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On the Stokes Equation with the Leak and Slip
Boundary Conditions of Friction Type:

Regularity of Solutions

By

Norikazu Saito
∗

Abstract

We consider the Stokes equations under some nonlinear boundary conditions,
which are described in terms of subdifferentials of maximal monotone graphs and are
called leak and slip boundary conditions of friction type. The main objective is to
show the existence of strong solutions, say u ∈ H2 and p ∈ H1, to these problems.
We start with weak solutions to variational inequalities, and then study the regularity
of weak solutions. Our main theorems imply the maximality of Stokes operators with
such nonlinear boundary conditions in a suitable Hilbert space and they are of use in
analysis of time-dependent problems. Linear boundary conditions of Neumann type,
such as slip and penetration conditions, are also discussed.

§1. Introduction

Let Ω be a bounded domain in R
N , N = 2, 3. We suppose that the

boundary ∂Ω of Ω is composed of two connected components Γ and ΓD which
are assumed to be Lipschitz continuous, unless otherwise stated. Γ is not empty,
whereas ΓD may be empty. In the present paper, we shall mainly discuss the
existence of a strong solution u ∈ H2(Ω)N and p ∈ H1(Ω) to a modified Stokes
equation

λu − ∆u + ∇p = f, div u = 0 in Ω(1.1)
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346 Norikazu Saito

under the standard Dirichlet boundary condition

u = 0 on ΓD(1.2)

together with the one of the following nonlinear boundary conditions:

uτ = 0, −σn ∈ g∂|un| on Γ,(1.3)

un = 0, −στ ∈ g∂|uτ | on Γ.(1.4)

Here, λ denotes a non-negative constant; u = (u1, . . . , uN ) the velocity vector
and p the pressure; f and g(≥ 0) given vector and scalar functions; un ≡ u · n
and uτ ≡ u − nun are the normal and tangential components of the velocity,
respectively, where n = (n1, . . . , nN ) stands for the outer unit normal to Γ;
σn = σn(u, p) and στ = στ (u) denote normal and tangential components of
the stress vector (the precise definitions will be recalled in §2); and finally ∂|z|
denotes a graph

∂|z| =




z

|z| (z �= 0, z ∈ R
m)

{w ∈ R
m| |w| ≤ 1} (z = 0, z ∈ R

m),
(1.5)

where m = 1 for (1.3) and m = N for (1.4). It is easy to see that the second
conditions of (1.3) and (1.4) are equivalent to

|σn| ≤ g, σnun + g|un| = 0 on Γ,

|στ | ≤ g, στ · uτ + g|uτ | = 0 on Γ,

respectively.
The problem composed of (1.1), (1.2) and (1.3), which we will refer as the

leak boundary problem of friction type, or simply (Pr. LF), was introduced by
H. Fujita ([9]) in order to study steady motions of viscous incompressible fluid
involving a leak of the fluid through the surface or penetration into adjacent
media. Applications to oil flow over or beneath sand layers are presented in
Kawarada, Fujita and Suito [19], and Kawarada and Suito [20].

In [9], the existence and uniqueness/non-uniqueness of a weak solution,
say u ∈ H1(Ω)N and p ∈ L2(Ω), has been established by means of a variational
inequality and an extended Hanh-Banach theorem. We shall review his results
in §3.

The first purpose of the present paper is to study the regularity of Fujita’s
weak solution, and prove the following theorem.
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Theorem 1.1. Let λ ≥ 0. Suppose that the following assumptions hold:

Γ ∩ ΓD = ∅;(1.6)

ΓD and Γ are of class C2 and C4, respectively;(1.7)

ΓD �= ∅ (if λ = 0);(1.8)

g ∈ H1/2(Γ), g ≥ 0 a.e. in Γ;(1.9)

f ∈ L2(Ω)N .(1.10)

Then there exists a solution {u, p} ∈ H2(Ω)N × H1(Ω) of


λu − ∆u + ∇p = f, div u = 0 in Ω,

u = 0 on ΓD,

uτ = 0, −σn ∈ g∂|un| on Γ.

(Pr. LF)

The velocity u is unique, while the pressure p is unique except for an additive
constant. The range of the additive constant to p is limited to {0} or to a finite
closed interval. Furthermore there is a positive constant depending only on Ω
such that

‖u‖H2(Ω)N + ‖p‖H1(Ω)

≤ C(‖f‖L2(Ω)N + ‖g‖H1/2(Γ) + ‖u‖H1(Ω)N + ‖p‖L2(Ω))

for any solution {u, p} of (Pr. LF).

Several remarks are in order.

Remark. The description about non-uniqueness of the pressure is rather
troublesome. Let {u, p} solve (Pr. LF). For the sake of simplicity, we assume
that σn(u, p) and g are continuous. Following [9], we set

k1 = sup
Γ

(σn(u, p) − g), k2 = inf
Γ

(σn(u, p) + g).(1.11)

Obviously −2‖g‖L∞(Γ) ≤ k1 ≤ k2 ≤ 2‖g‖L∞(Γ). Then a function p + k, k ∈
[k1, k2], is also a corresponding pressure of u; {u, p + k} also solve (Pr. LF). If
another corresponding pressure p∗ has been taken first, then the value of k1, k2

are changed. On the other hand, if non-trivial movement (un �= 0) takes place
on a portion Γ1 ⊂ Γ, then p is uniquely determined. This means that the range
of the additive constant to p is limited to {0}. See, for more detail, Remark 3.2
of [9].
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We here give a simple example to illustrate this issue. We employ the polar
coordinates x = (r, θ) in R

2. We assume that

Ω = {(r, θ)| 1 < r < 2}, ΓD = {r = 1}, Γ = {r = 2},

and set er = (cos θ, sin θ), eθ = (− sin θ, cos θ). Put u(r, θ) = w(r)eθ and
p(r) = κr, where w(r) = 4r−1 + 2r − 6 and κ > 0 is a constant. Observe that
{u, p} solves −∆u + ∇p = −6eθr

−2 + κer, div u = 0 in Ω, u|ΓD
= 0, uτ |Γ = 0,

and un|Γ = 0. We have σn(u, p) = −p(r) and hence |σn(u, p)| = 2κ. We define
g = 2κ + 1. Then |σn(u, p)| < g and uτ , un vanish on Γ. Therefore {u, p} is a
solution of (Pr. LF). In this case, we have k1 = −1− 4κ and k2 = 1. Now put
pk = p + k with a constant k. As long as k is taken from [k1, k2], {u, pk} solves
(Pr. LF). However, if k �∈ [k1, k2], then {u, pk} does not solve (Pr. LF), since
|σn(u, pk)| > g.

Remark. Assumption that g ∈ H1/2(Γ) is really optimal to derive the
H2-H1 regularity of {u, p}. We shall revisit this issue in the paragraph (D) of
§7, after having prepared a few materials to discuss it.

Remark. Theorem 1.1 has an important application on evolution prob-
lems. Actually, Theorem 1.1 implies the maximality of the operator A on
X = L2(Ω)N defined as

Au = {−∆u + ∇p| p ∈ M(u)} (u ∈ D(A))

with

D(A) = {u ∈ H2(Ω)N | div u = 0, u|ΓD
= 0, uτ |Γ = 0, M(u) �= ∅},

where

M(u) = {p ∈ H1(Ω)| − σn ∈ g∂|un| on Γ}.

That is, we have u ∈ D(A) satisfying λu + Au = f in X for all f ∈ X and
λ > 0. On the other hand, it is easy to verify that A is monotone in X;
(f1 − f2, u1 − u2) ≥ 0 for all u1, u2 ∈ D(A) and f1 ∈ Au1, f2 ∈ Au2. These
enable us to apply the nonlinear semigroup theory in X ([21]) and lead to the
unique solvability of a non-stationary Stokes problem

∂u

∂t
= ∆u −∇p, div u = 0
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with boundary conditions (1.2), (1.3) and the initial condition u|t=0 = u0(x).
For more detail, see Fujita [10], [11] and [31]. Moreover, by developing Fu-
jita’s argument with the aid of monotonicity method ([3], [5]), under a suitable
assumption on f = f(x, t), we can solve

∂u

∂t
= ∆u −∇p + f, div u = 0

with (1.2), (1.3), u|t=0 = u0(x). We shall report the detail and an application
to the non-stationary Navier-Stokes equations in a forthcoming paper.

The second purpose of this paper is to study the slip boundary value
problem of friction type, (Pr. SF), which is composed of (1.1), (1.2) and (1.4).
This problem appears in modelling of blood flow in a vein of an arterial sclerosis
patient and in that of avalanche of water and rocks ([9]). Concerning (Pr. SF),
we have the following theorem where we should keep in mind that στ does not
explicitly contain p.

Theorem 1.2. Let λ ≥ 0, and suppose (1.6), (1.7), (1.8), (1.9), and
(1.10). Then there exists a unique solution {u, p} ∈ H2(Ω)N × H1(Ω) of


λu − ∆u + ∇p = f, div u = 0 in Ω,

u = 0 on ΓD,

un = 0, −στ ∈ g∂|uτ | on Γ

(Pr. SF)

satisfying ∫
Ω

p dx = 0.

Moreover we have

‖u‖H2(Ω)N + ‖p‖H1(Ω)

≤ C(‖f‖L2(Ω)N + ‖g‖H1/2(Γ) + ‖u‖H1(Ω)N + ‖p‖L2(Ω)).

In §2, we shall introduce the notation used in this paper and describe some
identities and lemmas. In order to prove Theorem 1.1, we begin by considering a
weak formulation (Pr. WLF) to (Pr. LF) by means of a variational inequality
which was proposed by [9]. However, following Brezis [4], we do not treat
(Pr. WLF) directly and study a regularized problem (Pr. WLFε) to (Pr.
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WLF), where ε > 0 denotes a regularized parameter. Actually, (Pr. WLFε) is
defined via the Yosida regularization of ∂| · |. Taking such detour allows us to
avoid a redundant hypothesis on g. On the other hand, from the viewpoint of
numerical analysis, a regularized problem itself is worth considering. We shall
describe (Pr. WLF) and (Pr. WLFε) in §3. The unique existence of a solution
to (Pr. WLFε) is also mentioned there. In §4, we investigate the regularity of
a solution to (Pr. WLFε) and then establish the proof of Theorem 1.1. The
strategy is standard in regularization theory. That is, we employ a localization
technique, partition of unity and difference quotients. The method of the proof
of Theorem 1.2 is given in §5.

In §6, although digressing from the main subject, we consider a few kinds
of linear boundary value problems of Neumann type for the Stokes equations.
Specifically, we shall deal with (1.1) and (1.2) under one of the following con-
ditions to be posed on Γ:

uτ = 0, σn = ωn (non-slip and penetration);(1.12)

un = 0, στ = ωτ (non-penetration and slip);(1.13)

σ = ω (prescribed stress),(1.14)

where ωn, ωτ and ω are given functions defined on Γ. Here, for example, the
condition (1.12) means that the fluid under consideration does not slip at the
boundary and the penetration of the fluid through the boundary is controlled
by a prescribed “force of stream” which is expressed as the normal component
of the stress. We are concerned with the regularity of weak solutions to these
problems such as u ∈ Hk+2 and p ∈ Hk+1, k ≥ 0 (Theorems 6.1, 6.2, and
6.3 described below). To accomplish these, in addition to the argument of
§4, following Bello [2], we adopt a well-known theorem on abstract variational
problems with constraints, which gives a better viewpoint in the proof.

As is well-known, Neumann boundary value problems described above play
a fundamental role in analysis of some actual and practical problems including
free boundary problems ([24], [27], [28]) and a technique of numerical meth-
ods ([18]). However, concerning regularity results of weak solutions, we could
find no explicit reference to them in the literature. In fact, (1.1), (1.2) with
the condition (1.12) in the case of ωn ≡ 0 was described in Solonnikov and
Ščadilov [28]. But it seems that the complete proof for the case of ωn �≡ 0 is
not explicitly stated there. This is why we decide to state an explicit and a
somewhat elementally proof in this paper, although they seem not to be new
for specialists.
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Finally, in §7, we mention several additional remarks including a commen-
tary to the full stress problem ([26]) and a relation with a general theory of
Agmon, Douglis and Nirenberg [1].

§2. Preliminaries

(A) Notation. The deformation tensor and stress tensor associated with a
velocity field u = (u1, . . . , uN ) and pressure p are denoted by

[eij(u)] eij(u) =
∂ui

∂xj
+

∂uj

∂xi
and [Sij(u, p)] Sij(u) = −pδij + eij(u),

respectively, where δij denotes Kroneker’s delta. The stress vector σ(u, p) is
defined by σ(u, p) = [Sij(u, p)]n of which the ith component is

N∑
j=1

Sij(u, p)nj .

The normal and tangential components of a vector field u are defined as un =
u · n and uτ = u − nun, respectively. In particular,

σn(u, p) = σ(u, p) · n (the normal component of the stress vector);

στ (u) = σ(u, p) − nσn(u, p) (the tangential component of the stress vector).

If there is no possibility of confusion, we simply write σ, σn and στ to express
σ(u, p), σn(u, p) and στ (u), respectively.

We will use the L2(Ω) space and the usual Sobolev spaces Hm(Ω) for a
non-negative integer m. H0(Ω) is understood as L2(Ω). We put

L2
0(Ω) =

{
v ∈ L2(Ω)

∣∣∣∣
∫

Ω

v dx = 0
}

.

We write ‖ · ‖m = ‖ · ‖m,Ω instead of ‖ · ‖Hm(Ω), and set ‖ · ‖ = ‖ · ‖0.
We also use the Sobolev space Hs(Γ) defined on the boundary Γ, where

s ∈ R. We write ‖ · ‖s,Γ = ‖ · ‖Hs(Γ). H0(Γ) is understood as L2(Γ). The
surface element of Γ is denoted by ds, that is

‖η‖2
0,Γ =

∫
Γ

|η|2 ds.

We write (·, ·) = (·, ·)L2(Ω) and (·, ·)Γ = (·, ·)L2(Γ).
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Let Tr be the trace operator from H1(Ω) into H1/2(Γ). Then the trace
Tr v on Γ of v ∈ H1(Ω) is denoted by v|Γ. If it is clear from the context, we
will not distinguish v from v|Γ. The meaning of v|ΓD

is similar.

In general, for a Hilbert space X, the adjoint space is denoted by X∗, and
XN denotes the set of vector v = (v1, . . . , vN ), vj ∈ X. For vector functions,
we use same symbol to indicate their inner product and norm; (·, ·)X = (·, ·)XN

and ‖ · ‖X = ‖ · ‖XN .

We use closed subspaces of H1(Ω)N :

K =

{
H1(Ω)N if ΓD = ∅,
{v ∈ H1(Ω)N | v|ΓD

= 0} if ΓD �= ∅;

Kτ = {v ∈ K| vτ |Γ = 0}; K̂τ = {v ∈ Kτ | div v = 0 in Ω};
Kn = {v ∈ K| vn|Γ = 0}; K̂n = {v ∈ Kn| div v = 0 in Ω}.

If ΓD �= ∅, ‖ · ‖1 is equivalent to Dirichlet’s norm ‖∇ · ‖ in K by Poincaré’s
inequality. We shall not emphasise this in what follows.

Let ψ be a proper (ψ �≡ ∞) lower semi-continuous convex function defined
on R

m, m = 1 or N . Then, for any z ∈ R
m, ∂ψ(z) denotes the set

∂ψ(z) = {h ∈ R
m| ψ(t) − ψ(z) ≥ h · (t − z) ∀t ∈ R

m}

which is called the subdifferential of ψ at z. It is easy to see that the right-hand
side of (1.5) coincides with ∂ψ(z), when ψ(z) = |z| for z ∈ R

m.

The symbol C denotes various generic positive constant depending on Ω.
When we need to specify the dependence of other parameters q1, . . . , qM , which
may not be numbers, we shall write as C = C(q1, . . . , qM ).

(B) Bilinear forms. We introduce a bilinear form on H1(Ω)N × H1(Ω)N

defined as

aλ(v, w) = λ

∫
Ω

v · w dx +
1
2

∫
Ω

eij(v)eij(w) dx (v, w ∈ H1(Ω)N )(2.1)

for λ ≥ 0. Here and hereafter the summation convection is employed. We put

a(v, w) = a0(v, w).

Clearly aλ is continuous on H1(Ω)N × H1(Ω)N :

|aλ(v, w)| ≤ C(λ)‖v‖1‖w‖1 (∀v, w ∈ H1(Ω)N ).(2.2)
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If λ > 0, aλ is coercive on H1(Ω)N × H1(Ω)N , that is,

aλ(v, v) ≥ C(λ)‖v‖2
1 (∀v ∈ H1(Ω)N ).(2.3)

In fact, (2.3) is a consequence of Korn’s inequality (for example [8], [30])∫
Ω

eij(v)eij(v) dx +
∫

Ω

|v|2 dx ≥ C‖v‖2
1 (∀v ∈ H1(Ω)N ).(2.4)

In the case of λ = 0, we assume ΓD �= ∅. Then, it holds that∫
Ω

eij(v)eij(v) dx ≥ C‖v‖2
1 (∀v ∈ K).(2.5)

(See, for example, Theorem 6.3-4 of Ciarlet [30]. Although the proof only in
the case of N = 3 is explicitly stated there, it is valid in the case of N = 2,
too.) This, together with Poincaré’s inequality, implies

a(v, v) ≥ C‖v‖2
1 (∀v ∈ K).(2.6)

We shall also use a continuous bilinear form on H1(Ω)N × L2(Ω)

b(v, χ) = −
∫

Ω

χ div v dx (v ∈ H1(Ω)N , χ ∈ L2(Ω)).(2.7)

(C) Green’s formula. If a smooth vector field u and a smooth scalar field
p solve (1.1), then by integration by parts,

aλ(u, ϕ) + b(ϕ, p) =
∫

∂Ω

σ · ϕ ds + (f, ϕ) (∀ϕ ∈ H1(Ω)N).

In particular,

aλ(u, ϕ) + b(ϕ, p) =
∫

Γ

σnϕn ds + (f, ϕ) (∀ϕ ∈ Kτ ),(2.8)

aλ(u, ϕ) + b(ϕ, p) =
∫

Γ

στ · ϕτ ds + (f, ϕ) (∀ϕ ∈ Kn).(2.9)

Variational inequalities (Pr. WLF) and (Pr. WSF) which will appeared in
the subsequent sections are based on these identities and the definition of
subdifferentials.

(D) Lemmas. With the bilinear form b, we associate the bounded linear
operator Bτ : L2(Ω) → Kτ defined as

(Bτχ, v)1 = b(v, χ) (∀χ ∈ L2(Ω), ∀v ∈ Kτ ).(2.10)

Clearly we have ‖Bτχ‖1 ≤ ‖χ‖ for all χ ∈ L2(Ω).
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Lemma 2.1. The range R(Bτ ) of Bτ is a closed set in Kτ . Moreover
we have the orthogonal decomposition Kτ = R(Bτ )

⊕
K̂τ .

The proof of this lemma depends on

Lemma 2.2. Any χ ∈ L2(Ω) admits w ∈ Kτ satisfying div w = χ in Ω
and ‖w‖1 ≤ C‖χ‖.

Proof. We only state the case of ΓD �= ∅. Firstly we assume that Γ∩ΓD =
∅. Let B an open ball which includes Ω and take v ∈ H2(Ω) satisfying

∆v =

{
χ in Ω

0 in B\Ω,
v|∂B = 0, ‖v‖2,B ≤ C‖χ‖.

Put

b =

{
(∇v)|Γ + cn on Γ

(∇v)|ΓD
on ΓD

with c = − 1
|Γ|

∫
∂Ω

∂v

∂n
ds,

where |Γ| denotes the Lebesgue measure of Γ. Then b ∈ H1/2(∂Ω)N and it
satisfies ∫

∂Ω

bn ds = 0 and ‖b‖1/2,∂Ω ≤ C‖∇v‖1,B ≤ C‖v‖2,B ≤ C‖χ‖.

Hence, as is well-known (for example Lemma I-3.2 of [17]), there is a ψ ∈
H1(Ω)N such that div ψ = 0 in Ω, ψ|∂Ω = b and ‖ψ‖1 ≤ C‖b‖1/2,∂Ω. We set
w = ∇v − ψ, which is the desired function. In fact, div w = 0, w|ΓD

= 0,
wτ |Γ = cn − nc = 0, and ‖w‖1 ≤ ‖∇v‖1 + ‖ψ‖1 ≤ C‖v‖2,B ≤ C‖χ‖.

Next we consider the case of Γ ∩ ΓD �= ∅. Fix ϕ̃ ∈ C∞(Ω) satisfying
ϕ̃|ΓD

= 0 and ϕ̃|Γ > 0. Then put ϕ = ϕ̃|∂Ω. In this case, we define

b =

{
(∇v)|Γ + cnϕ on Γ

(∇v)|ΓD
on ΓD

with c = −
(∫

Γ

ϕ ds

)−1 ∫
∂Ω

∂v

∂n
ds.

The rest is the same as before.

Proof of Lemma 2.1. Let χ ∈ L2(Ω). By Lemma 2.2, we can take w ∈ Kτ

such that div w = q and ‖w‖1 ≤ C‖χ‖. Substituting v = w into (2.10), we
obtain

‖χ‖2 ≤ ‖Bτχ‖ · ‖w‖ ≤ C‖Bτχ‖ · ‖χ‖.
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Hence it follows from the closed range theorem that R(Bτ ) is a closed set. To
prove the second assertion, it suffices to see R(Bτ )⊥ = K̂τ , where R(Bτ )⊥

stands for the orthogonal complement of R(Bτ ) in Kτ . Let ϕ ∈ K̂τ . Then
(Bτχ, ϕ)1 = (χ, div ϕ) = 0 for all χ ∈ L2(Ω) so that ϕ ∈ R(Bτ )⊥. Conversely,
let ϕ ∈ R(Bτ )⊥. We have 0 = (Bτχ, ϕ) = (χ, div ϕ)1 for all χ ∈ L2(Ω). Taking
χ = div ϕ, we obtain div ϕ = 0 a.e. in Ω.

Remark. Lemma 2.2 guarantees the inf-sup condition

∃ β > 0 : inf
χ∈L2(Ω)

sup
v∈Kτ

b(v, χ)
‖v‖1‖χ‖

≥ β,(2.11)

which will be used in §6. In fact, for χ ∈ X, we take w ∈ Kτ such as described
in Lemma 2.2. Then

sup
v∈Kτ

b(v, χ)
‖v‖1

≥ b(w, χ)
‖w‖1

≥ ‖χ‖2

‖w‖1
≥ 1

C
‖χ‖.

Next, let Bn : L2
0(Ω) → Kn be the bounded linear operator associated

with b defined by

(Bnχ, v)1 = b(v, χ) (∀χ ∈ L2
0(Ω), ∀v ∈ Kn).(2.12)

Then we have

Lemma 2.3. R(Bn) is closed, and Kn = R(Bn)
⊕

K̂n.

The proof, which we omit, depends on the following well-known result; For
example, Corollary I-2.4 of [17].

Lemma 2.4. Any χ ∈ L2
0(Ω) admits w ∈ H1

0 (Ω)N satisfying div w = χ

in Ω and ‖w‖1 ≤ C‖χ‖.

§3. Leak Problem of Friction Type. Variational Inequality

We introduce

j(η) =
∫

Γ

g|η| ds (η ∈ H1/2(Γ)),(3.1)

which we call a friction functional. Then, as a weak form of (Pr. LF), we
consider the following variational inequality:
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(Pr. WLF). Find u ∈ Kτ and p ∈ L2(Ω) satisfying

aλ(u, v − u) + b(v − u, p)(3.2)

+ j(vn) − j(un) ≥ (f, v − u) (∀v ∈ Kτ ),

b(u, χ) = 0 (∀χ ∈ L2(Ω)).(3.3)

Fujita [9] proved the following

Proposition 3.1. Let λ = 0 and Γ ∩ ΓD = ∅. Suppose that ΓD �= ∅,

f ∈ L2(Ω)N , g ∈ L2(Γ),(3.4)

and g > 0 a.e. in Γ. Then there is a solution {u, p} of (Pr. WLF). The
velocity u is unique, but the uniqueness of p depends on cases.

Remark. We can extend Proposition 3.1 to the case where λ ≥ 0 and
Γ ∩ ΓD �= ∅ in the almost same way as in [9]. However, in the argument of [9],
the positively of g is essential to treat (Pr. WLF).

A solution {u, p} of (Pr. WLF) is actually a strong solution of (Pr. LF)
under some reasonable assumptions. In order to prove it, we approximate a
solution {u, p} of the inequality (3.2) by solutions {uε, pε} of equations which
are obtained by replacing j by a regularized functional jε. Then the regularity
of {uε, pε} is studied.

Let ε > 0. We define a regularization of j as

jε(η) =
∫

Γ

gρε(η) ds (η ∈ H1/2(Γ)),

where ρε denotes the Yosida regularization of ρ(z) = |z| (z ∈ R);

ρε(z) =
(

1 − (1 + ερ)−1

ε

)
(z) =




z − ε/2 (z > ε)

z2/(2ε) (−ε ≤ z ≤ ε)

−z + ε/2 (z < −ε).

Actually, jε is an approximation of j in the sense that

|jε(η) − j(η)| ≤ ε

2
‖g‖L1(Γ) (η ∈ H1/2(Γ)).(3.5)

Moreover, jε is Gâteaux differentiable in H1/2(Γ), namely

lim
h→0

1
h

[
jε(η + hξ) − jε(η)

]
=

∫
Γ

gαε(η)ξ ds (η, ξ ∈ H1/2(Γ)),(3.6)
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where

αε(z) = ∂ρε(z) =




1 (z > ε)

z/ε (−ε ≤ z ≤ ε)

−1 (z < −ε).

Remark. Since ρ is proper, convex and lower semi-continuous, α ≡ ∂ρ

is a maximal monotone graph on R. The function αε is nothing but the Yosida
regularization of α; αε = (1 − (1 + εα)−1)/ε.

We state a regularized problem to (Pr. WLF):

(Pr. WLFε). Find uε ∈ Kτ and pε ∈ L2(Ω) satisfying

aλ(uε, v − uε) + b(v − uε, pε)(3.7)

+ jε(vn) − jε(uε,n) ≥ (f, v − uε) (∀v ∈ Kτ ),

b(uε, χ) = 0 (∀χ ∈ L2(Ω)).(3.8)

Lemma 3.1. Let λ ≥ 0 and ε > 0. Suppose that ΓD �= ∅ if λ = 0.
Assume that (3.4) and g ≥ 0 a.e. in Γ. Then (Pr. WLFε) admits a unique
solution {uε, pε} ∈ Kτ × L2(Ω) satisfying

‖uε‖1 + ‖pε‖ ≤ C(λ)(‖f‖+ ‖g‖Γ).(3.9)

The proof is divided into the following two lemmas.

Lemma 3.2. Under the same assumption of Lemma 3.1, there is a
unique solution {uε, pε} ∈ Kτ × L2(Ω) of

aλ(uε, ϕ) + b(ϕ, pε) +
∫

Γ

gαε(uε,n)ϕn ds = (f, ϕ) (∀ϕ ∈ Kτ ),(3.10)

b(uε, χ) = 0 (∀χ ∈ L2(Ω)),(3.11)

and {uε, pε} satisfies (3.9).

Lemma 3.3. Suppose that the same assumption of Lemma 3.1 holds.
Then {uε, pε} ∈ Kτ ×L2(Ω) is a solution of (Pr. WLFε) if and only if {uε, pε}
is a one of (3.10) and (3.11).

Proof of Lemma 3.2. We shall drop the subscript ε for the sake of simplicity
and put V = K̂τ . We start with the minimization problem:

Find u ∈ V : J(u) ≤ J(v) (∀v ∈ V ),(3.12)
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where

J(v) =
1
2
aλ(v, v) − (f, v) + j(vn).

Since j is a proper, convex, and lower semi-continuous functional, from standard
theory of convex analysis (for example, Lemma I-4.1 of [14]), (3.12) admits a
unique solution u which is characterized by

aλ(u, v − u) + j(vn) − j(un) ≥ (f, v − u), (∀v ∈ V ).(3.13)

Substituting into (3.13) v = u ± tψ with arbitrary ψ ∈ V , t > 0 and letting
t ↓ 0, we obtain by (3.6)

aλ(u, ψ) +
∫

Γ

gα(un)ψn ds = (f, ψ), (∀ψ ∈ V ).(3.14)

In order to prove the existence of p associated with u, we introduce a linear
functional on Kτ by setting

F (ϕ) = aλ(u, ϕ) +
∫

Γ

gα(un)ϕn ds − (f, ϕ), (ϕ ∈ Kτ ).

It is bounded. In particular,

|F (ϕ)| ≤ C(λ)(‖u‖1 + ‖g‖0,Γ + ‖f‖)‖ϕ‖1, (∀ϕ ∈ Kτ )

because of |α(un)| ≤ 1.
Let Bτ be the bounded linear operator associated with b defined as (2.10).

We apply Riesz’s representation theorem to F on a closed subspace R(Bτ ) of
Kτ . Thus we have w ∈ R(Bτ ) such that F (v) = (w, v)1 for any v ∈ R(Bτ ).
Furthermore, by the definition of Bτ , there is a unique p ∈ L2(Ω) satisfying
F (v) = (p, div v)1 for any v ∈ R(Bτ ).

Now let ϕ ∈ Kτ and, according to Lemma 2.1, we decompose ϕ as ϕ =
v + ψ, where v ∈ R(Bτ ) and ψ ∈ V . Then, by virtue of (3.14),

F (ϕ) = F (v) + F (ψ) = F (v) = (p, div v) = (p, div ϕ),

which means (3.10).

Next we derive (3.9). Substituting φ = u into (3.10), we get

C(λ)‖u‖2
1 − C‖g‖0,Γ‖u‖1 ≤ C‖f‖ · ‖u‖1.
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Hence we have ‖u‖1 ≤ C(λ)(‖g‖0,Γ + ‖f‖). We again take w ∈ Kτ such that
div w = p and ‖w‖1 ≤ C‖p‖. Then by choosing ϕ = w in (3.10), we obtain

‖p‖2 ≤ aλ(u, w) +
∫

Γ

gα(un)wn − (f, w)

≤C(λ)(‖u‖1‖w‖1 + ‖g‖0,Γ‖w‖1 + ‖f‖ · ‖w‖1)

≤C(λ)(‖u‖1 + ‖g‖0,Γ + ‖f‖)‖p‖.

This completes the proof of Lemma 3.2.

Proof of Lemma 3.3. We have by (3.6) and the convexity of jε∫
Γ

gαε(vn)(ϕn − vn) ds ≤ jε(ϕn) − jε(vn) (∀v, ϕ ∈ H1(Ω)N ).(3.15)

From this, we see that a solution {uε, pε} of (3.10) with (3.11) also solves (Pr.
WLFε). To check the converse assertion, in (3.7), we take v = uε ± tψ with
ψ ∈ Kτ , t > 0. Then let t ↓ 0 to obtain the result.

§4. Leak Problem of Friction Type. Regularity

In this section, we firstly study the regularity of a solution to (Pr. WLFε)
and then give the proof of Theorem 1.1.

Lemma 4.1. Let λ ≥ 0 and suppose (1.6), (1.7), (1.9), and (1.10). Let
ε > 0 and let {uε, pε} ∈ Kτ × L2(Ω) solve

aλ(uε, ϕ) + b(ϕ, pε) +
∫

Γ

gαε(uε,n)ϕn ds = (f, ϕ) (∀ϕ ∈ Kτ ),(4.1)

b(uε, χ) = 0 (∀χ ∈ L2(Ω)).(4.2)

Then uε ∈ H2(Ω)N , pε ∈ H1(Ω) and they satisfy

λuε − ∆uε + ∇pε = f, div uε = 0 in Ω,(4.3)

uε = 0, on ΓD,(4.4)

uε,τ = 0, −σn(uε, pε) = gαε(uε,n) on Γ.(4.5)

Moreover there is a constant C > 0 independent of ε and λ such that

‖uε‖2 + ‖pε‖1 ≤ C
(
‖f‖ + ‖g‖1/2,Γ + ‖uε‖1 + ‖pε‖

)
.(4.6)
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Remark. Inequality (4.6), together with (3.9), implies

‖uε‖2 + ‖pε‖1 ≤ C(λ)
(
‖f‖ + ‖g‖1/2,Γ

)
.(4.7)

That is, ‖uε‖2 and ‖pε‖1 are bounded sequences as ε ↓ 0.

Proof of Lemma 4.1. The regularity in interior and near ΓD is well-known;
for example [7] and [22]. Specifically, let k ≥ 0 and ω ⊂ Ω be an open set
subject to

(I) dist(ω, ∂Ω) ≥ δ > 0 (δ: constant);

or (II) ω ∩ ΓD �= ∅, ω ∩ Γ = ∅, ΓD is of class Ck+2

then we have

u ∈ Hk+2(ω)N , p ∈ Hk+1(ω), ‖u‖k+2,ω + ‖p‖k+1,ω ≤ C(λ, ω)‖f‖k,ω

if f ∈ Hk(Ω)N . Therefore it suffices to study the regularity near Γ. Let x0 ∈ Γ
and U0 ⊂ R

N be a neighbourhood of x0. Taking a cut-off function θ ∈ C∞(RN )
subject to

0 ≤ θ ≤ 1, supp θ ⊂ U0, supp θ ∩ (RN\Ω) �= ∅.(4.8)

Substituting θ2ϕ and θ2χ, where ϕ ∈ Kτ and χ ∈ L2(Ω), into (4.1) and (4.2)
as test functions, we obtain

aλ(θ2u, ϕ) + b(ϕ, θ2p) +
∫

Γ

(θ2g)α(un)ϕn ds(4.9)

= (θ2f, ϕ) + F ∗(ϕ), (∀ϕ ∈ Kτ ),

b(θ2u, χ) = G∗(χ), (∀χ ∈ L2(Ω)),(4.10)

where

F ∗(ϕ) =
1
2

∫
Ω

[(
ui

∂θ2

∂xj
+

∂θ2

∂xi
uj

)
eij(ϕ)

−eij(u)
(
ϕi

∂θ2

∂xj
+

∂θ2

∂xi
ϕj

)]
dx +

∫
Ω

pϕi
∂θ2

∂xi
dx,

G∗(χ) = −
∫

Ω

χui
∂θ2

∂xi
dx.

Here and hereafter, we drop ε for simplicity. We take R > 0, U ⊂ U0 and
a one-to-one mapping Φ = (Φ1, . . . ,ΦN ) from U onto Ũ ⊂ R

N
y enjoying the

following properties (see, for example, §I-2 of Wolka [29]):
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1. Φ is a C3-diffeomorphism;

2. Φ(x0) = 0;

3. Φ(U ∩ Ω) = QR ≡ {y = (y′, yN ) ∈ R
N−1 × R| |y′| < R, 0 < yN < R};

4. Φ(U ∩ Γ) = SR ≡ {y = (y′, yN ) ∈ R
N−1 × R| |y′| < R, yN = 0};

5.
∂ΦN

∂xj
=

∂Φj

∂xN
= 0 and

∂ΦN

∂xN
= −1 on U ∩ Γ (j = 1, . . . ,N − 1);

6. Φ : n(x) �→ ñ(y) ≡ (0, . . . ,0,−1) for x ∈ U ∩ Γ.

We introduce

K(QR) = {ϕ ∈ H1(QR)N | ϕ(y) = 0 for |y| = R, yN = R};(4.11)

Kτ (QR) = {ϕ ∈ K(QR)| ϕj = 0 on SR (j = 1, . . . ,N − 1)}(4.12)

and set y = Φ(x) = (Φ1(x), . . . , ΦN (x)),

ũ(y) = (θ2u)(x), p̃(y) = (θ2p)(x)

and

f̃(y) = (θ2f)(x), g̃(y) = (θ2g)(x).

It should be kept in mind that for any ϕ̃ ∈ Kτ (QR) the function on Ω defined
as

ϕ(x) =

{
ϕ̃(y) for y ∈ QR

0 otherwise

is in Kτ . Hence we obtain by (4.9) and (4.10)

ãλ(ũ, ϕ̃) + b̃(ϕ̃, p̃) −
∫

SR

g̃α(−ũN )ϕ̃N dy′(4.13)

=
∫

QR

f̃ · ϕ̃|Jac Φ| dy + F̃ (ϕ̃), (∀ϕ̃ ∈ Kτ (QR)),

b̃(ũ, χ̃) = G̃(χ̃), (∀χ̃ ∈ L2(QR)).(4.14)
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Here we have put:

ãλ(ũ, ϕ̃) = λ

∫
QR

ũ · ϕ̃ dy +
1
2

∫
QR

ẽij(ũ)ẽij(ϕ̃)dy;

ẽij(ũ)ẽij(ϕ̃) =
(

∂Φk

∂xj

∂ũi

∂yk
+

∂Φk

∂xi

∂ũj

∂yk

) (
∂Φl

∂xj

∂ϕ̃i

∂yl
+

∂Φl

∂xi

∂ϕ̃j

∂yl

)
;

b̃(ϕ̃, χ̃) = −
∫

QR

χ̃
∂Φk

∂xi

∂ϕ̃i

∂yk
|Jac Φ| dy;

F̃ (ϕ̃) =
∫

QR


∑

i,j,k

(
d
(1)
ijkũi

∂ϕ̃i

∂yk
+ d

(2)
ijk

∂ũi

∂yj
ϕ̃k

)

+
∑
i,j

d
(3)
ij ũiϕ̃j +

∑
i

d
(4)
i p̃ϕ̃i


 |Jac Φ| dy;

G̃(χ̃) =
∫

QR

d
(5)
i χ̃ũi|Jac Φ| dy,

where d
(1)
ijk, d

(2)
ijk, d

(3)
ij , d

(4)
i , and d

(5)
i are C∞(QR) functions composed of θ and

∂θ/∂xl.
Now take R1 ∈ (0, R) and put R2 = R − ε, where ε = (R − R1)/2. We

simply write Qi = QRi
, Si = SRi

(i = 1, 2), and Q = QR, S = SR. We will
not distinguish ϕ ∈ K(Qi) with its zero extension ϕ̂ ∈ K(Q) (ϕ̂ = ϕ in Qi,
ϕ̂ = 0 in Q\Qi) for the sake of simplicity.

By re-choosing the cut-off function θ if necessary, we may assume that

ũ ∈ Kτ (Q1), g̃ ∈ H
1/2
00 (S1),

where

H
1/2
00 (S1) =

{
ξ ∈ H1/2(Γ)

∣∣∣ (R1 − |y′|)−1/2ξ ∈ L2(S1)
}

which is a Hilbert space equipped with the norm

‖ξ‖00,S1 = ‖ξ‖
H

1/2
00 (S1)

=
[
‖ξ‖2

Q1
+

∫
S1

ξ2

R1 − |y′|dy′
]1/2

.

We shall review a more general definition of H
1/2
00 and its properties in Ap-

pendix. At this stage we only mention that

g̃ ∈ H
1/2
00 (S), ‖g̃‖00,S ≤ ‖g‖1/2,Γ.

(The definition of H
1/2
00 (S) is similar.)
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Now we recall the notation of the finite difference quotients. Let h ∈ R

and {ei}i=1,... ,N be the canonical basis of R
N
y . Shift and forward difference

operators are defined by

si
hv(y) = v(y + hei) and Di

hv(y) =
si

hv(y) − v(y)
|h| .(4.15)

It is well-known (for example [6]) that

Di
h(uv) = u(Di

hv) + (Di
hu)(si

hv) (u, v ∈ K(Qj)),∫
Q

u · Di
−hv dy =

∫
Q

(Di
h)u · v dy (u, v ∈ K(Qj)),

‖Di
hu‖Q ≤ ‖∇u‖Q (u ∈ K(Qj))

for j = 1, 2, i = 1, . . . , N − 1 and a suitably small h.

In the following, for k ≥ 0, Ck denotes a positive constant depending on
∂kΦ/∂xk

j . Let 0 < h < ε. We fix i ∈ {1, 2, . . . , N − 1} and write D±h = Di
±h.

Then Dhũ ∈ Kτ (Q2). By choosing

ϕ̃ = v ≡ D−h (Dhũ) ∈ Kτ (Q1),

in (4.13), we obtain

(4.16) ‖∇y (Dhũ)‖2
Q

≤ C3(‖ũ‖1,Q + ‖p̃‖Q + ‖g̃‖00,S + ‖f̃‖Q)
(
‖ũ‖1,Q + ‖∇y (Dhũ)‖Q

)
by making use of

ãλ(ũ, v) ≥ C1 ‖∇y (Dhũ)‖2
Q − C2‖ũ‖1,Q ‖∇y (Dhũ)‖Q ;(4.17)

|b̃(v, p̃)| ≤ C3‖p̃‖QR

(
‖ũ‖1,Q + ‖∇y(Dhũ)‖Q

)
;(4.18) ∫

S

g̃α(−ũN )vN (y′, 0) dy′ ≤ C2‖g̃‖00,S ‖∇y (Dhũ)‖Q ,(4.19)

and

(4.20)
∣∣∣∣
∫

Q

(f̃ · v)|Jac Φ| dy + F̃ (v)
∣∣∣∣

≤ C2(‖f̃‖Q + ‖ũ‖1,Q + ‖p̃‖Q)
(
‖ũ‖1,Q + ‖∇y(Dhũ)‖Q

)
,

where ∇y (Dhũ) denotes the tensor product. We shall verify inequalities (4.17)–
(4.20) later and continue the proof of Lemma 4.1. Equality (4.16) implies

‖∇y(Dhũ)‖Q ≤ C3(‖ũ‖1,Q + ‖p̃‖Q + ‖g̃‖00,S + ‖f̃‖Q),
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and then letting h ↓ 0,

N−1∑
i=1

N∑
j=1

∥∥∥ ∂

∂yi

∂ũ

∂yj

∥∥∥
Q
≤ C3(‖ũ‖1,Q + ‖p̃‖Q + ‖g̃‖00,S + ‖f̃‖Q).

This and the trace theorem imply that

‖ξj‖1/2,S ≤ C3(‖ũ‖1,Q + ‖p̃‖Q + ‖g̃‖00,S + ‖f̃‖Q)

for j = 1, . . . , N−1, where ξj ’s are defined as ξj = (∂ũN/∂yj)|S . This means in
particular that all tangential derivatives of ũN |S belongs to H1/2(S). Therefore,
ũN |S ∈ H3/2(S) and

‖ũN |S‖3/2,S ≤ C3(‖ũ‖1,Q + ‖p̃‖Q + ‖g̃‖00,S + ‖f̃‖Q).

Summing up the above estimates, by the argument of the partition of unity,
we finally have

‖β‖3/2,Γ ≤ C3(‖u‖1,Ω + ‖p‖Ω + ‖g‖1/2,Γ + ‖f‖Ω),

where β = un|Γ. Therefore, in accordance with a well-known regularity result
on the Dirichlet boundary value problem for the Stokes equations by Cattabriga
[7], we deduce (4.6).

To verify that a solution {uε, pε} ∈ H2(Ω)N × H1(Ω) of (4.1) and (4.2)
also satisfies (4.3), (4.4) and (4.5) is standard.

It remains to prove inequalities (4.17), (4.18), (4.19) and (4.20).

Proof of (4.17). We have

ãλ(ũ, v) = ãλ(Dhũ, Dhũ)

+
∫

Q

(shẽij(ũ))
[(

Dh
∂Φl

∂xi

)
∂(Dhũj)

∂yl
+

(
Dh

∂Φl

∂xj

)
∂(Dhũi)

∂yl

]
dy.

The absolute value of the second term of the right-hand side is estimated by

C2‖ũ‖1,Q ‖∇y(Dhũ)‖Q .

On the other hand, we have

ãλ(Dhũ, Dhũ) ≥ C1 ‖∇y(Dhũ)‖2
Q ,

since

ãλ(w, w) ≥ C1

∫
QR

|∇w|2 dy (∀w ∈ K(Q)),(4.21)



�

�

�

�

�

�

�

�

Stokes Equation with Leak and Slip BCs 365

which is proved in the following way. Recall the change of variables Φ: x → y

and write

ŵ(x) =

{
w(y) y ∈ QR

0 otherwise.

Then ŵ ∈ K and ŵ = 0 on Γ\U . (2.5) gives us

1
2

∫
Ω

eij(ŵ)eij(ŵ) dx ≥ C

∫
Ω

|∇ŵ|2 dx.

Noting that there is 0 < µ < µ such that µ ≤ Jac Φ ≤ µ, where Jac Φ denotes
the Jacobian of (∂Φi/∂xj), we can estimate as

1
2

∫
Ω

eij(ŵ)eij(ŵ) dx

≤ µ

2

∫
QR

∑
k,l

(
a0

k,l

∂w

∂yk

∂w

∂yl
+

∑
ν,ν′

∂Φl

∂xν

∂Φk

∂xν′

∂wν

∂yk

∂wν′

∂yl

)
dy

and ∫
Ω

|∇ŵ|2 dx ≥ µ

∫
QR

|∇w|2 dy.

Hence we obtain (4.21).

Proof of (4.18). Putting η = |Jac Φ|∂Φk/∂xi, we have

b̃(v, p̃) =
∫

QR

(Dhp̃)
(

η
∂

∂yk
Dhũ

)
dy +

∫
QR

(shp̃)(Dhη)
∂

∂yk
Dhũ dy(4.22)

≡ I1 + I2.

On the other hand, substituting χ̃ = D−h(Dhp̃) into (4.14), we obtain

I3 + I1 = I4,(4.23)

where

I3 =−
∫

QR

p̃D−h

[
(Dhη)

(
sh

∂ũi

∂yk

)]
dy,

I4 =
∫

QR

p̃D−h

[
Dh

(
d
(5)
i ũi|Jac Φ|

)]
dy.

It is easy to see that

|I2| ≤ C2‖p̃‖Q

(
‖ũ‖1,Q + ‖∇y (Dhũ)‖Q

)
,(4.24)

|I3|, |I4| ≤ C3‖p̃‖Q

(
‖ũ‖1,Q + ‖∇y (Dhũ)‖Q

)
.(4.25)
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(4.18) then follows from (4.22), (4.23), (4.24) and (4.25).

Proof of (4.20). We have∫
S

g̃α(−ũN )D−h(DhũN ) dy′

=
∫

S

(Dhg̃)[shα(−ũN )]DhũN dy′ +
∫

S

g̃ [Dhα(−ũN )]DhũN dy′

≡ J1 + J2.

Since α is nondecreasing, if ũN (y + he) �= ũN (y),

[Dhα(−ũN )] DhũN = −α(−ũN (y + he)) − α(−ũN (y))
−ũN (y + he) − (−ũN (y))

(DhũN )2 ≤ 0(4.26)

at y = (y′, 0) ∈ S. Hence J2 ≤ 0. In order to estimate J1, we need

Lemma 4.2. Let 0 < h < ε and i = 1, . . . , N − 1. Suppose g ∈
H

1/2
00 (SR1). Then∣∣∣∣

∫
SR

(Di
hg)ϕ dy′

∣∣∣∣ ≤
∫

SR

∣∣(Di
hg)ϕ

∣∣ dy′ ≤ C(R)‖g‖00,S1‖∇ϕ‖QR
(4.27)

for all ϕ ∈ K(QR2).

The proof of this lemma will be given in Appendix. In view of this, by
|α(−ũN )| ≤ 1, we have

J1 ≤ C2‖g̃‖00,SR
‖∇yDhũ‖Q ,

therefore (4.20) is proved.

Proof of (4.19). It is not new; For example, see [15] or [2].
This completes the proof of Lemma 4.1.

Now we can state

Proof of Theorem 1.1. Let ε > 0, and let {uε, pε} ∈ Kτ ×L2(Ω) be a unique
solution of (Pr. WLFε). By (4.7), sequences ‖uε‖2 and ‖pε‖1 are bounded as
ε ↓ 0. Hence, they admit a sequence εj (0 < εj ↓ 0 as j ↑ ∞), u ∈ H2(Ω)N∩Kτ ,
and p ∈ H1(Ω) such that

uεj
→ u weakly in H2(Ω)N ,

pεj
→ p weakly in H1(Ω).
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Moreover, from the trace theorem,

uεj
|ΓD

→ u|ΓD
weakly in H3/2(ΓD)N ,

uεj ,n|Γ → un|Γ weakly in H3/2(Γ),(4.28)

σn(uεj
, pεj

)|Γ → σn(u, p)|Γ weakly in H1/2(Γ).(4.29)

By virtue of (4.3) and (4.5), {u, p} satisfies (1.1) and (1.2). Similarly we have
uτ |Γ = 0. In order to see that {u, p} satisfies the nonlinear boundary condition,
we recall αε(z) ∈ α

(
(1 + εα)−1z

)
for all z ∈ R, where α = ∂| · |. (This is a

property of the Yosida regularization.) Hence, by the maximality of α, (4.28)
and (4.29), we obtain

−σn(u, p) ∈ gα(un).

On the other hand, (4.6), together with (3.9), leads to

‖u‖2 + ‖p‖1 ≤ C(‖f‖ + ‖g‖1/2,Γ + ‖u‖1 + ‖p‖).

Now we take k ∈ [k1, k2], where k1 and k2 are defined as (1.11). Then {u, p+k}
also solves (Pr. LF). By the definition,

|k1|, |k2| ≤ |σn(u, p)| + |g| ≤ 2g on Γ.

This implies |k| ≤ 2|Γ|−1/2‖g‖0,Γ. As a result, we have

‖u‖2 + ‖p + k‖1 ≤ ‖u‖2 + ‖p‖1 + |k|
√

|Ω|
≤C(‖f‖ + ‖g‖1/2,Γ + ‖u‖1 + ‖p‖),

which completes the proof.

§5. Slip Problem of Friction Type

In this section, we consider (Pr. SF), which is composed of (1.1), (1.2)
with (1.4), and give the proof of Theorem 1.2. The strategy is the same as the
previous sections.

We begin with a weak formulation using a variational inequality.

(Pr. WSF). Find u ∈ Kn and p ∈ L2(Ω) satisfying

aλ(u, v − u) + b(v − u, p)

+ j(vτ ) − j(uτ ) ≥ (f, v − u) (∀v ∈ Kn),

b(u, χ) = 0 (∀χ ∈ L2(Ω)),
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where j denotes

j(η) =
∫

Γ

g|η| ds (η ∈ H1/2(Γ)N ).

Fujita [9] proved the following

Proposition 5.1. Assume (3.4), and g > 0 a.e. in Γ. Then there is
a solution {u, p} of (Pr. WSF). Moreover, u is unique; and p is also unique
except for an additive constant. In particular, p such that (p, 1) = 0 is unique.

Let ε > 0. We introduce

jε(η) =
∫

Γ

gρε(η) ds (η ∈ H1/2(Γ)N ),

where ρε denotes the Yosida regularization of ρ = |z| =
√

z2
1 + · · · + z2

N for
z ∈ R

N :

ρε(z) =

{
|z| − ε/2 (|z| > ε)

|z|2/(2ε) (|z| ≤ ε).

We have

|jε(η) − j(η)| ≤ ε

2
‖g‖L1(Ω) (η ∈ H1/2(Γ)N ),(5.1)

lim
h→0

1
h

[
jε(η + hξ) − jε(η)

]
=

∫
Γ

gαε(η) · ξ ds (η, ξ ∈ H1/2(Γ)N ),(5.2)

where

αε(z) =

{
z/|z| (|z| > ε)

z/ε (|z| ≤ ε).

A regularized problem to (Pr. WLF) is

(Pr. WSFε). Find uε ∈ Kn and pε ∈ L2(Ω) satisfying

a(uε, v − uε) + b(v − uε, pε)

+ jε(vε,t) − jε(uε,t) ≥ (f, v − uε) (∀v ∈ Kn),

b(uε, χ) = 0 (∀χ ∈ L2(Ω)).

As Theorem 1.1 is so, Theorem 1.2 is a consequence of the following lem-
mas; Since the proof of Theorem 1.2 is almost same as that of Theorem 1.1, we
skip it.
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Lemma 5.1. Let λ ≥ 0 and ε > 0. Suppose that ΓD �= ∅ if λ = 0.
Assume that (3.4) and g ≥ 0 a.e. in Γ. Then (Pr. WSFε) admits a unique
solution uε ∈ Kn and pε ∈ L2

0(Ω) characterized by

a(uε, ϕ) + b(ϕ, pε) +
∫

Γ

gαε(uε,τ ) · ϕτ ds = (f, ϕ) (∀ϕ ∈ Kn).

Moreover we have

‖uε‖1 + ‖pε‖ ≤ C(λ)(‖f‖+ ‖g‖Γ).

Lemma 5.2. Let λ ≥ 0. Suppose (1.6), (1.7), (1.9), and (1.10). Let
ε > 0 and let {uε, pε} ∈ Kn × L2

0(Ω) solve

aλ(uε, ϕ) + b(ϕ, pε) +
∫

Γ

gαε(uε,τ ) · ϕτ ds = (f, ϕ) (∀ϕ ∈ Kn),

b(uε, χ) = 0 (∀χ ∈ L2(Ω)).

Then uε ∈ H2(Ω)N , pε ∈ H1(Ω) and they satisfy

λuε − ∆uε + ∇pε = f, div uε = 0 in Ω,

uε = 0, on ΓD,

uε,n = 0, −στ (uε, pε) = gαε(uε,τ ) on Γ.

Moreover there is a constant C > 0 independent of ε and λ such that

‖uε‖2 + ‖pε‖1 ≤ C(‖f‖ + ‖g‖1/2,Γ + ‖uε‖1 + ‖pε‖).

We can show Lemma 5.1 in the similar line as that of Lemma 3.1 by making
use of Lemma 2.3. We only state

Sketch of the proof of Lemma 5.2. We follow the notation of the proof of
Lemma 4.1. We investigate the regularity near Γ and only state the case of
N = 3. Suppose that we have reached

ãλ(ũ, ϕ̃) + b̃(ϕ̃, p̃) +
∫

S

g̃α(ũτ ) · ϕ̃τ dy′

=
∫

Q

f̃ · ϕ̃|Jac Φ| dy + F̃ (ϕ̃), (∀ϕ̃ ∈ Kτ (Q)),

b̃(ũ, χ̃) = G̃(χ̃), (∀χ̃ ∈ L2(Q)),
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where ũτ = (ũ1, ũ2, 0), ϕ̃τ = (ϕ̃1, ϕ̃2, 0), and

Kτ (Q) = {ϕ ∈ K(Q)| ϕ3 = 0 on S}.

Put û = (ũ1, 0, 0). Taking

ϕ̃ = v ≡ D−h (Dhû) ∈ Kn(Q1),

we obtain by (4.17)–(4.20)

‖∇y (Dhû)‖Q ≤ C3(‖ũ‖1,Q + ‖p̃‖Q + ‖g̃‖00,S + ‖f̃‖Q),

in other words

‖∇y (Dhũ1)‖Q ≤ C3(‖ũ‖1,Q + ‖p̃‖Q + ‖g̃‖00,S + ‖f̃‖Q).

(Here ∇y (Dhû) denotes the tensor product, whereas ∇y (Dhũ1) denotes the
usual gradient.) There we note that α which appeared in (4.19) should be
replaced by α1, where α = (α1, α2, α3). In the same way, we have

‖∇y (Dhũ2)‖Q ≤ C3(‖ũ‖1,Q + ‖p̃‖Q + ‖g̃‖00,S + ‖f̃‖Q)

by choosing û = (0, ũ2, 0). These lead to

‖∇y (Dhũ)‖Q ≤ C3(‖ũ‖1,Q + ‖p̃‖Q + ‖g̃‖00,S + ‖f̃‖Q)

and the rest is the same as the proof of Lemma 4.1.

§6. Remarks on Regularity Results for Stokes Problems

This section is devoted to the boundary value problems of Neumann type
composed of

{
λu − ∆u + ∇p = f, div u = 0 in Ω,

u = 0 on ΓD

(6.1)

with one of the following conditions:

uτ = 0, σn = ωn on Γ;(6.2)

un = 0, στ = ωτ on Γ;(6.3)

σ = ω on Γ,(6.4)
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where ωn, ωτ and ω are given functions defined on Γ. If a smooth vector field
u and a smooth scalar filed p satisfy (6.1) and (6.2), then by (2.8)

aλ(u, ϕ) + b(ϕ, p) =
∫

Γ

ωnϕn ds + (f, ϕ) (∀ϕ ∈ Kτ ).

From this observation, {u, p} ∈ K̂τ × L2(Ω) satisfying this equation may be
regarded as a weak solution of (6.1) with (6.2). Furthermore we have

Theorem 6.1. Let λ ≥ 0 and 0 ≤ k ∈ Z. Suppose that

ΓD ∩ Γ = ∅, ΓD, Γ are of class Ck+2, Ck+3;(6.5)

f ∈ Hk(Ω)N .(6.6)

Let ωn ∈ Hk+1/2(Γ). Moreover, suppose that {u, p} ∈ Kτ ×L2(Ω) is a solution
of

aλ(u, ϕ) + b(ϕ, p) =
∫

Γ

ωnϕn ds + (f, ϕ), (∀ϕ ∈ Kτ ),(6.7)

b(u, χ) = 0 (∀χ ∈ L2(Ω)).(6.8)

Then u ∈ Hk+2(Ω)N , p ∈ Hk+1(Ω), and they satisfy

λu − ∆u + ∇p = f, div u = 0 in Ω,(6.9)

u = 0, on ΓD,(6.10)

uτ = 0, σn(u, p) = ωn on Γ.(6.11)

Moreover

‖u‖k+2 + ‖p‖k+1 ≤ C(λ, k)(‖f‖k + ‖ωn‖k+1/2,Γ).

Remark. In the above theorem, we have assumed the existence of {u, p}
satisfying (6.7) and (6.8). However, if ΓD �= ∅, such {u, p} always exists under
the condition that f ∈ L2(Ω) and ωn ∈ L2(Γ). Actually, a linear functional
on Kτ defined as the right-hand side of (6.7) is bounded and its bound is
given by C(‖f‖+ ‖ωn‖0,Γ). The bilinear form a is coercive in Kτ ×Kτ as was
stated before, and moreover the bilinear form b satisfies the inf-sup condition
(2.11). Therefore a well-known result on abstract variational problem with
constraints (Theorem 5.6 of [13], Corollary I-4.1 of [17]) is applicable. Hence



�

�

�

�

�

�

�

�

372 Norikazu Saito

we immediately obtain a unique existence of {u, p} ∈ Kτ ×L2(Ω) of a solution
of (6.7), (6.8) with

‖u‖1 + ‖p‖ ≤ C(‖f‖ + ‖ωn‖0,Γ).

Of course, it can be verified in the same manner as the proof of Lemma 3.2
with the aid of Lemma 2.1. In the case of ΓD = ∅, an additional assumption
λ > 0 is required.

Theorem 6.2. Let λ ≥ 0 and 0 ≤ k ∈ Z. Suppose that (6.5) and (6.6)
hold. Let ωτ ∈ Hk+1/2(Γ)N and let {u, p} ∈ Kn × L2

0(Ω) be a solution of

aλ(u, ϕ) + b(ϕ, p) =
∫

Γ

ωτ · ϕτ ds + (f, ϕ), (∀ϕ ∈ Kn),

b(u, χ) = 0 (∀χ ∈ L2(Ω)).

Then u ∈ Hk+2(Ω)N , p ∈ Hk+1(Ω), and they satisfy

λu − ∆u + ∇p = f, div u = 0 in Ω,

u = 0, on ΓD,

un = 0, στ (u, p) = ωτ on Γ.

Moreover

‖u‖k+2 + ‖p‖k+1 ≤ C(λ, k)(‖f‖k + ‖ωτ‖k+1/2,Γ).

Theorem 6.3. Let λ ≥ 0 and 0 ≤ k ∈ Z. Suppose that (6.5) and (6.6)
hold. Let ω ∈ Hk+1/2(Γ)N and let {u, p} ∈ K × L2(Ω) be a solution of

aλ(u, ϕ) + b(ϕ, p) =
∫

Γ

ω · ϕ ds + (f, ϕ), (∀ϕ ∈ K),

b(u, χ) = 0 (∀χ ∈ L2(Ω)).

Then u ∈ Hk+2(Ω)N , p ∈ Hk+1(Ω), and they satisfy

λu − ∆u + ∇p = f, div u = 0 in Ω,

u = 0, on ΓD,

σ(u, p) = ω on Γ.

Moreover

‖u‖k+2 + ‖p‖k+1 ≤ C(λ, k)(‖f‖k + ‖ω‖k+1/2,Γ).
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Since proofs of these three theorems are done in the essentially same way,
we prove the first one.

Proof of Theorem 6.1. We first prove the case of k = 0. As is stated before,
it suffices to investigate the regularity near Γ. Let x0 ∈ Γ and U0 ⊂ R

N be a
neighbourhood of x0. Again we take R > 0, U ⊂ U0 and a one-to-one mapping
Φ = (Φ1, . . . , ΦN ) from U onto Ũ ⊂ R

N
y described in the proof of Lemma 4.1.

(We follow the notation of the proof of Lemma 4.1.) However in this case we
assume that Φ is only of class C2.

We set y = Φ(x) = (Φ1(x), . . . ,ΦN (x)),

ũ(y) = (θ2u)(x), p̃(y) = (θ2p)(x)

and

f̃(y) = (θ2f)(x), ω̃(y) = (θ2ωn)(x),

where θ ∈ C∞(RN ) is a cut-off function subject to (3.3). Then we deduce

ãλ(ũ, ϕ̃) + b̃(ϕ̃, p̃) = −
∫

SR

ω̃ϕ̃N dy′(6.12)

+
∫

QR

f̃ · ϕ̃|Jac Φ| dy + F̃ (ϕ̃), (∀ϕ̃ ∈ Kτ (QR)),

b̃(ũ, χ̃) = G̃(χ̃), (∀χ̃ ∈ L2(QR)).(6.13)

If we proceed in the same way as in the proof of Lemma 4.1, we should assume
that Φ is a C3 mapping. However we can avoid such issue by employing a trick
of Bello [2].

Let R1 ∈ (0, R). We set ε = R − R1, R2 = R − ε/2, R3 = R − ε/4 and
simply write Qi = QRi

, Si = SRi
for i = 0, 1, 2, 3. (R0 is understood as R.)

We shall not distinguish v ∈ K(Q) with their restrictions into Qi (i = 1, 2, 3);
v ∈ K(Qi).

We may assume that

ũ ∈ Kτ (Q1), ω̃ ∈ H
1/2
00 (S1).

Let 0 < h < ε/4. We fix i ∈ {1, 2, . . . , N − 1} and write D±h = Di
±h for

simplicity. Suppose ϕ̃ ∈ Kτ (Q2), χ̃ ∈ L2(Q2) and substitute D−hϕ̃, D−hχ̃ into
(6.12), (6.13) as test functions. Then

ãλ(Dhũ, ϕ̃) + b̃(ϕ̃, Dhp̃) = F̃0(ϕ̃), (∀ϕ̃ ∈ Kτ (Q2)),(6.14)

b̃(Dhũ, χ̃) = G̃0(χ̃), (∀χ̃ ∈ L2(Q2)),(6.15)
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where

F̃0(ϕ̃) = −
∫

SR

ω̃D−hϕ̃N dy′ +
∫

QR

f̃ · (D−hϕ̃)|Jac Φ| dy + F̃ (D−hϕ̃)

−
∫

QR

(shẽij(ũ))
[(

Dh
∂Φl

∂xj

)
∂ϕ̃i

∂yl
+

(
Dh

∂Φl

∂xi

)
∂ϕ̃j

∂yl

]
dy;

G̃0(χ̃) = G̃(D−hχ) +
∫

QR

(shχ̃) Dh

(
∂Φk

∂yi
|Jac Φ|

)
∂ϕi

∂yk
dy.

We claim:

|ãλ(v, w)| ≤ C(λ)‖v‖1,Q2‖w‖1,Q2 (∀v, w ∈ Kτ (Q2));(6.16)

ãλ(v, v)| ≥ C‖v‖2
1,Q2

(∀v ∈ Kτ (Q2));(6.17)

C‖χ‖Q2 ≤ sup
v∈Kτ (Q2)

b̃(v, χ)
‖v‖1,Q2

(∀χ ∈ L2(Ω));(6.18)

|F̃0(ϕ)| ≤ C(‖ũ‖1,Q2 + ‖p̃‖Q2(6.19)

+ ‖f̃‖Q3 + ‖ω̃‖00,S1)‖ϕ‖1,Q2 (∀ϕ ∈ Kτ (Q2));

|G̃0(χ)| ≤ C‖ũ‖1,Q2‖χ‖Q2 (∀χ ∈ L2(Ω)).(6.20)

(6.16) is obvious. (6.17) is a consequence of (4.21). To see (6.18), let v ∈
Kτ (Q2), χ ∈ L2(Q2), and set

v̂(x) =

{
v(y) y ∈ Q2

0 otherwise,
χ̂(x) =

{
χ(y) y ∈ Q2

0 otherwise.

Since v̂ ∈ Kτ , χ̂ ∈ L2(Ω), by (2.11), we have

β‖χ‖Q2 = β‖χ̂‖ ≤ |b(v̂, χ̂)|
‖v̂‖1

≤ C
|b̃(v, χ)|
‖v‖1,Q2

.

Finally (6.19) and (6.20) are easily obtained in the standard manner.
Now, (6.16)–(6.20) enable us to apply to (6.14)(6.15) the theorem on ab-

stract variational problem with constrains; Theorem 5.6 of [13] or Corollary
I-4.1 of [17]. As a result, Dhũ ∈ Kτ (Q2), Dhp̃ ∈ L2(Q2) and

‖Dhũ‖1,Q2 + ‖Dhp̃‖Q2 ≤ C(‖ũ‖1,Q2 + ‖p̃‖Q2 + ‖f̃‖Q3 + ‖ω̃‖00,S1).(6.21)

Letting h ↓ 0, we obtain∥∥∥∥ ∂ũ

∂yj

∥∥∥∥
1,Q2

+
∥∥∥∥ ∂p̃

∂yj

∥∥∥∥
Q2

≤ C(‖ũ‖1,Q2 + ‖p̃‖Q2 + ‖f̃‖Q3 + ‖ω̃‖00,S1)
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for j = 1, . . . , N − 1, and hence

N−1∑
j=1

‖ζj‖1,Q2 ≤ C(‖ũ‖1,Q2 + ‖p̃‖Q2 + ‖f̃‖Q3 + ‖ω̃‖00,S1),

where ζj = ∂ũ/∂yj . This means that η = ũN |S2 ∈ H3/2(S2) and

‖η‖3/2,S2 ≤ C(‖ũ‖1,Q2 + ‖p̃‖Q2 + ‖f̃‖Q3 + ‖ω̃‖00,S1).

Summing up the above estimates, by the argument of the partition of unity,
we have

‖β‖3/2,Γ ≤ C(‖u‖1,Ω + ‖p‖Ω + ‖ωn‖1/2,Γ + ‖f‖Ω),

where β = un|Γ. Therefore, by Cattabriga’s result, we get the desired result
for k = 0.

We proceed to the general case k ≥ 0. Let α = (α1, . . . , αN−1) be a
multi-index with |α| = k and set

∂α =
(

∂

∂y1

)α1

· · ·
(

∂

∂yN−1

)αN−1

.

Suppose that we have obtained the desired result for k ≥ 0. We may assume

∂αũ ∈ Kτ (Q1), ∂αω̃ ∈ H
1/2
00 (S1),

then we have

ãλ (Dh(∂αũ), ϕ̃) + b̃ (ϕ̃, Dh(∂αp̃)) = F̃k(ϕ̃), (∀ϕ̃ ∈ Kτ (Q2)),(6.22)

b̃ (Dh(∂αũ), χ̃) = G̃k(χ̂), (∀χ̃ ∈ L2(Q2)),(6.23)

where F̃k and G̃k are functionals such as

|F̃k(ϕ)| ≤ C(‖ũ‖k+1,Q2 + ‖p̃‖k,Q2

+ ‖f̃‖k,Q3 + ‖∂αω̃‖00,S1)‖ϕ‖1,Q2 (∀ϕ ∈ Kτ (Q2)),

|G̃k(χ)| ≤ C‖ũ‖k+1,Q2‖χ‖Q2 (∀χ ∈ L2(Ω)).

In fact, we firstly assume that ϕ̃ ∈ Kτ (Q2), χ̃ ∈ L2(Q2) are sufficiently smooth
and then substitute (−1)|α|∂αD−hϕ̂, (−1)|α|∂αD−hχ̂ into (6.12), (6.13) as new
ϕ̃, χ̃. Then, by virtue of integration by parts and the density argument, we
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have (6.22) and (6.23). Again repeating the argument for k = 0, we obtain
Dh(∂αũ) ∈ Kτ (Q2), Dh(∂αp̃) ∈ L2(Q2) and

‖Dh(∂αũ)‖1,Q2 + ‖Dh(∂αp̃)‖Q2

≤ C(‖ũ‖k+1,Q2 + ‖p̃‖k,Q2 + ‖f̃‖k,Q3 + ‖∂αω̃‖00,S1).

Therefore, as before, we deduce the desired result for k + 1. The proof is
completed by the induction.

§7. Concluding Remarks

(A) Convergence rate. The following theorem provides how fast {uε, pε}
converges to {u, p}, where {uε, pε} and {u, p} are solutions of (Pr. WLFε) and
(Pr. WLF), respectively. This result gives useful information in the numerical
approximation of these problems.

Theorem 7.1. Let λ ≥ 0 and ε > 0. Suppose ΓD �= ∅ if λ = 0.
Assume that (3.4) and g ≥ 0 a.e. in Γ. Let {u, p} and {uε, pε} be solutions of
(Pr. WLF) and (Pr. WLFε), respectively. Then

‖uε − u‖1 + ‖p̃ε − p̃‖ ≤ C
√

ε‖g‖L1(Γ),(7.1)

where p̃ = p − |Ω|−1(p, 1), p̃ε = pε − |Ω|−1(pε, 1) with |Ω| being the Lebesgue
measure of Ω in R

N .

Proof. Substituting v = uε and ϕ = uε − u into (3.2) and (3.10), respec-
tively, we have

aλ(u, uε − u) + j(uε,n) − j(un) ≥ (f, uε − u),

aλ(uε, uε − u) +
∫

Γ

gαε(uε,n)(uε,n − un) ds = (f, uε − u).

Hence

aλ(uε − u, uε − u) ≤ j(uε,n) − j(un) +
∫

Γ

gαε(uε,n)(un − uε,n) ds,

and by (3.5), (3.15), (2.3) (or (2.6))

C‖uε − u‖2
1 ≤ |j(uε,n) − j(un)| + |jε(un) − jε(uε,n)| ≤ ε‖g‖L1(Γ).(7.2)

We proceed to the pressure part. Putting qε = p̃ε − p̃, we have

aλ(u − uε, ϕ) = b(ϕ, qε) (∀ϕ ∈ H1
0 (Ω)N ).(7.3)
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In fact, for an arbitrary ϕ ∈ H1
0 (Ω)N , substituting v = u±ϕ into (3.2), we get

aλ(u, ϕ) + b(ϕ, p) = (f, ϕ).

Combining this with (3.10), we deduce (7.3). Since (qε, 1) = 0, by Lemma 2.4,
we can take ψε ∈ H1

0 (Ω)N subject to div ψε = qε in Ω and ‖ψε‖1 ≤ C‖qε‖.
Now substituting into (7.3) ϕ = ψε, we obtain

‖qε‖2 = aλ(u − uε, ψε) ≤ C‖u − uε‖1‖ψε‖1 ≤ C‖u − uε‖1‖qε‖.

This, together with (7.2), implies (7.1).

Concerning (Pr. WSFε) and (Pr. WSF), we also have a corresponding
result. The proof is omitted.

Theorem 7.2. Let λ ≥ 0 and ε > 0. Suppose that ΓD �= ∅ if λ = 0.
Assume that (3.4) and g ≥ 0 a.e. in Γ. Let {u, p} and {uε, pε} be solutions of
(Pr. WSF) and (Pr. WSFε), respectively. Then

‖uε − u‖1 + ‖p̃ε − p̃‖ ≤ C
√

ε‖g‖L1(Γ).

(B) Full stress problem of friction type. We consider the full stress
problem of friction type, (Pr. F), which is composed of (1.1), (1.2) and

−σ(u, p) ∈ g∂|u| on Γ,(7.4)

where ∂|·| denotes a graph on R
N defined by (1.5) with m = N . It is equivalent

to

|σ| ≤ g, σ · u + g|u| = 0 on Γ.

The existence and uniqueness/non-uniqueness of a weak solution to (Pr. F) are
discussed by means of a variational inequality in Fujita and Kawarada [12]. In
the previous paper [26], we assumed g ∈ H1(Γ) ∩ L∞(Γ) to derive the H2-H1

regularity of the weak solution. However, in the same way as that of Theorem
1.2, we can prove

Theorem 7.3. Let λ ≥ 0. Assume that ΓD �= ∅ if λ = 0. Suppose
that Γ ∩ ΓD = ∅ and that ΓD, Γ are of class C2, C4, respectively. Suppose
also that g ∈ H1/2(Γ) and g ≥ 0 a.e., and finally let f ∈ L2(Ω)N . Then there
exists a solution {u, p} ∈ H2(Ω)N × H1(Ω) of (Pr. F). u is unique, while p is
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unique except for an additive constant. The range of the additive constant to p

is limited to {0} or to a finite closed interval. Furthermore

‖u‖2 + ‖p‖1 ≤ C(‖f‖ + ‖g‖1/2,Γ + ‖u‖1 + ‖p‖)

for any solution {u, p} of (Pr. F).

Remark. As for the non-uniqueness of p, see Remark below Theorem 1.1
or an example in [26].

(C) Regularity for (Pr. WLFε). Concerning the regularity of a solution
{uε, pε} of (Pr. WLFε), we can easily derive uε ∈ H2, pε ∈ H1 by making use
of

Lemma 7.1. Let α be a mapping of R
m → R

m with α(0) = 0. More-
over assume that there are L, M > 0 such that

|α(z) − α(z′)| ≤ L|z − z′| (∀z, z′ ∈ R
m),

|α(z)| ≤ M (∀z ∈ R
m).

Let η ∈ H1/2(Γ)m. Then, if g ∈ H1/2(Γ) ∩ L∞(Γ), we have gα(η) ∈ H1/2(Γ)m

and

‖gα(η)‖1/2,Γ ≤ C(M)‖g‖1/2,Γ + C(L, M, ‖g‖L∞(Γ))‖η‖1/2,Γ.

Proof. Let η ∈ H1/2(Γ)m. The fact that

α(η) ∈ H1/2(Γ)m and ‖α(η)‖1/2,Γ ≤ C(L, M)‖η‖1/2,Γ(7.5)

is due to H. Brezis. (Lemme I.1 of [4]; The scalar-valued case is explicitly
described there, but it is valid for the vector-valued case.)

Next let us denote by ĝ ∈ H1(Ω) the weak harmonic extension of g. It
follows from the maximum principle that ‖ĝ‖∞ ≤ ‖g‖L∞(Γ). Let η ∈ H1/2(Γ)m.
We take the weak harmonic extension α̂ ∈ H1(Ω)m of α(η). That is, we
extend an each component of α(η) by a harmonic function on Ω. Again by the
maximum principle, we have ‖α̂‖∞ ≤ ‖α(η)‖L∞(Γ) ≤ M . Since ĝα̂ ∈ H1(Ω)m,
by the trace theorem,

‖gα(η)‖1/2,Γ ≤ C‖ĝα̂‖1 ≤ CM‖ĝ‖1 + ‖g‖L∞(Γ)‖α̂‖1.



�

�

�

�

�

�

�

�

Stokes Equation with Leak and Slip BCs 379

This, together with (7.5), implies the conclusion.

Now, let λ ≥ 0 and ε > 0. Suppose (1.6), (1.7), (1.9), and (1.10). (We
follow the notation of §3.) Let {uε, pε} ∈ Kτ × L2(Ω) solve (Pr. WLFε).
Furthermore we assume g ∈ L∞(Γ). We notice that

|αε(z) − αε(z′)| ≤
1
ε
|z − z′|, |αε(z)| ≤ 1 (z, z′ ∈ R).

Then Lemmas 3.1 and 7.1 (in the case of m = 1) imply that σn(uε, pε) =
−gαε(uε,n) ∈ H1/2(Γ). Hence we have uε ∈ H2(Ω)N , pε ∈ L2(Ω), and

‖uε‖2 + ‖pε‖ ≤C(‖f‖ + ‖gαε(uε,n)‖1/2,Γ)

≤C(‖f‖ + C‖g‖1/2,Γ + C(ε, ‖g‖L∞(Γ))‖uε,n‖1/2,Γ)

≤C(‖f‖ + C‖g‖1/2,Γ + C(ε, ‖g‖L∞(Γ))‖uε‖1)

by Theorem 6.1. However in order to derive an estimate which is independent
of ε like as (4.7), we need another device described in §4.

Remark. We meet the same issue when applying a general regularity
theory by Agmon, Douglis and Nirenberg [1].

(D) Optimality of Assumption g ∈ H1/2(Γ). Theorem 6.1 claims that

gαε(uε,n) ∈ H1/2(Γ)(7.6)

is essential to derive the H2(Ω)N × H1(Ω)-regularity of a solution {uε, pε} ∈
Kτ × L2(Ω) to (Pr. WLFε). However, if uε,n ≥ 1/ε on Γ, then (7.6) means
g ∈ H1/2(Γ).

Appendix A. The Space H
1/2
00

In this appendix, we establish the proof of Lemma 4.2 after having prepared
some basic properties on the space H

1/2
00 .

First we recall its definition. Let γ ⊂ R
N−1
y be a bounded domain with the

Lipschitz boundary ∂γ. The distance from y′ ∈ γ to ∂γ is denoted by δ = δ(y′).
Then

H
1/2
00 (γ) = {η ∈ H1/2(γ)| δ−1/2η ∈ L2(γ)}

is a Hilbert space equipped with the norm

‖η‖00,γ = ‖η‖
H

1/2
00 (γ)

=
[
‖η‖2

H1/2(γ) +
∫

γ

|η(y′)|2
δ(y′)

dy′
]1/2

.
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We consider a finite cylinder Q = γ × (0, R) ⊂ R
N−1
y × Ry with R > 0,

and set

K(Q) = {v ∈ H1(Q)| v = 0 on ∂Q\γ}.

If v ∈ K(Q), then η = v|γ ∈ H
1/2
00 (γ) and ‖η‖00,γ ≤ C‖v‖H1(Q). Conversely,

every η ∈ H
1/2
00 (γ) admits an extension v ∈ K(Q) such that v|γ = η and

‖v‖H1(Q) ≤ C‖η‖00,γ . Moreover the following equivalence holds true

‖η‖00,γ ∼ inf{‖v‖H1(Q)| v ∈ K(Q), v|γ = η} ∼ ‖∇w‖L2(Q),

where w ∈ K(Q) denotes the weak harmonic extension η into Q; ∆w = 0 in Q

and w|γ = η. See, for more detail, [23] or [25].

Lemma A.1. Let γ, γ′ ⊂ R
N−1
y be bounded domains with Lipschitz

boundaries, and assume that γ′ ⊂ γ and dist(γ′, γ) > 0. Let g ∈ H
1/2
00 (γ′).

Then the zero extension ĝ of g into γ is in H
1/2
00 (γ). Furthermore we have

∂ĝ

∂yi
∈ H−1/2(γ) ≡ H

1/2
00 (γ)∗,

∥∥∥∥ ∂ĝ

∂yi

∥∥∥∥
H−1/2(γ)

≤ C(γ, γ′)‖g‖00,γ′(A.1)

for i = 1, 2, . . . , N − 1.

Proof. The first assertion is obvious. We give the proof of the second one
only when N = 3. Set Q′ = γ′×(0, R/2), and take a smooth function w defined
on Q′ subject to w = 0 on ∂Q′\γ. Let ŵ be the extension of w by 0 into Q.
Then ∂ŵ/∂yj , j = 1, 2, 3, are also smooth on Q and vanish on ∂Q\γ. We have
by the integration by parts∫

Q

curl v · ∇ŵ dy =
∫

γ

(
v2

∂ŵ

∂y1
− v1

∂ŵ

∂y2

)
dy′ (∀v ∈ K(Q)3).

Taking ϕ ∈ K(Q) and substituting v = (0, ϕ, 0) into the above, we obtain∫
γ

∂ŵ

∂y1
ϕ(y′, 0) dy′ =

∫
Q

( ∂ϕ

∂y1

∂ŵ

∂y3
− ∂ϕ

∂y3

∂ŵ

∂y1

)
dy.(A.2)

By the density argument, the identity (A.2) is valid for any w ∈ K(Q′) =
{v ∈ H1(Q′)| v = 0 on ∂Q′\γ′}. At this stage, we suppose that w is the weak
harmonic extension of g into Q. The zero extension of g into γ is denoted by ĝ.
Moreover, for an arbitrary η ∈ H

1/2
00 (γ), let ϕ ∈ K(Q) be the weak harmonic

extension into Q. Then (A.2) implies∫
γ

∂ĝ

∂y1
η dy′ =

∫
Q

( ∂ϕ

∂y1

∂ŵ

∂y3
− ∂ϕ

∂y3

∂ŵ

∂y1

)
dy.
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Now we define ∂ĝ/∂y1 ∈ H−1/2(γ) through this identity and then get∣∣∣∣
∫

γ

∂ĝ

∂y1
η dy′

∣∣∣∣ ≤ ‖∇w‖L2(Q)‖∇ϕ‖L2(Q) (∀η ∈ H
1/2
00 (γ)).

The case of i = 2 is done in the similar way.

Finally we state:

Proof of Lemma 4.2. Although the inequality (4.27) is essentially derived
by González Burgos [16], we state another (and a somewhat simpler) proof.
Taking the harmonic extension w of g into QR1 and using the same symbol w

to indicate the zero extension of w into QR. Writing

Di
hw(y) =

1
h

∫ h

0

si
t

∂w

∂yi
(y) dt, (si

t : the shift operator defined by (4.15))

we obtain, for any ϕ ∈ K(QR2),∫
SR

(Di
hg)ϕ(y′, 0) dy′ =

1
h

∫ h

0

∫
SR

(
si

t

∂w

∂yi
(y′, 0)

)
ϕ(y′, 0) dy′dt,

=
−1
h

∫ h

0

∫
SR

(
∂w

∂yi
(y′, 0)

)
si
−tϕ(y′, 0) dy′dt.

Since si
−tϕ(y′, 0) ∈ H

1/2
00 (SR), by Lemma A.1, we have

∫
SR

∣∣(Di
hg)ϕ(y′, 0)

∣∣ dy′ ≤ 1
h

∫ h

0

∫
SR

∣∣∣∣ ∂g

∂yi
(y′)

∣∣∣∣ · ∣∣si
−tϕ(y′, 0)

∣∣ dy′dt

≤
(

1
h

∫ h

0

dt

) ∥∥∥∥ ∂g

∂yi

∥∥∥∥
H−1/2(SR)

‖si
−tϕ‖00,SR

≤C(R)‖g‖00,SR1
‖∇ϕ‖L2(QR),

which completes the proof.
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Paris, 1972.
[9] Fujita, H., A mathematical analysis of motions of viscous incompressible fluid un-

der leak or slip boundary conditions, Mathematical Fluid Mechanics and Modeling,
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[21] Kōmura, Y., Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967),
493-507.

[22] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gor-
don and Breach Sci. Publ., London, 1969.



�

�

�

�

�

�

�

�

Stokes Equation with Leak and Slip BCs 383
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