g and G is the k × k Gordon matrix, i.e.,
G = (Gα,β) where Gα,β = min(α, β).

In a slightly different manner, the same method is used for the problem
which we will consider in this paper.

Let Lk be the vacuum representation of ŝl3 of level k. By eij(z) we denote
the standard basis of ŝl3 (1 ≤ i, j ≤ 3). Let a(z) = e21(z) and b(z) = e31(z). It
is known that in Lk the currents a(z) and b(z) satisfy the relations

a(z)αb(z)β = 0 if α + β = k + 1.

These are equivalent to the integrability of representation. For k = 1, a(z) and
b(z) can be realized by vertex operators: a(z) = V (q1, z) and b(z) = V (q2, z)
where 〈q1, q1〉 = 〈q2, q2〉 = 2 and 〈q1, q2〉 = 1. Again, for a bigger k, we consider
a(z) = V (t1, z) + · · · + V (tk, z) and b(z) = V (s1, z) + · · · + V (sk, z) where
t1, . . . ,tk and s1, . . . ,sk are vectors with the scalar products 〈ti, ti〉 = 〈si, si〉 = 2,
〈si, ti〉 = 1 and 〈ti, tj〉 = 〈si, sj〉 = 〈si, tj〉 = 0 for i �= j.

Degeneration is given by formulas

a(ε, z) = V (t1, z) + εV (t2, z) + · · · + εk−1V (tk, z),

b(ε, z) = εk−1V (t1, z) + εk−2V (t2, z) + · · · + V (tk, z).

The Gordon-type formula for the character of W0 = Cv where C is generated
by a(z), b(z) and v is the vacuum vector in Lk, can be found in Theorem 8.1.
Again we have vertex operators which represent the currents a(z)α and b(z)β ,
α, β ≤ k. Now a(z)αa(w)β ∼ (z − w)2 min(α,β). By this we mean that in
the representation an arbitrary matrix element 〈θ∨, a(z)αa(w)βθ〉 has the form
(z − w)2 min(α,β)f(z, w) where f(z, w) is a Laurent polynomial. The currents
b(z)β have the same properties and a(z)αb(w)β ∼ (z−w)(α+β−k)+ , with (m)+ =
max(m, 0).

In our paper we use the same ε-method to study ŝl3 representations a
little differently. Let us combine the currents a(z) and b(z) into a single one
as e(z) = a(z2) + zb(z2). The relations aα(z)bβ(z) = 0 (α + β = k + 1) can be
written in terms of e(z) as eα(z)eβ(−z) = 0 (α+β = k+1). The algebra ŝl3 has
a vertex operator realization where the current e(z) is a sum of vertex operators,
and all previous techniques can be used. For k = 1, e(z) satisfies the relations
e(z)2 = 0 and e(z)e(−z) = 0. The matrix elements 〈θ∨, e(z1)e(z2)θ〉 have the
form (z1 − z2)2(z1 + z2)f(z1, z2) where f(z1, z2) is a Laurent polynomial. Such
an e(z) can be realized as a vertex operator. An explicit formula is given by
El+1(z) in (9.7). For k = 2, e(z) satisfies e(z)3 = 0 and e(z)2e(−z) = 0.
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Such an operator can be constructed as a sum e(z) = a1(z) + a2(z), with
[ai(z), ai(w)] = 0, ai(z)2 = 0 and a1(z)a2(−z) = 0. Since the relations for
ai(z) are quadratic, they can be realized as vertex operators.

In general, for even k = 2s, we set

e(z) = a1(z) + · · · + as(z) + b1(z) + · · · + bs(z),

[ai(z), aj(w)] = 0, [bi(z), bj(w)] = 0, [ai(z), bj(w)] = 0,

ai(z)2 = 0, bi(z)2 = 0, ai(z)bi(−z) = 0.

For odd k = 2s + 1,

e(z) = a1(z) + · · · + as(z) + c(z) + b1(z) + · · · + bs(z),

where ai(z), bi(z) satisfy the same relations as above, and

[c(z), ai(w)] = 0, [c(z), bi(w)] = 0, c(z)2 = 0, c(z)c(−z) = 0.

Such ai(z), bi(z), c(z) can be constructed as vertex operators, and these oper-
ators are a part of a vertex operator realization of the entire algebra ŝl3. The
ε-deformation for even k is given by

eε(z) = a1(z) + εa2(z) + · · · + εs−1as(z) + εsb1(z) + · · · + ε2s−1bs(z),

and similarly for odd k.
The plan of this paper is as follows. Throughout this paper we consider

(k, 2) or (k, 3)-admissible configurations with the initial condition a0 ≤ b0, see
(2.6). This corresponds to the case of Λ = (k − b0)Λ0 + b0Λ1 for r = 2, and
Λ = b0Λ1 + (k − b0)Λ2 for r = 3. Here Λi’s are the fundamental weights
of ŝlr. As we mentioned above, the case r = 2 has been studied in [FS].
Nevertheless we give here the details in order to illustrate the method of vertex
operators. The fermionic formulas for r = 3 are new. First we introduce the
algebra E

(k,r)
Λ in Section 2. From Section 3 to Section 7 we consider the case of

r = 2. In Section 3 the dual space (E(k,2)
Λ )∗ is realized as the space of functions

F (k,2). In order to calculate the character of F (k,2) we define certain filtration
{Γλ} on F (k,2) in Section 4. Each component of the associated graded space
determined by this filtration is embedded into a space of functions G

(2)
λ Sλ, see

Proposition 6.2. We will prove that this embedding is surjective by using vertex
operators. We summarize some properties of vertex operators constructed with
k-dimensional bosons in Section 5. In Section 6 we give the current e21(z) using
the vertex operator and prove that the dual space W̃ ∗

0 is isomorphic to the space
G

(2)
λ Sλ. This implies surjectivity of the embedding and we get the fermionic
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formula for the character of E
(k,2)
Λ , which is given in Section 7. In Section 8

we apply the argument above to the case of r = 3. We use the two currents
e21(z) and e31(z) and obtain the fermionic formula. As mentioned before we
can construct a little different realization of the representation of ŝl3 by using
the mixed current e(z) = e21(z2) + ze31(z2). This representation is of highest
weight Λ =

[
k+1
2

]
Λ1+

[
k
2

]
Λ2. In Section 9 we obtain another type of fermionic

formula in this special case using the current e(z). This fermionic formula is
the one obtained from a combinatorial point of view in [FJMMT2]. We give
additional results and discuss some remaining problems in Section 10.

§2. Preliminaries

§2.1. A polynomial algebra E
(k,r)
Λ

Let r be a positive integer. Consider the polynomial ring

E(r) := C[e1[−n], e2[−n], . . . ,er−1[−n]; n ≥ 0].

We define formal power series ej(z) in z by

ej(z) :=
∞∑

n=0

ej [−n]zn, (j = 1, . . . ,r − 1).(2.1)

Denote by {Λi}r−1
i=0 the set of the fundamental weights of ŝlr. Let k be

a positive integer and b = (b0, . . . ,br−2) a vector with non-negative integer
entries such that

0 ≤ b0 ≤ · · · ≤ br−2 ≤ k.

We set the dominant integral weight Λ of level k by

Λ = (k − br−2)Λ0 + b0Λ1 + (b1 − b0)Λ2 + · · · + (br−2 − br−3)Λr−1.(2.2)

Denote by J
(k,r)
Λ the ideal of E(r) generated by the elements

e1[0]c0 · · · ei+1[0]ci , (i = 0, . . . ,r − 2),(2.3)

where ci’s are non-negative integers such that

c0 + · · · + ci > bi,(2.4)

and all the coefficients of the power series in the following form:

e1(z)p1 · · · er−1(z)pr−1 ,
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where p1, . . . ,pr−1 are non-negative integers satisfying

p1 + · · · + pr−1 = k + 1.

Set

E
(k,r)
Λ := E(r)/J

(k,r)
Λ .

Now we give a basis of the vector space E
(k,r)
Λ . For e ∈ E(r) we denote by

e ∈ E
(k,r)
Λ the image of e by the projection E(r) � E

(k,r)
Λ . Let a = (ai)∞i=0

be a sequence of non-negative integers with finitely many non-zero entries. We
define e(a) ∈ E(r) by

e(a) :=
∏
n≥0

r−1∏
i=1

ei[−n]a(r−1)n+i−1

= · · · er−1[−1]a2r−3 · · · e1[−1]ar−1er−1[0]ar−2 · · · e1[0]a0 .

A sequence a = (ai)∞i=0 of integers with finitely many non-zero entries is
called (k, r)-admissible if

0 ≤ ai ≤ k, ai + · · · + ai+r−1 ≤ k(2.5)

for all i ≥ 0. Denote by C
(k,r)
b the set of all (k, r)-admissible sequences such

that

a0 ≤ b0, a0 + a1 ≤ b1, . . . ,a0 + · · · + ar−2 ≤ br−2.(2.6)

Proposition 2.1. The set

{e(a);a ∈ C
(k,r)
b }(2.7)

is a basis of E
(k,r)
Λ .

This proposition is a special case of the result by Primc [P] which we will
explain below. Now set ei[n] = ei+1,1[n] ∈ ŝlr. Then the elements (2.3) satisfy

e1[0]c0 · · · ei+1[0]civΛ = 0(2.8)

for non-negative integers {ci} satisfying (2.4) and the formal power series (2.1)
satisfy

e1(z)p1 · · · er−1(z)pr−1 = 0(2.9)
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on L(Λ) for non-negative integers p1, . . . ,pr−1 such that p1 + · · ·+pr−1 = k+1.

Hence the map

E
(k,r)
Λ � e → evΛ ∈ W (Λ)(2.10)

is well-defined. Here W (Λ) is the subspace defined by (1.1). This map is also
surjective.

In [P], Primc constructed a basis of W (Λ). For a = (ai)∞i=0 ∈ C(k,r), define
the vector M(a) of W (Λ) by

M(a) := e(a)vΛ.

Theorem 2.1 ([P]). Let Λ be the dominant integral weight given by
(2.2). Then the set

M(Λ) := {M(a);a ∈ C
(k,r)
b }

constitutes a basis of W (Λ).

From this theorem, the map (2.10) is injective and this implies Proposition
2.1.

§2.2. Characters of (k, r)-admissible configurations

Now we introduce two kinds of degrees on E(r). First we define the q-degree
by

degqei[−n] := (r − 1)n + i − 1.

Next define the z-degree by

degzei[−n] := 1

for all i = 1, . . . ,r − 1 and n ≥ 0.
Note that the ideal J

(k,r)
Λ is generated by homogeneous elements with

respect to both of the degrees. Hence E
(k,r)
Λ is a graded vector space with

degq and degz.
Denote by E

(k,r)
Λ;i,j the subspace spanned by homogeneous elements of

q-degree i and z-degree j. Consider the character

χ
E

(k,r)
Λ

(q, z) :=
∑

i,j≥0

(dim E
(k,r)
Λ;i,j )qizj .
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From Proposition 2.1, we have

χ
E

(k,r)
Λ

(q, z) =
∑

a∈C
(k,r)
b

q
∑

j≥0 jaj z
∑

j≥0 aj .

This is nothing but the character of (k, r)-configurations χk,r;b(q, z) [FJLMM1].
In the following we give fermionic formulas for the characters χk,r;b in the

two cases:

(I)r = 2, (Λ = (k − b0)Λ0 + b0Λ1),

(II)r = 3, b1 = k, (Λ = b0Λ1 + (k − b0)Λ2).

In other words we consider (k, 2) or (k, 3)-admissible configurations with the
initial condition a0 ≤ b0.

§3. Functional Realization

From this section to Section 7, we consider (k, 2)-admissible configurations.
In the following we fix Λ = (k − b0)Λ0 + b0Λ1 and abbreviate E

(k,2)
Λ and J

(k,2)
Λ

to E(k,2) and J (k,2), respectively.
Denote by Fn the space of symmetric polynomials with n variables:

Fn := C[x1, . . . ,xn]Sn .

Let E
(2)
n be the graded component of E(2) with z-degree n.

We introduce a pairing

〈·, ·〉 : E(2)
n ⊗ Fn −→ C

as follows. Set e(z) := e1(z). Then we define the pairing by

〈e(z1) · · · e(zn), f(x1, . . . ,xn)〉 := f(z1, . . . ,zn).(3.1)

It is easy to see that the pairing 〈·, ·〉 is a bilinear non-degenerate pairing.
Moreover, it respects the grading on E

(2)
n defined by the q-degree and the one

on Fn defined by the usual degree: deg xi = 1.
Denote by J

(k,2)
n the graded component of J (k,2) with z-degree n.

Proposition 3.1. The orthogonal complement F
(k,2)
n := (J (k,2)

n )⊥ ⊂ Fn

is given as follows:

F (k,2)
n :=

{
f ∈ Fn; f(x1, . . . ,xn) = 0 if

x1 = · · · = xk+1 or
x1 = · · · = xb0+1 = 0

}
.
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Proof. From the conditions (2.9) and (2.8) we have e(z)k+1 = 0 and
e(0)b0+1 = 0. Note that〈

e(z)k+1
n∏

j=k+2

e(zj), f(x1, . . . ,xn)
〉

= f(z, . . . ,z, zk+2, . . . ,zn)(3.2)

and 〈
e(0)b0+1

n∏
j=b0+2

e(zj), f(x1, . . . ,xn)
〉

= f(0, . . . ,0, zb0+2, . . . ,zn).(3.3)

Both of (3.2) and (3.3) equal zero if and only if f ∈ F
(k,2)
n .

Note that the graded components E
(2)
n and Fn are finite-dimensional and

the pairing respects the grading. Therefore (F (k,2)
n )⊥ = (J (k,2)

n )⊥⊥ = J
(k,2)
n

and we obtained the following.

Proposition 3.2. The pairing 〈·, ·〉 defined by (3.1) induces a well-
defined non-degenerate bilinear pairing of graded spaces

〈·, ·〉 : E(k,2)
n ⊗ F (k,2)

n −→ C,

where E
(k,2)
n is the graded component of E(k,2) with z-degree n.

Hence the character χk,2;b0(q, z) is represented in terms of the character of
F

(k,2)
n as follows. The character ch F

(k,2)
n (q) is defined by

ch F (k,2)
n (q) :=

∞∑
m=0

qm dim(F (k,2)
n )m,

where (F (k,2)
n )m is the graded component of degree m. Then we get

Corollary 3.1.

χk,2;b0(q, z) =
∞∑

n=0

zn ch F (k,2)
n (q).

§4. Gordon Filtration

Let k ∈ Z≥0 and n ∈ Z≥k. Let λ be a level-k restricted partition of n, that
is

λ = (1m1 , 2m2 , . . . ,kmk),
k∑

a=1

ama = n.
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Denote by ma(λ) the number of rows of length a in the partition (or Young
diagram) λ. Set m(λ) := (m1(λ), . . . ,mk(λ)).

For a sequence of non-negative integers m = (m1, . . . ,mr), we define the
space of functions Sm by

Sm := C[x(1)
1 , . . . ,x(1)

m1
]Sm1 ⊗ · · · ⊗ C[x(r)

1 , . . . ,x(r)
mr

]Smr .(4.1)

In particular, for a level-k restricted partition λ of n, we abbreviate Sm(λ) to
Sλ. Now we define a map

ϕλ : C[x1, . . . ,xn]Sn −→ Sλ(4.2)

as follows. Fix a numbering from 1 to n of the set of indices

{(a, i, j); 1 ≤ a ≤ k, 1 ≤ i ≤ ma(λ), 1 ≤ j ≤ a}.

We set ϕ(xm) := x
(a)
i where (a, i, j) is the m-th index in this numbering. Then

the map ϕλ is defined by

ϕλ(f(x1, . . . ,xn)) := f(ϕ(x1), . . . ,ϕ(xn)).

Since f is symmetric, this map does not depend on the numbering.
Introduce the lexicographical order on partitions of n by

λ � µ ⇐⇒ λj = µj (j < p) and λp > µp , for some p.

We define the subspaces of F
(k,2)
n by

Fλ := Kerϕλ ∩ F (k,2)
n ,

Γλ := ∩ν
λFν ,

Γ′
λ := Γλ ∩ Kerϕλ.

The subspaces Γλ give a filtration of F
(k,2)
n and we have

ch F (k,2)
n =

∑
λ

ch(Γλ/Γ′
λ),(4.3)

where the right hand side is the summation over all level-k restricted partitions
of n.

For an integer s we set (s)+ := max(s, 0).

Proposition 4.1. Let λ be a level-k restricted partition of n. The image
of the map ϕλ|Γλ

is contained in the principal ideal G
(2)
λ Sλ, where the function
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G
(2)
λ is defined by

G
(2)
λ :=

k∏
a=1

∏
j

(x(a)
j )(a−b0)+

∏
1≤a<b≤k

∏
i,j

(x(a)
i − x

(b)
j )2a(4.4)

×
k∏

a=1

∏
i<j

(x(a)
i − x

(a)
j )2a.

Hence the map ϕλ|Γλ
induces the embedding of the subquotient Γλ/Γ′

λ into the
principal ideal G

(2)
λ Sλ.

Proof. Similar to the proof of Lemma 3.5.1 and Lemma 3.5.3 in
[FKLMM].

Our goal is to prove that the image of ϕλ|Γλ
is equal to G

(2)
λ Sλ.

§5. Vertex Operators

§5.1. Definitions

Let N be a positive integer. We fix a non-degenerate symmetric bilinear
form 〈·, ·〉 on the N -dimensional C-vector space C

N .
We denote by ĤN the Heisenberg algebra with unit 1 generated by the

elements am(α) and eQ(α) (m ∈ Z, α ∈ CN ) satisfying the relations

[am(α), an(β)] = m〈α, β〉δm+n,0,

[am(α), eQ(β)] = δm,0〈α, β〉eQ(β), eQ(α)eQ(β) = eQ(α+β).

Here the generators am(α) are linear on α.
We define the Fock space F by

F := C[a−m(α); m > 0, α ∈ C
N ] ⊗ C[eQ(β); β ∈ C

N ].

The algebra ĤN acts on F as follows:

am(α)(f ⊗ eQ(β)) =


(am(α)f) ⊗ eQ(β), (m < 0),

[am(α), f ] ⊗ eQ(β), (m > 0),

〈α, β〉f ⊗ eQ(β), (m = 0),

eQ(α)(f ⊗ eQ(β)) = f ⊗ eQ(α+β),

where f ∈ C[a−m(α); m > 0, α ∈ C
N ].
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Let α = ({αm}m∈Z, α0) be a sequence of vectors in CN . The vertex
operator Xα(z) is defined by

Xα(z) := exp

(∑
m>0

a−m(α−m)
m

zm

)
exp

(
−
∑
m>0

am(αm)
m

z−m

)
eQ(α0)za0(α0).

Introduce the normal ordering : · : on ĤN :

: am(α)an(β) : =

{
am(α)an(β), (m < 0),
an(β)am(α), (m > 0),

: a0(α)eQ(β) : = : eQ(β)a0(α) : = eQ(β)a0(α).

Then we have

Xα(z)Xβ(w) = g(z, w; α, β) : Xα(z)Xβ(w) :,

where

g(z, w; α, β) := z〈α0,β0〉 exp

(
−
∑
m>0

〈αm, β−m〉
m

(w

z

)m
)

for α = ({αm}, α0) and β = ({βm}, β0).

§5.2. Matrix elements

Set

|β〉 := 1 ⊗ eQ(β) ∈ F .

Note that

am(α)|β〉 = 0, if m > 0.

Let 〈β| ∈ F∗ be the dual vector defined by

〈β|(f ⊗ eQ(γ)) =

{
c, if f = c ∈ C and β = γ,

0, otherwise.

Denote by Ĥ+
N the commutative subalgebra of ĤN generated by the gen-

erators am(α), (m > 0, α ∈ CN ) and 1. Consider the matrix element

〈β′|hXα1(x1) · · ·Xαn
(xn)|β〉, h ∈ Ĥ+

N ,

for αa = ({αa,m}, α0
a), (a = 1, . . . ,n). From the definition of Xα(z), it is easy

to see that

〈β′|hXα1(x1) · · ·Xαn
(xn)|β〉 = 0 unless β′ − β =

n∑
a=1

α0
a.
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Theorem 5.1. Let αa = ({αa,m}, α0
a), (a = 1, . . . ,N) be sequences of

vectors in CN and m = (m1, . . . ,mN ) a sequence of non-negative integers.
Denote by Sm(α1, . . . ,αN ; β) the set of functions given by

(5.1)

{〈β + α∗|hXα1(x
(1)
1 ) · · ·Xα1(x

(1)
m1

) · · ·XαN
(x(N)

1 ) · · ·XαN
(x(N)

mN
)|β〉; h ∈ Ĥ+

N},

where α∗ :=
∑

a maα0
a and β ∈ CN .

Suppose that the vectors αa,−m (a = 1, . . . ,N) are linearly independent for
each m > 0. Then we have

Sm(α1, . . . ,αN ; β) =
N∏

a=1

∏
j

(x(a)
j )〈α

0
a,β〉

∏
1≤a<b≤N

∏
i,j

g(x(a)
i , x

(b)
j ; αa, αb)

×
N∏

a=1

∏
i<j

g(x(a)
i , x

(a)
j ; αa, αa) · Sm

for any m.

Proof. Fix m = (m1, . . . ,mN ). For h ∈ Ĥ+
N , we set

F (h) := 〈β + α∗|hXα1(x
(1)
1 ) · · ·Xα1(x

(1)
m1

) · · ·XαN
(x(N)

1 ) · · ·XαN
(x(N)

mN
)|β〉.

Then it is easy to see that

F (1) =
N∏

a=1

∏
j

(x(a)
j )〈α

0
a,β〉

∏
1≤a<b≤N

∏
i,j

g(x(a)
i , x

(b)
j ; αa, αb)

×
N∏

a=1

∏
i<j

g(x(a)
i , x

(a)
j ; αa, αa).

For r > 0 the vertex operator Xα(z) satisfies

[ar(γ), Xα(z)] = 〈γ, α−r〉zrXα(z).

Hence we have

F (ar1(γ1) · · ·arl
(γl)) =

l∏
i=1

(
N∑

a=1

〈γi, αa,−ri
〉p(a)

ri

)
F (1), (∀ri > 0),

where p
(a)
r is the r-th power sum of x

(a)
j ’s, that is p

(a)
r :=

∑
j(x

(a)
j )r. Therefore,

if the vectors αa,−r, (a = 1, . . . ,N) are linearly independent for each r > 0,
we can obtain any polynomial in Sm as F (h)/F (1) by taking a suitable h ∈
Ĥ+

N .
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§6. Construction of Vertex Operators

Fix a basis {εa}k
a=1 of Ck satisfying

〈εa, εb〉 = 2δa,b.

For 1 ≤ a ≤ k, define a sequence of vectors αa = ({αa,m}, α0
a) by

αa,m = α0
a = εa, (∀m ∈ Z).

Now we set

Ea(z) := Xαa
(z).

Then we have

Ea(z)Eb(w) =

{
: Ea(z)Eb(w) :, a �= b,

(z − w)2 : Ea(z)Ea(w) :, a = b.

In particular the operators Ea(z) are commutative and satisfy Ea(z)2 = 0.
Set

Eε(z) := ε1E1(z) + · · · + εkEk(z).

Let λ be a level-k restricted partition of n and λ′ = (λ′
1, . . . ,λ

′
k) its conjugate

(or transpose). Define the operator Eλ by

Eλ(x1, . . . ,xn) :=
k∏

a=1

1
λ′

a!

(
∂

∂ε1

)λ′
1

· · ·
(

∂

∂εk

)λ′
k

Eε(x1) · · ·Eε(xn)
∣∣∣
∀εa=0

.

In other words the operator Eλ(x1, . . . ,xn) is the symmetrization of

k∏
a=1

(Ea(xn′
a−1+1) · · ·Ea(xn′

a
)),(6.1)

where n′
0 = 0 and n′

a :=
∑a

j=1 λ′
j .

Set ε∗λ :=
∑

a λ′
aεa. Note that

〈β′|hEλ(x1, . . . ,xn)|β〉 = 0 (∀h ∈ Ĥ+
k ), unless β′ − β = ε∗λ.

Consider the space of symmetric polynomials

Uλ := {〈β0 + ε∗λ|hEλ(x1, . . . ,xn)|β0〉; h ∈ Ĥ+
k },

where β0 is the vector in Ck uniquely determined by

〈εa, β0〉 =

{
0, if 1 ≤ a ≤ b0,

1, if a > b0.



�

�

�

�

�

�

�

�

142 B. Feigin, M. Jimbo, T. Miwa, E. Mukhin and Y. Takeyama

Proposition 6.1.

Uλ ⊂ Γλ.

Proof. Set

Fλ(h; x1, . . . ,xn) := 〈β0 + ε∗λ|hEλ(x1, . . . ,xn)|β0〉.

It suffices to prove

ϕν(Fλ(h; x1, . . . ,xn)) = 0(6.2)

for any ν � λ and

Fλ(h; 0, . . . ,0, xb0+2, . . . ,xn) = 0.(6.3)

First we prove (6.2). Note that Eλ is also the symmetrization of

λ′
1∏

j=1

(E1(xnj−1+1)E2(xnj−1+2) · · ·Eλj
(xnj

)),(6.4)

where n0 = 0 and nj :=
∑j

i=1 λi. From this expression and the relation
Ea(z)2 = 0, it is easy to see ϕν(Fλ) = 0 for ν � λ.

Next we prove (6.3). Note that Eλ is the symmetrization of (6.1). Consider
the function 〈

β0 + ε∗λ|h
k∏

a=1

(Ea(xn′
a−1+1) · · ·Ea(xn′

a
))|β0

〉
.(6.5)

From Theorem 5.1 this function (6.5) is a polynomial with the factor
n∏

j=n′
b0

+1

xj

∏
1≤a≤k

n′
a−1<i<j≤n′

a

(xi − xj)2a.

Hence (6.5) becomes zero if b0 +1 variables of x1, . . . ,xn are equal to zero. This
implies (6.3) because the function Fλ is the symmetrization of (6.5).

Proposition 6.2.

ϕλ(Uλ) = Sm(λ)(γ1, . . . ,γk; β0),

where Sm(λ) is the space defined in Theorem 5.1 and the sequences of vectors
γa = ({γa,m}, γ0

a), (a = 1, . . . ,k) are defined by

γa,m = γ0
a =

a∑
j=1

εj , (∀m ∈ Z).(6.6)
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Proof. From the relation Ea(z)2 = 0, we have

ϕλ(Eλ(x1, . . . ,xn)) = zλ

k∏
a=1

ma(λ)∏
j=1

(E1(x
(a)
j ) · · ·Ea(x(a)

j )),

where zλ is a constant defined by zλ :=
∏k

a=1(a!)ma(λ). Moreover, we see that

E1(x) · · ·Ea(x) = :E1(x) · · ·Ea(x) : = Xγa
(x).

This completes the proof.

Note that the vectors γa,−m, (a = 1, . . . ,k) defined in (6.6) are linearly
independent for each m > 0. It is easy to check that

g(z, w; γa, γb) = (z − w)2min(a,b), 〈γ0
a, β0〉 = (a − b0)+.

Therefore, from Proposition 4.1, Theorem 5.1 and Proposition 6.2, we see

Corollary 6.1.

ϕλ(Γλ) = G
(2)
λ Sλ.

Example 1. Consider the case of k = 2, b0 = 1 and n = 3. Then the
Gordon filtration is

F
(2,2)
3 = Γ(2,1) ⊃ Γ(1,1,1) ⊃ {0},

where

F
(2,2)
3 =

{
f(x1, x2, x3) ∈ C[x1, x2, x3]S3 ; f = 0 if

x1 = x2 = x3 or
x1 = x2 = 0

}
.

Γ(1,1,1) = {f(x1, x2, x3) ∈ F
(2,2)
3 ; f = 0 if x1 = x2}

= {f(x1, x2, x3) ∈ C[x1, x2, x3]S3 ; f = 0 if x1 = x2}.

The map ϕλ is defined by

ϕ(2,1) : f(x1, x2, x3) → f(x(2)
1 , x

(2)
1 , x

(1)
1 ) ∈ C[x(1)

1 ] ⊗ C[x(2)
1 ],

ϕ(1,1,1) : f(x1, x2, x3) → f(x(1)
1 , x

(1)
2 , x

(1)
3 ) ∈ C[x(1)

1 , x
(1)
2 , x

(1)
3 ]S3 .

Corollary 6.1 shows that

ϕ(2,1)(Γ(2,1)) = x
(2)
1 (x(1)

1 − x
(2)
1 )2C[x(1)

1 ] ⊗ C[x(2)
1 ],

ϕ(1,1,1)(Γ(1,1,1)) =
∏

1≤i<j≤3

(x(1)
i − x

(1)
j ) C[x(1)

1 , x
(1)
2 , x

(1)
3 ]S3 .
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§7. Fermionic Formula

Recall Corollary 3.1: we have

χk,2;b0(q, z) =
∞∑

n=0

zn ch F (k,2)
n (q).

Now let us write down the character of F
(k,2)
n . From Proposition 4.1 and

Corollary 6.1, we find

ch(Γλ/Γ′
λ) = ch(G(2)

λ Sλ).

It is easy to obtain the formula for ch(G(2)
λ Sλ). Introduce the k×k matrix

A(2) defined by

A(2) = (A(2)
ab )1≤a,b≤k, A

(2)
ab := 2min(a, b).(7.1)

Denote by c(2)
b0

the vector defined by

c(2)
b0

:= (0, . . . ,0, 1, 2, . . . ,k − b0).(7.2)

Then we have

ch(Γλ/Γ′
λ) = ch(G(2)

λ Sλ) =
q

1
2 (tmA(2)m−(diagA(2))·m)+c

(2)
b0

·m

(q)m1(λ) · · · (q)mk(λ)
,(7.3)

where m = tm(λ) = t(m1(λ), . . . ,mk(λ)) and (q)n :=
∏n

j=1(1 − qj). Here the

numerator in (7.3) represents the degree of G
(2)
λ and the part

1
(q)m1(λ) · · · (q)mk(λ)

is the character of Sλ.
By substituting (7.3) into (4.3), we get the fermionic formula for (k, 2)-

admissible configurations:

Theorem 7.1.

χk,2;b0(q, z) =
∞∑

n=0

∑
m1+2m2+···+kmk=n

m1,...,mk≥0

q
1
2 (tmA(2)m−(diagA(2))·m)+c

(2)
b0

·m

(q)m1 · · · (q)mk

zn,

where A(2) is the k × k matrix defined by (7.1), c(2)
b0

is the vector defined by
(7.2) and m = t(m1, . . . ,mk).



�

�

�

�

�

�

�

�

Fermionic Formulas 145

§8. Fermionic Formula for χk,3

In this section we consider the case where r = 3 and b = (b0, k). We fix
Λ = b0Λ1 + (k − b0)Λ2 and abbreviate E

(k,3)
Λ and J

(k,3)
Λ to E(k,3) and J (k,3),

respectively.

§8.1. Functional realization of W(k,3)

Consider the space of polynomials

Fl1,l2 := C[x2
1, . . . ,x

2
l1 ]

Sl1 ⊗ C[y2
1 , . . . ,y2

l2 ]
Sl2 ·

l2∏
j=1

yj .

Let us introduce a pairing

〈·, ·〉 : E(3)
n ⊗

 ⊕
l1+l2=n
l1,l2≥0

Fl1,l2

 −→ C

as follows. Set

a(z) := e1(z2), b(z) := ze2(z2).

Then we define the pairing by

〈a(z1) · · · a(zl1)b(w1) · · · b(wl2), f(x1, . . . ,xm1 ; y1, . . . ,ym2)〉(8.1)

:= δl1m1δl2m2f(z1, . . . ,zl1 ; w1, . . . ,wl2)

for f ∈ Fm1,m2 . This pairing is non-degenerate and respects the gradings on
E

(3)
n and ⊕l1+l2=nFl1,l2 . Here the grading on ⊕l1+l2=nFl1,l2 is the usual one

defined by deg xi = 1 = deg yi.
Let us determine the orthogonal complement F

(k,3)
l1,l2

:= (J (k,3)
n )⊥ ∩ Fl1,l2

with respect to the pairing defined above. Denote by I
(k,3)
l1,l2

the space of func-
tions

g(x1, . . . ,xl1 ; y1, . . . ,yl2) ∈ C[x1, . . . ,xl1 ]
Sl1 ⊗ C[y1, . . . ,yl2 ]

Sl2

such that

g = 0 if x1 = · · · = xa = y1 = · · · = yb, (a ≥ 0, b ≥ 0, a + b = k + 1),(8.2)

or x1 = · · · = xb0+1 = 0.
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Proposition 8.1.

F
(k,3)
l1,l2

=
{

g(x2
1, . . . ,x

2
l1 ; y

2
1 , . . . ,y

2
l2)

l2∏
j=1

yj ; g ∈ I
(k,3)
l1,l2

}
.(8.3)

The proof is quite similar to that of Proposition 3.1.
From this proposition, we have

Proposition 8.2. The pairing defined by (8.1) induces a well-defined
non-degenerate bilinear pairing of the graded spaces

〈·, ·〉 : E(k,3)
n ⊗

 ⊕
l1+l2=n
l1,l2≥0

F
(k,3)
l1,l2

 −→ C.

Introduce the usual grading on I
(k,3)
l1,l2

and denote by ch I
(k,3)
l1,l2

(q) the char-

acter of the graded space I
(k,3)
l1,l2

with the formal variable q. From Proposition
8.1 we have

ch F
(k,3)
l1,l2

(q) = ql2 ch I
(k,3)
l1,l2

(q2).

Hence the character of (k, 3)-admissible configurations is given as follows.

Corollary 8.1.

χk,3;(b0,k)(q, z) =
∞∑

n=0

∑
l1+l2=n
l1,l2≥0

znql2 ch I
(k,3)
l1,l2

(q2).

§8.2. Gordon filtration

Let us introduce a filtration on I
(k,3)
l1,l2

.
For a partition λ of n, let us write clearly the variables in Sλ by Sλ = Sλ(x).

Let λ and µ be level-k restricted partitions of l1 and l2, respectively. We denote
by ϕλ,µ the tensor product of ϕλ and ϕµ:

ϕλ,µ := ϕλ ⊗ ϕµ : C[x1, . . . ,xl1 ]
Sl1 ⊗ C[y1, . . . ,yl2 ]

Sl2 −→ Sλ(x) ⊗ Sµ(y).

We define the lexicographical order on pairs of partitions by

(λ(1), µ(1)) � (λ(2), µ(2)) ⇐⇒ λ(1) � λ(2), or λ(1) = λ(2) and µ(1) � µ(2).
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Now let us define the subspaces of I
(k,3)
l1,l2

by

Fλ,µ := Kerϕλ,µ ∩ I
(k,3)
l1,l2

,(8.4)

Γλ,µ := ∩(ν,κ)
(λ,µ)Fν,κ,(8.5)

Γ′
λ,µ := Γλ,µ ∩ Ker ϕλ,µ.(8.6)

The subspaces Γλ,µ give a filtration of I
(k,3)
l1,l2

and we have

ch I
(k,3)
l1,l2

=
∑
(λ,µ)

ch(Γλ,µ/Γ′
λ,µ).

In the same way as the proof of Proposition 4.1, we can show the following:

Proposition 8.3. Let λ and µ be level-k restricted partitions of l1 and
l2, respectively. The image of the map ϕλ,µ|Γλ,µ

is contained in the subspace
Gλ,µ · (Sλ(x) ⊗ Sµ(y)), where the function Gλ,µ is defined by

Gλ,µ :=
∏

1≤a<a′≤k

∏
i,j

(x(a)
i − x

(a′)
j )2a

k∏
a=1

∏
i<j

(x(a)
i − x

(a)
j )2a

×
∏

1≤b<b′≤k

∏
i,j

(y(b)
i − y

(b′)
j )2b

k∏
b=1

∏
i<j

(y(b)
i − y

(b)
j )2b

×
∏

1≤a,b≤k
a+b>k

∏
i,j

(x(a)
i − y

(b)
j )a+b−k

k∏
a=1

∏
j

(x(a)
j )(a−b0)+ .

In the following, we prove that the image of ϕλ,µ|Γλ,µ
is equal to Gλ,µ ·

(Sλ(x) ⊗ Sµ(y)) by using vertex operators in the same way as before.

§8.3. Construction of vertex operators

Decompose C2k into k orthogonal components

C
2k = V1 ⊕ · · · ⊕ Vk, Vj � C

2, (j = 1, . . . ,k).

We define a basis of C
2k as follows. Take a basis {ε+j , ε−j } of Vj � C

2 such that

〈ε±j , ε±j 〉 = 2, 〈ε±j , ε∓j 〉 = 1.(8.7)

Then the set of vectors {ε+1 , ε−1 , . . . ,ε+k , ε−k } is a basis of C2k.
Let αj = ({αj,m}, α0

j) and βj = ({βj,m}, β0
j ), (j = 1, . . . ,k) be sequences

of vectors in Vj ⊂ C
2k defined by

αj,m = α0
j = ε+j , βj,m = β0

j = ε−j , (∀m ∈ Z).
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We define the vertex operators Aa(z) and Bb(z), (a, b = 1, . . . ,k) by

Aa(z) := Xαa(z), Bb(z) := Xβb
(z).

These operators satisfy

Aa(z)Ab(w) = (z − w)2δa,b :Aa(z)Ab(w) :,

Aa(z)Bb(w) = (z − w)δa,b :Aa(z)Bb(w) :,

Ba(z)Ab(w) = (z − w)δa,b :Ba(z)Ab(w) :,

Ba(z)Bb(w) = (z − w)2δa,b :Ba(z)Bb(w) : .

In particular, we have

Aa(z)Ab(w) = Ab(w)Aa(z), Ba(z)Bb(w) = Bb(w)Ba(z)(8.8)

for a, b = 1, . . . ,k, and

Aa(z)2 = 0, Bb(z)2 = 0, Aa(z)Ba(z) = 0 = Ba(z)Aa(z)(8.9)

for a = 1, . . . ,k.
Now we set

Aε(z) := ε1A1(z) + · · · + εkAk(z),(8.10)

Bε(z) := ε1Bk(z) + · · · + εkB1(z).(8.11)

Note that the ordering of operators is reversed in (8.10) and (8.11).
Let λ and µ be level-k restricted partitions of l1 and l2, respectively. Define

the vertex operators Aλ(x1, . . . ,xn) and Bµ(y1, . . . ,yl) by

Aλ(x1, . . . ,xn) :=
k∏

a=1

1
λ′

a!

(
∂

∂ε1

)λ′
1

· · ·
(

∂

∂εk

)λ′
k

Aε(x1) · · ·Aε(xn)
∣∣∣
∀εa=0

,

Bµ(y1, . . . ,yl) :=
k∏

b=1

1
µ′

b!

(
∂

∂ε1

)µ′
1

· · ·
(

∂

∂εk

)µ′
k

Bε(y1) · · ·Bε(yl)
∣∣∣
∀εa=0

,

where λ′ = (λ′
1, . . . ,λ

′
k) and µ′ = (µ′

1, . . . ,µ
′
k) are the conjugates of λ and µ,

respectively.
Set

ε∗λ,µ :=
k∑

a=1

λ′
aε+a +

k∑
b=1

µ′
bε

−
k+1−b ∈ C

2k.
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Let γ0 be a vector in C2k uniquely determined by

〈ε+a , γ0〉 =

{
0, (a ≤ b0),
1, (a > b0),

, 〈ε−b , γ0〉 = 0, (1 ≤ b ≤ k).

Consider the space of functions

Uλ,µ := {〈γ0 + ε∗λ,µ|hAλ(x1, . . . ,xn)Bµ(y1, . . . ,yl)|γ0〉; h ∈ Ĥ+
2k}.

From (8.8) it is easy to see that

Uλ,µ ⊂ C[x1, . . . ,xn]Sn ⊗ C[y1, . . . ,yl]Sl .

Moreover, in the same way as Proposition 6.1 we have

Proposition 8.4.

Uλ,µ ⊂ Γλ,µ.

The image ϕλ,µ(Uλ,µ) is given as follows.

Proposition 8.5.

ϕλ,µ(Uλ,µ) = Sm(λ),m(µ)(γ+
1 , . . . ,γ+

k , γ−
1 , . . . ,γ−

k ; γ0).

Here the right hand side is defined by (5.1) with the substitution x
(k+b)
j := y

(b)
j ,

(b = 1, . . . ,k). The sequences γ±
a = ({γ±

a,m}, γ±,0
a ) are given by

γ+
a,m = γ+,0

a =
a∑

j=1

ε+j , γ−
a,m = γ−,0

a =
a∑

j=1

ε−k+1−a, (∀m ∈ Z).

Note that the vectors γ±
a,−m, (a = 1, . . . ,k) are linearly independent for

each m > 0. Hence we can apply Theorem 5.1. The functions g(z, w; γ±
a , γ±

b )
are given by

g(z, w; γ±
a , γ±

b ) = (z − w)2min(a,b),

g(z, w; γ±
a , γ∓

b ) =

{
(z − w)a+b−k, if a + b > k,

1, if a + b ≤ k,

〈γ+,0
a , γ0〉 = (a − b0)+, 〈γ−,0

a , γ0〉 = 0.

Therefore we see that

Corollary 8.2.

ϕλ,µ(Γλ,µ) = Gλ,µ · (Sλ(x) ⊗ Sµ(y)).
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§8.4. Fermionic formula

From Proposition 8.3 and Corollary 8.2, we have

ch(Γλ,µ/Γ′
λ,µ) = ch(Gλ,µ · (Sλ(x) ⊗ Sµ(y))).

The character of Gλ,µ · (Sλ(x) ⊗ Sµ(y)) is given as follows. Introduce the
2k × 2k matrix A defined by

A :=

(
A(2) B(3)

B(3) A(2)

)
,(8.12)

where A(2) is the matrix defined by (7.1) and B(3) is defined by

B(3) = (B(3)
ab )1≤a,b≤k, B

(3)
ab := max(0, a + b − k).(8.13)

For example, the matrix A for k = 1, 2 and 3 is given by

(
2 1
1 2

)
,


2 2 0 1
2 4 1 2
0 1 2 2
1 2 2 4

 and



2 2 2 0 0 1
2 4 4 0 1 2
2 4 6 1 2 3
0 0 1 2 2 2
0 1 2 2 4 4
1 2 3 2 4 6


,

respectively. We denote by c(3)
b0

the vector defined by

c(3)
b0

:= (0, . . . ,0, 1, 2, . . . ,k − b0︸ ︷︷ ︸
k

, 0, . . . ,0︸ ︷︷ ︸
k

).(8.14)

Then we have

ch(Gλ,µ · (Sλ(x) ⊗ Sµ(y)))(8.15)

=
q

1
2 (tmAm−(diagA)·m)+c

(3)
b0

·m

(q)m1(λ) · · · (q)mk(λ)(q)m1(µ) · · · (q)mk(µ)
,

where m := t(m1(λ), . . . ,mk(λ), m1(µ), . . . ,mk(µ)).
From (8.15) and Corollary 8.1, we obtain the fermionic formula for the

character of (k, 3)-admissible configurations:

Theorem 8.1.

χk,3;(b0,k)(q, z)

=
∞∑

n=0

∑
l1+l2=n
l1,l2≥0

∑
∑

j jmi,j=li,

(i=1,2)

q
tmAm−(diagA)·m+2c

(3)
b0

·m

(q2)m1,1 · · · (q2)m1,k
(q2)m2,1 · · · (q2)m2,k

ql2zn,
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where A is the matrix defined by (8.12), c(3)
b0

is the vector defined by (8.14),
m = t(m1,1, . . . ,m1,k, m2,1, . . . ,m2,k) and (q2)m :=

∏m
j=1(1 − q2j).

§9. Another Fermionic Formula for χk,3 in a Special Case

In this section we consider (k, 3)-admissible configurations with the initial
condition b = (

[
k+1
2

]
, k), that is, a0 ≤

[
k+1
2

]
. In this special case we can

find another fermionic formula. As a consequence we get non-trivial equality
between the different fermionic formulas for the character with b = (

[
k+1
2

]
, k).

§9.1. Functional realization

First we give another functional realization of E
(k,3)
Λ for Λ = b0Λ1 + (k −

b0)Λ2. We fix Λ and abbreviate E
(k,3)
Λ and J

(k,3)
Λ to E(k,3) and J (k,3), respec-

tively.
Let Fn = C[x1, . . . ,xn]Sn . Define a pairing

〈·, ·〉 : E(3)
n ⊗ Fn −→ C

by

〈e(z1) · · · e(zn), f(x1, . . . ,xn)〉 := f(z1, . . . ,zn),(9.1)

where

e(z) := e1(z2) + ze2(z2).

This pairing is non-degenerate and respects the grading on E
(3)
n and Fn.

Proposition 9.1. The orthogonal complement F
(k,3)
n := (J (k,3)

n )⊥ is the
space of functions f(x1, . . . ,xn) ∈ Fn such that

f = 0 if
x1 = · · · = xa = −xa+1 = · · · = −xk+1 (0 ≤ ∀a ≤ k + 1) or
x1 = · · · = xb0+1 = 0.

Proof. Recall that J
(k,3)
n is the ideal generated by the coefficients of

e1(z)αe2(z)β , (α + β = k + 1) and the element e1(0)b0+1. It is easy to see
that the condition

e1(z)αe2(z)β = 0, for α + β = k + 1
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is equivalent to

e(z)ae(−z)k+1−a = 0, for 0 ≤ a ≤ k + 1.

From this observation the proposition follows in the same way as Proposition
3.1.

Hence we have the following.

Proposition 9.2. The pairing defined by (9.1) induces a well-defined
non-degenerate bilinear pairing of the graded spaces

〈·, ·〉 : E(k,3)
n ⊗ F (k,3)

n −→ C,

where E
(k,3)
n is the graded component E

(k,3)
n := E

(3)
n /J

(k,3)
n .

Therefore the character of (k, 3)-admissible configurations is given as
follows.

Corollary 9.1.

χk,3;(b0,k) =
∞∑

n=0

zn ch F (k,3)
n (q).

§9.2. Gordon filtration

For a level-k restricted partition λ we defined the map

ϕλ : C[x1, . . . ,xn]Sn −→ Sλ

in (4.2). Using this map we define the subspaces Fλ, Γλ and Γ′
λ as in the case

of r = 2, that is,

Fλ := Ker ϕλ ∩ F (k,3)
n ,

Γλ :=∩ν
λFν ,

Γ′
λ := Γλ ∩ Ker ϕλ.

Then we have

ch F (k,3)
n =

∑
λ

ch(Γλ/Γ′
λ).(9.2)
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Proposition 9.3. Let λ be a level-k restricted partition of n. Then the
image of the map ϕλ|Γλ

is contained in the principal ideal G
(3)
λ Sλ, where G

(3)
λ

is defined by

G
(3)
λ := G

(2)
λ G

(3)

λ ,

G
(3)

λ :=
∏

1≤a<b≤k
a+b>k

∏
i,j

(x(a)
i + x

(b)
j )a+b−k

∏
a> k

2

∏
i<j

(x(a)
i + x

(a)
j )2a−k.

Here G
(2)
λ is the function defined by (4.4).

Proof. It suffices to prove that the function in the image of ϕλ|Γλ
is

divisible by G
(3)

λ .
Denote the variables xp such that ϕλ(xp) = x

(a)
i by x

(a)
i,l , (l = 1, . . . ,a). We

can carry out the evaluation of ϕλ in two steps: ϕλ(F ) = ϕ2(ϕ1(F )), where
ϕ1 is the evaluation of all variables except {x(a)

i,l }a
l=1 and ϕ2 is the evaluation

of the variables {x(a)
i,l }a

l=1. Let F1 := ϕ1(F ) for F ∈ Γλ. As a polynomial of

x
(a)
i,l , (l = 1, . . . ,a), F1 is symmetric. Moreover, F1 equals zero if (k − b + 1)

variables of {x(a)
i,l } are equal to −x

(b)
j for b = 1, . . . ,k such that a + b > k.

Therefore, the following lemma implies that ϕλ(F ) = ϕ2(F1) is divisible by
G

(3)

λ .

Lemma 9.1. Let f(x1, . . . ,xm) be a symmetric polynomial satisfying

f(x1, . . . ,xm) = 0, if x1 = · · · = xs = a(9.3)

for some constant a. Then f(x, . . . ,x) is divisible by (x − a)m−s+1.

This lemma is easy to prove.
If the induced map ϕλ : Γλ/Γ′

λ → G
(3)
λ Sλ is surjective, we get the fermionic

formula for chF
(k,3)
n by (9.2). In fact the induced map is surjective. We can see

this fact from the formula for the character of (k, 3)-admissible configurations
obtained in [FJMMT2]. Here we do not assume this result. We have proved
the surjectivity by using vertex operators only in the case of b0 =

[
k+1
2

]
. In

the following we consider this special case.

§9.3. Construction of vertex operators

First we consider the case that k is odd. Set k = 2l + 1. Note that
b0 =

[
k+1
2

]
= l + 1.
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Decompose Ck into l + 1 orthogonal components

C
k = V ⊕ V1 ⊕ · · · ⊕ Vl, V � C, Vj � C

2, (j = 1, . . . ,l).

Take a vector ε0 ∈ V � C such that 〈ε0, ε0〉 = 1. Next we take a basis {ε+j , ε−j }
of Vj � C2 satisfying (8.7). Then the set of vectors {ε, ε+1 , ε−1 , . . . ,ε+l , ε−l } is a
basis of Ck.

Let α = ({αm}, α0) be a sequence of vectors in V ⊂ C
k defined by

α0 = α2m :=
√

3ε0, α2m+1 := ε0, (m ∈ Z),(9.4)

and α±
j = ({α±

j,m}, α±,0
j ), (j = 1, . . . ,l) sequences of vectors in Vj ⊂ C

k defined
by

α±
j,m := (±1)mε±j , α±,0

j := ε±j .(9.5)

We rename the sequences α and α±
j , (j = 1, . . . ,l) to βa, (a = 1, . . . ,k) by

βa :=


α+

a , 1 ≤ a ≤ l,

α, a = l + 1,

α−
k−a+1, l + 2 ≤ a ≤ k.

(9.6)

Now we define the vertex operators Ea(z), (a = 1, . . . ,k) by

Ea(z) := Xβa
(z).(9.7)

These operators satisfy the following:

Ea(z)Eb(w) =


(z − w)2 : Ea(z)Eb(w) :, a = b �= l + 1,

(z − w)2(z + w) : Ea(z)Eb(w) :, a = b = l + 1,

(z + w) : Ea(z)Eb(w) :, a + b = k + 1, a �= l + 1,

: Ea(z)Eb(w) :, otherwise.

In particular,

Ea(z)Eb(w) = Eb(w)Ea(z)(9.8)

for a, b = 1, . . . ,k, and

Ea(z)2 = 0, Ea(z)Ek+1−a(−z) = 0(9.9)

for a = 1, . . . ,k.
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As in the case of r = 2, we set

Eε(z) := ε1E1(z) + · · · + εkEk(z).

For a level-k restricted partition λ of n, we set

Eλ(x1, . . . ,xn)(9.10)

:=
k∏

a=1

1
λ′

a!

(
∂

∂ε1

)λ′
1

· · ·
(

∂

∂εk

)λ′
k

Et(x1) · · ·Et(xn)
∣∣∣
∀εa=0

,

where λ′ = (λ′
1, . . . ,λ

′
k) is the conjugate of λ.

Set

ε∗λ :=
l∑

a=1

λ′
aε+a +

√
3λ′

l+1ε0 +
k∑

a=l+2

λ′
aε−k+1−a ∈ C

k.

Then we see that

〈β|hEλ(x1, . . . ,xn)|0〉 = 0, (∀h ∈ Ĥ+
k ), unless β = ε∗λ.

Consider the space of symmetric polynomials

Uλ := {〈ε∗λ|hEλ(x1, . . . ,xn)|0〉; h ∈ Ĥ+
k }.(9.11)

Proposition 9.4.

Uλ ⊂ Γλ.

Proof. In a similar way to the proof of Proposition 6.1, it can be shown
that ϕµ(Uλ) = 0 for any µ such that µ > λ. Hence it suffices to prove that
Uλ ⊂ F

(k,3)
n , and this is equivalent to

Eλ(x, . . . ,x︸ ︷︷ ︸
p

,−x, . . . , − x︸ ︷︷ ︸
k+1−p

, xk+2, . . . ,xn) = 0

for p = 0, . . . ,k + 1, and

Eλ(0, . . . ,0︸ ︷︷ ︸
l+2

, x[(k+1)/2]+2, . . . ,xn) = 0.

This follows from the relation (9.9).

From the relation Ea(z)2 = 0, the following proposition holds as in the
case of r = 2:
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Proposition 9.5.

ϕλ(Uλ) = Sm(λ)(γ1, . . . ,γk).

Here the sequences of vectors γa = ({γa,m}, γ0
a), (a = 1, . . . ,k) are defined by

γa,m :=
a∑

j=1

βj,m, (∀m ∈ Z), γ0
a :=

a∑
j=1

β0
j ,

where βj = ({βj,m}, β0
j ), (j = 1, . . . ,k) are defined in (9.6).

Note that the vectors γa,−m, (a = 1, . . . ,k) are linearly independent for each
m > 0. Hence we can apply Theorem 5.1. Then the function g(z, w; γa, γb) is
given by

g(z, w; γa, γb) =

{
(z − w)2min(a,b), if a + b ≤ k,

(z − w)2min(a,b)(z + w)a+b−k, if a + b > k.
(9.12)

Therefore we find

Corollary 9.2.

ϕλ(Γλ) = G
(3)
λ Sλ.

Now we consider the case that k is even. Set k = 2l. The proof of Corollary
9.2 for this case is quite similar to the case that k is odd.

First introduce the vertex operators Ea(z), (a = 1, . . . ,k) as follows.
We decompose Ck into l orthogonal components

C
k = V1 ⊕ · · · ⊕ Vl, Vj � C

2, (j = 1, . . . ,l).

Take a basis {ε+j , ε−j } of Vj � C2 satisfying (8.7). Let α±
j = ({α±

j,m}, α±,0
j ), (j =

1, . . . ,l) be sequences of vectors in Vj ⊂ Ck defined by (9.5). We rename the
sequences α±

j , (j = 1, . . . ,l) to βa, (a = 1, . . . ,k) by

βa :=

{
α+

a , 1 ≤ a ≤ l,

α−
k−a+1, l + 1 ≤ a ≤ k.

Then we define the vertex operators Ea(z), (a = 1, . . . ,k) by

Ea(z) := Xβa
(z).

These operators satisfy the following:

Ea(z)Eb(w) =


(z − w)2 : Ea(z)Eb(w) :, a = b,

(z + w) : Ea(z)Eb(w) :, a + b = k + 1,

: Ea(z)Eb(w) :, otherwise.
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The commutation relations (9.8) and (9.9) hold also in this case.
Next we define the operator Eλ(x1, . . . ,xn) by (9.10) for a level-k restricted

partition λ, and consider the space of matrix elements Uλ defined by (9.11),
where ε∗λ is given by

ε∗λ =
l∑

a=1

λ′
aε+a +

k∑
a=l+1

λ′
aε−k+1−a.

Then it is easy to see that Proposition 9.4 and Proposition 9.5 hold. The vectors
γa,−m, (a = 1, . . . ,k) in Proposition 9.5 are linearly independent for each m > 0
also in this case. The function g(z, w; γa, γb) is given by (9.12). Therefore
Corollary 9.2 holds also in the case that k is even.

§9.4. Fermionic formula

At last we write down the fermionic formula for (k, 3)-admissible configu-
rations with the initial condition a0 ≤

[
k+1
2

]
.

From Proposition 9.3 and Corollary 9.2, we have

ch(Γλ/Γ′
λ) = ch(G(3)

λ Sλ).

In order to write down the character of G
(3)
λ Sλ we introduce the k × k matrix

B defined by B := A(2) + B(3), that is,

B = (Bab)1≤a,b≤k, Bab := 2min(a, b) + (a + b − k)+.(9.13)

Then we have

ch(G(3)
λ Sλ) =

q

1
2 (tmBm−(diagB)·m)+c

(2)

[k+1
2 ]

·m

(q)m1(λ) · · · (q)mk(λ)
,

where c(2)

[ k+1
2 ] is defined by (7.2) with b0 =

[
k+1
2

]
.

Finally we get

Theorem 9.1.

χ3,r;([k+1
2 ],k)(q, z) =

∞∑
n=0

∑
m1+2m2+···+kmk=n

m1,...,mk≥0

q

1
2 (tmBm−(diagB)·m)+c

(2)

[ k+1
2 ]

·m

(q)m1 · · · (q)mk

zn,

where B is the k × k matrix defined by (9.13), c(2)

[ k+1
2 ] is the vector defined by

(7.2) and m = t(m1, . . . ,mk).



�

�

�

�

�

�

�

�

158 B. Feigin, M. Jimbo, T. Miwa, E. Mukhin and Y. Takeyama

§10. Discussion

§10.1.

The vertex operators constructed in Section 9.3 are a part of a vertex
operator realization of ŝl3 of level k. Here we describe the entire algebra ŝl3

using the vertex operators in the cases of k = 1 and k = 2. For k ≥ 3, the
algebra is constructed as the tensor product of these algebras as mentioned in
Introduction.

The k = 1 case. Set

φ−(z) := E1(z) = Xα(z), φ+(z) := X−α(z),

φ0(z) :=
∑

n

anz−n−1, φ(z) := :φ−(−z)φ+(z) :,

where α = ({αm}, α0) is defined by (9.4) and −α := ({−αm},−α0). We
abbreviated an(αn) to an. The operator product expansion is given as follows:

φ−(z)φ+(w)∼


1

(z − w)2
1

2w
+

1
z − w

(
φ0(w) − 1

2w

)
, (z = w),

1
z + w

φ(w)
4w2

, (z = −w),

φ0(z)φ±(w)∼


∓2φ±(w)

z − w
, (z = w),

∓φ±(w)
z + w

, (z = −w),

φ0(z)φ(w)∼


− φ(w)

z − w
, (z = w),

φ(w)
z + w

, (z = −w),

φ±(z)φ(w)∼

∓2wφ±(±w)
z − w

, (z = w),

0, (z = −w)

φ(z)φ(w)∼

0, (z = w),
4w2

(z + w)2
− 4w

z + w
(1 + 2w(φ0(w) − φ0(−w))), (z = −w),

φ0(z)φ0(w)∼


2

(z − w)2
, (z = w),

− 1
(z + w)2

, (z = −w).

The operator φ±(z)φ±(w) is regular at z = ±w.
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The generators of ŝl3 of level one are given by

φ−(z) =
∑

n

e21[n]z−2n +
∑

n

e31[n]z−2n+1,

φ+(z) =
∑

n

e12[n]z−2n−3 +
∑

n

e13[n]z−2n−4,

−5
4

+
1
2
zφ0(z) +

1
4
φ(z) =

∑
n

e32[n]z−2n+1 −
∑

n

h13[n]z−2n,

−3
4

+
1
2
zφ0(z) − 1

4
φ(z) =

∑
n

e23[n]z−2n−1 −
∑

n

h12[n]z−2n.

Here we set hij := eii − ejj .
The k = 2 case. Set

φ−(z) := E1(z) + E2(z) = Xα+
1
(z) + Xα−

1
(z),

φ+(z) := X−α
+
1

(z) + X−α
−
1

(z),

φ0(z) :=
∑

n

anz−n−1,

φ(z) := :X
α

+
1

(−z)X−α
−
1

(z) : + :X
α

−
1

(−z)X−α
+
1

(z) :,

where α±
1 is defined by (9.5) and an := an(α+

1,n)+an(α−
1,n). Then the operator

product expansion is given as follows:

φ−(z)φ+(w)∼


2

(z − w)2
+

φ0(w)
z − w

, (z = w),

φ(w)
z + w

, (z = −w),

φ0(z)φ±(w)∼


∓2φ±(w)

z − w
, (z = w),

∓φ±(w)
z + w

, (z = −w),

φ0(z)φ(w)∼


− φ(w)

z − w
, (z = w),

φ(w)
z + w

, (z = −w),

φ±(z)φ(w)∼


φ±(±w)
z − w

, (z = w),

0, (z = −w)



�

�

�

�

�

�

�

�

160 B. Feigin, M. Jimbo, T. Miwa, E. Mukhin and Y. Takeyama

φ(z)φ(w)∼

0, (z = w),

− 2
(z + w)2

+
1

z + w
(φ0(w) − φ0(−w)), (z = −w),

φ0(z)φ0(w)∼


4

(z − w)2
, (z = w),

− 2
(z + w)2

, (z = −w).

The operator φ±(z)φ±(w) is regular at z = ±w.
The generators of ŝl3 of level two are given by

φ−(z) =
∑

n

e21[n]z−2n +
∑

n

e31[n]z−2n+1,

φ+(z) =
∑

n

e12[n]z−2n−2 +
∑

n

e13[n]z−2n−3,

−2 +
1
2
φ0(z) +

1
2
φ(z) =

∑
n

e32[n]z−2n −
∑

n

h13[n]z−2n−1,

−1 +
1
2
φ0(z) − 1

2
φ(z) =

∑
n

e23[n]z−2n−2 −
∑

n

h12[n]z−2n−1.

§10.2.

Our problem is to obtain the fermionic formula for the character of (k, r)-
admissible configurations with the initial condition (2.6). In previous sections
we obtained the fermionic formulas for (k, 2) and (k, 3)-admissible configura-
tions with the condition a0 ≤ b0. For the case of r = 2 our result is sufficient
because the condition a0 ≤ b0 is the only initial condition. However, in the case
of r = 3, we should consider not only the condition a0 ≤ b0 but a0 + a1 ≤ b1.
The fermionic formula we obtained in Section 8 is for the case of b1 = k. Here
we consider the case of b1 < k.

The definition (8.2) of the space I
(k,3)
l1,l2

is replaced by

g = 0 if x1 = · · · = xa = y1 = · · · = yb, (a ≥ 0, b ≥ 0, a + b = k + 1),

or x1 = · · · = xb0+1 = 0,

or x1 = · · · = xs = y1 = · · · = yt = 0, (s ≥ 0, t ≥ 0, s + t = b1 + 1).

The functional realization F
(k,3)
l1,l2

is given by (8.3) with this redefined space

I
(k,3)
l1,l2

.

Now introduce the filtration {Γλ,µ} on I
(k,3)
l1,l2

by (8.5) and consider the
image of ϕλ,µ|Γλ,µ

as in Proposition 8.3. Then the image is contained a space
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of functions described as follows. For a partition ρ = (ρ1, ρ2, . . . ) denote by
mρ(x1, . . . ,xn) the monomial symmetric function:

mρ(x1, . . . ,xn) := Sym(xρ1
1 · · ·xρn

n ).

Let Iλ,µ be the ideal of Sλ(x) ⊗ Sµ(y) generated by the elements

mρ(1)

(
x

(a)
1 , . . . ,x

(a)
ma(λ)

)
mρ(2)

(
y
(b)
1 , . . . ,y

(b)
mb(µ)

)
such that

b1 < a + b ≤ k, ma(λ) �= 0, mb(µ) �= 0

and

ρ
(1)
ma(λ) + ρ

(2)
mb(λ) ≥ min(a, b − (b1 − b0)).

Then it can be shown that

ϕλ,µ(Γλ,µ) ⊂ Gλ,µ

k∏
b=1

∏
j

(y(b)
j )(b−b1)+ · Iλ,µ.(10.1)

In Section 8 we proved that the two spaces in (10.1) are equal in the case of
b1 = k using the vertex operators. For the case of b1 < k we do not have proof
or disproof of this equality.
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