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Abstract

Consider the linear partial differential equation P (z, ∂z)u(z) = f(z) in Cd+1,
where f(z) is not holomorphic on K = {z0 = 0}, but it has an asymptotic expansion
with respect to z0 as z0 → 0 in some sectorial region. We show under some conditions
on P (z, ∂z) that there exists a solution u(z) which has an asymptotic expansion of
the same type as that of f(z).

§0. Introduction

Let P (z, ∂z) be a linear partial differential operator with holomorphic co-
efficients in a neighborhood Ω of z = 0 in Cd+1 and K = {z0 = 0}. Consider
the equation

P (z, ∂z)u(z) = f(z),(0.1)

where f(z) is holomorphic except on K, but f(z) has an asymptotic expansion
f(z) ∼

∑
n fn(z′)zn

0 as z0 → 0 in some sectorial region with respect to z0. In
the present paper we study the existence of solutions. Firstly we remark that
if we require nothing about the behavior of u(z) near K, there exists a solution
u(z) with singularities on K under some conditions on the principal symbol of
P (z, ∂z). But the singularities of u(z) may be much stronger than those of f(z)
(see [1], [2], [5] and [9]).
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It is our interest to find a solution u(z) with an asymptotic expansion.
The relations between the growth properties of the solution u(z) and f(z)
near K are investigated in [6], [7] and [8]. But the existence of solutions with
an asymptotic expansion is not studied in those papers. It is studied in [4],
where characteristic Cauchy problems are considered. Characteristic Cauchy
problems have formal power series solutions. The main concern in [4] is to
study the relation between genuine solutions and formal power series solutions.
Our aim in the present paper is to study the existence of solutions with an
asymptotic expansion in detail. We will show the following:

Suppose that f(z) ∼
∑∞

n=0 fn(z′)zn
0 in some sectorial region. Then under

some conditions on P (z, ∂z) there exists a solution u(z) with an asymptotic
expansion u(z) ∼

∑∞
n=0 un(z′)zn

0 , and moreover, the asymptotic expansions of
f(z) and u(z) are the same Gevrey type.

The plan of this paper is as follows. In Section 1 firstly we introduce func-
tion spaces O(Ω(θ)) and Asy{κ}(Ω(θ)). O(Ω(θ)) consists of holomorphic func-
tions on the sectorial region Ω(θ) and Asy{κ}(Ω(θ)) is a subspace of O(Ω(θ))
consisting of functions with an asymptotic expansion in z0 of Gevrey type with
exponent κ. Secondly we define characteristic polygon Σ of P (z, ∂z) with re-
spect to K, the indices γi and polynomials χP,i(z′, ξ′). The structure of the
lower order terms of P (z, ∂z) is indispensable for the study of behavior of so-
lutions. The characteristic polygon is defined by using the total symbol and
contains information of the lower order terms. Hence it is available for our pur-
pose. Finally we give the main results, that is, existence of functions satisfying
(0.1) modulo functions with zero expansion of some Gevrey type (Theorem 1.2)
and existence of an exact solution with asymptotic expansion (Theorem 1.3),
and a few examples. The main result in [4] follows from Theorem 1.3. Theorem
1.3 follows easily from Theorem 1.2. Sections 2 through 6 are devoted to prove
Theorem 1.2. We show Theorem 1.2 by constructing a parametrix (regular-
izer). In Section 2 we introduce auxiliary functions ĝp(λ) (p ∈ Z) containing
parameters, and Kp(t) =

∫∞
1

exp(−λt)ĝp(λ)dλ. We try to find a parametrix G

of the form

(Gf)(z) =
∫
C

G(z, w)f(w)dw, w = (w0, w
′) ∈ C × C

d,

which is an integral operator with kernel G(z, w). In Section 3 we construct
formally G(z, w) by a series,

G(z, w) =
∑

p∈Z,q∈N

kp,q(z, w′)Kp,q(w0 − z0, w0),



�

�

�

�

�

�

�

�

Solutions with Asymptotic Expansion 241

where Kp,q(w0 − z0, w0) = wq
0(−∂w0)

qKp(w0 − z0). We find the equations that
determine the coefficients kp,q(z, w′) and show that we can solve them. In
Section 4 we give the estimates of kp,q(z, w′) (Theorem 4.1) without proof and
show the convergence of the series. We study the properties of the operator G,
show that it is a desired parametrix and obtain Theorem 1.2. In the process
we do not give the proofs of Proposition 2.3 and Theorem 4.1. We prove
Proposition 2.3 in Section 5 and Theorem 4.1 in Section 6.

§1. Notations and Results

Let us give notations and definitions in order to state more precisely the
problem and results. The coordinates of Cd+1 are denoted by z = (z0, z1, . . . ,

zd) = (z0, z
′) ∈ C × Cd. |z| = max{|zi|; 0 ≤ i ≤ d} and |z′| = max{|zi|; 1 ≤

i ≤ d}. Its dual variables are ξ = (ξ0, ξ
′) = (ξ0, ξ1, . . . , ξd). N is the set of

all nonnegative integers N = {0, 1, 2, . . . }. For real number a, [a] means the
integral part of a. The partial differentiation with respect to zi is denoted by
∂zi

, and ∂z = (∂z0 , ∂z1 , . . . , ∂zd
) = (∂z0 , ∂z′). For a multi-index α = (α0, α

′) ∈
N × Nd, |α| = α0 + |α′| =

∑d
i=0 αi. We use the notations ∂α

z =
∏d

i=0 ∂αi
zi

and
∂α′

z =
∏d

i=1 ∂αi
zi

. The differentiations with respect to other variables wi, λ, . . . ,

are denoted by ∂wi
, ∂λ, . . . , respectively.

Let us define spaces of holomorphic functions on some regions. Let Ω =
Ω0 × Ω′ be a polydisk with Ω0 = {z0 ∈ C

1; |z0| < R0} and Ω′ = {z′ ∈
C

d; |z′| < R} for some positive constants R0 and R. Put Ω0(θ) = {z0 ∈
Ω0 − {0}; | arg z0| < θ} and Ω(θ) = Ω0(θ) × Ω′. Ω(θ) is a sectorial region with
respect to z0. O(Ω) (O(Ω′), O(Ω(θ))) is the set of all holomorphic functions
on Ω (resp. Ω′, Ω(θ)).

Definition 1.1. (i) Asy{κ}(Ω(θ)) (0 < κ ≤ +∞) is the set of all
u(z) ∈ O(Ω(θ)) such that for any θ′ with 0 < θ′ < θ∣∣∣∣∣u(z) −

N−1∑
n=0

un(z′)zn
0

∣∣∣∣∣ ≤ ABN |z0|NΓ
(

N

κ
+ 1
)

z ∈ Ω(θ′),(1.1)

where un(z′) ∈ O(Ω′) (n ∈ N), holds for constants A = A(θ′) and B = B(θ′).
(ii) Asy{0}(Ω(θ)) is the set of all u(z) ∈ O(Ω(θ)) such that for any θ′ with
0 < θ′ < θ ∣∣∣∣∣u(z) −

N−1∑
n=0

un(z′)zn
0

∣∣∣∣∣ ≤ AN |z0|N z ∈ Ω(θ′),(1.2)

where un(z′) ∈ O(Ω′) (n ∈ N), holds for a constant AN = A(N, θ′) depending
on N and θ′.
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We say that u(z) ∈ Asy{κ}(Ω(θ)) has an asymptotic expansion with Gevrey
exponent (or index) κ, if κ > 0. Suppose that u(z) ∈ Asy{κ}(Ω(θ)) with κ > 0
and let V � Ω be a polydisk centered at the origin. Then it follows from the
definition that for any 0 < θ′ < θ there are constants M and F such that

|∂n
z0

u(z)| ≤ MFnΓ
(n

δ
+ 1
)

for z ∈ V (θ′), δ =
κ

κ + 1
.(1.3)

If u(z) ∈ Asy{+∞}(Ω(θ)), then u(z) is holomorphic at z = 0. If u(z) ∈
Asy{0}(Ω(θ)), then it has merely an asymptotic expansion.

Now let P (z, ∂z) be an m-th order linear partial differential operator with
holomorphic coefficients in a neighborhood of z = 0,

P (z, ∂z) =
∑

|α|≤m

aα(z)∂α
z .(1.4)

As we said, our interest is the existence of a solution u(z) with an asymptotic
expansion. Our problem is as follows:

Does the equation

P (z, ∂z)u(z) = f(z) ∈ Asy{γ}(Ω(θ))(1.5)

have a solution u(z) ∈ Asy{γ}(U(θ′)) for some polydisk U and 0 < θ′ < θ.

In order to answer the problem we introduce the characteristic polygon of
P (z, ∂z). Let jα be the valuation of aα(z) with respect to z0. Namely if aα(z) �≡
0, aα(z) = zjα

0 bα(z) with bα(0, z′) �≡ 0. If aα(z) ≡ 0, put jα = ∞. So

P (z, ∂z) =
∑

|α|≤m

zjα

0 bα(z)∂α
z .(1.6)

Put

eα = jα − α0,(1.7)

where eα = +∞ if aα(z) ≡ 0. We denote by �(a, b) the set {(x, y) ∈ R2; x ≤
a, y ≥ b}. The characteristic polygon Σ is defined by Σ := the convex hull of⋃

α�(|α|, eα).
The boundary of Σ consists of a vertical half line Σ(0), a horizontal half

line Σ(p∗) and p∗ − 1 segments Σ(i) (1 ≤ i ≤ p∗ − 1) with slope γi, 0 = γp∗ <

γp∗−1 < · · · < γ1 < γ0 = +∞. Let {(ki, e(i)) ∈ R2; 0 ≤ i ≤ p∗ − 1} be the
vertices of Σ, where 0 ≤ kp∗−1 < · · · < ki < ki−1 < · · · < k0 = m. So the
endpoints of Σ(i) (1 ≤ i ≤ p∗ − 1) are (ki−1, e(i− 1)) and (ki, e(i)). We call γi

the i-th characteristic index of P (z, ∂) with respect to K = {z0 = 0}. For each
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◦ (|α|, eα)
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◦ (k2, e(2))
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◦ (k1, e(1))

�
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◦ (m, e(0))

Σ(2)

Σ(1)

Σ(0)

Figure 1. Characteristic polygon

i (0 ≤ i ≤ p∗ − 1) define subsets ∆(i) of multi-indices and quantities li ∈ N as
follows: {

∆(i) := {α ∈ Nd+1; |α| = ki, eα = e(i)},
li := max{|α′| : α ∈ ∆(i)}.

(1.8)

Define a subset ∆0(i) of ∆(i) and a polynomial χP,i(z′, ξ′) in ξ′ by


∆0(i) = {α ∈ ∆(i); |α′| = li}
χP,i(z′, ξ′) =

∑
α∈∆0(i)

bα(0, z′)ξα′
.(1.9)

χP,i(z′, ξ′) is homogeneous in ξ′ with degree li.

We give conditions on P (z, ∂z) denoted by (Ci) (0 ≤ i ≤ p∗−1). For each
fixed i

(Ci) jα = 0 for all α ∈ ∆0(i) and χP,i(0, ξ′) �≡ 0.
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If P (z, ∂z) satisfies (Ci), then e(i) = −ki + li and bα(0, 0′) �= 0 for some
α = (ki − li, α

′) ∈ ∆0(i).

Now let us return to the existence of solutions of

P (z, ∂z)u(z) = f(z) ∈ Asy{γ}(Ω(θ)).(Eq)

Firstly we have

Theorem 1.2. Suppose that P (z, ∂z) satisfies (Ci) for some i ∈ {0,

1, . . . , p∗ − 1} and f(z) ∈ Asy{γ}(Ω(θ)) with γi+1 ≤ γ < γi. Let θ′ be a
constant such that 0 < θ′ < min{θ, π/2γi} if i �= 0, and 0 < θ′ < θ if i = 0.
Then there exists g(z) ∈ Asy{γ}(U(θ′)) for some polydisk U centered at the
origin such that

(Rf)(z) := (P (z, ∂z)g(z) − f(z)) ∼ 0(1.10)

in Asy{γi}(U(θ′)).

This theorem implies if i = 0, then (Rf)(z) ∼ 0 in Asy{+∞}(U(θ′)). This
means that (Rf)(z) is holomorphic at z = 0 and has zero expansion, hence
(Rf)(z) ≡ 0 and P (z, ∂z)g(z) = f(z).

By using Theorem 1.2 repeatedly, we have the following existence of a
solution u(z) whose asymptotic expansion is the same Gevrey type as that of
f(z).

Theorem 1.3. Suppose that P (z, ∂z) satisfies (Ci) for i = 0, 1, . . . , s,

and let f(z) ∈ Asy{γ}(Ω(θ)) with γ ≥ γs+1. Then for any 0 < θ′ < min{θ,
π/2γ1} there exists u(z) ∈ Asy{γ}(U(θ′)) satisfying P (z, ∂z)u(z) = f(z) for
some polydisk U centered at the origin.

As for the dependence of the polydisk U on θ′ and f(z), we refer to The-
orems 4.7 and 4.8.

We give examples. Let P (z, ∂z) be a noncharacteristic operator with re-
spect to z0 = 0. Then +∞ = γ0 > γ1 = 0. Consider P (z, ∂z)u(z) = f(z) ∈
Asy{γ}(Ω(θ)) with γ ≥ γ1(= 0). Let 0 < θ′ < θ. Then we have a solution
u(z) ∈ Asy{γ}(U(θ′)) for some polydisk U by Theorem 1.3.

The following examples are characteristic with respect to z0 = 0. A simple
example is

P (z, ∂) = ∂2
z1

− ∂z0 , z = (z0, z1) ∈ C
2.(1.11)
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We have γ0 = +∞, γ1 = 1, γ2 = 0, χP,0(z′, ξ1) = ξ2
1 and χP,1(z′, ξ1) = −1.

Consider P (z, ∂z)u(z) = f(z) ∈ Asy{γ}(Ω(θ)) with γ ≥ γ2(= 0). Let 0 < θ′ <

min{θ, π/2}. Then we have a solution u(z) ∈ Asy{γ}(U(θ′)) by Theorem 1.3.
We give further two examples. One is

P (z, ∂) = ∂5
z1

+ ∂3
z1

∂z0 + ∂2
z0

, z = (z0, z1) ∈ C
2.(1.12)

We have {
γ0 = +∞, γ1 = 1, γ2 = 1/2, γ3 = 0,

χP,0(z′, ξ1) = ξ5
1 , χP,1(z′, ξ1) = ξ3

1 , χP,2(z′, ξ1) = 1.

Obviously P (z, ∂z) satisfies (Ci) for i = 0, 1, 2. Consider P (z, ∂z)u(z) = f(z) ∈
Asy{γ}(Ω(θ)) with γ ≥ γ3(= 0). Let 0 < θ′ < min{θ, π/2}. Then we have a
solution u(z) ∈ Asy{γ}(U(θ′)) by Theorem 1.3. Another is

P (z, ∂) = ∂8
z1

+ ∂5
z1

∂2
z0

+ z0∂
2
z1

∂4
z0

+ ∂4
z0

, z = (z0, z1) ∈ C
2.(1.13)

We have{
γ0 = +∞, γ1 = 2, γ2 = 1, γ3 = 1/2, γ4 = 0

χP,0(z′, ξ1) = ξ8
1 , χP,1(z′, ξ1) = ξ5

1 , χP,2(z′, ξ1) = ξ2
1 , χP,3(z′, ξ1) = 1.

Consider P (z, ∂z)u(z) = f(z) ∈ Asy{γ}(Ω(θ)). P (z, ∂z) satisfies (Ci) for i =
0, 1, 3 but (C2) does not hold. Hence by Theorem 1.3 if γ ≥ γ2, there is a
solution u(z) ∈ Asy{γ}(U(θ′)) for some polydisk U, where 0 < θ′ < min{θ, π/4}.

§2. Auxiliary Functions

We show Theorem 1.2 by finding parametrices of P (z, ∂z). In order to
construct them we need some auxiliary functions. Let us introduce them and
give their elementary properties as lemmas and propositions in this section.

Let 0 < δ ≤ 1 and

ĝp(λ) =




λδ

Γ
(

p
δ + 1

) ∫ d

0

exp(−λδζ)ζ
p
δ dζ for p > 0,

λ−p for p ≤ 0.

(2.1)

Here d > 0 is a parameter, which will be chosen so small and fixed later. We
remark that the dimension of z′ is also denoted by d, z′ = (z1, z2, . . . , zd) ∈ Cd,

but there will be no confusion. ĝp(λ) depends on δ and d if p > 0, but ĝp(λ)
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does not if p ≤ 0. In the following we assume p ∈ Z and denote Γ(x + 1) by x!.
Define

Kp(δ; t) =
1

2πi

∫ ∞

1

exp(−λt)ĝp(λ)dλ.(2.2)

It is obvious that Kp(δ; t) is multi-valued holomorphic on {t �= 0} for 0 < δ < 1.

It holds that if p > 0,

Kp(δ; t) =
1

2πi

∫ ∞eiφ

eiφ

exp(−λt)ĝp(λ)dλ +
1

2πi

∫ eiφ

1

exp(−λt)ĝp(λ)dλ(2.3)

= K∗
p (δ; t) + K∗∗

p (δ; t),

where K∗∗
p (δ; t) is an entire function.

Lemma 2.1. (1) Let 0 < δ < 1 and φ0 be an arbitrary constant with
0 < φ0 < π

2δ . Suppose | arg t| < φ0 +
π

2
and 0 < |t| ≤ T. Then there exists a

constant A = A(φ0, T ) such that

|Kp(δ; t)| ≤
{

Ad
p−2

δ /
(

p
δ

)
! for p ≥ 2,

A(1 + | log t|) for p = 1.
(2.4)

(2) Let δ = 1 and p ≥ 1. Then

Kp(δ; t) =
(−1)ptp−1 log t

2πi(p − 1)!
+ a holomorphic function on {|t| < d}.(2.5)

(3) Let p ≤ 0. Then

Kp(δ; t) =
|p|!

2πit|p|+1
+ an entire function in t.(2.6)

Proof. (1) The constant A means various constants depending on φ0 and
T in the following inequalities. Let ε be a small positive constant with ε < π

2δ −
φ0. Set θ = arg t. Since |θ| < φ0+ π

2 , there exists φ with |φ| < φ0+ε < π/2δ such
that |φ+θ| < π/2−ε. Hence cos(φ+θ) > sin ε > 0 and cos δφ > cos δ(φ0+ε) > 0.
Take arg λ = φ. Let p ≥ 2. Then it holds that

|K∗
p (δ; t)| ≤ 1

2π(p
δ )!

∫ ∞

1

rδ exp(−r|t| cos(φ + θ))dr

∫ d

0

exp(−rδζ cos δφ)ζ
2
δ + p−2

δ dζ

≤ d
p−2

δ

2π
(

p
δ

)
!

∫ ∞

1

rδ exp(−r|t| cos(φ + θ))dr

∫ d

0

exp(−rδζ cos δφ)ζ
2
δ dζ.
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By |rδ
∫ d

0
exp(−rδζ cos δφ)ζ

2
δ dζ| ≤ Cr−2(cos δφ)−

2
δ −1, we have

|K∗
p (δ; t)| ≤ Ad

p−2
δ

(cos δφ)
2
δ +1

(
p
δ

)
!

∫ ∞

1

exp(−r|t| cos(φ + θ))
r2

dr ≤ Ad
p−2

δ(
p
δ

)
!

.

Let p = 1. Then we have

|K∗
1 (δ; t)| ≤ 1

2π
(

1
δ

)
!

∫ ∞

1

rδ exp(−r|t| cos(φ + θ))dr

∫ d

0

exp(−rδζ cos δφ)ζ
1
δ dζ

≤A

∫ ∞

1

exp(−r|t| sin ε)
r

dr = A

∫ ∞

|t| sin ε

exp(−r)
r

dr

≤A(1 + | log t|).

It remains to estimate K∗∗
p (δ; t). However it is easy and we have (2.4).

(2) Suppose δ = 1. Then ĝ1(λ) = (1 − (1 + λd)e−λd)/λ. Hence

K1(1; t) =
1

2πi

∫ ∞

1

exp(−λt)
λ

dλ − 1
2πi

∫ ∞

1

(1 + λd) exp(−λ(t + d))
λ

dλ

≡ 1
2πi

∫ ∞

1

exp(−λt)
λ

dλ,

d

dt
K1(1; t)≡ −1

2πi

∫ ∞

1

exp(−λt)dλ ≡ −1
2πit

,

where ≡ means modulo holomorphic functions on {|t| < d}. We also have

d

dt
Kp+1(1; t) =

−1
2πi

∫ ∞

1

λ exp(−λt)ĝp+1(λ)dλ

=
−1
2πi

∫ ∞

1

exp(−λt)ĝp(λ)dλ +
dp+1

2πi(p+1)!

∫ ∞

1

λ exp(−λ(t+d))dλ

≡−Kp(δ; t).

By integrating Kp(δ; t) successively, we have (2.5).
(3) Let p ≤ 0. Then we have

Kp(δ; t) =
1

2πi

∫ ∞

1

exp(−λt)λ|p|dλ =
|p|!

2πit|p|+1
− 1

2πi

∫ 1

0

exp(−λt)λ|p|dλ,

where the last term defined by the integral on [0, 1] is an entire function in t.

The following Lemma 2.2 and Proposition 2.3 are used to construct para-
metrices in the following sections. In particular, the relation (2.7) appears in
the calculations in Section 3.
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Lemma 2.2. Let h ∈ Z and s ∈ N. Then it holds that

1
2πi

∫ ∞

1

exp(−λt)λh(−λ∂λ)sĝp(λ)dλ = psKp−h(δ; t) + Rp,h,s(t),

Rp,h,s(t) =
1

2πi

∫ ∞

1

exp(−λt)r̂p,h,s(λ)dλ,

(2.7)

where r̂p,h,s(λ) = psr̂0
p,h(λ) + λhr̂1

p,s(λ) and



r̂0
p,h(λ) := λhĝp(λ) − ĝp−h(λ), r̂0

p,h(λ) = 0 for p ≤ 0 and h ≥ 0,

r̂1
p,s(λ) =

−δd
p
δ +1(

p
δ

)
!

(
s−1∑
k=0

ps−1−k

(
−λ

∂

∂λ

)k

(λδe−dλδ

)

)
for p > 0,

r̂1
p,s(λ) = 0 for p ≤ 0.

(2.8)

Proof. Let p > 0. Then we have by integrations by parts

−λ
∂

∂λ
ĝp(λ) =

−δλδ(
p
δ

)
!

∫ d

0

exp(−λδζ)ζ
p
δ dζ +

δλδ(
p
δ

)
!

∫ d

0

λδ exp(−λδζ)ζ
p
δ +1dζ

= pĝp(λ) − δd
p
δ +1λδe−dλδ(

p
δ

)
!

.

By repeating the above calculation, we have (−λ ∂
∂λ )sĝp(λ) = psĝp(λ)+ r̂1

p,s(λ),

where r̂1
p,s(λ) = δd

p
δ

+1

( p
δ )!

(∑s−1
k=0 ps−1−k(−λ ∂

∂λ )k(λδe−dλδ

)
)
. If p ≤ 0, then

(−λ ∂
∂λ)sĝp(λ) = psĝp(λ) and r̂1

p,s(λ) ≡ 0. Set r̂0
p,h(λ) := λhĝp(λ) − ĝp−h(λ).

Note that r̂0
p,h(λ) = 0 for p ≤ 0 and h ≥ 0. Hence λh(−λ ∂

∂λ )sĝp(λ) =
psλhgp(λ) + λhr̂1

p,s(λ) = psĝp−h(λ) + psr̂0
p,h(λ) + λhr̂1

p,s(λ) = psĝp−h(λ) +
r̂p,h,s(λ) and

1
2πi

∫ ∞

1

exp(−λt)λh

(
−λ

∂

∂λ

)s

ĝp(λ)dλ = psKp−h(t) + Rp,h,s(t).

We give estimates of r̂p,h,s(λ) to study Rp,h,s(t) defined by (2.7).

Proposition 2.3. Let φ0 be an arbitrary constant with 0 < φ0 < π
2δ

and s0 ∈ N. Suppose λ ∈ {|λ| ≥ 1; | arg λ| < φ0} and 0 ≤ s ≤ s0. Set
h− = min{h, 0} and h+ = max{h, 0}. Then the following estimates hold.
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(1) If p ≤ h−, then r̂p,h,s(λ) = 0.
(2) If h− < p < h+, then there are constants A = A(φ0) and B = B(φ0) such
that

|r̂p,h,s(λ)| ≤ AB|h|(1 + |p|)s0d
p−h+

δ

(
h+ − p

δ

)
!e−

d(cos δφ0)
2 |λ|δ .(2.9)

(3) If p ≥ h+, then there are constants A = A(φ0) and B = B(φ0) such that

|r̂p,h,s(λ)| ≤ AB|h|(1 + |p|)s0d
p−h+

δ e−
d(cos δφ0)

2 |λ|δ(
p−h+

δ

)
!

.(2.10)

Proposition 2.3 asserts that r̂p,h,s(λ) decays exponentially with order δ as
λ → ∞ in some sectorial region. This decay estimate is important. The proof
of Proposition 2.3 is given in Section 5. In this paper there appear integral
operators

(Rp,h,sf)(z0) =
∫
C0

Rp,h,s(w0 − z0)f(w0)dw0,(2.11)

where the path C0 is defined later in this section. (Rf)(z) in Theorem 1.2 is an
infinite linear combination of integral operators of the form (2.11). We study
the behavior and the estimates of (Rp,h,sf)(z0). Firstly we give

Lemma 2.4. Let r̂(λ) be a holomorphic function on {λ; | arg λ| < φ0,

|λ| ≥ 1} with φ0 > π/2. Suppose that there are positive constants A, c0 and
0 < δ ≤ 1 such that |r̂(λ)| ≤ A exp(−c0|λ|δ). Define

R(t) =
1

2πi

∫ ∞eiφ

1

exp(−λt)r̂(λ)dλ.(2.12)

(1) If 0 < δ < 1, then R(t) ∈ Asy{γ}({t �= 0; | arg t| < φ0 + π
2 }) with γ =

δ/(1 − δ) and there are positive constants C and c such that

|R(t) − R(te2πi)| ≤ C exp(−c|t|−γ) for | arg t + π| < φ0 −
π

2
.(2.13)

(2) If δ = 1, then R(t) ∈ O({t; |t| < c0}).

Proof. Assume 0 < δ < 1. If | arg t + φ| < π/2, the integral (2.12) is
absolutely convergent. Hence R(t) is holomorphic on {t �= 0; | arg t| < φ0 + π

2 }.
We have (

d

dt

)n

R(t) =
1

2πi

∫ ∞eiφ

1

(−λ)n exp(−λt)r̂(λ)dλ
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and ∣∣∣∣
(

d

dt

)n

R(t)
∣∣∣∣ ≤ A

∫ +∞

0

|λ|n exp(−c0|λ|δ)d|λ| ≤
A

c
(n+1)/δ
0

(
n + 1

δ

)
!.(2.14)

The above estimate of ( d
dt )

nR(t) means that R(t) ∈ Asy{γ}({t �= 0; | arg t| <

φ0 + π
2 }) with γ = δ/(1 − δ). Let us show (2.13). Firstly further assume

φ0 ≤ π. Suppose that π/2 < φ < φ0 and | arg t + π| < φ − π/2. Then −π/2 <

arg t + φ < −3π/2 + 2φ and 3π/2 − 2φ < arg t + 2π − φ < π/2. It follows
from the assumption π/2 < φ < φ0 ≤ π that −π/2 < arg t + φ < π/2 and
−π/2 < arg t + 2π − φ < π/2. Hence(

d

dt

)n

(R(t) − R(te2πi))

=
1

2πi

(∫ ∞eiφ

1

(−λ)n exp(−λt)r̂(λ)dλ −
∫ ∞e−iφ

1

(−λ)n exp(−λt)r̂(λ)dλ

)

=
1

2πi

∫ ∞eiφ

∞e−iφ

(−λ)n exp(−λt)r̂(λ)dλ

and by the decay estimate of r̂(λ) it holds that

lim
t→0

(
d

dt

)n (
R(t) − R(te2πi)

)
=

1
2πi

∫ ∞eiφ

∞e−iφ

(−λ)nr̂(λ)dλ = 0.

Consequently by (2.14) and Taylor’s formula

|R(t) − R(te2πi)| ≤ 2A|t|n

c
(n+1)/δ
0 n!

(
n + 1

δ

)
! ≤ A′Bn|t|n

(
n + 1

γ

)
!(2.15)

for any n ∈ N. Since φ is an arbitrary constant with π/2 < φ < φ0, it follows
from Lemma 6.1 in Section 6 that there exist positive constants C and c such
that (2.13) holds. If φ0 > π, by considering the rotation r̂ϕ(λ) = r̂(λeiϕ), we
have (2.13).

In the case of δ = 1 it follows easily from the decay estimate of r̂(λ) that
R(t) is holomorphic in {|t| < c0}.

Let us define a path C0 in w0-space, which appears in the sequel to define
integral operators on a sectorial region. C0 is a path which starts at w0 = 0,
encloses w0 = z0 once anticlockwise and ends at w0 = 0. C0 depends on z0.

Suppose that r̂(λ) satisfies the conditions in Lemma 2.4, and the constants
φ0, c0 and δ are those in Lemma 2.4. Let R(t) be a function defined by (2.12)
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w0-space

W0(θ)
O
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��

·
z0

�

�����������

���	
���


C0

Figure 2. Path C0

and W0 be an open disk in C centered at the origin such that W0 ⊂ {|w0| < c0}.
Let f(w0) ∈ O(W0(θ0)) with 0 < θ0 < φ0 − π

2 and be bounded. Suppose z0 ∈
W0(θ0). Then we may take C0 ⊂ W0(θ0) and | arg(w0 − z0)| < θ0 + π < φ0 + π

2

for w0 ∈ C0. We can define

(Rf)(z0) =
1

2πi

∫
C0

R(w0 − z0)f(w0)dw0(2.16)

and (Rf)(z0) ∈ O(W0(θ0)). In particular if δ = 1, R(t) is holomorphic in a
neighborhood of t = 0, hence (Rf)(z0) = 0. We have more precisely

Proposition 2.5. Suppose that r̂(λ) satisfies the conditions in Lemma
2.4. Let f(z0) ∈ O(W0(θ0)) (0 < θ0 < φ0 − π

2 ) be bounded and (Rf)(z0) be the
operator defined by (2.16).
(1) If δ = 1, then (Rf)(z0) = 0.
(2) If 0 < δ < 1, then (Rf)(z0) ∈ O(W0(θ0)) and there exist positive constants
A and c which are independent of f(w0) such that

|(Rf)(z0)| ≤ A exp(−c|z0|−γ) sup
w0∈W0(θ0)

|f(w0)|.(2.17)
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Proof. We only have to treat the case 0 < δ < 1. R(t) is bounded on
{t �= 0; | arg t| < φ0 + π

2 } by Lemma 2.4. We can deform the path C0 to the
segment jointing w0 = 0 with w0 = z0 and the infinitesimal small circle with
center w0 = z0 and have

(Rf)(z0) =
∫ z0

0

(
R(w0 − z0) − R((w0 − z0)e2πi)

)
f(w0)dw0.

By Lemma 2.4

|(Rf)(z0)| ≤C sup
w0∈W (θ0)

|f(w0)|
∫ z0

0

exp(−c|z0 − w0|−γ)|dw0|

≤A exp(−c|z0|−γ)

(
sup

w0∈W (θ0)

|f(w0)|
)

.

Let us apply Propositions 2.3 and 2.5 and Lemma 2.4 to Rp,h,s(t) and (Rp,h,sf)
(z0) (see (2.7) and (2.11)).

Proposition 2.6. Let W0 be a polydisk centered at the origin and
f(w0) ∈ O(W0(θ0)) be bounded. Let (Rp,h,sf)(z0) be the operator defined by
(2.11). If δ = 1, then (Rp,h,sf)(z0) = 0.

Let 0 < δ < 1, γ = δ/(1 − δ) and s0 ∈ N. Suppose further 0 < θ0 < π/2γ

and 0 ≤ s ≤ s0. Put h− = min{h, 0} and h+ = max{h, 0}. Then the following
estimates hold.
(1) If p ≤ h−, then (Rp,h,sf)(z0) ≡ 0.
(2) If h− < p < h+, then there are positive constants A = A(θ0), B = B(θ0)
and c = c(d, θ0) such that

|(Rp,h,sf)(z0)| ≤ AB|h|(1 + |p|)s0d
p−h+

δ

(
h+ − p

δ

)
!e−c|z0|−γ

sup
w0∈W0(θ0)

|f(w0)|.

(2.18)

(3) If p ≥ h+, then there are positive constants A = A(θ0), B = B(θ0) and
c = c(d, θ0) such that

|(Rp,h,sf)(z0)| ≤
AB|h|(1 + |p|)s0d

p−h+
δ e−c|z0|−γ(

p−h+
δ

)
!

sup
w0∈W0(θ0)

|f(w0)|.(2.19)
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Proof. Assume 0 < δ < 1. Then we can choose φ0 such that θ0 + π
2 <

φ0 < π
2δ by 0 < θ0 < π

2γ = π
2 ( 1

δ − 1). The assertions follow from the estimates
in Propositions 2.3 and 2.5 and Lemma 2.4.

Finally let us study an integral operator,

(Kpf)(z0) =
1

2πi

∫
C0

Kp(δ; w0 − z0)f(w0)dw0,(2.20)

which also appears in the sequel and depends on δ and d (see (2.1) and (2.2)).

Proposition 2.7. Let W0 be a polydisk centered at the origin and f(w0)
∈ O(W0(θ0)) be bounded. Let (Kpf)(z0) be the operator defined by (2.20).
(1) If δ = 1 and p ≥ 1, then for z0 ∈ W0(θ0) with |z0| < d

(Kpf)(z0) =
∫ z0

0

(z0 − w0)p−1

(p − 1)!
f(w0)dw0.(2.21)

(2) Let 0 < δ < 1 and γ = δ/(1−δ). Suppose 0 < θ0 < π/2γ. Then (Kpf)(z0) ∈
O(W0(θ0)) and there is a constant C such that for z0 ∈ W0(θ0)

|(Kpf)(z0)| ≤




Cd
p−2

δ sup
w0∈W0

|f(w0)|/
(

p
δ

)
! for p ≥ 2,

C sup
w0∈W0

|f(w0)| for p = 1.
(2.22)

(3) Suppose p ≤ 0. Then

(Kpf)(z0) =
(

∂

∂z0

)|p|
f(z0).(2.23)

Proof. (1) If δ = 1, then by Lemma 2.1-(2) for p ≥ 1∫
C0

Kp(w0−z0)f(w0)dw0 =
(−1)p

2πi(p − 1)!

∫
C0

(w0−z0)p−1 log(w0−z0)f(w0)dw0

=
∫ z0

0

(z0 − w0)p−1

(p − 1)!
f(w0)dw0.

(2) Let 0 < δ < 1 and z0 ∈ W0(θ0). By the assumption 0 < θ0 < π/2γ we can
choose φ0 with θ0 + π

2 < φ0 < π
2δ . Then it holds that | arg(w0 − z0)| < θ0 +π <

φ0 + π/2 and (2.22) follows from Lemma 2.1-(1).
(3) We have (2.23) by Lemma 2.1-(3).
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§3. Construction of Parametrix-1

Let us find g(z) in Theorem 1.2. Let w = (w0, w1, . . . , wd) = (w0, w
′) ∈

C
d+1. Define

Kp,q(δ; w0 − z0, w0) = wq
0

(
− ∂

∂w0

)q

Kp(δ; w0 − z0)(3.1)

=
wq

0

2πi

∫ ∞

1

exp(−λ(w0 − z0))λq ĝp(λ)dλ.

We note Kp,0(δ; w0 − z0, w0) = Kp(δ; w0 − z0).
We assume condition (Ci) for fixed i with 0 ≤ i ≤ p∗ − 1. Put δ = δi :=

γi/(γi+1) in the definition of Kp(δ; t). We denote simply Kp(δ; t) by Kp(t) and
Kp,q(δ; w0 − z0, w0) by Kp,q(w0 − z0, w0) respectively. Let W = W0 ×W ′ be a
small open polydisk centered at the origin in Cd+1 and f(w) ∈ Asy{γ}(W (θ))
with γi+1 ≤ γ < γi. We try to find g(z) in Theorem 1.2 in the following
form:

g(z) =
∑

p∈Z,q∈N

(Gp,qf)(z),

(Gp,qf)(z) =
∫
C

kp,q(z, w′)Kp,q(w0 − z0, w0)f(w0, w
′)dw(3.2)

=
∫
C′

kp,q(z, w′)dw′
∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0,

where the path C = C0 × C′ is defined as follows. C0 is the one in the sectorial
region W0(θ) defined in Section 2 (see Figure 2) and C′ is a chain in Cd defined
by the d-dimensional product of circles

∏d
h=1{|wi| = r1}. Then C = C0 × C′

is a (d + 1)-dimensional chain in Cd+1. Functions {kp,q(z, w′)}p∈Z,q∈N which
are holomorphic in (z, w′) in a neighborhood of {z = 0} × {w′ ∈ C′} and they
will be determined in order that g(z) has the properties stated in Theorem 1.2.
Put

(Gf)(z) =
∑

p∈Z,q∈N

(Gp,qf)(z)(3.3)

and we call G a parametrix. The main purpose in this section is to show how
to determine kp,q(z, w′). The convergence and the properties of the operator
G are studied in the following sections.

First we give some lemmas and use the notation ∂λ = ∂
∂λ .
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Lemma 3.1. The following identity holds:

zj
0∂

h
z0

∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0(3.4)

=
∫
C0

(∫ ∞

1

(∂j
λeλz0)e−λw0λq+hĝp(λ)dλ

)
wq

0f(w0, w
′)dw0.

We have easily (3.4) by differentiating (3.1).

Lemma 3.2. There exist constants Cj,a,s,s′ such that

(−∂λ)j(e−λw0λaĝ(λ)) = e−λw0λ−j+a


 ∑

s+s′≤j

Cj,a,s,s′(λw0)s′
(−λ∂λ)sĝ(λ)




(3.5)

and

|Cj,a,s,s′ | ≤ A(1 + |a|)j−s−s′
(3.6)

for a constant A = A(j) depending only on j.

Proof. If j = 0, (3.5) is obvious. We have inductively

(−∂λ)j+1(e−λw0λaĝ(λ))

= (−∂λ)


e−λw0λ−j+a


 ∑

s+s′≤j

Cj,a,s,s′(λw0)s′
(−λ∂λ)sĝ(λ)






= e−λw0λ−j−1+a


 ∑

s+s′≤j

(Cj,a,s,s′(λw0)s′+1(−λ∂λ)sĝ(λ) + (j − a − s′)

× Cj,a,s,s′(λw0)s′
(−λ∂λ)sĝ(λ) + Cj,a,s,s′(λw0)s′

(−λ∂λ)s+1ĝ(λ))


 .

Hence Cj+1,a,s,s′ = Cj,a,s,s′−1 + (j − a − s′)Cj,a,s,s′ + Cj,a,s−1,s′ holds and we
have (3.6) by induction.
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We remark that the constants Cj,a,s,s′ (s + s′ ≤ j) will often appear.

Lemma 3.3. The following identity holds:

zj
0∂

h
z0

∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0(3.7)

=
∑

s+s′≤j

Cj,q+h,s,s′

(∫
C0

psKp+j−h,q+s′(w0 − z0, w0)f(w0, w
′)dw0

+
∫
C0

Rp,−j+h,s(w0 − z0)∂q+s′

w0
(wq+s′

0 f(w0, w
′))dw0

)
.

Proof. We have from Lemma 3.1 and by integrations by parts

zj
0∂

h
z0

∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0

=
∫
C0

(∫ ∞

1

(∂j
λeλz0)e−λw0λq+hĝp(λ)dλ

)
wq

0f(w0, w
′)dw0

=
∫
C0

(
−
∫ ∞

1

(∂j−1
λ eλz0)∂λ(e−λw0λq+hĝp(λ))dλ

)
wq

0f(w0, w
′)dw0

+
∫
C0

(an entire function in w0) × f(w0, w
′)dw0

=
∫
C0

(∫ ∞

1

eλz0(−∂λ)j(e−λw0λq+hĝp(λ))dλ

)
wq

0f(w0, w
′)dw0

=
∫
C0

wq
0f(w0, w

′)dw0

(∫ ∞

1

e−λ(w0−z0)λq−j+h

×


 ∑

s+s′≤j

Cj,q+h,s,s′(λw0)s′
(−λ∂λ)sĝp(λ)


 dλ


 (by Lemma 3.2)

=
∑

s+s′≤j

Cj,q+h,s,s′

∫
C0

wq+s′

0 f(w0, w
′)dw0

∫ ∞

1

e−λ(w0−z0)λq−j+h+s′

× (−λ∂λ)sĝp(λ)dλ

=
∑

s+s′≤j

Cj,q+h,s,s′

∫
C0

wq+s′

0 f(w0, w
′)dw0

× (−∂w0)
q+s′

∫ ∞

1

e−λ(w0−z0)λ−j+h(−λ∂λ)sĝp(λ)dλ.
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We have from Lemma 2.2∫ ∞

1

e−λ(w0−z0)λ−j+h(−λ∂λ)sĝp(λ)dλ

= psKp+j−h(w0 − z0) + Rp,−j+h,s(w0 − z0),

hence

zj
0∂

h
z0

∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0

=
∑

s+s′≤j

Cj,q+h,s,s′

(∫
C0

(−∂w0)
q+s′

psKp+j−h(w0 − z0)w
q+s′

0 f(w0, w
′)dw0

+
∫
C0

(−∂w0)
q+s′

Rp,−j+h,s(w0 − z0)w
q+s′

0 f(w0, w
′)dw0

)

=
∑

s+s′≤j

Cj,q+h,s,s′

(∫
C0

psKp+j−h,q+s′(w0 − z0, w0)f(w0, w
′)dw0

+
∫
C0

Rp,−j+h,s(w0 − z0)∂q+s′

w0
(wq+s′

0 f(w0, w
′))dw0

)
.

Proposition 3.4. It holds that

zjα

0 bα(z)∂α
z

∫
C′

kp,q(z, w′)dw′
∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0(3.8)

=
∑

0≤l≤α0
s+s′≤jα

bα,l(z)Cjα,q+α0−l,s,s′

∫
C′

∂α′

z′ ∂l
z0

kp,q(z, w′)dw′

×
∫
C0

psKp+eα+l,q+s′(w0 − z0, w0)f(w0, w
′)dw0 + (R#

α,p,qf)(z),

where bα,l(z) =
(
α0
l

)
bα(z) and

(R#
α,p,qf)(z) =

∑
0≤l≤α0
s+s′≤jα

Cjα,q+α0−l,s,s′bα,l(z)
∫
C′

∂α′

z′ ∂l
z0

kp,q(z, w′)dw′(3.9)

×
∫
C0

Rp,−eα−l,s(w0 − z0)∂q+s′

w0
(wq+s′

0 f(w0, w
′))dw0.
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Proof. By Leibniz’ formula and Lemma 3.3 and putting bα,l(z) =
(
α0
l

)
bα(z),

zjα

0 bα(z)∂α
z

∫
C′

kp,q(z, w′)dw′
∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0

=
α0∑
l=0

bα,l(z)
∫
C′

∂α′

z′ ∂l
z0

kp,q(z, w′)dw′
(
zjα

0 ∂α0−l
z0

∫
C0

Kp,q(w0−z0, w0)f(w0, w
′)dw0

)

=
α0∑
l=0

bα,l

∫
C′

∂α′

z′ ∂l
z0

kp,q(z, w′)dw′

( ∑
s+s′≤jα

Cjα,q+α0−l,s,s′

×
(∫

C0

psKp+jα−α0+l,q+s′(w0 − z0, w0)f(w0, w
′)dw0

+
∫
C0

Rp,−jα+α0−l,s(w0 − z0)∂q+s′

w0
(wq+s′

0 f(w0, w
′))dw0

))
.

By eα = jα − α0, we have (3.9) and (3.10).

Now let us show how to construct a parametrix G (see (3.2) and (3.3)).
We assume condition (Ci) for some fixed i. Define for 0 ≤ h ≤ e(i) −
e(p∗−1)




P0(z, ∂z) =
∑

{α;eα≥e(i)}
zjα

0 bα(z)∂α
z ,

Ph(z, ∂z) =
∑

{α;eα−e(i)=−h}
zjα

0 bα(z)∂α
z for h ≥ 1.

(3.10)

Ph(z, ∂z) depends on i. Then we have a decomposition of P (z, ∂z), P (z, ∂z) =∑e(i)−e(p∗−1)
h=0 Ph(z, ∂z) depending on i. In particular P (z, ∂z) = P0(z, ∂z) if

i = p∗ − 1. We construct G by a successive approximation. Find Gn (n ∈ N)
so as to satisfy




(P0(z, ∂z)(G0f)(z) − f(z)) ∼ 0

P0(z, ∂z)(Gnf)(z) +
e(i)−e(p∗−1)∑

h=1

Ph(z, ∂z)(Gn−hf)(z) ∼ 0,
(3.11)
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where ∼ 0 means zero asymptotic expansion in Asy{γi}(U(θ′)) for some poly-
disk U and 0 < θ′ < θ. Then we may expect that G =

∑∞
n=0 Gn satisfies(

P (z, ∂)(Gf)(z) − f(z)
)
∼ 0 and is a desired parametrix. Set

(Gnf)(z) =
∫
C

Gn(z, w)f(w)dw,

Gn(z, w) =
∑

p≥pn
q≥0

kn
p,q(z, w′)Kp,q(w0−z0, w0).

It is the main aim to obtain equations that determine the coefficients
kn

p,q(z, w′) of Gn(z, w) and to solve them. We have formally from
Proposition 3.4

P0(z, ∂z)(Gnf) =
∑

{α; eα≥e(i)}

∑
p′≥pn

q′≥0

{( ∑
0≤l≤α0
s+s′≤jα

bα,l(z)Cjα,q′+α0−l,s,s′

×
∫
C′

∂α′

z′ ∂l
z0

kn
p′,q′(z, w′)dw′p′

s
∫
C0

Kp′+eα+l,q′+s′(w0 − z0, w0)f(w0, w
′)dw0

)

+ (R#
α,p′,q′f)(z)

}

=
∑

p≥pn+e(i)
q≥0

( ∑
{

(α,l,s,s′,p′,q′);
p′+eα+l=p, q′+s′=q
eα−e(i)≥0, 0≤l≤α0
s+s′≤jα

}Cjα,q′+α0−l,s,s′p′
s

×
∫
C′

bα,l(z)∂α′

z′ ∂l
z0

kn
p′,q′(z, w′)dw′

)

×
∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0 +

∑
{α; e(α)≥e(i)}

∑
p≥pn
q≥0

(R#
α,p,qf)(z),

where we sum up firstly (α, l, s, s′, p′, q′) satisfying p′ + eα + l = p and

q′ + s′ = q for given p, q.

(3.12)
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We also have in the same way

Ph(z, ∂z)(Gn−hf) =
∑

p≥pn−h+e(i)−h
q≥0

( ∑
{

(α,l,s,s′,p′,q′);
p′+eα+l=p, q′+s′=q
eα−e(i)=−h, 0≤l≤α0
s+s′≤jα

}Cjα,q′+α0−l,s,s′p′
s

×
∫
C′
bα,l(z)∂α′

z′ ∂l
z0

kn−h
p′,q′ (z, w′)dw′

)∫
C0

Kp,q(w0 − z0, w0)

× f(w0, w
′)dw0 +

∑
{α; eα−e(i)=−h}

∑
p≥pn
q≥0

(R#
α,p,qf)(z).

By putting

In
h (p, q) =

∑



(α,l,s,s′,p′,q′)
p′+l+eα=p, q′+s′=q,
eα−e(i)=−h, 0≤l≤α0,
s+s′≤jα




Cjα,q′+α0−l,s,s′p′
s
bα,l(z)∂α′

z′ ∂l
z0

kn−h
p′,q′ (z, w′),

(3.13)

which is a holomorphic function in z and w′, we have

Ph(z, ∂z)(Gn−hf)(3.14)

=
∑

p≥pn−h+e(i)−h
q≥0

∫
C′

In
h (p, q)dw′

∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0

+
∑

{α; eα−e(i)=−h}

∑
p≥pn
q≥0

(R#
α,p,qf)(z).

On the other hand, by K0,0(w0 − z0, w0) =
1

2πi(w0 − z0)
+ an entire function,

f(z) =
1

(2πi)d

∫
C′

dw′
∫

C0

K0,0(w0 − z0, w0)f(w0, w
′)

d∏
j=1

(wj − zj)

dw0.(3.15)

Thus by considering the first relation in (3.11) and (3.12) and by compar-
ing the coefficients of Kp,q(w0 − z0, w0), we have equations that determine
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k0
p,q(z, w′):

∑



(α,l,s,s′,p′,q′);
p′+eα+l=p, q′+s′=q
eα−e(i)≥0, 0≤l≤α0
s+s′≤jα




Cjα,q′+α0−l,s,s′p′
s
bα,l(z)∂α′

z′ ∂l
z0

k0
p′,q′(z, w′)

=
δp,0δq,0

(2πi)d

d∏
j=1

(wj − zj)

,

(3.16)

where we omit the terms (R#
α,p,qf)(z) in (3.12), because by Proposition 2.6 and

(3.10) they decay exponentially with order γi as z0 tends to 0 in some sectorial
region. Similarly we have from the second relation in (3.11) and (3.14)

∑



(α,l,s,s′,p′,q′);
p′+eα+l=p, q′+s′=q
eα−e(i)≥0, 0≤l≤α0
s+s′≤jα




Cjα,q′+α0−l,s,s′p′
s
bα,l(z)∂α′

z′ ∂l
z0

kn
p′,q′(z, w′)(3.17)

+
e(i)−e(p∗−1)∑

h=1

In
h (p, q)=0.

We decompose the first sum in (3.17) (the left hand side of (3.16)) into
two parts. One is the sum with respect to (α, l, s, s′, p′, q′) with eα = e(i) and
l = s′ = 0, hence p′ = p − e(i), q′ = q. Set

P(p, q; z, ∂z′) =
∑

{(α,s);eα=e(i),0≤s≤jα}
Cjα,q+α0,s,0(p − e(i))sbα,0(z)∂α′

z′ .(3.18)

The other is the rest denoted by In
0 (p, q), that is, the sum of the terms satisfying

l + eα − e(i) + s′ > 0

In
0 (p, q) =

∑



(α,l,s,s′,p′,q′)
p′+l+eα=p, q′+s′=q,
eα−e(i)≥0, 0≤l≤α0,
s+s′≤jα, l+eα−e(i)+s′>0




bα,l(z)Cjα,q′+α0−l,s,s′p′
s
∂α′

z′ ∂l
z0

kn
p′,q′(z, w′).

(3.19)
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Then it follows from the above decomposition that the equations (3.16) and
(3.17) are written as follows:

P(p, q; z, ∂z′)kn
p−e(i),q(z, w′) + In

0 (p, q) +
e(i)−e(p∗−1)∑

h=1

In
h (p, q)

=
δn,0δp,0δq,0

(2πi)d
∏d

j=1(wj − zj)
.

(3.20)

Here we note that In
0 (p, q) is determined by kn

p′.q′(z, w′) with p′+q′ < p+q−e(i)
and In

h (p, q) is determined by kn−h
p′.q′ (z, w′).

We show that (3.20) is solvable under the condition (Ci). We have ∆0(i) =
{α = (ki−li, α

′); |α′| = li, jα = 0} and e(i) = −ki+li ≤ 0. Since χP,i(0, ξ′) �≡ 0,
we may assume χP,i(0, ξ̂′) �= 0 for ξ̂′ = (1, 0, . . . , 0) ∈ Cd, that is, bα(i)(0) �= 0
for α(i) = (ki− li, li, 0, . . . , 0) ∈ N

d+1. Hence further we may assume bα(i)(z) =
1. P(p, q; z, ∂z′) is a partial differential operator with order li. It depends on
parameters p and q, however, its principal part

∑
α∈∆0(i)

bα(z)∂α′

z′ does not.
By the assumption bα(i)(0) �= 0, P(p, q; z, ∂z′) is noncharacteristic with respect
to {z1 = 0}. Hence we can consider the Cauchy problem for the equation
(3.20). Let n = 0. Then we have the following Cauchy problems for k0

p,q(z, w′)
(p ≥ p0 = −e(i), q ≥ 0):


P(0, 0; z, ∂z′)k0

−e(i),0(z, w′) =
1

(2πi)d
∏d

j=1(wj − zj)

∂l
z1

k0
−e(i),0(z0, 0, z′′, w′) = 0 for 0 ≤ l ≤ li − 1,

(3.21)

and for (p, q) �= (−e(i), 0){
P(p + e(i), q; z, ∂z′)k0

p,q(z, w′) + I0
0 (p + e(i), q) = 0

∂h
z1

k0
p,q(z0, 0, z′′, w′) = 0 for 0 ≤ h ≤ li − 1.

(3.22)

Suppose that the coefficients of P (z, ∂z) are holomorphic in {z; |zi| ≤
R, 0 ≤ i ≤ d}. Let 0 < r0 < r1 < r2 < R and |zi| ≤ r0 < r1 ≤ |wi| ≤ r2

for 1 ≤ i ≤ d. Then we can define k0
−e(i),0(z, w′) by (3.21). As for (p, q) �=

(−e(i), 0), I0
0 (p + e(i), q) is determined by {k0

p′,q′(z, w′); p′ + q′ < p + q}. So we
can solve the equation (3.22) successively. Therefore we obtain k0

p,q(z, w′) (p ≥
p0 = −e(i), q ≥ 0) in a neighborhood of z = 0.

Next let n ≥ 1 and consider the Cauchy Problem

P(p, q; z, ∂z′)kn

p−e(i),q(z, w′) + In
0 (p, q) +

e(i)−e(p∗−1)∑
h=1

In
h (p.q) = 0

∂h
z1

kn
p,q(z0, 0, z′′, w′) = 0 for 0 ≤ h ≤ li − 1.

(3.23)
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Since In
h (p, q)(h ≥ 1) is determined by kn−h

p′,q′ (z, w′), we have pn = −e(i)−n and
can solve (3.23) successively. Consequently {kn

p,q(z, w′); n ∈ N, p ≥ pn, q ≥ 0}
are determined in a neighborhood of z = 0.

We give formal relations concerning kn
p,q(z, w′). Set

kp,q(z, w′) =
+∞∑

n=max{0,−p−e(i)}
kn

p,q(z, w′).(3.24)

In particular kp,q(z, w′) = k0
p,q(z, w′) if i = p∗ − 1. Then we have formally

G(z, w) =
+∞∑
n=0

Gn(z, w) =
+∞∑
n=0

+∞∑
p=pn

+∞∑
q=0

kn
p,q(z, w′)Kp,q(w0 − z0, w0)(3.25)

=
+∞∑

p=−∞

+∞∑
q=0

kp,q(z, w′)Kp,q(w0 − z0, w0).

We give another formal relation of {kp,q(z, w′); p ∈ Z, q ∈ N}∑



(α,l,s,s′,p′,q′)
p′+l+eα=p, q′+s′=q,
0≤l≤α0, s+s′≤jα




bα,l(z)Cjα,q′+α0−l,s,s′p′
s
∂α′

z′ ∂l
z0

kp′,q′(z, w′)

=
δp,0δq,0

(2πi)d
∏d

j=1(wj − zj)
,

(3.26)

which is available to show that G is a parametrix. Let us show how to obtain
(3.26) formally. From (3.16) and (3.17) we have for n ∈ N

∑



(α,l,s,s′,p′,q′)
p′+l+eα=p, q′+s′=q,
eα−e(i)≥0, 0≤l≤α0,
s+s′≤jα




bα,l(z)Cjα,q′+α0−l,s,s′p′
s
∂α′

z′ ∂l
z0

kn
p′,q′(z, w′)

+
e(i)−e(p∗−1)∑

h=1

∑



(α,l,s,s′,p′,q′)
p′+l+eα=p, q′+s′=q,
eα−e(i)=−h, 0≤l≤α0,
s+s′≤jα




bα,l(z)Cjα,q′+α0−l,s,s′p′
s
∂α′

z′ ∂l
z0

kn−h
p′,q′ (z, w′)

=
δn,0δp,0δq,0

(2πi)d
∏d

j=1(wj − zj)
.

(3.27)
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By summing up (3.27) formally with respect to n, we have

∑



(α,l,s,s′,p′,q′)
p′+l+eα=p, q′+s′=q,
eα−e(i)≥0, 0≤l≤α0,
s+s′≤jα




bα,l(z)Cjα,q′+α0−l,s,s′p′
s
∂α′

z′ ∂l
z0

kp′,q′(z, w′)

+
e(i)−e(p∗−1)∑

h=1

∑



(α,l,s,s′,p′,q′)
p′+l+eα=p, q′+s′=q,
eα−e(i)=−h, 0≤l≤α0,
s+s′≤jα




bα,l(z)Cjα,q′+α0−l,s,s′p′
s
∂α′

z′ ∂l
z0

kp′,q′(z, w′)

=
δp,0δq,0

(2πi)d
∏d

j=1(wj − zj)
,

which implies (3.26). We show in the following section that kp,q(z, w′) converges
(Proposition 4.2). Therefore the relation (3.26) is analytically valid.

§4. Construction of Parametrix-2

In this section firstly we show the convergence of kp,q(z, w′) (see (3.24))
and define an integral operator (Gf)(z),

(Gf)(z) :=
+∞∑

p=−∞

∞∑
q=0

(Gp,qf)(z),

(Gp,qf)(z) :=
∫
C′

kp,q(z, w′)dw′
∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0.

(4.1)

Secondly we study the properties of g(z) := (Gf)(z) and (Rf)(z) := P (z, ∂z)
g(z) − f(z), and show Theorems 1.2 and 1.3. As in the previous section we
assume condition (Ci) for a fixed i, 0 ≤ i ≤ p∗ − 1 and suppose that the
coefficients of P (z, ∂z) are holomorphic in {z ∈ Cd+1; |zi| ≤ R, 0 ≤ i ≤ d} and
let ri (0 ≤ i ≤ 2) be positive constants with r0 < r1 < r2 < R. First of all let
us estimate kn

p,q(z, w′). Recall δi = γi/(γi + 1).

Theorem 4.1. Suppose that |zi| ≤ r0 < r1 ≤ |wi| ≤ r2 for 1 ≤ i ≤ d.
Then there exist constants A, B, C, ρ0 ≥ 1 and a small r > 0 such that for
|z0| + ρ|z1| +

∑d
i=2 |zi| ≤ r/2 and ρ ≥ ρ0 the following estimates hold.
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If 0 ≤ i ≤ p∗ − 2, then kn
p,q(z, w′) = 0 for p < −e(i) − n and

|∂α
z kn

p,q(z, w′)| ≤ An+1Bp+e(i)+n+q(ρC)|α| ρ
(p+e(i)+n)/δi

ρn+q

(
p+e(i)+n

δi

)
! |α|!(

n
δi+1

)
! q!

(4.2a)

for p ≥ −e(i) − n.
If i = p∗ − 1, then k0

p,q(z, w′) = 0 for p < −e(p∗ − 1) and

|∂α
z k0

p,q(z, w′)| ≤ ABp+e(p∗−1)+q(ρC)|α| ρ
(p+e(p∗−1))/δi

ρq

(
p+e(p∗−1)

δi

)
!|α|!

q!

(4.2b)

for p ≥ −e(p∗ − 1). Here constants A, B and C are independent of ρ.

The proof of Theorem 4.1 is given in Section 6. We note that if i = p∗−1,

then kn
p,q(z, w′) = 0 for n ≥ 1 and kp,q(z, w′) = k0

p,q(z, w′). Let us show the
convergence of kp,q(z, w′) =

∑+∞
n=max{0,−p−e(i)} kn

p,q(z, w′).

Proposition 4.2. Let |z0| + ρ|z1| +
∑d

i=2 |zi| ≤ r/2. Then there are
constants Aρ depending on ρ with ρ ≥ ρ0, B and C such that

|∂α
z kp,q(z, w′)| ≤




AρB
q(ρ1/δiB)p(ρC)|α|

(
p
δi

)
!|α|!

ρqq!
for p ≥ 0,

AρA
|p|Bq(ρC)|α||α|!

ρq+|p|q!
(

|p|
δi+1

)
!

for i �= p∗ − 1 and p ≤ 0,

(4.3)

where ρ0 is that in Theorem 4.1.

Proof. Assume i �= p∗ − 1. Let p + e(i) ≥ 0. Then by Theorem 4.1 we
have

|∂α
z kp,q(z, w′)| ≤

+∞∑
n=0

|∂α
z kn

p,q(z, w′)|

≤ ABq(ρ1/δiB)p+e(i)(ρC)|α||α|!
ρqq!

+∞∑
n=0

(ρ1/δiAB)n

ρn

(
p+e(i)+n

δi

)
!(

n
δi+1

)
!

≤
A′

ρB
q(ρ1/δiB)p+e(i)(ρC)|α||α|!Cp+e(i)

0

(
p+e(i)

δi

)
!

ρqq!
.
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Let p + e(i) < 0. Then by Theorem 4.1 we have

|∂α
z kp,q(z, w′)| ≤

+∞∑
n=−p−e(i)

|∂α
z kn

p,q(z, w′)|

≤ A−p−e(i)Bq(ρC)|α||α|!
ρq−p−e(i)q!

+∞∑
n=0

(AB)nρn/δi

(
n
δi

)
!

ρn
(

n−p−e(i)
δi+1

)
!

≤ A|p+e(i)|Bq(ρC)|α||α|!
ρq+|p+e(i)|q!

(
|p+e(i)|

δi+1

)
!

+∞∑
n=0

(AB)nρn/δi

(
n
δi

)
!

ρn
(

n
δi+1

)
!

≤
A′

ρA
|p+e(i)|Bq(ρC)|α||α|!

ρq+|p+e(i)|q!
(

|p+e(i)|
δi+1

)
!
.

The estimate (4.3) follows from the above two inequalities with other constants
Aρ, B and C. If i = p∗ − 1, the estimate easily follows from (4.2b).

Let W be a small open polydisk centered at the origin and f(z) ∈ O(W (θ))
be bounded. Define as in the previous sections (see (3.2))

(Gp,qf)(z) =
∫
C

kp,q(z, w′)Kp,q(w0 − z0, w0)f(w)dw

=
∫
C′

kp,q(z, w′)dw′
∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0.

(4.4)

Lemma 4.3. Suppose that f(w) ∈ O(W (θ)) is bounded. Then∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0(4.5)

=
∫
C0

Kp(w0 − z0)
(

∂

∂w0

)q

(wq
0f(w0, w

′))dw0

and in particular if i = 0 and p > 0,∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0(4.6)

=
∫ z0

0

(z0 − w0)p−1

(p − 1)!

(
∂

∂w0

)q

(wq
0f(w0, w

′))dw0.

Proof. Since f(z) is bounded on W (θ), we have (4.5) by integrations by
parts. If i = 0 and p > 0, then δ0 = 1 and we have (4.6) by Proposition 2.7.
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By Lemma 4.3 (Gp,qf)(z) is of the form

(Gp,qf)(z) =
∫
C′

kp,q(z, w′)dw′
∫
C0

Kp(w0 − z0)
(

∂

∂w0

)q

(wq
0f(w0, w

′))dw0

and (Gp,qf)(z) ∈ O(W (θ)).
Put (Gf)(z) :=

∑
p∈Z,q∈N

(Gp,qf)(z). Our concerns are to show the conver-
gence of (Gf)(z), to estimate its derivatives and to show that g(z) = (Gf)(z) has
the properties stated in Theorem 1.2, that is, G is a parametrix of P (z, ∂z). We
need estimates of ∂q

w0
(wq

0f(w0, w
′)) and ∂n+q

w0
(wq

0f(w0, w
′)) for our purposes.

Lemma 4.4. Suppose f(w) ∈ O(W (θ)). Let 0 < θ0 < θ and put M =
sup{|f(w0, w

′)|; w ∈ W (θ0)}. Let V be a polydisk with V � W and η > 0 be an
arbitrary small constant. Then

∣∣∣∣
(

∂

∂w0

)q

wq
0f(w0, w

′)
∣∣∣∣ ≤ MCq

0q!
(sin η)q

for z ∈ V (θ0 − η),(4.7)

where C0 is independent of f(w) and η.
Further assume f(w) ∈ Asy{γ}(W (θ)). If γ > 0 and |∂n

w0
f(w)| ≤ MFn

(n/δ)! (δ = γ/(γ + 1)) for z ∈ W (θ0), then

∣∣∣∣∣
(

∂

∂w0

)n+q

wq
0f(w0, w

′)

∣∣∣∣∣ ≤ MFn
∗ Cq

0q!
(sin η)q

(n

δ

)
! for z ∈ V (θ0 − η),(4.8)

and if γ = 0 and |∂n
w0

f(w)| ≤ Mn for z ∈ W (θ0), then

∣∣∣∣∣
(

∂

∂w0

)n+q

wq
0f(w0, w

′)

∣∣∣∣∣ ≤ MnCn
1 Cq

0q!
(sin η)q

for z ∈ V (θ0 − η),(4.9)

where C0 and C1 are independent of f(w) and η, and F∗ does not depend on η

but depends on the constant F appearing in the bounds of ∂n
w0

f(w).

Proof. Let z ∈ V (θ0 − η). Then by Cauchy’s integral formula

(
∂

∂w0

)q

wq
0f(w) =

q!
2πi

∮
Z

ζqf(ζ, w′)dζ

(ζ − w0)q+1
,
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where Z is a circle ζ −w0 = |w0| sin(η/2)eiϕ (0 ≤ ϕ ≤ 2π). We have |ζ| ≤ 2|w0|
on Z, hence

∣∣∣∣
(

∂

∂w0

)q

wq
0f(w)

∣∣∣∣ ≤ Mq!
2π(|w0| sin(η/2))q

∫ 2π

0

|ζ|qdϕ ≤ MCq
0q!

(sin η)q
.

Before proving (4.8), we note that |wq
0(

∂
∂w0

)qf(w)| ≤ MCq
0q!/(sin η)q holds by

the same method. Suppose f(w) ∈ Asy{γ}(W (θ)) with γ > 0 and |∂n
w0

f(w)| ≤
MFn(n

δ )! on W (θ0). Then by the above remark

|ws
0∂

s+n
w0

f(w)| ≤ MFn
(n

δ

)
!Cs

0s!/(sin η)s.

We have ∂n+q
w0

wqf(w) =
∑q

h=0

(
n+q

h

)
q!

(q−h)!w
q−h
0 ∂n+q−h

w0
f(w) by Leibniz’ for-

mula, therefore

|∂n+q
w0

wqf(w)| ≤ MFn
(n

δ

)
!q!

q∑
h=0

(
n + q

h

)
Cq−h

0 /(sin η)q−h

≤
MFnCq

0(1 + C−1
0 )n+q

(
n
δ

)
!q!

(sin η)q
. ≤

MFnCn+q
1

(
n
δ

)
!q!

(sin η)q
.

This means that (4.8) holds for F∗ = C1F and another C0. We can show (4.9)
for f(w) ∈ Asy{0}(W (θ)) by the same way.

Now let us proceed to show the convergence of (Gf)(z) and to obtain the
bounds of its derivatives ∂n

z0
(Gf)(z). Let f(z) ∈ O(W (θ)) be bounded. We

have in the same way as Proposition 3.4, by putting α = (n, 0, . . . , 0), jα = 0
and bα(z) ≡ 1,

∂n
z0

∫
C′

kp,q(z, w′)dw′
∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0

=
n∑

l=0

(Gn,l,p,qf)(z) + (R∗
n,p,qf)(z),

where

(Gn,l,p,qf)(z) :=
(

n

l

)∫
C′

∂l
z0

kp,q(z, w′)dw′

×
∫
C0

Kp−n+l(w0−z0)∂q
w0

(wq
0f(w0, w

′))dw0
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and

(R∗
n,p,qf)(z) :=

n∑
l=0

(
n

l

)∫
C′

∂l
z0

kp,q(z, w′)dw′

×
∫
C0

Rp,n−l,0(w0−z0)∂q
w0

(wq
0f(w0, w

′))dw0.

We note that (R∗
n,p,qf)(z) ≡ 0 for p ≤ 0. Define In,p by

In,p =
∑

q∈N

0≤l≤n

(
n

l

)∫
C′

∂l
z0

kp+n−l,q(z, w′)dw′

×
∫
C0

Kp(w0 − z0)∂q
w0

(wq
0f(w0, w

′))dw0.

Then we have

∂n
z0

(Gf)(z) =
∑

p∈Z,q∈N

0≤l≤n

(Gn,l,p,qf)(z) +
∑

p∈Z,q∈N

(R∗
n,p,qf)(z)

=
∑
p∈Z

In,p +
∑

p∈N,q∈N

(R∗
n,p,qf)(z),

provided the above sums converge.

Proposition 4.5. Suppose p∗ ≥ 2, i ∈ {1, 2, . . . , p∗ − 1} and f(w) ∈
Asy{γ}(W (θ)) with γi+1 ≤ γ < γi. Let 0 < θ′ < min{θ, π/2γi}. Then there is a
polydisk U such that (Gf)(z) converges on U(θ′) and (Gf)(z) ∈ Asy{γ}(U(θ′)).
Moreover if f(w) ∼ 0, then (Gf)(z) ∼ 0.

Proposition 4.5 is obtained by estimating In,p and (R∗
n,p,qf)(z). The de-

pendence of the polydisk follows from the following proof and we comment it
in Theorems 4.7 and 4.8.

Proof. Firstly we give the proof for 1 ≤ i < p∗ − 1 and secondly for
i = p∗ − 1.

(1) Suppose 1 ≤ i < p∗ − 1. Then 0 = γp∗ < γi+1 ≤ γ. So 0 < δ =
γ/(γ + 1) < 1. Let θ0 be a constant with θ′ < θ0 < min{θ, π/2γi} and 0 < η <

θ0−θ′. Then there are constants M and F such that |∂n
w0

f(w)| ≤ MFn(n
δ )! for

z ∈ W (θ0). Let V be a small polydisk centered at the origin with V � W such
that estimates (4.3) in Proposition 4.2 and the estimates in Lemma 4.4 hold for
z ∈ V (θ0−η). We study the convergence of

∑
p∈Z

In,p and
∑

p,q∈N
(R∗

n,p,qf)(z).
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Convergence of
∑

p∈Z
In,p. Let p ≥ 0. Then by choosing ρ ≥ 2BC0/ sin η, B

and C with B > C, it follows from (4.3) and (4.7) that

|In,p|≤
∞∑

q=0

n∑
l=0

AρM(BC0)q

(ρ sin η)q

n!(ρ1/δiB)p+n−l(ρC)l
(

p+n−l
δi

)
!

(n − l)!

×
∫
C0

|Kp(w0 − z0)||dw0| ≤ 2AρM(ρ1/δiB)p+n
n∑

l=0

(
C

Bρ1/δi−1

)l n!
(

p+n−l
δi

)
!

(n − l)!

×
∫
C0

|Kp(w0 − z0)||dw0| ≤ 2AρM(ρ1/δiB)p+n

(
p + n

δi

)
!

n∑
l=0

(
C

B

)l

×
∫
C0

|Kp(w0 − z0)||dw0| ≤ A′
ρM(ρ1/δiB)p+n

(
p + n

δi

)
!

×
∫
C0

|Kp(w0 − z0)||dw0|.

Let p ≤ 0. Then it holds that Kp(w0 − z0) =
1

2πi

|p|!
(w0 − z0)|p|+1

and

∫
C0

Kp(w0 − z0)∂q
w0

(wq
0f(w0, w

′))dw0 =
(

∂

∂z0

)|p|+q

(zq
0f(z0, w

′)).(4.10)

If −n < p ≤ 0, then by (4.3) and (4.8) and by choosing ρ ≥ 2BC0/ sin η, B

and C with B > C,

|In,p| ≤
∞∑

q=0


 ∑

0≤l<p+n

AρB
q(ρ1/δiB)p+n−l(ρC)l

(
p+n−l

δi

)
!
n!MCq

0F
|p|
∗
(

|p|
δ

)
!

(n − l)!(ρ sin η)q

+
∑

p+n≤l≤n

AρA
l−p−nBq(ρC)l

ρl−p−n
(

l−p−n
δi+1

)
!

n!MCq
0F

|p|
∗
(

|p|
δ

)
!

(n − l)!(ρ sin η)q




≤ 2AρMF
|p|
∗

(
|p|
δ

)
!(Bρ1/δi)p+n


 ∑

0≤l<p+n

(
C
B

)l
n!
(

p+n−l
δi

)
!

(n − l)!




+
2AρMA−p−nF

|p|
∗
(

|p|
δ

)
!

ρ−p−n


 ∑

p+n≤l≤n

(AC)ln!(
l−p−n
δi+1

)
!(n − l)!




≤A′
ρMF

|p|
∗ Bn

1

(
|p|
δ

)
!(Bρ1/δi)p+n

(
p + n

δi

)
!

+
A′

ρMF
|p|
∗ C

|p|+n
1

(
|p|
δ

)
!n!

ρ−p−n|p|! .
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If p ≤ −n, then we have in the same way as preceding

|In,p| ≤
∞∑

q=0

n∑
l=0

AρA
l−p−nBqCl

ρ−p−n
(

l−p−n
δi+1

)
!

n!MCq
0F

|p|
∗
(

|p|
δ

)
!

(n − l)!(ρ sin η)q

≤
2AρMA−p−nF p

∗
(

|p|
δ

)
!

ρ−p−n

n∑
l=0

n!(AC)l(
l−p−n
δi+1

)
!(n − l)!

≤
2AρMA−p−nF

|p|
∗
(

|p|
δ

)
!

ρ−p−n
(

−p−n
δi+1

)
!

n∑
l=0

n!(AC)l

l!(n − l)!
≤

A′
ρMF

|p|
∗ C

n+|p|
1

(
|p|
δ

)
!

ρ−p−n
(

−p−n
δi+1

)
!

.

Hence by the above bounds for In,p and Proposition 2.7-(2) we have

∑
p∈Z

|In,p| ≤ A′
ρM


 ∑

p≤−n

F
|p|
∗ C

n+|p|
1

(
|p|
δ

)
!

ρ−p−n
(

−p−n
δi+1

)
!

+
∑

−n<p<0


F

|p|
∗ Bn

1

(
|p|
δ

)
!(Bρ1/δi)p+n

(
p + n

δi

)
! +

F
|p|
∗ C

|p|+n
1

(
|p|
δ

)
!n!

ρ−p−n|p|!




+
∑
p≥0

(ρ1/δiB)p+n

(
p + n

δi

)
!
∫
C0

|Kp(w0 − z0)||dw0|




≤ A′
ρMFn

∗


∑

p≤0

(F∗C1)|p|
(

|p|+n
δ

)
!

ρ|p|
(

|p|
δi+1

)
!




+ A′
ρMFn

∗ Bn
1

(n

δ

)
!
∑

−n<p<0

(
(ρ1/δiB)p+n + C

2|p|
1 (C1ρ)p+n

)

+ A′
ρM(ρ1/δiB)n


Aθ0,ρ +

∞∑
p=2

Aθ0

(
ρ1/δiB)pd

p−2
δi

(
p+n
δi

)
!(

p
δi

)
!


 .

(4.11)

Suppose γ > γi+1. Then δ > δi+1 and
∑

p≤0 (F∗C1)|p|
(
|p|+n

δ

)
!
/
ρ|p|

(
|p|

δi+1

)
! con-

verges. For fixed ρ choose the constant d > 0 so small that
∑∞

p=2 Aθ0(ρ
1/δiB)p

d
p−2
δi (p+n

δi
)!/( p

δi
)! converges. Thus

∑
p∈Z

|In,p| converges in a small polydisk
U and there are constants A and B depending on ρ such that

∑
p∈Z

|Ip,n| ≤
ABn(n

δ )!. The polydisk U depends on ρ, namely, on θ′ but not on f(w). Sup-
pose γ = γi+1. Then δi+1 = δ. In this case first select ρ with F∗C1 ≤ ρ/2,
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then
∑

p≤0 (F∗C1)|p|(
|p|+n

δ )!
/
ρ|p|( |p|

δi+1
)! converges. Fix ρ and choose d > 0 so

small that
∑∞

p=2 Aθ0

(
ρ1/δiB)pd

p−2
δi (p+n

δi
)!/( p

δi
)! converges. Hence

∑
p∈Z

|In,p|
converges in a small polydisk U and

∑
p∈Z

|In,p| ≤ ABn(n
δ )!. The polydisk U

depends not only on θ′ but also on F∗, which is determined by the constant F

appearing in the bound in ∂n
w0

f(w).

Convergence of
∑

p,q∈N
(R∗

n,p,qf)(z). As remarked above, (R∗
n,p,qf)(z) ≡ 0

for p ≤ 0, so let p > 0. It follows from Proposition 2.6 and Lemma 4.4 that

∣∣∣∣
∫
C0

Rp,n−l,0(w0 − z0)∂q
w0

(wq
0f(w0, w

′))dw0

∣∣∣∣

≤




ABn−l
1 d

p−n+l
δi exp(−c|z0|−γi)

(
n − l − p

δi

)
!
MCq

0q!
(sin η)q

for 0 < p < n − l

ABn−l
1 d

p−n+l
δi exp(−c|z0|−γi)(

p−n+l
δi

)
!

MCq
0q!

(sin η)q
for p ≥ n − l.

Choosing ρ ≥ 2BC0/ sin η, we have by Proposition 4.2∑
p,q∈N

|(R∗
n,p,qf)(z)| ≤

∑
p,q∈N

0≤l≤n

∣∣∣∣
(

n

l

)
∂l

z0
kp,q(z, w′)

∣∣∣∣
×
∣∣∣∣
∫
C0

Rp,n−l,0(w0 − z0)∂q
w0

(wq
0f(w0, w

′))dw0

∣∣∣∣ ≤ AρMBn
1 exp(−c|z0|−γi)

d
n
δi

×
∑

q∈N

0≤k<n

d
k
δi

∑
p+l=k
0≤l≤k

(BC0)q(ρ1/δiB)p(ρC/B1)l
(

p
δi

)
!n!
(

n−l−p
δi

)
!

(ρ sin η)q(n − l)!

+
AρMBn

1 exp(−c|z0|−γi)

d
n
δi

∑
q∈N

k≥n

d
k
δi

∑
p+l=k
0≤l≤n

(BC0)q(ρ1/δiB)p(ρC/B1)l
(

p
δi

)
!n!

(ρ sin η)q(n − l)!
(

p−n+l
δi

)
!

≤ 2AρMBn
1 exp(−c|z0|−γi)

d
n
δi

∑
0≤k<n

d
k
δi

∑
p+l=k
0≤l≤k

(ρ1/δiB)p(ρC/B1)l
(

p
δi

)
!n!
(

n−l−p
δi

)
!

(n − l)!

+
2AρMBn

1 exp(−c|z0|−γi)

d
n
δi

∑
k≥n

d
k
δi(

k−n
δi

)
!

∑
p+l=k
0≤l≤n

(ρ1/δiB)p(ρC/B1)l
(

p
δi

)
!n!

(n − l)!

≤
A′

ρMBn
1 exp(−c|z0|−γi)

d
n
δi


(n

δi

)
!
∑

0≤k<n

((dρ)1/δiC1)k+
∑
k≥n

(ρ1/δiC1)kd
k
δi

(
k
δi

)
!(

k−n
δi

)
!


 .
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Thus
∑

p,q∈N
|(R∗

n,p,qf)(z)| converges for small d > 0 and there are constants
A and B depending on ρ and d such that

∑
p,q∈N

|(R∗
n,p,qf)(z)| ≤ MABn exp(−c|z0|−γi)

(
n

δi

)
!.(4.12)

Hence we have by δ ≤ δi

|∂n
z0

(Gf)(z)| ≤
∑
p∈Z

|In,p| +
∑

p,q∈N

|(R∗
n,p,qf)(z)| ≤ MABn

(n

δ

)
!.

The estimate of ∂n
z0

(Gf)(z) means (Gf)(z) ∈ Asy{γi}(U(θ′)) for some U.

(2) Suppose i = p∗ − 1. Then δi+1 =δp∗ =0. In this case (Gp,qf)(z) ≡ 0 for
p<−e(p∗−1), so (Gf)(z) =

∑
p,q∈N

(Gp,qf)(z) and ∂n
z0

(Gf)(z) =
∑∞

p=−n In,p +∑
p,q∈N

(R∗
n,p,qf)(z) and

In,p =
∑
q∈N

min{p+n,n}∑
l=0

(
n

l

)∫
C′

∂l
z0

kp+n−l,q(z, w′)dw′

×
∫
C0

Kp(w0 − z0)∂q
w0

(wq
0f(w0, w

′))dw0.

Let δ > 0. Then the convergence of
∑∞

p=−n In,p and its bound follow in the

same method as above. Next let δ = 0. Then by (4.9) in Lemma 4.4 for
−n ≤ p ≤ 0 we have

|In,p|≤
∞∑

q=0

( ∑
0≤l≤p+n

AρB
q(ρ1/δp∗−1B)p+n−l(ρC)l

(
p + n − l

δp∗−1

)
!

n!M|p|C
|p|
1 Cq

0

(n − l)!(ρ sin η)q

)

≤ 2AρM|p|C
|p|
1 n!(Bρ1/δp∗−1)p+n

( ∑
0≤l<p+n

(
C
B

)l( p+n−l
δp∗−1

)
!

(n − l)!

)
≤ Cρ(p, n).

For p > 0, we have in the same way as the case i > p∗ − 1

∑
p>0

|In,p| ≤A′
ρM0

(∑
p≥0

(ρ1/δp∗−1B)p+n

(
p + n

δp∗−1

)
!
∫
C0

Kp(w0 − z0)||dw0|
)

≤ A′
ρM0(ρ1/δp∗−1B)n


Aθ0,ρ +

∞∑
p=2

Aθ0

(
ρ1/δp∗−1B)pd

p−2
δp∗−1

(
p+n
δi

)
!(

p
δp∗−1

)
!


 .
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Therefore
∑∞

p=−n |In,p| ≤
∑

−n≤p≤0 Cρ(p, n) +
∑

p>0 |In,p|. By choosing small
d > 0, we have

∑
p>0 |In,p| < +∞ for z ∈ U(θ′). Here U is a small poly-

disk and does not depend on f(w). The convergence and the estimate of∑
p,q∈N

(R∗
p,q,nf)(z) follow in the same way as the case i < p∗ − 1. Hence

(Gf)(z) ∈ Asy{0}(U)(θ′).
(3) Further suppose f(w) ∼ 0. Then it holds that limz0→0(Gn,l,p,qf)(z) =

0 and limz0→0 In,l = 0. We have (Gf)(z) ∼ 0 from the above proof.

Proposition 4.6. Let i = 0 and suppose that f(w) ∈ Asy{γ}(W (θ))
with γ1 ≤ γ < γ0. Let 0 < θ′ < θ. Then there is a polydisk U such that (Gf)(z)
converges on U(θ′) and (Gf)(z) ∈ Asy{γ}(U(θ′)). Moreover if f(w) ∼ 0, then
(Gf)(z) ∼ 0.

Proof. We note that δ0 = 1 and
∫
C0

Rp,n−l,0(w0−z0)∂q
w0

(wq
0f(w0, w

′))dw0

≡ 0. So (R∗
n,p,qf)(z) ≡ 0. The proof is almost the same as that of Proposition

4.5. The only one difference is that we use Proposition 2.7-(1) to show the
convergence of

∑
p∈Z

In,p (see (4.11)).

It follows from the preceding arguments that the following more precise
results concerning the convergence of (Gf)(z) hold.

Theorem 4.7. Suppose that p∗ ≥ 2, i ∈ {1, 2, . . . , p∗ − 1}, Condi-
tion (Ci) holds and f(z) ∈ Asy{γ}(W (θ)) with γi+1 ≤ γ < γi. Let 0 <

θ′ < min{ π
2γi

, θ}. Then there is a polydisk U ⊂ W such that (Gf)(z) =∑
p,q∈Z

(Gp,qf)(z) absolutely converges on U(θ′) and (Gf)(z) ∈ Asy{γ}(U(θ′)).
The dependence of U is the following.
(1) If i �= p∗ − 1 and γ > γi+1, then U depends on θ′ but not on f(z).
(2) If i �= p∗ − 1 and γ = γi+1, then U depends both θ′ and f(z).
(3) If i = p∗ − 1, then U depend on θ′ but not on f(z).

Theorem 4.8. Suppose that Condition (C0) holds and f(z) ∈ Asy{γ}
(W (θ)) with γ ≥ γ1. Let 0 < θ′ < θ. Then there is a polydisk U such
that (Gf)(z) =

∑
p,q∈Z

(Gp,qf)(z) absolutely converges on U(θ′) and (Gf)(z) ∈
Asy{γ}(U(θ′)). The dependence of U is the following.
(1) If p∗ = 1 or γ > γ1, then U depends on θ′ but not on f(z).
(2) If p∗ ≥ 2 and γ = γ1, then U depends both θ′ and f(z).
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Under the assumption that for fixes i Condition (Ci) holds, we have defined
(Gf)(z) for f(z) ∈ Asy{γ}(W (θ)) and shown (Gf)(z) ∈ Asy{γ}(U(θ′)). Let us
write again the form of (Gf)(z),

(Gf)(z) =
∫
C

G(w0 − z0, z, w)f(w)dw(4.13)

=
+∞∑

p=−∞

+∞∑
q=0

∫
C

kp,q(z, w′)Kp,q(w0 − z0, w0)f(w)dw.

We show that g(z) := (Gf)(z) and (Rf)(z) := P (z, ∂z)(Gf)(z)− f(z) have de-
sired properties in Theorem 1.2. For this purpose we calculate P (z, ∂z)(Gf)(z).

Lemma 4.9. (Rf)(z) is written as follows:

(Rf)(z) =
∑
α,p,q

(R#
α,p,qf)(z),

(R#
α,p,qf)(z) =

∑
0≤l≤α0
s+s′≤jα

Cjα,q′+α0−l,s,s′bα,l(z)
∫
C′

∂α′

z′ ∂l
z0

kp,q(z, w′)dw′

×
∫
C0

Rp,−eα−l,s(w0 − z0)∂q+s′

w0
(wq+s′

0 f(w0, w
′))dw0,

(4.14)

where bα,l(z) =
(
α0
l

)
bα(z).

Proof. By Proposition 3.4 we have

zjα

0 bα(z)∂α
z

∫
C′

kp,q(z, w′)dw′
∫
C0

Kp,q(w0 − z0, w0)f(w0, w
′)dw0(4.15)

=
α0∑
l=0

bα,l(z)
∫
C′

∂α′

z′ ∂l
z0

kp,q(z, w′)dw′


 ∑

s+s′≤jα

Cjα,q+α0−l,s,s′

×
∫
C0

psKp+eα+l,q+s′(w0 − z0, w0)f(w0, w
′)dw0


 + (R#

α,p,qf)(z).
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(R#
α,p,qf)(z) is given by (3.10) in Proposition 3.4. We have by (3.26) and (3.15)

P (z, ∂z)(Gf)(z) =
∑
p,q,α

α0∑
l=0

bα,l(z)

( ∑
s+s′≤jα

Cjα,q+α0−l,s,s′

×
∫
C

∂α′

z′ ∂l
z0

kp,q(z, w′)psKp+eα+l,q+s′(z0 − w0, w0)f(w)dw

)
+ (Rf)(z)

=

( ∑
p∈Z,q∈N

∫
C

( ∑
{

(α,l,s,s′,p′,q′)
p′+l+eα=p, q′+s′=q,
0≤l≤α0, s+s′≤jα

}Cjα,q′+α0−l,s,s′p′
s
bα,l(z)

× ∂α′

z′ ∂l
z0

kp′,q′(z, w′)

)
Kp,q(z0 − w0, w0)f(w)dw

)
+ (Rf)(z)

=
1

(2πi)d

∫
C

K0,0(z0 − w0, w0)∏d
i=1(wi − zi)

f(w)dw + Rf(z) =f(z) +(Rf)(z),

where (Rf)(z) =
∑

α,p,q(R
#
α,p,qf)(z).

The next purpose is to estimate (Rf)(z).

Proposition 4.10. Suppose that condition (Ci) holds for fixed i �= 0.
Let f(z) ∈ O(W (θ)) with 0 < θ < π/2γi and 0 < θ′ < θ0 < θ. Put M =
supz∈W (θ0) |f(z)|. Then there are positive constants A and c and a polydisk U

depending on θ′ such that (Rf)(z) converges on U(θ′) and

|(Rf)(z)| ≤ AM exp(−c|z0|−γi).(4.16)

Proof. Define h, s0 ∈ N as follows:

h = max
α

max
0≤l≤α0

|eα + l|, s0 = max
α

jα,(4.17)

where α ∈ Nd+1 with aα(z) �≡ 0. Let V � W be a polydisk centered at the origin
and 0 <η< θ0 − θ′. Then by Lemma 4.4 |∂q

w0
(wq

0f(w0, w
′)| ≤ MCq

0q!/(sin η)q

for z ∈ V (θ0 − η). By Proposition 2.6∫
C0

Rp,−eα−l,s(w0 − z0)∂q+s′

w0
(wq+s′

0 f(w0, w
′))dw0 ∈ O(V (θ′))
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and if p ≤ −h, it is identically zero. Hence (R#
α,p,qf)(z) = 0 for p ≤ −h.

Suppose p ≥ h. Then

∣∣∣∣
∫
C0

Rp,−eα−l,s(w0 − z0)∂q+s′

w0
(wq+s′

0 f(w0, w
′))dw0

∣∣∣∣
≤ ABh(1 + |p|)s0d

p−h
δi e−c|z0|−γi MCq+s′

0 (q + s′)!(
p−h
δi

)
!(sin η)q+s′

.

By Proposition 4.2 we have

|(R#
α,p,qf)(z)| ≤

∑
0≤l≤α0
s+s′≤jα

|Cjα,q+α0−l,s,s′bα(z)|
∫
C′
|∂α′

z′ ∂l
z0

kp,q(z, w′)||dw′|

×
∣∣∣∣
∫
C0

Rp,−eα−l,s(w0 − z0)∂q+s′

w0
(wq+s′

0 f(w0, w
′))dw0

∣∣∣∣
≤ A′BhM(1 + |p|)s0d

p−h
δi e−c|z0|−γi(

p−h
δi

)
!

∫
C′
|∂α′

z′ ∂l
z0

kp,q(z, w′)||dw′|

×


 ∑

s+s′≤jα

Cq+s′

0 (q + s′)!
(sin η)q+s′ |Cjα,q+α0−l,s,s′ |




≤
A′

ρM(1 + |p|)s0d
p−h

δi e−c|z0|−γ(
p−h
δi

)
!

Bq(ρ1/δiB)p
(

p
δi

)
!

ρqq!

×


 ∑

s+s′≤jα

Cq+s′

0 (q + s′)!(1 + q)jα−s−s′

(sin η)q+s′




≤ A′′
ρMe−c|z0|−γi (1 + |p|)s0+

h
δi d

p−h
δi (ρ1/δiB)p BqCq+jα

0 (q + jα)!
ρqq!(sin η)q+jα

.

Put (R#
α,pf)(z) =

∑
q∈N

(R#
α,p,qf)(z). Select ρ so that ρ ≥ 2BC0/sin η. Then

(R#
α,pf)(z) converges and

|(R#
α,pf)(z)| ≤ AρMe−c|z0|−γi (1 + |p|)s0+

h
δi d

p−h
δi (ρ1/δiB)p,(4.18)

where ρ depends on η but not on p. If |p| < h, by Proposition 2.6 we have in
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the same way as above∣∣∣∣
∫
C0

Rp,−eα−l,s(w0 − z0)∂q+s′

w0
(wq+s′

0 f(w0, w
′))dw0

∣∣∣
≤ AρB

h(1 + |p|)s0d
p−h

δi exp(−c|z0|−γi)MCq+s′

0 (q + s′)!
ρqq!(sin η)q+s′

≤
A′

ρd
p−h

δi exp(−c|z0|−γi)MCq+s′

0 (q + s′)!
ρqq!(sin η)q+s′ .

Hence if ρ ≥ 2C0/sin η, then (R#
α,pf)(z) converges and

|(R#
α,pf)(z)| ≤ AρM exp(−c|z0|−γi)d

p−h
δi (ρ1/δiB)p(4.19)

holds. Choose d > 0 so small for fixed ρ such that dρ1/δiB ≤ 1/2, then
(Rf)(z) =

∑
α,p>−h(R#

α,pf)(z) converges and (4.16) holds.

We remark that the parameter d contained in the operator (Gf)(z) and
(Rf)(z) is chosen so small and fixed. Originally d is the parameter appearing in
the definition of ĝp(λ). Therefore the functions derived from ĝp(λ), for example,
Kp,q(w0 − z0, w0), depend on d.

Thus if i �= 0, we have from Theorem 4.7 and Proposition 4.10.

Theorem 4.11. Suppose that conditions in Theorem 4.7 hold. Then
there is a polydisk U such that (Gf)(z) ∈ Asy{γ}(U(θ′)) and (Rf)(z) ∼ 0 in
Asy{γi}(U(θ′)).

We have for i = 0.

Theorem 4.12. Suppose that conditions in Theorem 4.8 hold. Then
there is a polydisk U such that (Gf)(z) ∈ Asy{γ}(U(θ′)) and P (z, ∂z)(Gf)(z) =
f(z).

Proof. For i = 0, we have δ0 = 1. It follows from Proposition 2.6 that∫
C0

Rp,−eα−l,s(w0 − z0)∂q+s′

w0
(wq+s′

0 f(w0, w
′))dw0 = 0, hence (Rf)(z) = 0.

Thus from Theorems in this section we conclude that g(z) = (Gf)(z)
has desired properties in Theorem 1.2. Theorem 1.3 follows from Theorem 1.2.

Proof of Theorem 1.3. We assume conditions (Ci) for i = 0, 1, . . . , s. Let
f(z) ∈ Asy{γ}(Ω)(θ) with γ ≥ γs+1. Let θ′ = θ0 < θ1 < · · · < θs be constants
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with θi < min{θ, π/2γi} for i ≥ 1. It follows from condition (Cs) and Theorem
1.2 that there is a gs(z) ∈ Asy{γ}(Us(θs)) for some polydisk Us such that

P (z, ∂z)gs(z) = f(z) + rs(z),

where rs(z) ∼ 0 in Asy{γs}(Us(θs)). By condition (Cs−1) there is a gs−1(z) ∈
Asy{γs}(Us−1(θs−1)) for some polydisk Us−1 such that

P (z, ∂z)gs−1(z) = −rs(z) + rs−1(z),

where rs−1(z) ∼ 0 in Asy{γs−1}(Us−1(θs−1)). By repeating the argument, from
condition (Ci) there is a gi(z) ∈ Asy{γi+1}(Ui(θi)) for some polydisk Ui such
that

P (z, ∂z)gi(z) = −ri+1(z) + ri(z),

where ri(z) ∼ 0 in Asy{γi}(Ui(θi)). Finally it follows from condition (C0) that
there is an exact solution g0(z) ∈ Asy{γ1}(U0(θ0)) of

P (z, ∂z)g0(z) = −r1(z)

for some polydisk U0. Consequently u(z) =
∑s

i=0 gi(z) ∈ Asy{γ}(U(θ′)), U :=
U0, satisfies P (z, ∂z)u(z) = f(z).

§5. Proof of Proposition 2.3

In this section we give the proof of Proposition 2.3 and d is a positive
constant. For this purpose we give lemmas.

Lemma 5.1. Let a, d and s be positive constants. Then for 0 < η < 1∫ ∞

d

e−axxsdx ≤ e−ηads!
((1 − η)a)s+1

.(5.1)

Proof. We have∫ ∞

d

e−axxsdx ≤ e−ηad

∫ ∞

d

e−(1−η)axxsdx ≤ e−ηads!
((1 − η)a)s+1

.(5.2)

Lemma 5.2. Let c, δ and h be positive constants. Then

sup
t≥0

e−ctδ

th ≤ Ac−
h
δ

(
h

δ

)
!.(5.3)

where A is independent of c, δ and h.
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Proof. We have by Stirling’s formula

sup
t≥0

e−ctδ

th = c−
h
δ sup

x≥0
e−xx

h
δ = c−

h
δ

(
h

δ

) h
δ

e−
h
δ ≤ Ac−

h
δ

(
h

δ

)
!.

Proposition 2.3 gives the estimate of r̂p,h,s(λ) = psr̂0
p,h(λ) + λhr̂1

p,s(λ),
where r̂0

p,h(λ) := λhĝp(λ) − ĝp−h(λ) (see (2.8)). As for the estimate of r̂0
p,s(λ)

we have

Lemma 5.3. (1) Let h ≥ 0.
(1-i) If p ≤ 0, then r̂0

p,h(λ) = 0.
(1-ii) Suppose | arg λ| < φ < π

2δ . If 0 < p ≤ h, then there are constants A = A(φ)
and B = B(φ) such that

|r̂0
p,h(λ)| ≤ ABhd

p−h
δ e−

d(cos δφ)
2 |λ|δ

(
h − p

δ

)
!.(5.4)

If p > h, then there are constants A = A(φ) and B = B(φ) such that

|r̂0
p,h(λ)| ≤ ABhd

p−h
δ e−

d(cos δφ)
2 |λ|δ(

p−h
δ

)
!

.(5.5)

(2) Let h ≤ 0. Then r̂0
p,h(λ) = −λhr̂0

p−h,−h(λ).
(2-i) If p ≤ h, then r̂0

p,h(λ) = 0.

(2-ii) Suppose | arg λ| < φ < π
2δ . If h < p ≤ 0, then there are constants A = A(φ)

and B = B(φ) such that

|r̂0
p,h(λ)| ≤ AB|h|d

p
δ |λ|−|h|e−

d(cos δφ)
2 |λ|δ

(
|p|
δ

)
!.(5.6)

If p > 0, then there are constants A = A(φ) and B = B(φ) such that

|r̂0
p,h(λ)| ≤ AB|h|d

p
δ e−

d(cos δφ)
2 |λ|δ

|λ||h|
(

p
δ

)
!

.(5.7)

Proof. (1). Let h ≥ 0. If p ≤ 0, λhĝp(λ) = λh−p = ĝp−h(λ). Hence
r̂0
p,h(λ) = 0. Suppose 0 < p ≤ h. Then we have

λhĝp(λ) =
λh+δ(

p
δ

)
!

∫ d

0

e−λδζζ
p
δ dζ = λh−p + r̂0

p,h(λ) = ĝp−h(λ) + r̂0
p,h(λ)
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with

r̂0
p,h(λ) = −λh+δ(

p
δ

)
!

∫ ∞

d

e−λδζζ
p
δ dζ.

By Lemmas 5.1 and 5.2 there are constants A = A(φ) and B = B(φ) such that
for | arg λ| < φ < π

2δ

|r̂0
p,h(λ)| ≤ |λ|h−pe−

3
4 d cos(δφ)|λ|δ

(
4

cos δφ

) p
δ +1

=
(

4
cos δφ

) p
δ +1

e−
1
2 d cos(δφ) × e−

1
4 d cos(δφ)|λ|δ |λ|h−p

≤ A′
(

4
cos δφ

) p
δ +1

e−
1
2 d cos(δφ)

(
4

d cos δφ

)h−p
δ
(

h − p

δ

)
!

≤ ABhd
p−h

δ e−
1
2 d cos(δφ)

(
h − p

δ

)
!.

This implies (5.4). Next suppose p > h. Then we have

λ−hĝp−h(λ) =
λ2δ(

h
δ

)
!
(

p−h
δ

)
!

∫ ∞

0

e−λδζζ
h
δ dζ

∫ d

0

e−λδηη
p−h

δ dη

=
λ2δ(

h
δ

)
!
(

p−h
δ

)
!

∫ d

0

e−λδxdx

∫ x

0

(x − y)
h
δ y

p−h
δ dy

+
λ2δ(

h
δ

)
!
(

p−h
δ

)
!

∫ ∞

d

e−λδxdx

∫ d

0

(x − y)
h
δ y

p−h
δ dy = I + II.

By using the relation of Gamma function and Beta function, we have

I =
λ2δ(

p
δ + 1

)
!

∫ d

0

e−λδxx
p
δ +1dx =

λδ(
p
δ

)
!

∫ d

0

e−λδxx
p
δ dx − λδe−λδdd

p
δ +1(

p
δ + 1

)
!

= ĝp(λ) − λδe−λδdd
p
δ +1(

p
δ + 1

)
!

.

Hence

r̂0
p,h(λ) = −λhII +

λδ+he−λδdd
p
δ +1(

p
δ + 1

)
!

.
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As for λhII we have

|λhII| ≤ |λ|2δ+hd
p−h

δ +1(
h
δ

)
!
(

p−h
δ

)
!
(

p−h
δ + 1

) ∣∣∣∣
∫ ∞

d

e−λδxx
h
δ dx

∣∣∣∣
≤ |λ|δd p−h

δ +1e−
3d cos(δφ)

4 |λ|δ(
p−h

δ + 1
)
!
(

cos δφ
4

)h
δ +1

≤ A1B
h
1

d
p−h

δ e−
d cos(δφ)

2 |λ|δ(
p−h

δ + 1
)
!

.

Therefore

|r̂0
p,h(λ)| ≤A1B

h
1

d
p−h

δ e−
d cos(δφ)

2 |λ|δ(
p−h

δ + 1
)
!

+
d

p
δ e−

d cos(δφ)
2 |λ|δ(

p
δ + 1

)
!

× e−
d cos(δφ)

2 |λ|δd|λ|δ+h

≤A1B
h
1

d
p−h

δ e−
d cos(δφ)

2 |λ|δ(
p−h

δ + 1
)
!

+ A2B
h
2

d
p−h

δ e−
d cos(δφ)

2 |λ|δ (h
δ

)
!(

p
δ + 1

)
!

≤ABh d
p−h

δ e−
d cos(δφ)

2 |λ|δ(
p−h

δ

)
!

,

where constants A1, B1, A2, B2, A and B depend only on φ. Thus we have
(5.5). By the definition of r̂0

p,h(λ) we have r̂0
p,h(λ) = −λhr̂0

p−h,−h(λ). Hence the
estimates of r̂0

p,h(λ) for h < 0 in (2) follow from those for h ≥ 0 in (1).

Proof of Proposition 2.3. We have to estimate r̂1
p,s(λ). Since 0 ≤ s ≤ s0,

it follows from (2.8) that |r̂1
p,s(λ)| ≤ Ad

p
δ (1 + p)s0−1e−

3d cos φ0
4 /

(
p
δ

)
! for p > 0

and r̂1
p,s(λ) = 0 for p ≤ 0. Now suppose h ≥ 0. If p ≤ 0, it is obvious that

r̂p,h,s(λ) = 0. If 0 < p < h, then

|r̂p,h,s(λ)| ≤ ps|r̂0
p,h(λ)| + |λ|h|r̂1

p,s(λ)|

≤ psABhd
p−h

δ e−
d(cos φ)

2 |λ|δ
(

h − p

δ

)
!

+
Ad

p−h
δ (1 + p)s0−1e−

d cos φ0
2 |λ|δe−

d cos φ0
4 |λ|δ (|λ|δd)

h
δ(

p
δ

)
!

≤ A1(1 + p)s0Bh
1 d

p−h
δ e−

d(cos φ)
2 |λ|δ

(
h − p

δ

)
! (by Lemma 5.2).
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If p ≥ h, then

|r̂p,h,s(λ)| ≤ ps|r̂0
p,h(λ)| + |λ|h|r̂1

p,s(λ)|

≤ psABhd
p−h

δ e−
d(cos φ)

2 |λ|δ(
p−h

δ

)
!

+
|λ|hAd

p
δ (1 + p)s0−1e−

3d cos φ0
4 |λ|δ(

p
δ

)
!

≤ A(1 + p)s0Bhd
p−h

δ e−
d(cos φ)

2 |λ|δ(
p−h

δ

)
!

+
Ad

p−h
δ (1 + p)s0−1e−

d cos φ0
2 |λ|δe−

d cos φ0
4 |λ|δ (|λ|δd)

h
δ

(p
δ )!

≤ A1(1 + p)s0Bh
1 d

p−h
δ e−

d(cos φ)
2 |λ|δ(

p−h
δ

)
!

(by Lemma 5.2).

Suppose h < 0. In the first case of p ≤ h(= h−), we have r̂p,h,s(λ) = 0 by
Lemma 5.3 and r̂1

p,h(λ) = 0. Secondly if h < p ≤ h+(= 0), then r̂p,h,s(λ) =

psr̂0
p,h(λ) and by Lemma 5.3 |r̂p,h,s(λ)| ≤ AB|h|(1+ |p|)s0d

p
δ e−

d(cos φ0)
2 |λ|δ (−p

δ )!.
In the third case of p > 0, we have for |λ| ≥ 1

|r̂p,h,s(λ)| ≤ AB|h|(1 + |p|)s0d
p
δ e−

d(cos φ0)
2 |λ|δ

|λ||h|
(

p
δ

)
!

+
Ad

p
δ (1 + p)s0−1e−

3d cos φ0
4 |λ|δ

|λ||h|
(

p
δ

)
!

≤ A1B
|h|
1 (1 + |p|)s0d

p
δ e−

d(cos φ0)
2 |λ|δ(

p
δ

)
!

.

This completes the proof of Proposition 2.3.

§6. Estimate

The purposes of this section are to give Lemma 6.1 used in the proof of
Lemma 2.4 and to show Theorem 4.1, that is, to estimate kn

p,q(z, w′). The latter
is the main one.

Lemma 6.1. Let g(t) be a continuous function on [0, T ] (T > 0) and
γ be a positive constant. Suppose that there exist positive constants A and B

such that for any n ∈ N

|g(t)| ≤ ABntn
(

n

γ

)
! on [0, T ].(6.1)

Then |g(t)| ≤ C0A(Bt)−γ/2e−(Bt)−γ

holds for a constant C0 that is independent
of A and B.
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Proof. First we assume B = 1. Let n ∈ N with γ/n ≤ T γ . Suppose
that γ/(n + 1) ≤ tγ ≤ γ/n. Then, by (6.1) and Stirling’s formula (n/γ)! ∼(

n
γ

)n/γ √
2π n

γ e−n/γ as n → ∞, there is a constant C0 such that

|g(t)| ≤ A
(γ

n

)n
γ

(
n

γ

)
! ≤ C0A

√
n

γ
e−(n+1)/γ ≤ C0A

e−t−γ

tγ/2
.

This means |g(t)| ≤ C0At−γ/2e−t−γ

for t ∈ [γ/(n + 1), γ/n] and for all n ∈ N

with γ/n ≤ T γ . So the assertion holds for B = 1. By considering g(t/B), we
have the estimate of g(t) for B > 0.

In order to show Theorem 4.1 we need majorant functions. For formal
power series of N variables z, A(z) =

∑
α Aαzα and B(z) =

∑
α Bαzα, we

define A(z) � B(z) by |Aα| ≤ Bα for all α ∈ NN . A(z) � 0 means Aα ≥ 0
for all α ∈ N

N . Let ψ(k)(t) (k ∈ Z) be a sequence of majorant functions in one
variable t, 


ψ(k)(t) = k!/(r − t)k+1 for k ≥ 0,

ψ(k)(t) =
∫ t

0

ψ(k+1)(τ )dτ for k < 0,
(6.2)

where r is some positive constant. Then ψ(k)(t) � 0,
dψ(k)

dt
(t) = ψ(k+1)(t) and

if 0 < r ≤ 1, it holds that ψ(k)(t) � ψ(k+1)(t). By modifying ψ(k)(t), let us
define another family of majorant functions Ψ(s)

k (t) (k ∈ Z, s ∈ N)

Ψ(s)
k (t) =

(
d

dt

)s{
R′

R′ − t
ψ(k)(t)

}
where 0 < r < R′ < 1.(6.3)

We have (R′ − t)Ψ(s)
k (t) � 0 and

Lemma 6.2. (1) The following inequalities hold:


Ψ(s)
k+1(t) � Ψ(s)

k (t), Ψ(s)
k (t) � Ψ(s−1)

k (t), Ψ(s)
k−1(t) � Ψ(s−1)

k (t),

1
R − R′ Ψ

(s)
k (t) � (R − t)−1Ψ(s)

k (t) for R′ < R.
(6.4)

(2) If k ≥ 0, then

ψ(s+k)(t) � Ψ(s)
k (t) � R′

R′ − r
ψ(s+k)(t).(6.5)
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(3) If k < 0 and R′ > 2r, then

ψ(s+k)(t) � Ψ(s)
k (t) � 2|k|R′

R′ − 2r
ψ(s+k)(t).(6.6)

(4) Let |t| ≤ r/2. Then

|ψ(k)(t)| ≤ 2k+1k!
rk+1

for k ≥ 0,

|ψ(k)(t)| ≤ 2|t||k|
r|k|! for k ≤ 0.

(6.7)

(5) Let |t| ≤ r/2, R′ > 2r, s ≥ 0 and k ≥ 0. Then there exist constants C0

and C1 such that

|Ψ(s)
−k(t)| ≤ C0C

k+s
1 s!
k!

.(6.8)

The proofs are not difficult and we refer them to [3] or [8] (see also [1]
and [10]). Now we proceed to estimate kn

p,q(z, w′). We assume the condition
(Ci) for fixed i ∈ {0, 1, . . . , p∗ − 1}. Hence we have e(i) = −ki + li and assume
bα(i)(z) = 1, where α(i) = (ki−li, li, 0, . . . , 0) as in Section 3. Suppose also that
the coefficients of P (z, ∂z) are holomorphic in {z ∈ Cd+1; |zi| ≤ R, 0 ≤ i ≤ d}
and let ri (0 ≤ i ≤ 2) be constants with 0 < r0 < r1 < r2 < R as in the
preceding sections. We use Ψ(s)

k (t) defined by (6.3) and assume 0 < r < r0 and
2r < R′ < R ≤ 1 to apply Lemma 6.2 to the following estimates. We have

Theorem 6.3. Suppose that |zi| ≤ r0 < r1 ≤ |wi| ≤ r2 for 1 ≤ i ≤ d.
Then there exist constants A, B, c and ρ0 > 1 such that for ρ ≥ ρ0

if 0 ≤ i ≤ p∗ − 2,

kn
p,q(z, w′) � An+1Bp+e(i)+n+q ρ(p+e(i)+n)/δi

ρn+q
ec(1+|p|+q)z1(6.9)

×
(

+∞∑
r=0

(1 + p + e(i) + 2n + q)rΨ

([
p+e(i)+n

δi

]
+m
)

−
[

n
δi+1

]
−q−r

(t)

)

and if i = p∗ − 1,

k0
p,q(z, w′) � ABp+e(p∗−1)+q ρ(p+e(p∗−1))/δp∗−1

ρq
ec(1+|p|+q)z1(6.10)

×


+∞∑

r=0

(1 + p + e(p∗ − 1) + q)rΨ

([
p+e(p∗−1)

δp∗−1

]
+m

)

−q−r (t)


 ,
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where m is the order of P (z, ∂z), t = z0 + ρz1 +
∑d

i=2 zi, p ≥ −e(i) − n and
q ≥ 0.

For our purpose let us write again the equations that kn
p,q(z, w′) satisfy



P(p + e(i), q; z, ∂z′)kn
p,q(z, w′)

+ In
0 (p + e(i), q) +

e(i)−e(p−1)∑
h=1

In
h (p + e(i), q) = 0,

∂l
z1

kn
p,q(z0, 0, z′′, w′) = 0 for 0 ≤ l ≤ li − 1,

(6.11)

where

P(p + e(i), q; z, ∂z′) =
∑

{(α,s);eα=e(i),0≤s≤jα}
Cjα,q+α0,s,0p

sbα,0(z)∂α′

z′ ,

In
0 (p + e(i), q) =

∑



(α,l,s,s′,p′,q′)
p′+l+eα=p+e(i), q′+s′=q,
eα−e(i)≥0, 0≤l≤α0,
s+s′≤jα, l+eα−e(i)+s′>0




bα,l(z)Cjα,q′+α0−l,s,s′p′
s
∂α′

z′ ∂l
z0

kn
p′,q′(z, w′)

and

In
h (p + e(i), q) =

∑



(α,l,s,s′,p′,q′)
p′+l+eα=p+e(i), q′+s′=q,
eα−e(i)=−h, 0≤l≤α0,
s+s′≤jα




bα,l(z)Cjα,q′+α0−l,s,s′p′
s
∂α′

z′ ∂l
z0

kn−h
p′,q′ (z, w′).

Before proving Theorem 6.3 we give a lemma.

Lemma 6.4. Let u(z) be a solution of{
P(p + e(i), q; z, ∂z′)u(z) = f(z),

∂l
z1

u(z0, 0, z′′) = 0 for 0 ≤ l ≤ li − 1.
(6.12)

Suppose further that f(z) � ec(1+|p|+q)z1ρliΨa+li
−b (t), a, b ∈ N. Then there ex-

ist c0, ρ0 ≥ 1 and A1 which are independent of a and b such that u(z) �
A1e

c(1+|p|+q)z1Ψa
−b(t) holds for c ≥ c0 and ρ ≥ ρ0.

Proof. We may assume c ≥ 1. Put

P ′(p + e(i), q; z, ∂z′) =
∑

{
(α,s), α�=α(i);
eα=e(i),0≤s≤jα

}Cjα,q+α0,s,0p
sbα,0(z)∂α′

z′ .
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Then

∂li
z1

u(z) = −P ′(p + e(i), q; z, ∂z′)u + f(z).(6.13)

Since |Cjα,q+α0,s,0p
s| ≤ C0(1 + q)jα−s|p|s ≤ C0(1 + |p| + q)jα by Lemma 3.2,

Cjα,q+α0,s,0p
sbα,0(z)∂α′

z′ (ec(1+|p|+q)z1Ψa
−b(t))

� C(1 + |p| + q)jαec(1+|p|+q)z1

(
α1∑
l=0

(
α1

l

)
(c(1 + |p| + q))α1−lρlΨa+|α′′|+l

−b (t)

)

� C ′ec(1+|p|+q)z1

(
α1∑
l=0

cα1−l(1 + |p| + q)jα+α1−lρlΨa+|α′′|+l
−b (t)

)
.

It follows from the relation eα = e(i), that is, jα −α0 = −ki + li that jα +α1 =
α0 − ki + li + α1 = li − |α′′| − ki + |α| ≤ li − |α′′|. Hence it holds that

Cjα,q+α0,s,0p
sbα,0(z)∂α′

z′ (ec(1+|p|+q)z1Ψa
−b(t))

�C ′ec(1+|p|+q)z1


 |α′|∑

l=|α′′|
c|α

′|−l(1 + |p| + q)li−lρl−|α′′|Ψa+l
−b (t)




and

−P ′(p + e(i), q; z, ∂z′)(A1e
c(1+|p|+q)z1Ψa

−b(t)) + f(z) � ec(1+|p|+q)z1

×
∑

{
(α,s) α�=α(i);
eα=e(i),0≤s≤jα

}A1C
′


 |α′|∑

l=|α′′|
c|α

′|−lρl−|α′′|(1 + |p| + q)li−lΨa+l
−b (t)




+ ec(1+|p|+q)z1ρliΨa+li
−b (t).

On the other hand

∂li
z1

(A1e
c(1+|p|+q)z1Ψa

−b(t))

= A1e
c(1+|p|+q)z1

li∑
l=0

(
li
l

)
cli−lρl(1 + |p| + q)li−lΨa+l

−b (t).

For α �= α(i) with eα = e(i) we have li ≥ |α′|, moreover, |α′| < li or |α′′| > 0
holds. So limρ→∞,c→∞

cli−lρl

c|α′|−lρl−|α′′| = ∞ and there exist c0 > 1, ρ0 > 1 and
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A1 such that if c ≥ c0 and ρ ≥ ρ0,

∂li
z1

A1e
c(1+|p|+q)z1Ψa

−b(t)

� −P ′(p + e(i), q; z, ∂z′)A1e
c(1+|p|+q)z1Ψa

−b(t) + f(z),

from which u(z) � A1e
c(1+|p|+q)z1Ψa

−b(t) follows.

Proof of Theorem 6.3. We give the proof of (6.9). We can show (6.10) in
the similar way. So 0 ≤ i ≤ p∗ − 2 and we show (6.9) by induction. Let n = 0
and (p, q) = (−e(i), 0). Then

P(0, 0; z, ∂z′)k0
−e(i),0(z, w′) = f(z), f(z) =

1

(2πi)d
∏d

j=1(wj − zj)
,(6.14)

∂l
z1

k0
−e(i),0(z0, 0, z′′) = 0 for 0 ≤ l < li.

Since |zi| ≤ r0 < r1 ≤ |wi| ≤ r2, we have f(z) � MρliΨm+li
0 (t) for some

M > 0. Then it follows from Lemma 6.4 that there exist c, ρ0 ≥ 1 and A1 such
that u(z) � A1Mec|e(i)|z1Ψm

0 (t) for ρ ≥ ρ0.

Now assume that the estimate (6.9) of kn′

p′,q′(z, w′) holds for n′ < n and for
(n′, p′, q′) with n′ = n, p′ + q′ < p + q. In the following we study the estimates
under the inductive hypothesis. Let us return to (6.11). First we consider the
estimate of In

h (p + e(i), q) (h ≥ 1) consisting of terms of ∂α′

z′ ∂l
z0

kn−h
p′,q′ (z, w′).

Lemma 6.5. There is a constant A0 such that

e(i)−e(p∗−1)∑
h=1

In
h (p + e(i), q) � A0A

nBp+e(i)+n+q ρ(p+e(i)+n)/δi+li−1

ρn+q
(6.15)

×ec(1+|p|+q)z1

(
+∞∑
r=0

(1 + p + e(i) + 2n + q)rΨ

([
p+n

δi

]
+m+li

)

−
[

n
δi+1

]
−q−r

(t)

)
.

Proof. It follows from the inductive hypothesis that

∂α′

z′ ∂l
z0

kn−h
p′,q′ (z, w′) � An−h+1Bp′+e(i)+n−h+q′ ρ(p′+e(i)+n−h)/δi+|α′|

ρn−h+q′

×ec(1+|p′|+q′)z1

(
+∞∑
r′=0

(1 + p′ + e(i) + 2(n − h) + q′)r′

×
(

α1∑
r′′=0

(
α1

r′′

)
(c(1 + |p′| + q′))r′′

Ψ

([
p′+e(i)+n−h

δi

]
+m+l+|α′|−r′′

)

−
[

n−h
δi+1

]
−q′−r′

(t)

))
.

By the relations h = e(i)− eα, e(i)− eα ≤ γi+1(ki − |α|), p′ + l + eα = p + e(i),
p′+e(i)+n−h ≥ 0 and q′+s′ = q, there is a constant C such that (1+|p′|+q′) ≤
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C0(1 + p′ + e(i) + 2(n− h) + q′) for p′ ≥ −e(i)− (n− h) and q′ ≥ 0. Hence by
Lemma 6.2 and by replacing r′ + r′′ by r′, we have

∂α′

z′ ∂l
z0

kn−h
p′,q′ (z, w′)(6.16)

� C1A
n−h+1Bp′+e(i)+n−h+q′ ρ(p′+e(i)+n−h)/δi+|α′|

ρn−h+q′ ec(1+|p′|+q′)z1

×
(

+∞∑
r′=0

(1 + p′ + e(i) + 2(n − h) + q′)r′
Ψ

([
p′+e(i)+n−h

δi

]
+m+l+|α′|

)

−
[

n−h
δi+1

]
−q′−r′

(t)

)
.

It holds by the properties of γi and δi that

−
[
n − h

δi+1

]
− q′ − r′ = −

[
n

δi+1
− h

γi+1

]
− q′ − r′ + h

≤−
[

n

δi+1

]
−q′ −r′ +h + ki − |α|= −

[
n

δi+1

]
−q′ − r′ + e(i) −eα + ki −|α|

=−
[

n

δi+1

]
−q′ −r′ −jα + li −|α′| = −

[
n

δi+1

]
− q − r′ + s′ − jα + li − |α′|,[

p′ + e(i) + n − h

δi

]
+ m + l + |α′|

=
[
p − l − eα + 2e(i) + n − h

δi

]
+ m + l + |α′| ≤

[
p + e(i) + n

δi

]
+ m + |α′|.

By Lemma 6.2-(1) there is a constant C1 such that

ec(1+|p′|+q′)z1Ψ(s)
k (t)� ec(1+|p|+q)z1ec|e(i)−eα−l|z1Ψ(s)

k (t)

�C1e
c(1+|p|+q)z1Ψ(s)

k (t).

Thus by the bound of Cjα,q′+α0−l,s,s′ (see Lemma 3.2) and Lemma 6.2 we have

bα,l(z)Cjα,q′+α0−l,s,s′p′s∂α′

z′ ∂l
z0

kn−h
p′,q′ (z, w′) � A1A

n−h+1Bp′+e(i)+n−h+q′

× (1 + q′)jα−s−s′ |p′|s ρ(p′+e(i)+n−h)/δi+|α′|

ρn−h+q′ ec(1+|p|+q)z1

×
(

+∞∑
r′=0

(1 + p + e(i) + 2n + q′)r′
Ψ

([
p++e(i)+n

δi

]
+m+|α′|

)

−
[

n
δi+1

]
−q−r′+s′−jα+li−|α′|

(t)

)

�A1A
n−h+1Bp−l+e(i)+n+q′

(1 + |p′| + q′)jα−s′ ρ(p−l+e(i)+n)/δi+|α′|

ρn−h+q′

×ec(1+|p|+q)z1

(
+∞∑
r′=0

(1 + p + e(i) + 2n + q′)r′
Ψ

([
p+e(i)+n

δi

]
+m+|α′|

)

−
[

n
δi+1

]
−q−r′+s′−jα+li−|α′|

(t)

)
.
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Note inequalities (1+|p|+q′) ≤ C(1+p+e(i)+2n+q′) for p ≥ −e(i)−n, q′ ≥ 0,

and h+s′+|α′| = e(i)−eα+s′+|α′| ≤ e(i)−eα+jα+|α′| ≤ |α|−ki+li ≤ li−1.
Therefore we have ρ|α

′|−(n−h+q′) = ρ(h+s′+|α′|)−(n+q) ≤ ρ(li−1)−(n+q) for ρ ≥ 1
and

bα,l(z)Cjα,q′+α0−l,s,s′p′s∂α′

z′ ∂l
z0

kn−h
p′,q′ (z, w′)

�A1A
n−h+1Bp−l+e(i)+n+q′ ρ(p−l+e(i)+n)/δi+li−1

ρn+q

×ec(1+|p|+q)z1

(
+∞∑
r′=0

(1 + p + e(i) + 2n + q′)r′+jα−s′

×Ψ

([
p+e(i)+n

δi

]
+m+|α′|

)

−
[

n
δi+1

]
−q−r′+s′−jα+li−|α′|

(t)

)
�A2A

n−h+1Bp+e(i)+n+q ρ(p+e(i)+n)/δi+li−1

ρn+q

×ec(1+|p|+q)z1

(
+∞∑
r=0

(1 + p + e(i) + 2n + q)rΨ

([
p+e(i)+n

δi

]
+m+|α′|

)

−
[

n
δi+1

]
−q−r+li−|α′|

(t)

)

�A2A
n−h+1Bp+e(i)+n+q ρ(p+e(i)+n)/δi+li−1

ρn+q

×ec(1+|p|+q)z1

(
+∞∑
r=0

(1 + p + e(i) + 2n + q)rΨ

([
p+e(i)+n

δi

]
+m+li

)

−
[

n
δi+1

]
−q−r

(t)

)
.

In
h (p + e(i), q) (1 ≤ h ≤ e(i) − e(p∗ − 1)) is a finite sum of terms estimated as

above. Consequently the estimate (6.15) holds.

Next we estimate In
0 (p + e(i), q).

Lemma 6.6. There is a constant A0 such that

In
0 (p + e(i), q) �A0A

n+1Bp+e(i)+n+q−1 ρ(p+e(i)+n)/δi+li

ρn+q

×ec(1+|p|+q)z1

(
+∞∑
r=0

(1 + p + e(i) + 2n + q)rΨ

([
p+e(i)+n

δi

]
+m+li

)

−
[

n
δi+1

]
−q−r

(t)

)
.

(6.17)

Proof. Notice that In
0 (p + e(i), q) is determined by kn

p′,q′(z, w′) with p′ +
q′ < p + q. From the inductive hypothesis we have in the same way as (6.16)
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∂α′

z′ ∂l
z0

kn
p′,q′(z, w′)�C1A

n+1Bp′+e(i)+n+q′ ρ(p′+e(i)+n)/δi+|α′|

ρn+q′

× ec(1+|p′|+q′)z1

(
+∞∑
r′=0

(1 + p′ + e(i) + 2n + q′)r′
Ψ

([
p′+e(i)+n

δi

]
+m+l+|α′|

)

−
[

n
δi+1

]
−q′−r′

(t)

)
.

It follows from the properties of γi and δi that

[
p′ + e(i) + n

δi

]
+ m + l + |α′| =

[
p − l − eα + 2e(i) + n

δi

]
+ m + l + |α′|

≤
[
p+n−eα+2e(i)

δi

]
+m +|α′|=

[
p +e(i) +n

δi
− eα−e(i)

γi

]

− eα +e(i) +m +|α′| ≤
[
p +e(i) +n

δi

]
−eα +e(i) −|α| +ki + m + |α′|

=
[
p + e(i) + n

δi

]
−jα +li+ m

holds. By this inequality and Lemma 6.2

Ψ

[
p′+e(i)+n

δi

]
+m+l+|α′|

−
[

n
δi+1

]
−q′−r′

(t) � Ψ

[
p+e(i)+n

δi

]
−jα+li+m

−
[

n
δi+1

]
−q′−r′

(t) � Ψ

[
p+e(i)+n

δi

]
+li+m

−
[

n
δi+1

]
−q′−r′−jα

(t)

= Ψ

[
p+e(i)+n

δi

]
+li+m

−
[

n
δi+1

]
−q−r′+s′−jα

(t)

holds. We also have

p′ + e(i) + n

δi
+ |α′| − q′ =

p − l − eα + 2e(i) + n

δi
+ |α′| − q + s′

≤p +n −eα +2e(i)
δi

+|α′|−q +s′ =
p +e(i) +n

δi
− eα −e(i)

γi
−eα +e(i)

+|α′|−q +s′ ≤ p + e(i) + n

δi
−eα +e(i) −|α| +ki +|α′| −q +s′

=
p + e(i) + n

δi
−q +li −jα +s′ ≤ p + e(i) + n

δi
− q + li.
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Therefore ρ(p′+e(i)+n)/δi+|α′|

ρn+q′ ≤ ρ(p+e(i)+n)/δi+li

ρn+q for ρ ≥ 1. By these inequalities
and l + eα − e(i) + s′ > 0 the following estimate holds:

bα,l(z)Cjα,q′+α0−l,s,s′p′s∂α′

z′ ∂l
z0

kn
p′,q′(z, w′)

�A1A
n+1Bp′+e(i)+n+q′

(1 + q′)jα−s−s′ |p′|s ρ(p′+e(i)+n)/δi+|α′|

ρn+q′

× ec(1+|p|+q)z1

(
+∞∑
r′=0

(1 + p′ + e(i) + 2n + q′)r′
Ψ

[
p+e(i)+n

δi

]
+li+m

−
[

n
δi+1

]
−q−r′+s′−jα

(t)

)

�A1A
n+1Bp+q′−l+2e(i)−eα+n(1 + q′)jα−s−s′ |p′|s ρ(p+e(i)+n)/δi+li

ρn+q

× ec(1+|p|+q)z1

(
+∞∑
r′=0

(1 + p + e(i) + 2n + q)r′
Ψ

[
p+e(i)+n

δi

]
+li+m

−
[

n
δi+1

]
−q−r′+s′−jα

(t)

)

�A1A
n+1Bp+e(i)+n+q−l+e(i)−eα−s′ ρ(p+e(i)+n)/δi+li

ρn+q

× ec(1+|p|+q)z1

(
+∞∑
r′=0

(1 + p + e(i) + 2n + q)r′+jα−s′
Ψ

[
p+e(i)+n

δi

]
+li+m

−
[

n
δi+1

]
−q−r′+s′−jα

(t)

)

�A′
1A

n+1Bp+e(i)+n+q−1 ρ(p+e(i)+n)/δi+li

ρn+q

× ec(1+|p|+q)z1

(
+∞∑
r=0

(1 + p + e(i) + 2n + q′)rΨ

[
p+e(i)+n

δi

]
+li+m

−
[

n
δi+1

]
−q−r

(t)

)
.

Consequently we have (6.17).

Now let us complete the proof of Theorem 6.3. We have assumed 0 ≤
i ≤ p∗ − 2. Return to (6.11). We have the estimates of In

h (p + e(i), q) for
0 ≤ h ≤ e(i)− e(p∗− 1). So it follows from Lemma 6.4 that there are constants
A and B such that (6.9) holds for kn

p,q(z, w′). As remarked at the beginning of
the proof of Theorem 6.3, we can show (6.10) for i = p∗ − 1 in the same way
as above.

Proof of Theorem 4.1. Let 0 ≤ i ≤ p∗ − 2. Then it follows from (6.9) that
there exists a constant C such that
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∂α
z kn

p,q(z, w′) � An+1Bp+e(i)+n+q ρ(p+e(i)+n)/δi

ρn+q
ec(1+|p|+q)z1

(
+∞∑
r=0

α1∑
r′=0

(1+p+e(i) +2n +q)r

(
α1

r′

)
ρα1−r′

(c(1+|p|+q))r′
Ψ

[
p+e(i)+n

δi

]
+m+|α|−r′

−
[

n
δi+1

]
−q−r

(t)

)

� An+1Bp+e(i)+n+q(Cρ)|α| ρ
(p+e(i)+n)/δi

ρn+q
ec(1+|p|+q)z1

×
(

+∞∑
r=0

(1 + p + e(i) + 2n + q)rΨ

[
p+e(i)+n

δi

]
+m+|α|

−
[

n
δi+1

]
−q−r

(t)

)
.

Therefore if |t| ≤ r/2, by Lemma 6.2 there are constants A1, B1, C1 and D1

such that

|∂α
z kn

p,q(z, w′)| ≤An+1
1 B

p+e(i)+n+q
1 C

|α|
1

ρ(p+e(i)+n)/δi+|α|

ρn+q

×
(

p +e(i) +n

δi
+ m + |α|

)
!

(
+∞∑
r=0

(1 + p + e(i) + 2n + q)rDr
1([

n
δi+1

]
+ q + r

)
!

)
.

By the inequality

+∞∑
r=0

(1 + p + e(i) + 2n + q)rDr
1(

n
δi+1

+ q + r
)
!

≤ 1(
n

δi+1

)
!q!

+∞∑
r=0

(1 + p + e(i) + 2n + q)rDr
1

r!
≤ e(1+p+e(i)+2n+q)D1(

n
δi+1

)
!q!

we have (4.2a). Similarly we have (4.2b) from (6.10).
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