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Existence of Solutions with Asymptotic
Expansion of Linear Partial
Differential Equations in the Complex Domain

By

Sunao OucHI*

Abstract

Consider the linear partial differential equation P(z,d,)u(z) = f(z) in C¢T,
where f(z) is not holomorphic on K = {zo = 0}, but it has an asymptotic expansion
with respect to zp as zo — 0 in some sectorial region. We show under some conditions
on P(z,0.) that there exists a solution u(z) which has an asymptotic expansion of
the same type as that of f(z).

80. Introduction

Let P(z,0,) be a linear partial differential operator with holomorphic co-
efficients in a neighborhood Q of z = 0 in C4*! and K = {29 = 0}. Consider
the equation

(0.1) P(z,0:)u(z) = f(2),

where f(z) is holomorphic except on K, but f(z) has an asymptotic expansion
f(z) ~ >, fa(2')2 as zo — 0 in some sectorial region with respect to zo. In
the present paper we study the existence of solutions. Firstly we remark that
if we require nothing about the behavior of u(z) near K, there exists a solution
u(z) with singularities on K under some conditions on the principal symbol of
P(z,0,). But the singularities of u(z) may be much stronger than those of f(2)
(see [1], [2], [5] and [9)]).
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It is our interest to find a solution u(z) with an asymptotic expansion.
The relations between the growth properties of the solution w(z) and f(z)
near K are investigated in [6], [7] and [8]. But the existence of solutions with
an asymptotic expansion is not studied in those papers. It is studied in [4],
where characteristic Cauchy problems are considered. Characteristic Cauchy
problems have formal power series solutions. The main concern in [4] is to
study the relation between genuine solutions and formal power series solutions.
Our aim in the present paper is to study the existence of solutions with an
asymptotic expansion in detail. We will show the following:

Suppose that f(z) ~ Y 0" fu(2')2§ in some sectorial region. Then under
some conditions on P(z,0,) there exists a solution u(z) with an asymptotic
expansion u(z) ~ > 7 un(2')zl, and moreover, the asymptotic expansions of
f(2) and u(z) are the same Gevrey type.

The plan of this paper is as follows. In Section 1 firstly we introduce func-
tion spaces O(€2(0)) and Asyy,., (2(9)). O(Q(0)) consists of holomorphic func-
tions on the sectorial region (¢) and Asyy,,(2(0)) is a subspace of O(2(0))
consisting of functions with an asymptotic expansion in zy of Gevrey type with
exponent k. Secondly we define characteristic polygon ¥ of P(z,0,) with re-
spect to K, the indices 7; and polynomials xp;(2’,¢’). The structure of the
lower order terms of P(z,0,) is indispensable for the study of behavior of so-
lutions. The characteristic polygon is defined by using the total symbol and
contains information of the lower order terms. Hence it is available for our pur-
pose. Finally we give the main results, that is, existence of functions satisfying
(0.1) modulo functions with zero expansion of some Gevrey type (Theorem 1.2)
and existence of an exact solution with asymptotic expansion (Theorem 1.3),
and a few examples. The main result in [4] follows from Theorem 1.3. Theorem
1.3 follows easily from Theorem 1.2. Sections 2 through 6 are devoted to prove
Theorem 1.2. We show Theorem 1.2 by constructing a parametrix (regular-
izer). In Section 2 we introduce auxiliary functions §,(A\) (p € Z) containing
parameters, and K,(t) = [ exp(—At)g,(A)dA. We try to find a parametrix G
of the form

(Gf)(z) = /CG(z,w)f(w)dw, w = (wo,w') € C x C%

which is an integral operator with kernel G(z,w). In Section 3 we construct
formally G(z,w) by a series,

G(Z, ’LU) = Z kp7<1(z’ w/)KILq(wO — 20, w0)7
pEZ,qeN
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where K, 4(wo — 20, wo) = wi (=0, )1 Kp(wo — o). We find the equations that
determine the coefficients k, 4(z,w’) and show that we can solve them. In
Section 4 we give the estimates of &, 4(z,w’) (Theorem 4.1) without proof and
show the convergence of the series. We study the properties of the operator G,
show that it is a desired parametrix and obtain Theorem 1.2. In the process
we do not give the proofs of Proposition 2.3 and Theorem 4.1. We prove
Proposition 2.3 in Section 5 and Theorem 4.1 in Section 6.

81. Notations and Results

Let us give notations and definitions in order to state more precisely the
problem and results. The coordinates of C?*! are denoted by z = (29, 21, ... ,
zq) = (20,2') € C x C4. |z| = max{|z]; 0 <i < d} and |2/| = max{|z]; 1 <
i < d}. Its dual variables are £ = (&,¢') = (&o,&1,--.,&4). N is the set of
all nonnegative integers N = {0,1,2,...}. For real number a, [a] means the
integral part of a. The partial differentiation with respect to z; is denoted by
0z, and 8, = (029,025 -+ 5 05,) = (02, 0%). For a multi-index a = (g, ') €
N x N4, |a| = ap + |o/| = Z?:o a;. We use the notations 9 = H?:o 02 and
83/ = Hle 027, The differentiations with respect to other variables w;, A, ...
are denoted by 0,,, Ox, ..., respectively.

)

Let us define spaces of holomorphic functions on some regions. Let ) =
Qo x ' be a polydisk with Qy = {z0 € C!; |z < Ro} and Q' = {2 €
C%|2'| < R} for some positive constants Ry and R. Put Qo) = {2z €
Qo — {0}; |argzo| < 0} and Q(0) = Qo(0) x . Q) is a sectorial region with
respect to zg. O(Q) (O(Y), O(2(0))) is the set of all holomorphic functions
on Q (resp. ', Q(6)).

Definition 1.1. (i) Asy;,(2(0)) (0 < £ < +o00) s the set of all

u(z) € O(0)) such that for any 0" with 0 < 0 < 0

N-1
u(z) = D un(2)p

n=0
where up(2") € O(KY) (n € N), holds for constants A = A(8') and B = B(¢’).
(i) Asy;y(2(0)) is the set of all u(z) € O(U0)) such that for any 0" with
0<0 <6

(1.1) < ABN|2|NT (ﬂ + 1) z € Q0),
K

(12) < AN|2’0|N FAS Q(@l),

N-1
u(z) — Z un ()28
n=0

where u,(2') € O(Q) (n € N), holds for a constant Ay = A(N,0") depending
on N and ¢'.
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We say that u(z) € Asyy,;(£2(0)) has an asymptotic expansion with Gevrey
exponent (or index) x, if £ > 0. Suppose that u(z) € Asy,.;(£2(0)) with £ >0
and let V' € Q be a polydisk centered at the origin. Then it follows from the
definition that for any 0 < §’ < 6 there are constants M and F such that

K
k+1

(13)  |o"u(z)| < MF"T (% ¥ 1) for » € V(0'), 6=

If u(z) € Asyio1(€2(0)), then u(z) is holomorphic at z = 0. If u(z) €
Asy3(€2(0)), then it has merely an asymptotic expansion.

Now let P(z,0,) be an m-th order linear partial differential operator with
holomorphic coefficients in a neighborhood of z = 0,

(1.4) P(2,0.) = > aa(2)0.

lal<m

As we said, our interest is the existence of a solution u(z) with an asymptotic
expansion. Our problem is as follows:
Does the equation

(1.5) P(z,0-)u(z) = f(2) € Asy,1(2(0))

have a solution u(z) € Asy .,y (U(0')) for some polydisk U and 0 < 6" < 0.

In order to answer the problem we introduce the characteristic polygon of
P(z,0,). Let j, be the valuation of a,(z) with respect to zyp. Namely if a,(z) #
0, aa(2) = 20°ba(2) with by (0, 2') Z 0. If ag(2) = 0, put jo = co. So

(1.6) P(z,0,) = Z 20y (2)02.
la|<m

Put

(1.7) €a = Ja — Qp,

where e, = +00 if an(z) = 0. We denote by _I(a,b) the set {(z,y) € R%; 2 <
a,y > b}. The characteristic polygon ¥ is defined by X := the convex hull of
Ua ol ca).

The boundary of ¥ consists of a vertical half line X(0), a horizontal half
line ¥(p*) and p* — 1 segments 3(i) (1 < i < p* — 1) with slope v;, 0=, <
Y1 < o <y < Yo = +oo. Let {(ki,e(i)) € R*0 < i < p* — 1} be the
vertices of X, where 0 < kp«—1 < -+ < k; < ki1 < -+ < kg = m. So the
endpoints of X(7) (1 <i < p* —1) are (k;—1,e(i — 1)) and (k;, e(7)). We call 7;
the i-th characteristic index of P(z,d) with respect to K = {z9 = 0}. For each
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S(p* —

() /o 2" — 2)

_Okp—la p_l)

Figure 1. Characteristic polygon

1 (0 <i < p*—1) define subsets A(¢) of multi-indices and quantities I; € N as
follows:

(1.8) {A(i) = {a € N ja| = ki, eq = e(i)},

l; =max{|d/]|: o€ A®)}.
Define a subset Ag() of A(i) and a polynomial xp;(2',£') in & by

Ao(i) ={aeA(i);lo/| =1}
(1.9) XP,i(Z/agl) — Z ba(O o

aer(i)

xp,i(2',€") is homogeneous in & with degree ;.
We give conditions on P(z,0,) denoted by (C;) (0 <i < p*—1). For each
fixed 4

(Ci) Ja=0 forall e Ap(i) and xp,(0,&) #0.
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If P(z,0,) satisfies (C;), then e(i) = —k; + I; and b,(0,0") # 0 for some
o = (kt — li,Oé/) S AO(Z)

Now let us return to the existence of solutions of

(Ea) P(z,0:)u(z) = f(2) € Asy,;(2(0)).
Firstly we have

Theorem 1.2.  Suppose that P(z,0.) satisfies (C;) for some i € {0,
L...,p" =1} and f(2) € Asy3((0)) with i1 < v < 7. Let 0" be a
constant such that 0 < ¢ < min{f,7/2v;} if i #0, and 0 < ' < 0 if i =0.
Then there exists g(z) € Asyp,y(U(0")) for some polydisk U centered at the
origin such that

(1.10) (Rf)(2) := (P(2,0:)9(2) — f(2)) ~ 0

This theorem implies if i = 0, then (Rf)(z) ~ 0 in Asy ;1 (U(¢)). This
means that (Rf)(z) is holomorphic at z = 0 and has zero expansion, hence
(Rf)(2) = 0 and P(2,0.)9(2) = (2).

By using Theorem 1.2 repeatedly, we have the following existence of a
solution u(z) whose asymptotic expansion is the same Gevrey type as that of

f(2).

Theorem 1.3.  Suppose that P(z,0,) satisfies (C;) fori =0,1,... s,
and let f(z) € Asy(,(2(0)) with v > ys41. Then for any 0 < 6" < min{#,
m/271} there exists u(z) € Asyy(U(0")) satisfying P(z,0,)u(z) = f(z) for
some polydisk U centered at the origin.

As for the dependence of the polydisk U on 8’ and f(z), we refer to The-
orems 4.7 and 4.8.

We give examples. Let P(z,0.) be a noncharacteristic operator with re-
spect to zp = 0. Then 400 = 79 > v = 0. Consider P(z,0,)u(z) = f(z) €
Asy 3 (2(0)) with v > 71(= 0). Let 0 < ¢ < 0. Then we have a solution
u(z) € Asyy,1(U(0')) for some polydisk U by Theorem 1.3.

The following examples are characteristic with respect to zg = 0. A simple
example is

(1.11) P(2,0) =02 — 0.,, 2= (20,71) € C%
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We have 79 = +oo,m1 = 1,72 = 0, xpo(2,&1) = & and xp1(2/,&1) = —1.

Consider P(z,0;)u(z) = f(2) € Asy,4(Q(0)) with v > 72(=0). Let 0 < ¢’ <

min{f, 7/2}. Then we have a solution u(z) € Asy,1(U(¢')) by Theorem 1.3.
We give further two examples. One is

(1.12) P(z,0) =02 + 92 0., + 0>

z0?

z = (20,21) € C2.
We have

Yo = +09, Y1 = ]-7 Y2 = 1/23 Y3 = Oa
xpo(2, &) =67, xpi(2,&) =6, xp2(?,6) =1

Obviously P(z,d,) satisfies (C;) for i = 0,1, 2. Consider P(z,9,)u(z) = f(z) €
Asy 1 (22(0)) with v > y3(= 0). Let 0 < ¢ < min{¢,7/2}. Then we have a
solution u(z) € Asy 4 (U(¢)) by Theorem 1.3. Another is

(1.13) P(z,0) = 03 + 93 02, + %02 02 + 0.

zZ1 720 Z1 720 zZ0)?

z = (20,21) € C2.
We have

Yo=+00, Mm=2 =1 13=1/2, =0
xpo(2',&1) = &8, xp1(2,&) =&, xp2(2,&) =&, xps(?,&) =1.

Consider P(z,0;)u(z) = f(z) € Asy(,3(82(0)). P(z,0;) satisfies (C;) for i =
0,1,3 but (C2) does not hold. Hence by Theorem 1.3 if v > 7, there is a
solution u(z) € Asyy,y(U(0")) for some polydisk U, where 0 < 6" < min{0, 7/4}.

§2. Auxiliary Functions

We show Theorem 1.2 by finding parametrices of P(z,0,). In order to
construct them we need some auxiliary functions. Let us introduce them and
give their elementary properties as lemmas and propositions in this section.

Let 0 <6 <1 and

9 d Ty f
(2.1) Gp(\) = W/{) exp(=X\°¢)¢sd¢  for  p >0,

AP for p<O.

Here d > 0 is a parameter, which will be chosen so small and fixed later. We
remark that the dimension of 2’ is also denoted by d, 2’ = (21,22, ..., zq) € C4,
but there will be no confusion. §,(\) depends on § and d if p > 0, but g,(A)
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does not if p < 0. In the following we assume p € Z and denote I'(z + 1) by «!.
Define

X

1 o0
(2.2) Ky(5:0) = 50 / exp(—At)gp(\)dA.
1
It is obvious that K,(d;t) is multi-valued holomorphic on {t # 0} for 0 < § < 1.
It holds that if p > 0,

ooet?

1 e
. )= — —At)Gp(A)dA + — —At)Gp(N)dA
3) Ky =5 [ en(-Ma0d+ 5 [ en-20a0)
= K;(6:1) + K7 (31),
where K;*(d;t) is an entire function.

Lemma 2.1. (1) Let 0<d <1 and ¢g be an arbitrary constant with
0 < ¢ < g5. Suppose |argt| < ¢g + g and 0 < |t| < T. Then there exists a
constant A = A(¢o,T) such that

Ad¥/(§)! forp>2,

2.4 Kp(6;1)] <
24 | (t)|<{A(1+|10gt|) forp=1.

(2) Let 6 =1 and p > 1. Then

(—1)Ptr=tlogt

2.5 K,(§;t) = + a holomorphic function on {|t| < d}.
P

2mi(p — 1)!
(3) Let p < 0. Then

bl o
(2.6) K,(6;t) = Smaglp + an entire function in t.

Proof. (1) The constant A means various constants depending on ¢y and
T in the following inequalities. Let € be a small positive constant with € < 55 —
¢o. Set 6 = argt. Since |0] < ¢+ 7, there exists ¢ with [¢| < pg+e < 7/2d such
that |¢p+6| < w/2—e. Hence cos(¢+0) > sine > 0 and cos ¢ > cos 6(do+e) > 0.
Take arg A = ¢. Let p > 2. Then it holds that

1 o0 d N
(K (338)] < / 1 exp(—rlt| cos(¢ + 9))d7“/exp(*7"5é cos 8T dC¢
L) :

p— foe) d
< d / 0 exp(—r|t| cos(¢ + 9))dr/ exp(—r°¢ cos §¢)¢ 3 dC.
tJ1 0
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By |r? fod exp(—19¢ cos ¢)C 5 d¢| < Cr=2(cos )~ 1, we have

p—2 p—2

Ads /°° exp(—r|t| cos(¢ + 9))dr - Ads
(cosdg)s+1 (2)1 Jy

|K(0;t)] < < .
; = (@)
Let p = 1. Then we have

o0

K7 (5;t)] < #/ 7 exp(—r|t|cos(¢+0))dr/dexp(—r‘SCcoséqS)(édC
1 T 27 (%)' 1 0

SA/ exp(—r|t|81ne)dT:A exp(—r)dr
1 r [t] sine r

< A(1 + |logt)).

It remains to estimate K*(d;t). However it is easy and we have (2.4).
(2) Suppose 6 = 1. Then §;(\) = (1 — (14 Ad)e *%)/\. Hence

K1 (1;t) L/&M(M 1 /‘”(1+>\d)e><p(—>\(zf+d))dA

2mi A 27 A
1 [ exp(—At)
_271—2 1 )\ dA’
d —1 [ -1
—Ki(1;t) = — — = —
gt =g /1 exp(=At)dA = o

where = means modulo holomorphic functions on {|t| < d}. We also have

d 1 [ )

< p+1(1;t)=%/1 Aexp(=A8)ip s (\)dA
L[ M) (A)dA ot ) A(t+d))dA
= — t/\ - t
5 [ e+ s [ e+
=—K,(d;t).

By integrating K,(0;t) successively, we have (2.5).
(3) Let p < 0. Then we have
1

1 [ Ip|!
) = — - Plgy = 2~ — ||
K,(6;t) 57 /1 exp(—At)APIdA St T 27 o exp(—At)APIdA,

where the last term defined by the integral on [0, 1] is an entire function in ¢. O
The following Lemma 2.2 and Proposition 2.3 are used to construct para-

metrices in the following sections. In particular, the relation (2.7) appears in
the calculations in Section 3.
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Lemma 2.2. Let h € Z and s € N. Then it holds that
1

21

M)NT(=X00) 2 (N)dX = p K1, (85 8) + Ry (1),
1 o0 R
Rppslt) = 5= /1 exp(— M)y s (NN,

exp(—
(2.7)

where Fp ps(A) = psflo)’h()\) + )\hle,’s()\) and

0L = N3, (N) = Gp—n(N),  79,(A) =0 for p<0and h>0,

5B+l s—1 k s
(2.8) fglz,so\) = % <ZPSlk <)\§/\) (Aoe—dA )) for p>0,

5 k=0
AN =0 for p<O.

p;s

Proof. Let p > 0. Then we have by integrations by parts

0 . —0A?

—Aﬁgp(/\) =

d 5 d
| exp-nactac+ o [N exp-xcE g
() Jo

() Jo
A 5d§+1)\667d)‘6
= pgp()\) - W

£
By repeating the above calculation, we have (—AZ)%3,(\) = p*g,(\) +7) (N),
where 7} () = 5@; (> Ops L=k (N 2k ()\‘s —dx’ )). If p < 0, then
(=Ag5)°3(A\) = p*3p(A) and 7 ((A) = 0. Set 7, (A) := M'Gp(A) — Gp—n ().
Note that rph( ) = 0 for p < 0 and h > 0. Hence A"(—A35 222G, (\) =
p*Ag,(\) + A f}j

5)°
(A) = P°Gp-n(N) + P74 (N) + N7 ((A) = p°Gp-n(A) +
TA’pJL,s(/\) and

o0

0

— VAL [ S I/ =p Kp_n(t s(t).
sy || eplA0N (<AZ0) BN = Ky 0+ Ry

We give estimates of 7, 5, s(\) to study R, 5.s(t) defined by (2.7).

s

Proposition 2.3.  Let ¢o be an arbitrary constant with 0 < ¢g < g5
and sog € N. Suppose A € {|A] > 1;|arg\| < ¢o} and 0 < s < sg. Set
h_ = min{h,0} and hy = max{h,0}. Then the following estimates hold.
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(1) If p< h_, then 7 s(A) = 0.
(2) If h— < p < hy, then there are constants A = A(¢g) and B = B(¢g) such
that

p—h h — cos
29) sl < ABW L+l (BEL et

(3) Ifp > hy, then there are constants A = A(¢pg) and B = B(¢o) such that

p—h d(cos §¢q) S
) ABIM (14 [pl)®od™ 5" e~ "7
(2.10) |7p,h,s(A)] < (p7h+>,

el

Proposition 2.3 asserts that 7, 5, s(\) decays exponentially with order § as
A — o0 in some sectorial region. This decay estimate is important. The proof
of Proposition 2.3 is given in Section 5. In this paper there appear integral
operators

(211) (Rp,h,s.f)(ZO) = . R 7h,s(wO - ZO)f(wO)dwO7

where the path Cy is defined later in this section. (Rf)(z) in Theorem 1.2 is an
infinite linear combination of integral operators of the form (2.11). We study
the behavior and the estimates of (R, 5.5 f)(%0). Firstly we give

Lemma 2.4.  Let #(\) be a holomorphic function on {X;|arg\| < ¢y,
|A| > 1} with ¢ > /2. Suppose that there are positive constants A, ¢y and
0 < 6 <1 such that |#(\)] < Aexp(—co|A|?). Define

s

(2.12) R(t) = —— / = (M)A

"~ 2mi
(1) If 0 <6 <1, then R(t) € Asy,,({t # 0;|argt| < ¢o + T}) with v =
0/(1 —6) and there are positive constants C and ¢ such that
7

(2.13) |R(t) — R(te2m)| < Cexp(—c|t|™7) for |argt+ 7| < ¢g — 5

(2) If 6 =1, then R(t) € O({t; |t] < co})-

Proof. Assume 0 < 6 < 1. If |argt + ¢| < 7/2, the integral (2.12) is
absolutely convergent. Hence R(t) is holomorphic on {t # 0;|argt| < ¢o + 5 }.
We have

¢

(%)”R@) ~am Ay esp( A

27
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and
d\" Hoo 5 A n+1
— n _ - ——
(2.14) ‘(dt) R(t)‘gA/O IA|™ exp(—co|A| )d)\|§c(()n+1)/5< 5 )

The above estimate of (%)"R(t) means that R(t) € Asy . ({t # 0;]argt| <
¢o + 5}) with v = /(1 — 6). Let us show (2.13). Firstly further assume
¢o < m. Suppose that 7/2 < ¢ < ¢g and |argt + 7| < ¢ — 7/2. Then —7/2 <
argt + ¢ < —37/2 + 2¢ and 37/2 — 2¢ < argt + 27w — ¢ < 7w/2. It follows
from the assumption 7/2 < ¢ < ¢ < 7 that —7/2 < argt + ¢ < 7/2 and
—m/2 < argt + 2w — ¢ < w/2. Hence

(&) @0 - R

B 1 /OO@MJ
C2mi \ Uy

R (=A)" exp(—At)F(A)dA

27Ti coe—id

(=)™ exp(=AE)F(A)dA — /1 - (A)”exp(At)f(A)dA)

and by the decay estimate of #(\) it holds that

lim (%)n (R(t) — R(t*™)) = = / = (—A)"#(A)dA = 0.

t—0 211 coe—id

Consequently by (2.14) and Taylor’s formula

(215)  |R(t) — R(te?™)] < —2A11 (”“)!gA’Bnﬂ” <”—“>'
Y

> c(()n-t,-l)/én! )

for any n € N. Since ¢ is an arbitrary constant with 7/2 < ¢ < ¢y, it follows
from Lemma 6.1 in Section 6 that there exist positive constants C' and ¢ such
that (2.13) holds. If ¢y > 7, by considering the rotation 7,(A\) = #(Ae'¥), we
have (2.13).

In the case of § = 1 it follows easily from the decay estimate of #(A) that
R(t) is holomorphic in {|t| < ¢o}. O

Let us define a path Cy in wg-space, which appears in the sequel to define
integral operators on a sectorial region. Cy is a path which starts at wy = 0,
encloses wg = zg once anticlockwise and ends at wg = 0. Cy depends on zg.

Suppose that #(\) satisfies the conditions in Lemma 2.4, and the constants
¢0, co and J are those in Lemma 2.4. Let R(t) be a function defined by (2.12)
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Co wo-space

Figure 2. Path Cy

and W be an open disk in C centered at the origin such that Wy C {|wo| < ¢o}-
Let f(wo) € O(Wy(o)) with 0 < 6y < ¢ — 5 and be bounded. Suppose zg €
Wo(6o). Then we may take Co C Wy (o) and |arg(wo — 20)| < 0o +7 < ¢o +
for wg € Cy. We can define

(2.16) (Rf)(z0) = % /c Rlwo — 20) f(wo)duwo

and (Rf)(z0) € O(Wy(bp)). In particular if § = 1, R(t) is holomorphic in a
neighborhood of ¢ = 0, hence (Rf)(z9) = 0. We have more precisely

Proposition 2.5.  Suppose that #(\) satisfies the conditions in Lemma
2.4. Let f(z0) € O(Wy(0o)) (0 < 0y < ¢o — F) be bounded and (Rf)(z0) be the
operator defined by (2.16).
(1) If 6 =1, then (Rf)(20) = 0.
(2) If 0 < & < 1, then (Rf)(z0) € O(Wy(6o)) and there exist positive constants
A and ¢ which are independent of f(wg) such that

(2.17) [(Rf)(20)| < Aexp(—clzo|™") sup | f(wo)l-
woEWo (o)
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Proof. We only have to treat the case 0 < § < 1. R(¢) is bounded on
{t # 0;|argt| < ¢o + 5} by Lemma 2.4. We can deform the path Cy to the
segment jointing wy = 0 with wg = zy and the infinitesimal small circle with
center wg = zo and have

(RS)(z0) = / " (Rwo — 20) — R((wo — 20)¢>™)) f(wy)duwo.

By Lemma 2.4

(RN C sup [f(wo)] [ exp(clzn — wo| ) duo
woEW (6o) 0

< Aexp(—c|zg|™7) ( SUPG )|f(w0)|> .

’woGW(

O

Let us apply Propositions 2.3 and 2.5 and Lemma 2.4 to R}, 5, s(t) and (Rp 5.5 f)
(20) (see (2.7) and (2.11)).

Proposition 2.6. Let W, be a polydisk centered at the origin and
f(wo) € O(Wy(0p)) be bounded. Let (Rpn,sf)(z0) be the operator defined by
(2.11). If 6 =1, then (Rpn,sf)(20) = 0.

Let 0 < d < 1,v=46/(1—=96) and sp € N. Suppose further 0 < 0y < 7/2v
and 0 < s < sg. Put h— = min{h,0} and hy = max{h,0}. Then the following
estimates hold.

(1) If p< h_, then (Rp nsf)(20) = 0.
(2) If h— < p < hy, then there are positive constants A = A(6y), B = B(6p)
and ¢ = ¢(d, 0y) such that

(2.18)

| sogit (1 =P jo=clzol
s 0)] > . .
(Byaf)(z0)] < ABM(1 4 [pl)od™ e sup | wo)
o g woEWo (o)

(3) If p > hy, then there are positive constants A = A(6y), B = B(6y) and
¢ =c(d, o) such that

ABIM (1 4 [p|)sod™5+ e—clzol 7
(210)  |(Bpnf)(i0)] < 222 '('p),”)' sup [ f(wo)]

wo €W (o)
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Proof. Assume 0 < 6 < 1. Then we can choose ¢ such that 0y + § <
¢o < 35 by 0 <6y < g5 = (5 — 1). The assertions follow from the estimates
in Propositions 2.3 and 2.5 and Lemma 2.4. U

Finally let us study an integral operator,
1
(220) (Kpf)(ZO) = _27'('2 Kp(é;wo — Zo)f(’(l)())d’u)o,
Co

which also appears in the sequel and depends on ¢ and d (see (2.1) and (2.2)).

Proposition 2.7.  Let Wy be a polydisk centered at the origin and f(wo)
€ O(Wy(6y)) be bounded. Let (K,f)(z0) be the operator defined by (2.20).
(1) If 6 =1 and p > 1, then for zg € Wy(6y) with |z9| < d

zo — wo)P !

(2.21) (Kpf)(20) = /OZO ( (p—1)

(2) Let0 < d <1 andy=7§/(1-9). Suppose0 < 0y < m/2v. Then (K,f)(z0) €
O(Wy(6o)) and there is a constant C such that for zo € Wy (6o)

f(wo)dwy.

Cd*s sup |f(wo)l/ (B)! for p>2,
(2.22) (K f)(20)] < woeo

C sup |f(wg)| for p=1.
woEWo

(3) Suppose p < 0. Then

Ip|
(2.23) (K ) (20) = ( 9 ) F(z0).

9z

Proof. (1) If 6 = 1, then by Lemma 2.1-(2) for p > 1

(_1)p p—1
m /Co (WO—ZO) IOg(U’O_ZO)f(WO)dWO

B 20 (ZO _ ,wo)pfl w w

(2) Let 0 < 6 < 1 and 29 € Wy(6p). By the assumption 0 < 6y < 7/2v we can
choose ¢ with 6y + 5 < ¢o < g5. Then it holds that |arg(wo —z0)| < 0o +7 <
¢o + m/2 and (2.22) follows from Lemma 2.1-(1).

(3) We have (2.23) by Lemma 2.1-(3). O

/ Kp(’u)o —zo)f(wo)dwo
Co
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83. Construction of Parametrix-1

Let us find g(z) in Theorem 1.2. Let w = (wg, w1, ... ,wq) = (wo,w’) €
C4*1. Define

o q
(3.1) K, 4(d;wo — 20, wp) = w <_8—> K, (8;wo — 20)
Wo

3 | " exp(—Aluo — 20))A 3, (\)dA.

We note K, o(6; wo — 2o, wo) = Kp(8;wo — 20).

We assume condition (C;) for fixed ¢ with 0 < i < p* — 1. Put § = ¢; :=
vi/(7i+1) in the definition of K,(d;t). We denote simply K,(9;t) by K,(t) and
K, 4(8;w0 — 20, wo) by K, ¢(wo — 20, wo) respectively. Let W = Wy x W' be a
small open polydisk centered at the origin in C4*! and f(w) € Asy 1 (W(0))
with y,01 < v < ;. We try to find g(z) in Theorem 1.2 in the following
form:

9z) = Y (Gpaf(2),

pEZ,qEN

(3.2) (Gpef)(2) :/ckp,q(szl)Kp,q(WO — 20, wo) f (wo, w")dw

:/ k:p,q(z,w’)dw'/ K, 4(wo — 20, wo) f(wo, w')dwy,
c Co

where the path C = Cy x C’ is defined as follows. Cy is the one in the sectorial
region Wy (6) defined in Section 2 (see Figure 2) and C’ is a chain in C¢ defined
by the d-dimensional product of circles HZ=1{|wi| =ry}. Then C = Cy x C’
is a (d + 1)-dimensional chain in C4*!. Functions {kp ,(z,w")}pez qen Which
are holomorphic in (z,w’) in a neighborhood of {z = 0} x {w’ € C’} and they
will be determined in order that g(z) has the properties stated in Theorem 1.2.
Put

(3-3) G = D (Gpaf)(z)

pEZ,qEN

and we call G a parametriz. The main purpose in this section is to show how
to determine k, ,(z,w’). The convergence and the properties of the operator
G are studied in the following sections.

First we give some lemmas and use the notation 9y = 8%.
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Lemma 3.1.  The following identity holds:

(3.4) 2ot / K q(wo — 20, wo) f (wo, w')dwy
Co
— / ( / (5‘16)‘2(’)6’\’”0/\q+h§p()\)d}\> wd f (wo, w")dw.
Co 1
We have easily (3.4) by differentiating (3.1).
Lemma 3.2. There exist constants C} 4 s, such that

(3.5)

(=027 (€0 X%G(N) = e AT D T s (Awo)* (<202)°5(N)

s+s'<j
and
(3.6) 1Cjars,sr| < AL+ [a])T=>=

for a constant A = A(j) depending only on j.

Proof. 1If j =0, (3.5) is obvious. We have inductively
(=0 (e A X g (V)

= (=0n) [ e AT N7 Claew (o) (—202) (M)
s+s'<j

= e Mo p IR [N (0 4 o (wg) TH(=ADN)*G(A) + ( —a — &)
s+s'<j

X Cjrarsss' Mg)® (=A02)°G(N) + Cjars,s (Awg)* (=A02)*T1G(N))

Hence Cji1,4,5,5 = Cjas,s—1+ (J —a—5)Cja,s,s + Cjas—1,s holds and we
have (3.6) by induction. O
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We remark that the constants Cj . s« (s + s < j) will often appear.

Lemma 3.3.  The following identity holds:

zjah / K, 4 (wo — 20, wo) f (wo, w")dwy

Z Cj,q+h,s7s’( P Kptj—hg+s (wo — 20, w0) f(wo, w")dwo
Co

sts'<j
+ [ Rp_jins(wo — 20)0%5 (wi™ f(wo,w'))dth) :

Co

Proof. We have from Lemma 3.1 and by integrations by parts

Ja?o/ Kpq(wo — 20, wo) f (wo, w')dwg
Co
:/ (/ (a§€AZ°)e_AwoAqMép(A)d)\) w f (wo, w')dwo
Co 1
:/ (—/ (8§\_1€)\Z0)aA(e_)\wO)\quhgp()\))d)\) wgf('IU(),w/)d’U)o
Co 1

+/ (an entire function in wg) X f(wg,w")dwg
Co

:/ (/ e>\z0(_a/\)j(e_AwOAq+hgp(A))dA) wgf(wo’w/)dwo
Co 1
:/ wg f (wo, w')dwo (/ e~ Mwo—20) \g—j+h

< | D7 Cigrnss Qwo)* (=202)3p(A) | dA | (by Lemma 3.2)

s+s'<j

q+s’ / > —XMwo—20) yq—j+h+s’
g Cigth.s,s wag " flwo,w")dwy [ e 0T20) )\
s+s'<j 1

X (=A0\)%Gp(X)dA
=>. G q+hss'/ wd " f (wo, w')dwy

s+s'<j

o0
X (= 0u,) 1+ / e 0 ATTH (A0, ) gy (A
1
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We have from Lemma 2.2
[ eI (< 04)%9, ()
1

= pst+j_h(w0 —z)+R ,_j+h,s(w0 — 20),

hence

zjah/ — 20, wo) f(wo, w")dwg
= Y Crornew ( / (=Bu0) ™' D" K- (ti0 — z0)l™ f(awo, )y
s+s'<j

[0 Ry g — 20)f ™ ')

Co
> Cigthas (/ P Kpyj—h.g+s (o = 20, wo) f(wo, w)dwy
s+s'<j Co

+/ Rp’,jJrh,s(wo — Zo)afv-gs/(wngS/f(wO, w’))dw()) .
Co

Proposition 3.4. It holds that

(3.8)  2"ba(z )aa/c kpo(z,w)dw' | Ky, 4(wo — 20,w0) f (wo, w')dwg

Co
b 6 ,w'dw
a, 1 Cjoratao—1,s,s’ o 0 w
0<I<ag
545" <ja

></C P Kptentiqrs (wo — 20, wo) f(wo, w')dwo + (RE,  f)(2),

where ba(2) = (°°)ba(z) and

(3.9) (R awal Z Ciorgton—1,s,s'Da,i (2 / 8a Fip,q (2, w")dw’

O<l<oco
s+s’ <Ja

x/ R, _c.—1,s(wo — zo)agjs (W™ f(wo, w'))dw.
Co
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Proof. By Leibniz’ formula and Lemma 3.3 and putting ba () = (%)
bOé (Z)7

zj“‘ba(z)as‘/ k:p,q(z,w’)dw’/ K, 4(wo — 20, wo) f(wo, w")dwy
c Co

Ky, q(wo—20, wo) f(wo, w’)dWO>

Co

:Z ba’l(z)/ za',a.lZokpvq(Z’ w/)dw/(zéaﬁgool
1=0 ¢’

o
" ql / ’
:mel/ 0% 0z kip,q (2, w")dw ( Z Clurqtao—l,s,s’
CI
1=0

5+5'<ja

X (/ P°Kptjo—aotig+s (Wo — 20, wo) f(wo, w")dwo

Co

+ [ Ry jorao—tus(wo — 20)0%t (w3+s/f(wo7w/))dw0>>-
Co

By €4 = ja — @, we have (3.9) and (3.10). O
Now let us show how to construct a parametrix G (see (3.2) and (3.3)).

We assume condition (C;) for some fixed i. Define for 0 < h < e(i) —
e(p*—1)

PO(Zaaz) = E Z(%Qba(z)aga
{ajea>e(d)}
(3.10) |
Py(z,0,) = E 207bo(2)0¢  for h>1.

{aseq—e(i)=—h}
Pp(z,0.) depends on 4. Then we have a decomposition of P(z,0,), P(z,0,) =

Ez(i)()_e(p*_l)Ph(z,ﬁz) depending on 4. In particular P(z,0,) = Py(z,0,) if
i = p* — 1. We construct G by a successive approximation. Find G™ (n € N)
S0 as to satisfy

(Po(z,0:)(G°f)(2) = f(2)) ~ 0
(311) e(i)—e(p"—1)
Py(2,0:)(G"f)(2)+ Y, Pul(2,0:)(G""f)(2) ~ 0,
h=1
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where ~ 0 means zero asymptotic expansion in Asy, 1(U(¢')) for some poly-
disk U and 0 < 6" < 6. Then we may expect that G = Y 2/ G" satisfies
(P(2,0)(Gf)(2) — f(2))~ 0 and is a desired parametrix. Set

z) :/CG"(z,w)f(w)dw,

w) = Z k;,q(z’w/)Kp,q(WO_ZOawo)

P>Pn
q=0

It is the main aim to obtain equations that
ky (z,w') of G"(z,w) and to solve them.
Proposition 3.4

(3.12)

PO(Zaaz)(an): Z Z {( Z bcxl

{a; eaze(i)} p'>pn, \\O<I<ao
q'>0 s+5' <ja

Em 1 1,18
/ zo p g \Z W )dwp /Kp/+8a+l’¢I’+S'
Co

+ (Rf,p/,q/ﬁ(z)}

determine the coefficients
We have formally from

qu '+ag—L,s,s’

(wo — 20, wo) f (wo, w’)dw0>

/S
=) ( > Cjo g/ +an—1,5,5'D

eq—e(i)>0, 0<I<ayg

p>pnte(i) \((a,l,s,s",p",q");
920 P’ +eatl=p, ¢'+s'=q
s+s'<ja

></ ba,1(2)02 8Z0kp o (2 ,w')dw')

x /c K q(wo — 20, wo) f (wo, w')dwo + > (REpa )

{a; e(a)>e(i)} P>pn
q20

where we sum up firstly («,l,s,¢,p,q") satisfying p’'+e,+1=p and

q + s’ = q for given p, q.
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We also have in the same way

Py, 32)(Gn_hf) = Z < Z ijq’-mo—l,s,S’p/S

P>Pr_nte(i)—h (a,l,s,8",p",q");
q>0 p'+eat+l=p, d'+s'=q

eq—e(i)=—nh, 0<i<ag
$+3/§ja

X [ ba,i(2)0% aiok:g qh z,w')dw )/ g(wo — 20, wo)
cr Co

x f(wo, w")dwo + > > (RE, Dz

{a; eq—e(i)=—h}p>pn
q=20

By putting

(3.13)
n /8 I 1.n—h
Iy (p,q) = § Cju g +ao—1,s,5'D ba,l(z) 8zokp . /(2w )

(al,s,8",p",q")
p'+ltea=p, ¢'+s'=q,
ea—e(i)=—h, 0<I<aq,
s+5' <ja

which is a holomorphic function in z and w’, we have

(3.14)  Pp(z,0.)(G""f)

- Z /I D, q dw/ K, 4(wo — 20, wo) f (wo, w')dwy

P>pn—n+te(i)—
q>0

+ Z Z ,P;q

{a; ea—e(i)=—h} p>pn

q>0
1 . .
On the other hand, by K¢ o(wo — 20, wo) = ———— + an entire function,
' 2mi(wo — 20)
1 K — /
(3.15) f2) = —— / dw [ Koolwo = 20, w0)f(wo,w) ;-
(27T2)d ’ Co d
H(wj zj)
j=1

Thus by considering the first relation in (3.11) and (3.12) and by compar-
ing the coefficients of K 4(wo — 20, wp), we have equations that determine
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kg  (zw'):
Z ijq/+ao—lysys’plsba,l(Z) azokp (% w')
(a,l,s,8",p",4");
{P'+ea+l=p, q’+s/=q}
ea—e(i)>0, 0<I<ag
(3.16) s+s'<jo
51),0511,

(27i) dH — zj)

where we omit the terms (pr ¢f)(#) in (3.12), because by Proposition 2.6 and

(3.10) they decay exponentially with order ~; as zp tends to 0 in some sectorial
region. Similarly we have from the second relation in (3.11) and (3.14)

(3.17) > Cjo gt ton—tissD bat(2)0% 0L K (2w

z0"Vp',q’
(a,l,s,8",p",q");
{p’+ea+l=p7 q/+s’=q}
ea—ec(i)>0, 0<I<aq

s+s'<ja

e(i)—e(p*™-1)

+ Y Lipa)=
h=1

We decompose the first sum in (3.17) (the left hand side of (3.16)) into
two parts. One is the sum with respect to (a,1,s,s’,p’,¢") with e, = e(i) and
=58 =0, hence p' =p—e(i),q = q. Set

(3.18) P(p,q; 2,0.) = > C aron.s.0(p — €(i)) bao(2)0% .

{(a,s);ea=e(i),0<s<ja }

The other is the rest denoted by I7'(p, ¢), that is, the sum of the terms satisfying
I4+eq—e(i)+s >0

(3.19)
15 (p,q) = Z bcwl(Z)Cja,q’-‘v—ao—lﬁ,s’plsaa aiokg ,q’ (2, 0").
{(MSS’I/ ') }
p'+ltea=p, q'+s'=q,

ea—e(i)>0, 0<i<ao,
s+5' <ja, lH+ea—e(i)+s'>0
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Then it follows from the above decomposition that the equations (3.16) and
(3.17) are written as follows:
e(i)—e(p”—1)
P, ¢ 2,00k iy (20 + I (0 0) + Y Ii(p.q)

(3.20) h=1
01,00p,004,0

@2mi) ]y (w; — 2;)

Here we note that I§(p, ¢) is determined by &}, ., (2, w") with p’+¢" < p+g—e(i)

and I}'(p, q) is determined by k;,._q},‘(z, w').

We show that (3.20) is solvable under the condition (C;). We have Ag (i) =
{a=(ki—l;,d); || =1, jo = 0} and e(i) = —k;+1; < 0. Since xp,(0,¢') £ 0,
we may assume Xpﬂ;(o,é/) 40 for & = (1,0,...,0) € C%, that is, ba@iy(0) #0
for a(i) = (k; —1;,1;,0,...,0) € N**1. Hence further we may assume b, (;)(z) =
1. P(p,q; z,0./) is a partial differential operator with order I;. It depends on
a€o(i) bo(2)0% does not.
By the assumption b,;)(0) # 0, P(p, ¢; 2, 0-+) is noncharacteristic with respect
to {z1 = 0}. Hence we can consider the Cauchy problem for the equation
(3.20). Let n = 0. Then we have the following Cauchy problems for k5  (z,w’)

(p>po=—el(i), ¢ >0):
1
P(0,0;zﬁ,)k‘ie(i) O(Z,w/) = -
(3.21) ’ (2”1)(11_[?:1(103' — )
ot k0 6(1)70(2'0,0,2//’10/) =0 for 0<I<Il;—1,

z1 " —

and for (p,q) # (—e(i),0)
{P(p +e(i), 4 2,02 )kp o (z,w") + 19 (p + e(i), q) = 0

parameters p and ¢, however, its principal part )

(3.22) o
O k) (20,0,2" 0"y =0 for 0<h<Il—1.

z17p,q

Suppose that the coefficients of P(z,d,) are holomorphic in {z;|z;| <
R, 0<i<d} Let0<rg<m <ry<Rand |z] <rg<rs <|w| <o
for 1 < i < d. Then we can define kge(i)70(z,w’) by (3.21). As for (p,q) #
(—e(i),0), Id(p+e(i),q) is determined by {kg,’q,(z,w’);p’ +q¢ <p+q}. Sowe
can solve the equation (3.22) successively. Therefore we obtain k)  (z,w’) (p >
po = —e(i), ¢ > 0) in a neighborhood of z = 0.

Next let n > 1 and consider the Cauchy Problem

e(i)—e(p”—1)
P42, 020k (2w + )+ Y Iipg) =0
h=1
oM k7 (20,0,2",w') =0 for 0<h<l—1.

Z1°Pq

(3.23)
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Since I}!(p, q)(h > 1) is determined by k;,quf(z, w'), we have p, = —e(i) —n and
can solve (3.23) successively. Consequently {k, ,(z,w’); n €N, p > pp, ¢ > 0}
are determined in a neighborhood of z = 0.

We give formal relations concerning & (2, w’). Set

+oo
(3.24) kp.q(z,w') = > ko (z,w).

n=max{0,—p—e(i)}
In particular kp q(z,w’) =k ,(z,w’) if i = p* — 1. Then we have formally

400 +oo oo

+oo
(3.25) G(z,w)=> G"(zw)=»_ > > k', (z,0)Kpq(wo — 20,w0)
n=0 n=0 p=p, q=0
“+oo +oo

= 3 S kpglzw) Ky g (wo — 20, w).

p=—00¢=0

We give another formal relation of {k, 4(z,w');p € Z, g € N}

18 aa’ ql !
E bo1(2)Cjo g +a0—1,5,5'P ;’i@zokp/,q/(z,w)

(a,l,s,8",p',q")
p' +l+ea=p, ¢'+s'=q,
0<I<ag, s+5' <ja

(3.26)
_ 5,.004.0

(2md) /T, (w; — 25)

which is available to show that G is a parametrix. Let us show how to obtain
(3.26) formally. From (3.16) and (3.17) we have for n € N

)

(3.27)

15saa’ gl 1.n /
ba,l(Z)Cja,q’-&-ao—l,s,s’p 2 azo kp/,q' (Zv w )

(el,s,8",p",q")
p’ +lt+eqa=p, ¢'+s'=q,
ca—e()>0, 0<I<aq,

s+5' <ja

e(i)—e(p” 1)
/S aa’ gl 1.n—h !
+ § : E : b%l(z)cjwq/-i-ao—la&slp (] azokp/7q/(z7w)
h=1 (a,l,s,5",p",q")
p' +ltea=p, ¢'+s'=q,
ea—e(i)==h, 0<I<ao,
s+s'<ja

0,00p,004,0
(2m)dnj:1(wj — %)
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By summing up (3.27) formally with respect to n, we have

/S aa’ al /
§ : bml(z)cja,q%ao—hs,s/p 6z’ 8z0kp’,q/(zaw)
(av,l,s,8",p",q")
p'+l+ea=p, ¢'+s'=q,
ea—e(i)>0, 0<I<ao,
s+5'<ja
e(i)—e(p*—1)
18 aa’ gl /
+ E : § : ba1(2)Cjp g +ao—1,s,sD O 8z0kp’7q’(sz)
h=1 (al,s,8",p",q")
p'+l+ea=p, ¢'+s'=q,
eq—e(i)=—nh, 0<i<ag,
545" <ja
517,05%0

b

2mi) Ty (w; — ;)

which implies (3.26). We show in the following section that &, 4(z, w’) converges
(Proposition 4.2). Therefore the relation (3.26) is analytically valid.

84. Construction of Parametrix-2

In this section firstly we show the convergence of k, 4(z,w’) (see (3.24))
and define an integral operator (G f)(z),

+oo oo

(GN(2) = > D (Gpaf)(2),

(4.1) p=—c0 4=0
(Gpaf)(2) = / (2,0’ )du! / K g (10 — 20, wo) f (w0, ' duwo.
c’ Co

Secondly we study the properties of g(z) := (Gf)(z) and (Rf)(z) := P(z,0,)
g9(z) — f(z), and show Theorems 1.2 and 1.3. As in the previous section we
assume condition (C;) for a fixed i, 0 < ¢ < p* — 1 and suppose that the
coefficients of P(z,,) are holomorphic in {z € C*1; || < R, 0 <i < d} and
let 7; (0 < i < 2) be positive constants with ro < r; < ro < R. First of all let
us estimate &y  (z,w’). Recall §; = ; /(i + 1).

Theorem 4.1.  Suppose that |z;| < rg <11 < Jw;| <1 for1 <i<d.
Then there exist constants A, B,C, po > 1 and a small v > 0 such that for
|z0] + plz1| + Zfzz |zi| <7/2 and p > po the following estimates hold.
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If 0<i<p*—2, then ky (z,w') =0 forp<—e(i) —n and

(4.2a)

plpe(i)+n) /3, (Wgﬂ)' la!

n—+q
p ( m) g!
forp > —e(i) —n.

Ifi=p* =1, then kS ,(z,0') =0 for p < —e(p* —1) and

|8akn (Z,’U}/)| < An+1Bp+e(i)+n+q(pC)\a|

z'P,q

(4.2b)
P =)/, (2= ) o

1.0 / pt+e(p*—1)+q lo
02K (2. )] < AB oy 222 .

zZ'Pq

forp > —e(p* — 1). Here constants A, B and C' are independent of p.

The proof of Theorem 4.1 is given in Section 6. We note that if ¢ = p* — 1,
then k' (z,w’) = 0 for n > 1 and kyq(z,w') = kp ,(z,w"). Let us show the

convergence of k ,(z,w') = Y% k

n=max{0,—p—e(i)} pq(z’w/)'

Proposition 4.2.  Let |zo| + p|z1]| + 2?12 |zi| < r/2. Then there are
constants A, depending on p with p > po, B and C such that
A,BU(pM/ B (pC)°! ()l

piq!
A, APLBI(pC) o a ]!

+ |p]
patiplg! (Ml)!

where pg is that in Theorem 4.1.

for p >0,
(4.3) ‘agkp,q('z,wI” <

fori#p*—1 and p <0,

Proof. Assume i # p* — 1. Let p+ e(i) > 0. Then by Theorem 4.1 we
have

+oo
|07 kpq(zw |<Z|5fk2q w')|
n=0
—+e(i)+n
 AB B0y el §X (0 Apye ()
piq! = e (52)!
i+1

A;Bq (pl/éi B)p+e(i) (pC) la ‘a“CéH—e(i) <p+;(i) ) |
pig!
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Let p + e(i) < 0. Then by Theorem 4.1 we have

+oo
02 kpg(z ) < D 02Ky, (2, 0)
n=—p—e(i)
_ AP BI(pC) ]! oo (AB)" /% (5%)!
- pq_P_e('L)q! "0 pn (nfgz;f(l) l

Alpte@| Ba(p0)lel o) £X (AB)"p"% %)

i

T prtirrelgl (RO o (52

i+l dit1
- AATHOIBI(pC) o
T patlpe(ig) (|p+e(z)|)

1+1

The estimate (4.3) follows from the above two inequalities with other constants
Ay, B and C. If i = p* — 1, the estimate easily follows from (4.2b). O

Let W be a small open polydisk centered at the origin and f(z) € O(W(9))
be bounded. Define as in the previous sections (see (3.2))

(Gpaf)) = [ Fpaleot!} K = 20, 0) ()
(4.4)
=/ Fep,q(z,w")dw" | Ky q(wo — zo,wo) f(wo, w')dwo.
c Co
Lemma 4.3.  Suppose that f(w) € O(W(0)) is bounded. Then

(45) /C Kp,q(wo — 20, ’UJ())f("UJo, w/)dwo

Koo = 0) () e

Co

and in particular if i =0 and p > 0,

(4.6) /C K p g (w0 — 20, wo) f (wo, w')davg

- [ ()

Proof. Since f(z) is bounded on W (#), we have (4.5) by integrations by
parts. If i = 0 and p > 0, then §p = 1 and we have (4.6) by Proposition 2.7. [
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By Lemma 4.3 (G4 f)(2) is of the form

(Gpad)2) = [ Fpaler e’ [yt 20) (o) (0w )

and (Gp,qf)(2) € O(W(0)).

Put (Gf)(2) = > ez.4en(Gp,af)(2). Our concerns are to show the conver-
gence of (G f)(z), to estimate its derivatives and to show that g(z) = (Gf)(z) has
the properties stated in Theorem 1.2, that is, G is a parametrix of P(z,d,). We
need estimates of 8%, (wf f(wo,w’)) and 9}, (wd f (wo, w")) for our purposes.

Lemma 4.4.  Suppose f(w) € O(W(0)). Let 0 < 0y < 0 and put M =
sup{|f(wo,w")|;w € W(0y)}. Let V be a polydisk with V€ W andn > 0 be an
arbitrary small constant. Then

< MC{q!
~ (sinny)?

4n () wbstwn) for = € V(B — ),

where Cy is independent of f(w) and 7.
Further assume f(w) € Asy,(W(0)). If v > 0 and |0, f(w)] < MF"
(n/o)! (6§ =~/(y+1)) for z € W(by), then

<

o\ MF"Clq! /n
(48) |(%) wlf (wo,w)| < =0 (%

(sinm)e \§

)! for z € V(6y —n),

and if v =0 and |0y, f(w)| < M,, for z € W(by), then

M, C7Ciq!

(st ) for z € V(6y —n),

(19) ‘( 0 )n+qw3f<wo,w'> <

g -

where Cy and Cy are independent of f(w) and n, and F does not depend on n
but depends on the constant F' appearing in the bounds of 0;, f(w).

Proof. Let z € V(0y — n). Then by Cauchy’s integral formula

<8>q qf(w)—q_! C1f (¢, w')d¢

dwo 27 Jz (¢ = w)att’
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where Z is a circle ¢ —wg = |wo| sin(n/2)e’? (0 < ¢ < 27). We have [¢] < 2|wo|
on Z, hence

o\, Ml 2 MCg!
_ < q < 04
‘(aw) o (“’" < 27T(|w0|SiH(77/2))q/0 CF'de < Ty

Before proving (4.8), we note that \wg(%)qf(w)\ < MC{q!/(sinn)? holds by
the same method. Suppose f(w) € Asy;(W(#)) with v > 0 and [0}, f(w)| <
MF"™(%)! on W(6p). Then by the above remark

w3dSt f(w)| < MF™ (%)!Cgs!/(sinn)s.

We have 0F9wif(w) = Y7 ("F9) (qflh)!wg‘hag;rq h f(w) by Leibniz’ for-

mula, therefore

|8Z:'qwqf(w)|§MF”(%) i<n+q>0q h/(smn) —h

_MEUGH(1L4 Gy ) (3)lal _ MERCR (3)1gl
- (sinn)? T (sinn)4

This means that (4.8) holds for F, = C1F and another Cy. We can show (4.9)
for f(w) € Asyo1 (W (0)) by the same way. O

Now let us proceed to show the convergence of (Gf)(z) and to obtain the
bounds of its derivatives 0! (Gf)(z). Let f(z) € O(W(f)) be bounded. We
(

have in the same way as Proposmon 3.4, by putting @ = (n,0,...,0), jo =0
and b, (z) =1,
a7, / k;p,q(z,w’)dw'/c K, 4(wo — 20, wo) f(wo, w")dwo
0
Z n l7p,qf (R* ,p,qf)(z)7
1=
where

(Gt )2 ( ) [ &t

x / K1 (w0 — 20)0%, (wl (w0, ')
Co
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and

(Rl 2= <’Z) /C 0 gz, 0y

< / Ry —1.0(w0— 20)0, (@S f (wo, w'))dwp.
Co

We note that (R}, f)(2) =0 for p < 0. Define I, , by

n,p,q

I, = ( )/ kpin—1.q(z,w")dw’
qeN

0<i<n

X Kp(wo — Zo)azjo (w%f(wo,w’))dwo.
Co

Then we have

(G = Y (Grupal) D)+ D (Bh,.H(2)

PEZ,qEN PEZ,qEN
0<i<n

= Z I"J’ + Z (Rz,p,qf)(z)
PEL peN,geN

provided the above sums converge.

Proposition 4.5.  Suppose p* > 2,1 € {1,2,...,p* — 1} and f(w) €
Asy 1,y (W(0)) with viy1 <y <i. Let 0 < 0" <min{0,7/27;}. Then there is a
polydisk U such that (G f)(z) converges on U(0") and (G f)(2) € Asy 4 (U(0')).
Moreover if f(w) ~ 0, then (Gf)(z) ~0

Proposition 4.5 is obtained by estimating I,, , and (R, ,  f)(2). The de-
pendence of the polydisk follows from the following proof and we comment it
in Theorems 4.7 and 4.8.

Proof. Firstly we give the proof for 1 < ¢ < p* — 1 and secondly for
i=p"—1.

(1) Suppose 1 < i < p*—1. Then 0 = yp+ < ¥i41 <. S0 0 < =
v/(y+1) < 1. Let 6y be a constant with 8’ < 8y < min{d, 7/2v;} and 0 < n <
0o —0'. Then there are constants M and F' such that [0y f(w)| < MF"(%)! for
2z € W(6p). Let V be a small polydisk centered at the origin with V' € W such
that estimates (4.3) in Proposition 4.2 and the estimates in Lemma 4.4 hold for
z € V(0o —n). We study the convergence of >, I, , and > (R}, , o f)(2).
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Convergence of Zpez Let p > 0. Then by choosing p > 2BCy/sinn, B
and C with B > C, it follows from (4.3) and (4.7) that

)qnl( pl/% Bypn=l(pC)! (Hgil)!

A,M(BC,
<ZZ : (n—1)!

n,p
q=0 1=0 pSlIl?’]
n Ll (%—l)v
Kp(wo — 20)||dwo| < 24,M (p*/% B)P+" :
CO| ol z; Bp1/5 (n—1)!
C l
< [ 1yt = z0)lldo] < 24,0615 e (L )3 (E)
=0
x/ | Kp(wo — 20)||dwo| < Aj,M(p 1/8: gypin (p:; )
Co
x/ | Kp(wo — zo)||dwol.
Co
i 1 p|!
Let p < 0. Then it holds that K,(wo — 29) = %W and
b Ipl+q
(@10) [ Kytun — 0)08, (w oo o = (5= ) GG
0

If —n < p <0, then by (4.3) and (4.8) and by choosing p > 2BCy/sinn, B
and C with B > C,

S McgEr (1)
E E 1/8; pyp+n—1 p+n—1\," 5
[ p| < ApB(pV % B)P " (pC) ( ) q

q=0 \0<i<p+n (n—DYpsinn)

>

6
l—p—n (l=p=n ) (n —1)!(psinn)?
p+n<l<n P 51 )

g
<24,MFV <M> (Bl )p+n (&) (
0 0<l<p+77, -

M A_p__"_F () 5 (AC)'n!

e p+n<i<n (l},”_")!(nfl)!

< A;,MFlmB{L (%') I(Bp/%)ptn (?)l

L

A Al—r— an(pc)l n'MCqFlpl

+n

p=P="|p|!
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If p < —n, then we have in the same way as preceding

n ApAl—p—anCl ’I’L'MCgFlm (%)

[ np| < q;) ; - (l—ép—n)! (n—1)!(psinn)?

i+1

24,M A Fp (B (AC)!
P — ) Z (l pnn

= (55 ) -t
24,MA=P~nFJP! (%)! " I(AC) A MEP e <%)
p—P—n (#)! — Nn—10!— pp—n (ﬂ)!

i1 it

IN

<

Hence by the above bounds for I, , and Proposition 2.7-(2) we have

(4.11)

F\p\cn-s-\pl (%>
Do npl < AM D -
PEL p<-n P P7 n( Oit1 )
[pl ~lpl+n (Bl \ 1,1
+ Z F|p\B1 (|p) 1/5 p+n <p+n) FCY (5)71
—p—n '
—n<p<0 p P |p‘
) n +n
# X () 1w - 2ol
p>0 Co
(F,.Cy)l! ( )

B

<A MF"
- 1;) il (2L):
G

L+1

+ A, MF!B] ()! Z (pM/% Byt 4 CP7(Cyp)P )
n<p

o & p P2 (p;n>'
+ ALM(pM O B)" | Agyp+ D Ay (01 B)Pd T 2
p=2 57)!
Suppose v > 7;+1. Then § > 6,11 and Zp<0 (F.Cy)P! <|P|+n> /plp\ ( Ip| ) con-
verges. For fixed p choose the constant d > 0 so small that szz Ag, (p*/% B)P
d%(%)!/(ﬁ)! converges. Thus 3 |
U and there are constants A and B depending on p such that 3 [l n] <

AB™(%)!. The polydisk U depends on p, namely, on ¢’ but not on f(w). Sup-
pose ¥ = ¥;+1. Then d;41 = . In this case first select p with F.C; < p/2,

I,,,| converges in a small polydisk
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then - (F*Cl)‘pl(‘p =)!/plPl( |1+‘1

small that 3777, Ag, (pl/‘;lB)pd 5 (p;s"—i")!/(ﬁ—i). converges. Hence > (I,
converges in a small polydisk U and 3 [In,| < AB"(%)!. The polydisk U
depends not only on ¢ but also on F}, which is determined by the constant F'
appearing in the bound in 9y f(w).

)! converges. Fix p and choose d > 0 so

Convergence of >, on(R;, , . f)(2). Asremarked above, (R}, ,  f)(2) =0

n,p,q
for p <0, so let p > 0. It follows from Proposition 2.6 and Lemma 4.4 that

Ry n—1,0(wo — 20)9%, (wi f (wo, w"))dwo

P —1- MCiq!
5 exp(—cl|zo|77) (n 5 p)!(SmTO];Iq for 0<p<n-—I
K]

1
5 exp(—c|zo| ™) MCjq!

(pfé—nJrl)! (sinn)?

i

Co

AB?'d

for p>n—1.

Choosing p > 2BCy/ sinn, we have by Proposition 4.2

ONCATICIEN DRI (A LAWERT

p,qeN p,qeN
0<i<n

A MB? exp(—clz|

X Ry —1,0(wo — 20)0% (wl f (wo, w'))dw,| < —L—— p(—clzo| ™)

-
d

Co
a(,1/% gyp L2 )it (2 )
x 3 an Y (BCo)! (/% B (pC/ B}t (£ )1t (52!
qEN pHi=k (psinn)i(n —1)!
0<k<n 0<I<k
. ApMBY exp(—clzo| ) Zdi- (BCo)*(p** B)?(pC/B1)! 5%)!”!
0% e (psingyi(n -1t ()
k>n  0<I<n

)
(o5 B (pC/By)! (£ )int (52!

2A »M B} exp(—c|zo| ™)

= Zda >

(n—1)!
0<k<n p+l=k
0<i<k
&
2A pM BY exp(—c|zo| ) Z d (p'/* B) (pC/By)' (6%)'”'
ddsi kon (k(s—bn)| piek (n — l)'
0<i<n

(pM/3Cy)kd (g)'

k=n\)
0<k<n k>n 5 )

 AME Tl (),

< e 5) Z((dﬂ)l/a"cl)k‘i‘z

Y



SOLUTIONS WITH ASYMPTOTIC EXPANSION 273

Thus 3 ey [(B), 5,4 f)(2)] converges for small d > 0 and there are constants
A and B depending on p and d such that

(4.12) > (R, 0 (2)] < MAB™ exp(— c|zo|—w)(__>!.

p,qEN

Hence we have by § < d;

02,(GHEN < D Mgl + D2 (B f)(2)] < MAB" (51

PEZ p,q€N
The estimate of 9% (G f)(2) means (Gf)(z) € Asy,,1(U(")) for some U.

(2) Suppose i = p* — 1. Then ;41 =0,+ =0. In this case (G, f)(z) = 0 for
p<—e(p'=1),50 (Gf)(2) = 32}, gen(Gp.af)(2) and 0% (Gf)(2) = 3202, Tnp+
Zp,qEN( n,p,qf)( ) and

min{p+n,n}
n,p = Z Z ( )/ kptn—i,q(z, w")dw'

qeN =

Kp(wo - zo)%o(w%f(wo, w’))dwo.
Co

Let § > 0. Then the convergence of Zp, n Inp and its bound follow in the

same method as above. Next let 6 = 0. Then by (4.9) in Lemma 4.4 for
—n < p <0 we have

Ipl ~q
1/8,+ 1 p\p+n—1  p+n—1\, nMpCyCh
T S o e e

pr ) T Dlpsinay

<24 M. CPln 1/8,% _1\p+n (%) (fs):nj)
< 24,M,, C"'n)(Bp /v -1)P Z e < C,(p,n).

0<i<p+n

For p > 0, we have in the same way as the case i > p* — 1

n(Ptn
> SA;M()(Z(pl/ép*lB)M <§_>! Kp(wo—z0)|dwo|>
Co

p>0 p>0 pr—l

%) b2
< A;Mo(pl/JP*,lB)n A@g,p + ZAQO (pl/ép*71B)pd5p*,l

|
p=2 (517* 71> ’
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Therefore 327 | [Inpl <3, <0 Co(psn) + 3,50 npl- By choosing small
d > 0, we have > [l < +oo for z € U(0'). Here U is a small poly-
disk and does not depend on f(w). The convergence and the estimate of
> paen(Bp g f)(2) follow in the same way as the case i < p* — 1. Hence
(Gf)(z) € Asy oy (U)(0").

(3) Further suppose f(w) ~ 0. Then it holds that lim,,_.o(Gn1,p,qf)(2) =
0 and lim,, . I,; = 0. We have (Gf)(z) ~ 0 from the above proof. O

Proposition 4.6.  Let i = 0 and suppose that f(w) € Asy,,(W(0))
with y1 < v < 0. Let 0 < @ < 6. Then there is a polydisk U such that (Gf)(z)
converges on U(0") and (Gf)(z) € Asy 1 (U(8')). Moreover if f(w) ~ 0, then
(Gf)(z) ~0.

Proof. We note that §y = 1 and fCo Rp.n—1,0(wo—20)0%, (w§ f (wo, w"))dwy
=0. So (R}, ,,f)(2) = 0. The proof is almost the same as that of Proposition
4.5. The only one difference is that we use Proposition 2.7-(1) to show the

convergence of >, I, (see (4.11)). O

It follows from the preceding arguments that the following more precise
results concerning the convergence of (G f)(z) hold.

Theorem 4.7.  Suppose that p* > 2, i € {1,2,...,p* — 1}, Condi-
tion (C;) holds and f(z) € Asy ,(W(0)) with vit1 < v < . Let 0 <
0" < min{5>-,0}. Then there is a polydisk U C W such that (Gf)(z) =
> p.acz(Gpaf)(2) absolutely converges on U(0') and (Gf)(z) € Asy 4 (U(8')).
The dependence of U is the following.

(1) If i £ p* — 1 and v > 41, then U depends on €' but not on f(z).
(2) If i £ p* — 1 and v = 41, then U depends both ' and f(z).
(3) If i = p* — 1, then U depend on 0" but not on f(z).

Theorem 4.8.  Suppose that Condition (Co) holds and f(z) € Asy,,
(W(0)) with v > v1. Let 0 < 6" < 0. Then there is a polydisk U such
that (Gf)(2) = >, 4en(Gp,af)(2) absolutely converges on U(0') and (Gf)(2) €
Asy 1 (U(8')). The dependence of U is the following.

(1) If p* =1 or vy > 71, then U depends on 6’ but not on f(z).
(2) If p* > 2 and v = 1, then U depends both 8’ and f(z).
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Under the assumption that for fixes ¢ Condition (C;) holds, we have defined

(Gf)(z) for f(z) € Asypy(W(0)) and shown (G f)(z) € Asy 1 (U(8')). Let us
write again the form of (G f)(z),

(4.13) (Gf)(z)= / G(wo — 20, 2, w) f(w)dw

+oo +oo

Z Z/kpq z, W) Kp q(wo — 20, wo) f(w)dw.

p=—00g=0

We show that ¢g(z) := (Gf)(z) and (Rf)(z) := P(z,0,)(Gf)(%) — f(z) have de-
sired properties in Theorem 1.2. For this purpose we calculate P(z,9,)(Gf)(z).

Lemma 4.9. (Rf)(z) is written as follows:

(Rf)(2) =Y (RE, 4H)(2),

a,p,q

(4.14) ( wpal Z Ciara’ +ao—1,5,5' a1 (2 /aa Kip,q (2, w")dw’

0<l<a0
s+s’ <Ja

<[ Rometatin = 20)005 (™ ),
Co

where ba(2) = (%°)ba(2).

Proof. By Proposition 3.4 we have
(4.15) zé“ o ( 80‘/ kp.q(z,w")dw' . p.q(Wo — 20, wo) f(wo, w")dwg
0

= bau( / 8% . kp.q w'( > Chograo—tos

5+8'<ja

></ psKP+ea+l,q+S’(w0_ZOawO)f(wOaw/)dw()) + (R, . N)(2).

Co
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(R¥, ,f)(2) is given by (3.10) in Proposition 3.4. We have by (3.26) and (3.15)

P(z,0:)(Gf)(2) = Zzba»l(2)< Y Ciagtaotos

p,q, 1=0 s+8' <ja

X / 83/aiokpxq(z7 w/)pst+eu+l,q+s’ (ZO — Wo, wO)f(w)dw> + (Rf)(z)
C

:< Z /C< Z ijq’+oz07l,5,8’p/sba,l(Z)
PEZ,qEN

(a,l,s,5",p",q")
p' +ltea=p, ¢'+s'=q,

0<i<ag, s+5' <ja

x 0% L by g (2, w’)) Kpq(z0 = wOWO)f(w)dw) + (Rf)(2)

G . Kﬁod(zo ) )+ RI(E) =)+ (R)(2)

Where (Rf)(z) = Za,p,q(Rﬁ,p,qf)(z)' D
The next purpose is to estimate (Rf)(z).

Proposition 4.10.  Suppose that condition (C;) holds for fixed i # 0.
Let f(z) € O(W(0)) with 0 < 0 < 7/2y; and 0 < 0’ < 6y < 0. Put M =
SUP.ew (go) |f(2)]- Then there are positive constants A and c¢ and a polydisk U
depending on 0" such that (Rf)(z) converges on U(0') and

(4.16) [(Rf)(2)| < AM exp(—c|zo| ™).

Proof. Define h, sop € N as follows:

(4.17) h:moz}xoggﬁo lea +1], §0 = MAX jo,

where a € N with a,(z) #Z 0. Let V € W be a polydisk centered at the origin
and 0 <7< 0y — 0. Then by Lemma 4.4 |07, (wg f(wo,w’)] < MC§q!/(sinn)?
for z € V(0p — n). By Proposition 2.6

[ Rt = 20)088 (™ fawn, w)du € O(V(0')
Co
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and if p < —h, it is identically zero. Hence (R¥, f)(z) = 0 for p < —h.
Suppose p > h. Then

Ry —e—t,6(wo — 20)0% (wd ™ f(wo, w'))dwy
Co

p—h

_ ABM1+ |pl)od’T e=cl=ol T ACIT (g + 5
) (pé_ih> !(sinn)a+s’

By Proposition 4.2 we have

(R, DHI< > ‘Cja,q-‘rao—hsxs'ba(z)l/ 102 0L Kp.q (2, 0| du' |
0<i<ao ¢
5+s,§jo¢

!
X Ry, —1,s(wo — 20) 055 (wd™ f(wo, w'))dwy

Co

—h
A/BhM(l—F |p|)50deie—c|zo|*% o
< () JRCERmesir

i

C(()H-s/(q + S/)' |O |
Y o Claatao—Ls,s'
SJFSIS]-Q (Sln /r])q s

s u —clzo|™ 1/6; P
_ ALM(1+ [pl)*ed % e |20l B(p'/% B)? (5)
- (p(;h>! piq!

<[> Co (g + )L+ o>
(sin )+’

548" <ja

p—h

< ApMee ol (L [p) R (01 B)

p chgﬂ'a (g4 jo)!
pQQ!(Sin n)Q"!‘ju ’

Put (Rﬁypf)(z) = quN(Rﬁp,qf)(z). Select p so that p > 2BCy/sinn. Then
(R¥ ,f)(z) converges and

—74 so+L 2R )
(4.18) (RE,D)(2)] < ApMem =l (14 |p|)*Tord s (p1/* B)P,

where p depends on 7 but not on p. If |p| < h, by Proposition 2.6 we have in
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the same way as above

R, e, —1,s(wo — zo)ﬁgjgs/(wgﬁ f(wo, w"))dwg

Co
p—h S,
~ ABM1+ |pl)*d exp(—clzo| " )MCGT (g + 5)!
- piq!(sinn)rts’
p—h ) !
- Aldw exp(—¢|z0| ) MCIT (¢ + s’)!-
- piq!(sinn)ats’

Hence if p > 2Cy/sinn, then (R¥,f)(z) converges and

(4.19) |(RE,£)(2)] < A,M exp(—clzo| )d"5 (p/% B)?

holds. Choose d > 0 so small for fixed p such that dp'/%B < 1/2, then
(Rf)(2) = X a0 ps_n(RE,f)(2) converges and (4.16) holds. O

We remark that the parameter d contained in the operator (Gf)(z) and
(Rf)(z) is chosen so small and fixed. Originally d is the parameter appearing in
the definition of g, (). Therefore the functions derived from §, (), for example,
K, 4(wo — 29, wp), depend on d.

Thus if i # 0, we have from Theorem 4.7 and Proposition 4.10.

Theorem 4.11.  Suppose that conditions in Theorem 4.7 hold. Then
there is a polydisk U such that (Gf)(2) € Asy,,(U(0")) and (Rf)(2) ~ 0 in
Asygy (U(0')).

We have for i = 0.

Theorem 4.12.  Suppose that conditions in Theorem 4.8 hold. Then
there is a polydisk U such that (Gf)(z) € Asy,,(U(0")) and P(2,0.)(Gf)(z) =
f(2).

Proof. For i =0, we have §y = 1. It follows from Proposition 2.6 that
Jou Bo,—ea—t,s(wo — 20)0L5 (wg™ f(wo, w'))dwo = 0, hence (Rf)(z) =0. O

Thus from Theorems in this section we conclude that g(z) = (Gf)(2)
has desired properties in Theorem 1.2. Theorem 1.3 follows from Theorem 1.2.

Proof of Theorem 1.3. We assume conditions (C;) for i = 0,1,...,s. Let
f(2) € Asy ., ()(0) with v > vs41. Let 0/ = 0 < 01 < - < 05 be constants
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with 6; < min{0, 7/2v;} for i > 1. It follows from condition (C,) and Theorem
1.2 that there is a gs(2) € Asy.;(Us(0s)) for some polydisk Us such that

P(z,0:)9s(2) = f(2) +75(2),

where 75(z) ~ 0 in Asyy, 1 (Us(0s)). By condition (Cs-1) there is a gs—1(2) €
Asy{%}(US_l(Qs_l)) for some polydisk Us_; such that

P(z,0:)gs-1(2) = —rs(2) + 1s-1(2),
where r5_1(2) ~ 0 in Asy{%fl}(US_l(es_l)). By repeating the argument, from
condition (C;) there is a g;(z) € Asy,, . ,;(Ui(0;)) for some polydisk U; such
that
P(z2,0.)9i(2) = —rit1(2) + ri(2),
where r;(z) ~ 0 in Asy 4 (U;(6;)). Finally it follows from condition (Co) that
there is an exact solution go(z) € Asyy, }(Uo(6o)) of
P(z,0.)g0(2) = —11(2)

for some polydisk Up. Consequently u(z) = 377_, gi(z) € Asy ., (U(0")), U :=
Uy, satisfies P(z, 0,)u(z) = f(z).

85. Proof of Proposition 2.3

In this section we give the proof of Proposition 2.3 and d is a positive
constant. For this purpose we give lemmas.
Lemma 5.1.  Let a,d and s be positive constants. Then for 0 <n <1
*° e~ Madg)
(5.1) / e rider < —— .
d (L =mn)a)>*
Proof. We have
e~ nadg)

(5.2) / e"xidr < e_”“d/ e"(Immazgsgy < ——
d d ((L=mn)a)s+!

Lemma 5.2.  Let ¢, and h be positive constants. Then

(5.3) sup et th < Ac% (%)'

t>0

where A is independent of ¢,6 and h.
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Proof. We have by Stirling’s formula

S5 h
—ct th z,.¥

h h 5 h h h
=c 5| = e s <AcTs [ =)
>0 >0 (5> N (5>

_h _
sup e =c Jsupe “z

Proposition 2.3 gives the estimate of 7,5 s(A) = psfg)h()\) + AL (),
where 79, (A) := MG,(X) — gp—n(A) (see (2.8)). As for the estimate of 7 ()
we have

Lemma 5.3. (1) Let h > 0.
(1-i) If p <0, then 7, (A) = 0.
(1-ii) Suppose|arg \| < ¢ < g5. If0 < p < h, then there are constants A = A(¢)
and B = B(¢) such that

p— cos h—
(5.4) ‘fg,h()‘” SABhd She_d( 25<¢>)‘)\|5 (Tp>'

If p > h, then there are constants A = A(¢) and B = B($) such that

d [ 5
_ (C025 ) |)\‘6

AB"d"5

(5.5) 70, (v < ABd T e

’ (u)l
1),

(2) Let h < 0. Then 7, (\) = —)\hfg_h,_h(A)-

(2) If p < h, then 7 ,(X) = 0.

(2-ii) Suppose|arg | < ¢ < g5. If h < p <0, then there are constants A = A(¢)
and B = B(¢) such that

(5:6) 179, (V] < ABIMGE x| ~IMle= “522 IN° (?).

If p > 0, then there are constants A = A($) and B = B(¢) such that

d(cos § 5
_ (02 (D)IM

ABIMd5 e
~0 <

Proof. (1). Let h > 0. If p < 0, Mg,(\) = \P = g, ,()\). Hence
fgﬁ()\) = 0. Suppose 0 < p < h. Then we have

>\h+6

d
N'gp(N) = w/@ e NCEAC = NP 470 L (N) = Gpen(N) + 70, (N)
P)1
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with

o Nl
prh()\):—w/d (& C‘SdC
5)

By Lemmas 5.1 and 5.2 there are constants A = A(¢) and B = B(¢) such that

for [arg \| < ¢ < 35

|
70 h(0)] < ArPe~dacosoan? (1)
ph - cosd¢

cos ¢

2y h—p
< A 4 ° e—%dcos(éqﬁ) 4 ° h_p !
- cos ¢ dcosdp 1)

S ABhd%e—%dcos(&b) (h‘ _p)|

4 E+1
_ ( ) 6—%dcos(5¢) % e 4dcos(6¢)|)\\ |)\|h p

]

This implies (5.4). Next suppose p > h. Then we have

A 220 0 p=h
A hgp_h(x):m/ A cg dg/ 77 5 dn

220 d_ . y oo
Gl

26 o0 d T
+)\7/ e_A%dx/ (x—y)%y%dsz—I—H.
d 0

B (=2)

By using the relation of Gamma function and Beta function, we have

J d 6 pd 5,—20d g2 41
I= L/ e N ok Hlgy = )\—/ e N0 % dr — M
(5+1)tJo (2)! Jo (E+1)!

|

)\68—/\5dd§+1

=N - (Z+1)!
Hence

>\5+h€—A5dd§+1

(5+1)!

P n(A) = —A"I+



282 Sunao OUCHI

As for AT we have

—h
)\26+hde+l oo s n
IARI) < Al - e N5 da
(2= )
(3)r(252)r (252 + 1) Mo
B |>\ pgh+lei3dcoi(6d))‘)\|6 hdp%h,eidcoz(5¢)‘)\l5

< i < AuBy PR
—h cosdgp \ ? (; + )
(5 () a

Therefore

dpgh dcos(é(b)')\‘é d% 7dcos(5¢)‘)\|8 cos(6) .
70, (0| < A1 B Nt X
(— - 1)! (5 +1)!
cos(5¢) B} p—h h dcos(5¢) S h
A5t o= TSN L A5 e I (B
<A, B" + A, Bl p ' (3)
(T + 1>! (3 + 1)'
<ABhdp h dcosz(é(b)l)\‘é

(=)

where constants Ai, By, Az, B, A and B depend only on ¢. Thus we have
(5.5). By the definition of 7 ;, (A) we have 7) , (\) = — Mk A h._n(A). Hence the
estimates of 7 , (A) for 2 < 0 in (2) follow from those for h >0 in (1). O

Proof of Proposition 2.3. We have to estimate 7 (). Since 0 < s < s,
it follows from (2.8) that |1, ()| < Ad5 (1 + p)*o- e S ) () for p > 0
and 7211),5(/\) = 0 for p < 0. Now suppose h > 0. If p < 0, it is obvious that

Fons(A) =0.If 0 < p < h, then

[7p.0,s (W] < D717 (V] + A7 (V)]

<paptaT e (D),

dcos ¢ 5
co; 0‘)\|

(5)!

Bt o= I <_h = p)! (by Lemma 5.2).

Ad (1+p)50 1o— eidco:¢0‘A|5(|A‘§d)%

<Ai(1+p)
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If p > h, then

7.8 (V] < 217 (W] + A7 5 (V)]
_ PABMIT e TEENTAhAdE (14 p)ete TR
- (252): (5)!

_ d(cc; b) ‘)\lé

p—h
5e

_ AQ+p)rBd
= (M)|
=]
| AT (1 g te S A SO ()
)

—h d E S5
p—h (C(;d))l)“

_ A +p)eBidTe

- (ﬂ)l

= !
Suppose h < 0. In the first case of p < h(= h_), we have 7, 5 s(A) = 0 by
Lemma 5.3 and 7, (A) = 0. Secondly if h < p < hy (= 0), then 7, <(\) =

0, (A) and by Lemma 5.3 [ 5.4 (V)] < ABII(14 [p])sodb e ="M (=2)),
In the third case of p > 0, we have for |A\| > 1

(by Lemma 5.2).

d ¢ 5 3d ¢ s
Heg el FE

ABM(1 4 |p|)*ods e~ AdS (1 +p)ote”
REIOE i REIOE

_ MBI+ [pl)afe TR

- 0]

This completes the proof of Proposition 2.3.

‘ﬁmh,S()‘)‘ <

§6. Estimate

The purposes of this section are to give Lemma 6.1 used in the proof of
Lemma 2.4 and to show Theorem 4.1, that is, to estimate k) (2, w’). The latter
is the main one.

Lemma 6.1.  Let g(t) be a continuous function on [0,T] (T > 0) and
v be a positive constant. Suppose that there exist positive constants A and B
such that for any n € N

(6.1) lg(t)] < AB™t" (%)' on [0,T].

Then |g(t)| < CoA(Bt)~=7/2e=(BY"" holds for a constant Cy that is independent
of A and B.
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Proof. First we assume B = 1. Let n € N with v/n < T7. Suppose
that v/(n + 1) < t¥ < 7/n. Then, by (6.1) and Stirling’s formula (n/y)! ~

n/vy
(%) . /QW%e’”/V as n — oo, there is a constant Cy such that

n -t~
T\~ (1 N _(n e
o) <4 () (;)! < COA\Ee 0/ < oA

This means |g(t)| < CoAt="/2e7t " for t € [y/(n+ 1),v/n] and for all n € N
with v/n < T7. So the assertion holds for B = 1. By considering g(t/B), we
have the estimate of g(t) for B > 0. d

In order to show Theorem 4.1 we need majorant functions. For formal
power series of N variables z, A(z) = > Aqa2z® and B(z) = ), Baz®, we
define A(z) < B(z) by |As| < B, for all @ € NV, A(z) > 0 means A, > 0
for all o € NV, Let (¥ (t) (k € Z) be a sequence of majorant functions in one

variable t,
PR (1) = K /(r — t)FH for k>0,
(6.2) t
D) (1) = / YpEH(r)dr for k<0,
0
. cps (k) d¢(k) _ o (k+1)
where 7 is some positive constant. Then ¥\*)(¢t) > 0, 7(7&) =1 (t) and

if 0 < r <1, it holds that *) () < ¥*+Y(t). By modifying 1*)(t), let us
define another family of majorant functions \IJ,(CS)(t) (k€ Z, s € N)

(6.3) () = (i> {R,RL tw(k)(t)} where 0<r <R <1.

We have (R’ — t)\Il,(:)(t) > 0 and
Lemma 6.2. (1) The following inequalities hold:

o U ) > v ), w0 > eV, w0 > e,
6.4

o R,\Il,(f)(t) > ((R—t)"' 1) for R <R

(2) Ifk >0, then

(6.5) PR () < B (1) < R,i_lrz/}(”k)(t).
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(3) Ifk <0 and R’ > 2r, then

2lFIR!

(s+k) (s)
(6.6) P (t) < v, (t) < R —or

w(s-&-k) (t)

(4) Let |t| <r/2. Then

A ok+1L|
W ® (1)) < 5 Jor k=0,
(6-7) 2|t|‘k‘
OO T for k<O

(5) Let|t| <r/2, R > 2r, s >0 and k > 0. Then there exist constants Cy
and C such that

. CoOpTes!
(6.8) [T @] < ==

The proofs are not difficult and we refer them to [3] or [8] (see also [1]
and [10]). Now we proceed to estimate kj ,(z,w’). We assume the condition
(C;) for fixed i € {0,1,...,p* —1}. Hence we have e(i) = —k; +[; and assume
ba(iy(2) = 1, where a(i) = (ki —1;,1;,0,... ,0) as in Section 3. Suppose also that
the coefficients of P(z,d.) are holomorphic in {z € C!; |z;| < R, 0 <i <d}
and let r; (0 < i < 2) be constants with 0 < 79 < r; < ro < R as in the
preceding sections. We use \I/;S)(t) defined by (6.3) and assume 0 < r < ¢ and
2r < R’ < R <1 to apply Lemma 6.2 to the following estimates. We have

Theorem 6.3.  Suppose that |z;| < 1o <11 < |w;| <71 for 1 <i<d.
Then there exist constants A, B, ¢ and py > 1 such that for p > pgo
if0<i<p—2

. 5,
69) k" (s < vt prre@nra 27T g,
) D,q\*? ot
+oo p+e(~i.)+n +m
x| Y (L+p+e(i) +2n+q)’“qz([ E ) (t)

r=0 1% ] -

and if 1 =p*—1,
+e(p*—1)) /8, —

(6.10) Kk ,(zw') < ABP+€<P*—1>+qp(p — L pel+lpl+a)z

pq

x §(1+p+e(p*—1)+q)’"‘1’([p+;”(f11>]+m>(t) ;

—q-r
r=0
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where m is the order of P(z,0,), t = zo + pz1 + 22-1;2 zi, p > —e(i) —n and
qg=>0.

For our purpose let us write again the equations that kj (z,w") satisfy

P(p+ (i), ¢; 2,0 ) kpy 4 (2, w')

e(1) e(p—1)
(6.11) +I(p+ei) )+ Y Ip(p+eli).g) =0,
h=1
oLk (20,0,2",w') =0 for 0<1<I;—1,
where
Pp+e(i),q;2,0) = > Cjo gta0.00"ba0(2)0%
{(,8);ea=6(i),0<5<ja }
Iy (p +e(i),q) = >
{(04 l,s,s",p",q") }
p'+l+ea=p+e(i), ¢'+s'=q,
ca—e(i)>0, 0<I<aq,
s+5"<ja, l+ea—e(i)+s'>0
ba,l(Z)ijq/-l-ao—l,&S'p/saa aiokg q (Z,w’)
and

I (p+ (i) q) = )

(s ,s'p".q")

p'+l+ea=p+e(i), ¢ +s'=q,
eq—e(i)=—h, 0<I<ao,
3+s/§ja

ba,l(Z)ijq’-s-ao—l,s,s/pl 620143; qh(z w').

Before proving Theorem 6.3 we give a lemma.
Lemma 6.4.  Let u(z) be a solution of
P(p+ 32,0, = ,
612 (0 + (i), 2 0.0 )u(2) = f(2)
8ilu(zo,0,z =0 for0<I1<l;—1.

Suppose further that f(z) < ec(HPIFO21plig@ (1) g b € N. Then there ex-
ist co, po > 1 and Ay which are independent of a and b such that u(z) <
Alec(1+|p|+Q)Z1\I/‘ib(t) holds for ¢ > co and p > po.

Proof. We may assume ¢ > 1. Put

P'(p+e(i), g;2,0.) = > Cio b ro,.00° b0 (2)0%
{(0&»8)7 aa(i); }

ea=e(i),0<5<ja
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Then
(6.13) 6i1u(z) =-—Pp+e(i),qzd.)u+ f(2).
Since |Cy. g+ag.5,00°| < Co(1 + q)?=*[p|* < Co(1+ |p| + ¢)?> by Lemma 3.2,

Cjosita0,5,00° a0 (2)0% (eCUFIPIFDZge (1))

aq

< O(1+ [p| + g e+ 0= (Z (%)t + q))“l-lpl@i*;“"'“a))

=0

aq
< Clecttriraz (Z 4 |p| + q)ja+a14pz\1,i:|a H(t)) '
1=0

It follows from the relation e, = e(4), that is, jo, —ag = —k; +1; that j, + a3 =
ag— ki +1l;+a1 =1; — || — k; + |a] <1; — |&”|. Hence it holds that

Ciurgtans,0P°ba 0 ()02 (eCIHPIFDGe (1))

|o']

< O e FIpl+a)z Z Clo/\—l(l + |p| + q)l'i_lpl_la//|Wi+bl(t)
1=|a|

and

= P (04 (i), 452, 0) (Are P02, (0) £ £ () < OO

o]
x > AL CT [ YD I @ pl + ) e )
f(os) adao: ) o]
ca—e(i) 05 o

+ ec+lpl+a)z pli \Iﬂi—gli (t).
On the other hand

0 (e O Dn , 1)
l;

1
_ Alec(l—HpH-q)m Z (;) Cl,y—lpl(l + |p‘ + q)l,;—l\l,ti—&l;l(t).
=0

For o # (i) with e, = e(i) we have I; > |a'|, moreover, |&'| < I; or [a”]| > 0
il

holds. So lim, o0, c—oo 77 = oo and there exist cog > 1, pg > 1 and

C|a’\—lpl—\o¢
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A; such that if ¢ > ¢g and p > po,

aizl A160(1+|p\+Q)Z1 W, (t)
> —P'(p+eli), q; 2,0.) A eI TPITD2wa (1) 4 f(2),

from which u(z) < AecHPITOzga (4) follows. O

Proof of Theorem 6.3. We give the proof of (6.9). We can show (6.10) in
the similar way. So 0 < ¢ < p* — 2 and we show (6.9) by induction. Let n =0
and (p,q) = (—e(4),0). Then

2. 00K L (zw') = f(z z) = -
(6.14) P(0,0;z,0. )kfe(l)’O( W) = f(2), f(2) (27Ti)dH;'l=1(wj _Zj)7

Ok iy.0(20,0,2") =0 for 0<I<;

Since |z| < ro < 11 < |w| < 7, we have f(z) < MpliwrTli(t) for some
M > 0. Then it follows from Lemma 6.4 that there exist ¢, pg > 1 and A; such
that u(z) < Ay Mecle@IZwm(t) for p > po.

Now assume that the estimate (6.9) of k:g/:q, (z,w") holds for n’ < n and for
(n',p',¢') with n’ =n, p’+¢ < p+ q. In the following we study the estimates
under the inductive hypothesis. Let us return to (6.11). First we consider the
estimate of I7(p + e(i),q) (h > 1) consisting of terms of 9% & k™" (z, w').

Z0"p’ g
Lemma 6.5. There is a constant Ay such that
e(i)—e(p™—1) (pte(i)+n)/d;+1;—1
n . n e(i)+n P U
(6.15) Z T+ (i), ) < AgA" Bt
=1

= ([ +m)
xefFPED2 [N (1 4 p+e(i) + 2n 4 ¢)" (o] @ |-

=0 =

Proof. It follows from the inductive hypothesis that

(»'+e(i)+n—h)/5i+|a'|

L pn—h n—h+1 pp’ +e(i)+n—h+q' P
azOkp o () <A B? a

pn—h+q’

+oo
wec+Ip'1+¢") =1 (Z (1+p +e(@)+2(n—h)+¢)"
r’'=0

> <Zl <(:j> (C(1—|— ‘pl‘ +q ([[P”-F;(i)+: 7hj+m+l+‘a| r )(t)>> '

=0 Sit1

By the relations h = e(i) — eq, (i) — eq < Vit1(ki — |a]), o' +1+eq = p+e(i),
p'+e(i)+n—h > 0and ¢'+s" = g, there is a constant C such that (14 |p|+¢’) <
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Co(1+p" +e(i)+2(n—h)+¢') for p’ > —e(i) — (n — h) and ¢’ > 0. Hence by
Lemma 6.2 and by replacing v’ + r”/ by r’, we have

o’ ql .n—h /
(6.16) 02 0k, (2, w')
, p(p,+€(i)+”—h)/5i+|a/|

< ClAn—h+pr’+e(i)+n—h+q €C(1+\p/|+q/)21

pn—h+q/
+o0 p'+e(i)+n—h m o
(St e+ 20—y + yrwll T ) )
=0 _[‘?i-f-l]_q/_rl

It holds by the properties of +; and ¢§; that

—-n_h}—q’—r’:—[ no__h ]—q’—r/—l—h

[ dita i1 Vit
[ n !/ / _ n Vi / .

< - }q -7 +h+kia|[ ]qr +e(i) —eq + ki — |
[ Gi+1 Oit1

— 5] o el == [ g b
| 0it1 dit1
i , o
p+e(z;_+n }+m—|—l+|o/|
ot 2e(i)+n—h :

:[p Ul +56(’)+” }+m+l+|a’|<[p7+eél)+n]+m+la’.

i i

By Lemma 6.2-(1) there is a constant C; such that
6c(1-|-|p'|-"-q’)z1 ‘I’;(j) (t) < ec(l-HpH—q)zl ec\e(i)—ea—”zl \Ijgj) (t)
< CrectHPHOz ) (1),

Thus by the bound of C;, 4/ +ao—1,s,s (See Lemma 3.2) and Lemma 6.2 we have

’ _ _ ’ ; —h ’
b (2)Cja g +ao—1,s,sD *0% Ol ko (2, 0) < Ay AnTIHLBE e Rt

(' +e(i)+n—h)/6i+|o/|
P oc(l+Ipl+0)z1

X (14 ¢ Y= p'|® T

+oo , ([p++e(i)+n}+m+‘a/|)
X (I4p+e(i)+2n+g) vt 20 ()
<T’Z—0 7[5'i+1]7qir +s —Jatli=lo’|
—l+e(i)+n)/5i+|a’
<<A1An—h+1Bp—l+e(i)+n+q’(1 n |p/| n q/)ja—S’ p(P e(i)+n)/di+|a’

pn—h—i-q’
+oo , pte(i)+n fmt]e|
wec(1+Ipl+a)=1 Z(l +p+e(i)+2n+q/)r \I/([ 5 ] m a? (t) )
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Note inequalities (1+|p|+¢’) < C(1+p+e(i)+2n+q’) forp > —e(i)—n, ¢ > 0,
and h+s' +|a'| = e(i) —eq+5'+]¢/| < e(i)—eq+ja+|o/| <|a|—ki+1l; < 1;—1.
Therefore we have p'a/‘_(n_h""q/) = p(h+5,+‘o‘l|)_(n+(I) S p(li_l)_(n""q) for P Z 1
and

bt (2)Co sy +ao—t,s,5D 0% OL KD I (2,0

< A An—h1 gp—ite(i)tntd plr- et /ot

pn+q
+o0 )
x ec(FlplFa)= < > (A +pteli)+2n+q) e
r’'=0

([—p+e(i>+"'] +m+|a’\) pte(i)+n)/d;+1;—1

|—a—rr+s'—jatli—la|

x ¥

(

n—h+1 pp+e(i)+ntq P

(t )><<A2A B e
1+1

“+o00 P+C( )+n m=+|a
Xec(1+|P|+Q)Zl (Z(1+p+e( ) +2n+q ([[ ] ]++l+| ‘ ?|(t)>
r=0 - 1+1 e

(pte(i)+n)/di+1;—1

<<A2An7h+pr+e(i)+n+qp

pn+q
too pre@+n] 0y
x e rlplta)z (Z(l +p+e(i)+2n+ q)’”\IIE[ n‘”] q]t ) (t)) :
r=0 Sit1

IP(p+e(i),q) (1 <h<e(i) —e(p* —1)) is a finite sum of terms estimated as
above. Consequently the estimate (6.15) holds. O

Next we estimate I (p + e(i), q).

Lemma 6.6. There is a constant Ay such that
(6.17)
) p(l’+‘3(i)+")/5i+li
L5 (p + e(i), q) < AgA™ TPt
p’ﬂ
+oo P+€(’f)+'rt +tmtl;
x ec(IHIPI+O= <Z(1 +p+e(i)+2n+ q)’“\IfE[ n“] _q]_T ) ® ).

r=0 dit1

Proof.  Notice that If(p + e(i), q) is determined by k7, (2, w") with p’ +
¢ < p+ q. From the inductive hypothesis we have in the same way as (6.16)
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, e B el ) o
0% 0L kY (2, w') < Cy AP T B He(i)tnta

20 p’,q’(

pra

+o0 p’ +e(i)+n m o
x e (Z (L+p +e(i) + 2n + q’)r/\I/E[[L(”] _q/]_t/ el (t)) .
=0 Sit1

It follows from the properties of ~; and §; that

[ + e 1= o + 2(i
w:|+m+l+la/:|:p 6;— e(l)+n:|+m+l+|a/|
< _p+n—ea+2e(i)} o] = [p +e(i) +n ea—e(i)}
] d; d; Vi
— o te(i) +m+la!| < [%} e tei) —la] +hi +m+ o]
_ Heg&} it m

holds. By this inequality and Lemma 6.2

p/+c(i)+"]+m+l+\0¢/| [M}*ja+li+m [Iﬁﬁgﬁ}+li+m
fo[ % t) < Wt % t)y < Wt %
i ey Rk “ _[Ji:lrl]_q/_rl W _[Jiil]_q/_rl_j"
I o
N - 67:_1 —q—1'+s"—ja
holds. We also have
, , ,
+e(i)+n —l—eq+2e(t)+n
p ;) +|O/|—qlzp a5 (4) tla|—qg+s
i i
—eq +2e(i +e(i) + —e(i ,
pEn—en ) | peel) o eaeli) o
i i Vi
+e(?)+n .
ol g s < PEEDE o) ol ko] g+
i
_pte(i)t+n pte(i)+n

5, —q+li —ja +5' < 5, —q+1
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(@' +e(i)+n)/8; 4]’ | (pte(i)+n)/8;+1; . L
Therefore 2 r— < P for p > 1. By these inequalities

and [ + e, — €(i) + s’ > 0 the following estimate holds:

/ " ql
ba,i1(2)Cja g +ao—ts,s'D 0% O Ky

zo'vp',q’ (Z? wl)

p(p'+e(i)+n)/6i+|a’|

AT BT (L e

+o00 , pte(i)+n i+
« ec(1+Ipl+a)z ( Z(l +p' +e(@)+2n+q)" \Il[ i ] " (t)>

" }—q—r/-s-s/—ja

r’=0 51
n+1 +q' —14+2e(i)—eq+n Nja—s—5"1,/ Sp(p+e(i)+n)/6i+li
LA AT BPT ML) '] T
“+oo pte(i)+n
s | B 4
% ecFIpl+a)z1 Z(l +p+e(i)+2n+q) \II[ 3 ] m ¢
r'=0 _[5i11]_q_r/+s/_ja

<<A1An+1Bp+e(i)+n+q—l+e(i)—ea—
pn+q

+o0 T L R
% ec(1+\p|+q)z1 Z(l —l—p—i—e(i) —|—2n+q)r tia—s'\y i ) (t)
—Ja

_ n P ’
=0 [5#1} g=rits

+e(i)+n)/d;+1;
<<A11An+1Bp+e(i)+n+q—1 p(p ) )/
pn+q

1 ~ - ryrg [ EEREEE it m
« ec( +|pl+q)z1 Z(l +p+e(z)+2n+q)’“\lf ° (t) .

r=0 - [‘%‘11 -
Consequently we have (6.17). O

Now let us complete the proof of Theorem 6.3. We have assumed 0 <
i < p* — 2. Return to (6.11). We have the estimates of I}'(p + e(i),q) for
0 < h <e(i)—e(p*—1). So it follows from Lemma 6.4 that there are constants
A and B such that (6.9) holds for kj ,(z,w’). As remarked at the beginning of
the proof of Theorem 6.3, we can show (6.10) for ¢ = p* — 1 in the same way
as above.

Proof of Theorem 4.1. Let 0 < ¢ < p* — 2. Then it follows from (6.9) that
there exists a constant C' such that
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(pte(i)+n)/d: xa
@ 1.n n+1 +e(i)+n+q 4 1+|p|+q)z
az kp q( /) < A BP (%) pn+q 6 o( [pl+q)21 ( § E

r=0r'=

ptein |yt o] —r!
(1p-+e(i) +2n+q>r(i})pal—r’<c<1+|p+q>>r’w£[ e <t>>

+e(i)+n)/d;
<<An+13p+e(i)+n+q(cp)la\p(p e/ cc(l+Ipl+0)z1

pn+q

pte(d)4n

+OO e we— m «
X <Z(1+p+e()+2n+q) \If[[ 5 Jrma (t)).

—q—r
r=0 H—l] q

Therefore if |t| < r/2, by Lemma 6.2 there are constants A;, By, Cy and D,
such that

plpre(i)+n)/3i+al

pn+q

<p+e((5)+ +m+|a|> (Z (1+p+e(i )+2n+q)TDT>.

| = (L))

|8o¢kn ( /)| SA?+1Bf+e(Z)+n+qC‘1a‘

z'Pq

By the inequality

i (I+p+e(i)+2n+q)"D]
r= ( 5.1 T4t r)
1 i" (L+p+e(i)+2n+q) Dy _ eltpre+2nta)Dy

7!
(52 )1t =0 (52 )1

we have (4.2a). Similarly we have (4.2b) from (6.10).

<
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