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Abstract

In this paper, we establish a sample path large deviation principle for a class

of diffusion processes on configuration spaces over a Riemannian manifold. The rate
functional turns out to be the energy of the paths associated to the L?-Wasserstein

distance.
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§1. Introduction

Since Varadhan’s work [Var67] on large deviations for the small time
asymptotics for diffusion processes a large number of papers has been devoted
to this subject. For diffusions on finite dimensional state spaces we would like to
mention here particularly Norris’s work [Nor97] and also the references therein.
In recent years, small time large deviations of diffusions have also been studied
in infinite dimensions, (see [Fan94, FZ99, AZ02, Hin02, Ram01, Sch96, Zha00]).

In this paper we prove a small time large deviation principle for a class of
diffusions on configuration space (i.e., infinite particle systems in continuum)
on the sample path level. The paper in the literature, which is closest to our
situation, is the paper by Schied for the case of the super-Brownian motion.
Our diffusions, however, take values in I'y/, i.e., the space of all Z, U {+o0}-
valued Radon measures on a finite dimensional, connected complete Rieman-
nian manifold M. So, (at least if M is not compact) the diffusions on I'j; can
be heuristically written as

X = Z 5Xti7
=1

representing interacting random particles. One way to construct such a diffu-
sion is to use the theory of Dirichlet forms (see, for example, [MR00, AKR96a]).
The geometry and analysis on configuration space I'j; was carried out in
[AKR96a, AKRI6b, AKR98a, AKR98b]. The intrinsic metric of the associated
Dirichlet form was identified as an L2-Wasserstein type distance in [RS99]. As
said before in this paper, we establish a sample path large deviation principle
for the diffusion process Xy, t > 0, on the path space Q := C([0,1] — T'ps). Our
strategy is to first establish the principle for the so called Brownian motion on
configuration space i.e., the independent particle process on M, which is the
harder part, and then to obtain the large deviation principle for more general
diffusions via Girsanov transformation. The rate functional turns out to be
the energy of the paths associated to the L2-Wasserstein type distance from
[RS99]. When the manifold M is the real line, the small time asymptotics (not
the sample path large deviation) was analyzed in [Zha01].
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We want to emphasize that in the case of the independent particle pro-
cess we do not use its construction by Dirichlet forms, but rather the pathwise
construction from [KLRO03], which (as shown in [KLRO3]) is possible for an ex-
plicitly described set I'o, C I'ps of initial configurations. I', is also an invariant
set for the process, i.e., (X;);>0 stays in I's, for all times. We, therefore, can
prove the sample path large deviation principle for all initial conditions v € I'.
We also use the metric do introduced on I', in [KLRO3] in a decisive way. doo
induces a stronger topology on 'y, than the vague topology and is crucially
used in Section 6 below (cf. Theorem 6.8).

The paper is organized as follows. In Section 2 we present our framework
giving all conditions on M used below. We also recall relevant definitions and
results from [KLRO3]. In Section 3, we prove exponential estimates which are
necessary for the sequel. Section 4 is devoted to the upper bound estimates for
finite dimensional projections of the diffusion. In Section 5 the rate functional
is identified. The lower bound estimates for finite dimensional projections are
discussed in Section 6. The sample path large deviation principle is finally
proved in Section 7. In Section 8, we establish the large deviation principle for
a more general class of diffusions.

82. Framework

Let M be a complete, connected Riemannian manifold as in the introduc-
tion. For simplicity we assume that M has dimension bigger than two. Let
pi(x,y) denote the heat kernel on M. Throughout the paper, we assume that
the manifold M satisfies the following conditions:

A.1. For any § > 0 there exists a constant ¢1(4) such that

d(z, 2 d(x, 2
exp [7 (é_ggt} €xp [7 (éﬁs’gt}

c1(6)m(B(y, V1)) m(B(y, V1))
for all x,y € M, t < 2T, where B(y, /t) denotes the geodesic ball centered at

y with radius v/%.
A.2. For some fixed point g € M, there exist ¢;, > 0, N € N such that

(2.1) < pi(x,y) < ()

(2.2) m(B(zg,7)) < czOrN, r >0,

where m(dz) denotes for the Riemannian volume on M.
A.3. For any r > 0,

(2.3) xlél{/[ m(B(z,r)) > 0.
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Remark 2.1. (i) Condition (A.1) is satisfied if, for example, the Ricci
curvature is bounded from below, see [Stu92]. (A.3) holds if M has bounded
geometry. We refer the reader to [Dav89] for more details.

(ii) We note that (e.g. by the proof of [KLR03, Lemma 8.2]) (A.1)—(A.3)
imply the conditions (C.1), (C.2), (C.3) in [KLRO03] imposed there for one of
the main results, namely Corollary 8.1 and Remark 8.3 in that paper, which
we shall use below in a crucial way.

Let T'5; be the space of all Z; U {4o0}-valued Radon measures on M.
Equipped with the vague topology I'as is a Polish space. The set of all v € 'y,
such that y({z}) € {0, 1} is called the configuration space over M. For simplic-
ity, we also call I'y; configuration space over M. The geometry and analysis
on configuration space has been developed in [AKR96a, AKR96b, AKR98a,
AKR98b]. Let us recall some results and definitions from these papers. For
f € Co(M) (the space of all continuous functions on M having compact sup-
port), set

()= [ f@)atdn) = 3 fa).
xTEY

Define the space of smooth cylindrical functions on Iy, FCP°, as the set of
functions on I'j; of the form

(24) u(7):F(<f177>a"'7<fn77>)a 7€FMa

for some n € N, F € Cp°(R"), and f1,..., f, € C5°(M). For u as in (2.4)
define its gradient Vu as a mapping from I'y; X M to TM (the tangent bundle
of M):

Vu(y,z) =Y 0F({(f1,7).- -, (fn 1)) VSilx), ¥ €Tar, x € M.
=1

Here 0; denotes partial derivative with respect to the i-th coordinate, and V is
the usual gradient on M.

Denote by m the Riemannian volume on M. Let 7 be the Poisson mea-
sure on I'j; with intensity m, i.e., the unique measure on I'y; whose Laplace
transform is given by

/ e w(dy) = exp (/ (ef@ —1) m(dx))
INV: M
for all f € Co(M). Introduce the pre-Dirichlet form:

(2.5) Eo(u,v) ::/F (Vu, Vo), m(dv)

u,v € FCF°,
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where (Vu, Vo), = [, Vu(y,z)-Vu(y, z)y(dz). It has been shown in [AKR98a]
and [MROO] that &o(u,v) = [, (Vu, Vo) m(dy) is closable on L*(T', ) and
its closure, denoted by (&, D(E)), is a quasi-regular Dirichlet form. Thus by
the theory of Dirichlet forms (see [MR92]), there exists a diffusion process
M = {Q, F, F, X¢, Py, vy € Ty} associated with the Dirichlet form (€, D(E)),
where Q := C([0, 00) — T'js) is the canonical path space. The diffusion M itself
is also called Brownian motion on the configuration space. It was also proved in
[AKR98a] that starting with 7 as initial distribution the process has the same
law as the well known independent particle process (already studied by Doob
in [Doo53]). Correspondingly, for v € T'y; P, should be the distribution of the
process

(2.6) X) = gz, t >0,

rey

where (Bf);>o are independent Brownian motions starting at € v and ¢,
denotes Dirac measure at x. However, it is easy to see that this is not true
for any v € I'ps. For example, even when M = R, X; = )", 632 with initial
configuration v = Z;’il dlog(s) Will not be a Radon measure on R for some
t>0.

In [KLRO3, Corollary 8.1 and Remark 8.3] it was proved that (X;);>o0
defined in (2.6), however, a.s. does take values in T'ys for all ¢ > 0 if one starts
from points in a particular set I's, and in fact (X;);>o stays in I's, for all ¢ > 0.
Let us recall the definition of I's, from [KLRO03]. First we fix a base point zg
in M once and for all. Let d(x,y) denote the Riemannian distance on M. For
each positive integer m, we define the functional

(2.7)  Bn(y):= <exp[—id Zg, - }, > Zexp[——d Lo, T )},veI‘M,

ey

and define T';,, by
(28) D= {veTn |v({z}) €{0,1} for all z € M and By, (7) < co}.

Set

o0

(2.9) I'oo:= (] .

From now on we shall always use the version (X, );>¢ defined as in (2.6) above,
for v € T's, of the process M constructed by Dirichlet form methods. For
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topological reasons we shall, however, consider (X;');>o to take values in the
bigger space I'p; D ', since ', with the vague topology is not Polish.

In Section 8, we shall present how our results on the sample path large
deviations can be extended to other diffusions on I'j;. Let us describe the latter
here.

Let ¢ € D(E) such that 0 < ¢ and [ ¢?*dr = 1. As in [Ebe96] we define a
new Dirichlet form on L?(T' 5z, 42dm) by

(2.10) ofu)= [ (0 V)00 (),
D) =D ",
where Eg.1(u,u) = Ey(u,u) + [ u2(7)¢2(7)m(dy) and D is given by
D= {uebie) | [(Ctuwi) +e)eenn) < s},

The diffusion process associated with the new Dirichlet form (Ey, D(Ey)) will
be denoted by My, := {Q, F, F;, X;,Q,7 € I'nr}, which are no longer inde-
pendent Brownian particles.

For u € D(&y), set I'(u,u)(y) = (Vu,Vu),. Recall that the intrinsic
metric of the Dirichlet form (£, D(Ey)) is defined by

o(v,m) == sup{u(v) —u(n) | u € D(Ey)NC(T) and T'(u,u) < 1}

for v,n € T'p. Tt was proved in [RS99] that o is a Wasserstein type distance on
I'pr given by

(2.11) o(y,m) == inf{\//M Ny %d(m,yﬁw(dm,dy) wE F’YXU}7

where I'y ., denotes the set of w € "7 s having marginals v and 7, and d(z, y)

stands for the Riemannian distance on M. We emphasize that o is independent
of 9.
83. Some Preliminary Exponential Estimates
From this section until the end of Section 7, v is assumed to be one.
Lemma 3.1.  Let T > 0. Then there exist c1(T) and c2(T) such that
(3.1)

co(T)r?
P(d(z, BY) > r) < ei(T) eXp(_ (T)

t

),forallr>0,t§T,z€M,

where BY stands for the Brownian motion on M starting from x.
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Proof. By condition A.1, for any § > 0 there exists a constant ¢;(4) such

that
d(z,y)? d(z, )2
exp [_ (é—gﬂ exp [_ (2-&-?)1&}
(3.2) <p(@,y) <a(d)———F~
c1(8)m(B(y, V1)) m(B(y, V1))
for all xz,y € M, t < 2T.
246 1

Choose 9, 61,02 € (0,00) such that 1 < a:=
that

55 1oy < 2. It follows from (3.2)

P(d(z,Bf) >r) = / pi(z, y)m(dy)

d(z,y)>r

[ ae
d(z,y)>r

d(x, 2
€xp [_ ((2+§gt} (

m(By. VD)
7 exp[
/ C1 ((5)
d(z,y)>r
7 exp [—

[ ae
d(z,y)>r

)t =at <2T.)

IN

dy)
_ (-8))d(=,y)?
2+0)t
m(B(y, V1))
d(z,y)?

(2—62)5] m
Bl o) W)

517"2
(24 0)t|

} m(dy)

IN

exp

(517"2
(2+0)t ]

2446 1
2—02 1—0;

[ 517‘2
2+0)t]
_ d(m,y)Q}

B(y,\/a) 1 exp{ (2—62)1
B(%\/E) c1(d2) m(B(y,\/a)

exp

(where % := (

< exp

m

m(dy)

—~ |

m

IN

pi(z,y) m(dy)
d(z,y)>r

IN

where we have used the inequality:

m(B(y, V1))

B Scenl@-nWa- Vi

which can be found, for example, in [GWO00].
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Corollary 3.2. Let T > 0. Then there exists constants c1(T),co(T) >
0 such that for all s € (0,T]

T 2
P( sup d(z, Bf) > r) < cﬂT)exp(—@) forall x € M, r > 0.

0<t<s

Proof. The corollary follows from Lemma 3.1 above and Lemma 8.1 in
[KLRO3]. O

84. Large Deviation Estimates for Finite Dimensional Projections:
Upper Bounds

Throughout this section, we fix a finite partition D = {0 = tp < t; < t2 <
- < t, = 1} of [0,1]. Let Y* be the random vector Y° = (X, , Xety, - - -
Xct, ). Let X denote the set of all signed Radon measures on M. Equip X

with the vague topology generated by
{Upoa ={vex||(f,v)—a|<d}, feCo(M), a €R, >0}

X is a locally convex topological vector space with its topological dual A'*
being identified as Co(M). It is well known that 'y is a closed subspace of X.
Denote by B(xzg, ) the geodesic ball {z|d(zg,x) < r} of M.

Lemma 4.1.  For any § > 0, there exists c3(0) > 0 such that for all
r>0,e<1,¢>0,

((d(+6, o) —7)2 — 2(2 + 6)c)

éc zq,T (Bs) —
(4.1) Ei[ezXBeonBI] <1 4 c3(6) exp IO ,

where P’vé is the law of the Brownian motion on M starting from ~{.

Proof. By (3.2),

(4.2)

ic i i %
E i [ezxmeon(B)] — e / p=(76,v) m(dy)+/ p=(76,y) m(dy)
B(xo,r) B(zg,r)°

d(vé’y)w
gl—&—eéc/ c1(0)————=m(
enn O BV

Y).



LARGE DEVIATIONS ON CONFIGURATION SPACES 393

Note that for y € B(zg,r), we have d(v,y) > d(v§,z0) — r. Using the lower
bound in (3.2) as in Lemma 3.1, we see that (4.2) is dominated by

1 (d(v, o) — 1)? exp [_ ggig))z}
1 + e?Ce RS Rt A / C (5 _—m d
Xp[ 2@+ o) } seenn YO By, vy W)

1 xg) —1)? ;
<1l+e=“exp {%} /B(IM) c3(0)pe (5, y) m(dy)

[_ ((d(yi, m0) — )% — 2(2 + 8)c) } |

<1+ c3(0) exp 221 0)¢

which proves the assertion. O
Define X" =X x X x --- x X. Then it follows that

(4.3) (X' =X"oX D ®X*
=Co(M) ® Co(M) @ - @ Co(M).

For z,z1,22,..., 2, € M, set

hm(xlax%"'v :%Z

k=1

xk,wk_1)2, where zo = x.
(tr — tk 1)

Lemma 4.2.  Let F = (f1, f,-- -, fn) € (X™)*. Then

(44)  A(F):=limelog P, [es P
E—
:/M( ) [ka .Tk .Tl,l'g,...,l‘n) ’yo(dl‘).
$1,332, HTn

Proof. By the independence,
(45) A(F) = hH(l)é'lOg E’YO [e% 22:1<fkﬁxstk>]
E—
i ED SN i B,
= lim elog Ey, [e* T B Su(Bi)]
. oo B .
= lim elog B, [0 & Xima u(Ber,)]
. L E R fe(BL)
shevo By e i J(Be ]

- ili% Zglog B, [eé PR fk(BEtk)}.
7

= lim e logII
e—0
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By the large deviation principle of Brownian motion (see, for example, [Aze80]),
it follows that

iiﬂ%dOgE“/é [eézzzlf’“(B”k)] = ka T) = hy (21,32, ... 20) |-
(z1 12, %) | b—1
Taking the limit inside the series in (4.5), we get

(4.6) A(F) = Z [Z fr(zr) 361,962, e ,l‘n)l

i (1179027»--,56

:/ [ka (zk) xl,xg,...,xn)] ~Yo(dx).
M(xhﬂfm Tn)

It now remains to justify that we can take the limit inside the series. We
suppose that the supports of fi, 0 < k < n, are contained in B(xg, o) for some
ro. By Lemma 4.1, we have

E,yi [ei%fk(Bstk):I < E [es ka?HOOXB(.EO rO)(Bstk)]

((d(v8,20) —10)* = 2(2 + 5)ntk||fk||oo):|
221 0)etr :

<1+ c3(0) exp {—

Hence by Schwartz’s inequality,
CHEE
< Eyg [e—%fk(Bstk)]

((d(vh, o) —10)* — 2(2 + 5)”tkfk||oo)}
2(2+4 d)ety, '

<14 c3(d)exp [—
Using Holder’s inequality we have that

E.; [e? Zi=r fu(Bery)]
n d i _ 2_2 9 5 ‘0 N %
H(“Cg o - {C0b:20) — T2+ el )

2(24 d)ety,
Similarly,

(et BB

=

<

((d(7, 20) — 70)% — 2(2 + )nti | fillo) T\ *
(1 +ca(0) exp [_ : 2(2 + 6)ety, D

B
Il
—
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Hence it follows that for € < 1,
‘log B, [e* Siet fi(Be)] ‘

<

((d(r)/(l)v 170) - TO)Z - 2(2 + 5)ntk||fk||oo) :|)

1
- log<1 + ¢3(0) exp [ TR

= 11

IN

1 ((d(v6, o) = 70)* = 2(2 + &)nty || full o)
¢a(0) 7, exp {_ } 2(2+ 0)ety, } '

~
Il

1

Since Y7 exp[—-d(wo,74)] < oo for all m, the above estimates show
that

Z ElOg E’Yé [e% ket fk(BEtk)]

converges absolutely and uniformly with respect to ¢, which justifies to take
the limit inside the series. O

Proposition 4.3.  Let u. be the law of Y*® on X" under P,,. Then
{pe,e € (0,1]} is exponentially tight, namely, for any L > 0, there exists a
compact subset Ky, C X™ such that

(4.7 limsupelog P, (Y*® € Kf) < —L

e—0

Proof. We first prove that the law of X, is exponentially tight. So, let
e € (0,1]. Note that a set of the form

(4.8) K,y =€ X | |ul(Bwo,n)) < Ly}

with L,, € (0,00), is relatively compact. Given L > 0, we will choose L,, so
that

(4.9) limsupelog P, (X € Kf;, ) < —I.

e—0

Let my, :=t{i|d(7d,0) <n++/2(2+0)}. By Lemma 4.1,

((d(g, o) —n)* —2(2+ 9))
2(2+9)e

B, [eixB(mo,n)(Bs)] <1+cgexp|—
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Hence for all € < 1,

P,y (Xe(B(mo,n)) > L)

L i
G*T”E_Yo [6% >0 XB(mO,n)(B;):I

o0
L [
= ei_aw H E [e%XB(:co,n)(Bs)}
"o
i=1

<e” o ﬁ (1 + ¢3(0) exp [— ((d(%, x0)2(_2 :L-)Z); e 6)) })

=1

_Ln ((d(vh, z0) —m)?* — 2(2 4 0))

—2(2446) >0

1
X 1+c3(0)e [—D
I1 (1+ ea6) exp
[d(v§,x0)—n|<+/2(246)
_ ((A(vh,m0)—m)2 —2(2496))

<e exp e 2C+D (1+ c3(d)es )™
(a0 2 j

(CICTE Jvo) n>2—z<z+a>> mp

<e exp{ Ze 0 }(1+03(5))m"e :

L (d(v§,20)—n)%—2(248))
= eXp{—ni Les(s Ze O ) + my, log(1 +c3(6))}_
Define
A (d(vd,w0)—n)2 —2(2+6))
L, :=L+m,+c3(6 Ze 22FD) + my log(l+c3(9)) +n

and define K; := Ky, ) where Ky 3 is defined as in (4.8). Then we have

\ A

PA/O(X 6 K{L} .TO, ))>Ln)

IN

i
> e

This implies (4.9). A
Let L > 0 and choose L such that inflgkgn(%) > L. Let K; be defined as
above. Put
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Then K7, is compact and

n
limsupelog P, (Y* € K7) = limsupelog P, (U (Xe, € KE))

e—0 e—0 k=1

e—0

< limsupelog (n max. P, (Xey, € KZ))

1
= max —(limsupstk log Py, (Xet, € KZ))

1<k<n b\ 0
1 ~
< max —(—L) < —L.
1<k<n t
O
Define, for (n1,...,m,) € X",
(410) I’YO (7]1, R 777n) = sup <fka 77k>
(f1, fn)€CO(M)™ \ .5
- / sup ka(xk) — hy (21,22, ..., 2) | Yo(dx) ].
M (z1,22,...,Tn) 1

Theorem 4.4.  Let p. be the law of Y on X™ under P,,. Then, for
any closed subset F C X™,

limsup elog u. (F) < — inf L1,y ).
e—0 (M55 nn)EF

Proof. The assertion follows by a combination of Lemma 4.2, Proposi-
tion 4.3 above and Theorem 4.5.20 in [DZ92]. O

85. Identification of the Rate Functional

The main task of this section is to identify the rate function I, (1, ..., n,)
as > r_, mg(n;€7 Mi—1)% with n9 = 0. This turns out to be highly non-
trivial. We will also show that the rate functional is good. Let X't denote the
set of positive Radon measures on M. The definition of p in (2.11) extends to
Xt naturally with I'j; replaced by X*. Below, unless otherwise stated we fix
v € XT. We also fix positive numbers ai,as, ..., a,. Introduce a functional
H(vi,...,7m) on (X1)™ by

(5.1) H(y,om) = aro(e, Ye-1)°
k=1
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Proposition 5.1. H is convex and lower semi-continuous on (X)),
equipped with the product topology of vague convergence.

Proof. Let v1,72,91,%2 € xT. For any 0 < a < 1, we first show that

(52) o(am + (1= a)ye, 0% + (1 — a)¥s)” < oy, 31)? + (1 — a)o(ra, 32)°

To this end, we may and will assume p(v1,%1) < oo and g(7v2,72) < co. By
Lemma 4.1 in [RS99] (although the Lemma was stated for I'y;, its proof works
also for X7T), there exist 7,77 € XT(M x M) (the set of all positive Radon
measures on M x M) with

ﬁ(dIaM) = ’71(dz)777(M’ dy) ’_}/1(dy),77(d$,M)
= 72(dx), (M, dy) = F2(dy)

and such that

(5.3) o1, m)* =

(5.4) 0(72,92)% =
Define n* = an + (1 — a)f. Then,

n*(dz, M) = ay(dx) + (1 — @)y (dx)

n"(M,dy) = a1 (dy) + (1 — a)ya(dy).
Thus,
(5.5)  olam + (1 —a)y, a9 + (1 - a)Fn)”

<[ dwy) o (dedy)
MxM

—a [ dwy?adrdy) + (-0 [ dyPa(de.dy)
M x M M x M

=ap(y1, M) + (1 = @)o(72,72)*,

which proves (5.2). Let ¥1 = (v1,...,7L), %2 = (4%,...,72) € (XN It
follows from (5.5) that

(5.6)
N - ” 2
H(ah + (1—a)F2) =Y are(avi + (1 — a)yi,avh_; + (1 — a)yi,)
k=1
<aYy aro(vi, o)’ + (1—a) Y aro(rivi-1)?
k=1 k=1

=aH(V1)+ (1 - a)H(F2),
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showing that H(-) is convex. Next we will prove that H is lower semi-
continuous. Let {¥,,m > 1} be a sequence of elements in (XT)" converg-
ing vaguely to 4. We need to show that

(5.7) H(¥) <liminf H(¥p,).

m—00

For this purpose, we may and will assume that the limit lim,,, oo H (¥p,) exists
and is finite as well as each H(%,,). Write ¥, = (77,75 ...,v") and ¥ =
(71,72 +»¥n)- By Lemma 4.1 in [RS99] there exists 7%, _, € X" (M x M)
with ni_y (do, M) = v (dw), ni'y (M, dy) = v} 1 (dy), such that

(5-8) o(V i)’ :/ d(x,y)* 01 (dz, dy).
MxM

Thus,

(5.9) lim H(%,)= lim Zak/ d(z,y)? Nl (dz, dy).

Let II; be the projection operator from M x M to M defined by Iy (z,y) = «.
For any compact set K C M x M and k > 1, we have

supnfly (K) < sup [Tl (T1(8) ) = supog (T4 () < e

since ;' converges vaguely to y; as m — oo. This implies that for each
1 < k < n, the family {n;",_,,m > 1} is relatively compact with respect to
the topology of vague convergence. Now, choose a common subsequence {m;}
such that

(5.10) llim 771721[@71 = 772,k—1
— 00
vaguely for each 1 < k < n. Next we prove that

N1 (dz, M) =y, (dz), mp p_1 (M, dy) = y—1(dy)

Notice that this is not automatically a consequence of the vague convergence.
We only prove one of them, say, n,&k_l(dw, M) = ~y(dz), the other is proved
analogously. Choose a sequence {¢;(y),j > 1} of continuous functions on M
satisfying 0 < ¢;(y) < 1, ¢;(y) = 1 on B(o,j), ¢;(y) = 0 on B(zo,j + 1)°.
Take f € Co(M). Suppose supp|[f] C B(xg, mg) for some my. Then

(5.11)

/ @)1 1 (dz, dy) = lim F(@)65(0) 7 (der, dy)
MxM I70 JMx M

= lim lim F(@)¢5(y) mis, - (do, dy).

j—ool—oo Jars
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But,
(5.12)
tinsup| [ f)oy0) oy (dody) — [ F@) i (dndy
l— o0 M x M M x M
< limsup / F@)I(1 = 65 () m™_y (de, dy)
l—o0 MxM

< {1 loo lim sup / XB (o) ()X B (o 1 (V) T+ (de, dy)
Mx M

— 00

< flsup [ n L (de, dy)
L J{d?(z,y)>(j—mo)?}

1 m
Wz [ ey i (e dy)
(J —mo)? MxM
<M
~ (U —mo)?
for some M > 0. Combining (5.11) and (5.12) we arrive at

/ F(@)nd 5y (dz, dy) = lim lim F(@)5 () ™ (d, dy)
M x M

j—ool—=oo Jars M

—tiwsup [ fla) a7y (do.dy)
M x M

l—o0

lim /N @) e
- / £(2) ().
M

Since f was arbitrary, we conclude that ngyk_l(da:, M) = vi(dy).
Since | MxM d?(z,y) n(dx, dy) is obviously lower semi-continuous with respect

to 7, it follows that

(5.13) ) < Zak/ (z,9) Ukk 1(dz, dy)

M x M

< Z a hm mf/ d*(z,y) N k—1(dz, dy)
M x M

l—o0

< lim inf ak/ d*(z,y) n_ (dx, dy)
_ MxM ’

l—o0

= lim H(’sz)

l—o00



LARGE DEVIATIONS ON CONFIGURATION SPACES 401
Lemma 5.2.  Let fi, fo,..., fn € Co(M). Then

(5.14) g(xz):= sup <Z fr(xr) = hg(z1, 22, . .. ,xn)>, x e M,
k=1

L1,L25:-+,Tn

is lower semi-continuous and has compact support.

Proof. Clearly g is lower semi-continuous. We need to show g(z) = 0
outside some sufficiently big compact subset. Let K be a compact subset of M
that contains the support of fj for all 1 < k < n. We may only consider z € K°.
For such z, we have that g(x) > 0 since >_;_, fi(zx) — ho(@1,22,...,2,) =0
for x1 = 9 = -+ = x,, = x. Furthermore, denoting by C the supremum of the
function Y";_, fi(-), we have

(5.15)  g(z) < sup ( fe(zr) = ho(z1, 22, . Jn))
(1, @n) €KX xXK)e \ T
\ sup (7hx(xlax27"~axn))
(T1,e0xn)EKCX- X K*©
< sup (C’fhm(xl,xg,...,xn))vo

B (21,0 ) E(KEX - X KC)€
n

<\ s (C—hylzr,32,...,2,)) VO
k=1 (T1yeesn) iz €K

Thus, it suffices to prove that for each 1 < k < n,
(5.16) gk (x) := sup (C = hy(z1,22,...,2,)) VO=0
(Z14ees@n) 1z €K
outside some compact subset. Since zp € K, we can find a compact subset
Fj_1 such that for xp_, € Ff_4,
1

1
C—h <C——-————
x(xtha axn) = 2tk _tk:fl

d(l‘k,$k_1)2 < 0.

Therefore, gi(z) can be written as

gr(z) = sup (C = ho(z1,@2,...,3,)) VO.
@1y ) ar €K,
Trp—1€EFk_1

Repeating the same arguments, we can find compact subsets Fy_o, F_3,..., F1
such that
(5.17) gr(z) = sup (C—hw(xl,xg,...,xn)) V0

(1,050 )2 €K,
Tp—1€EFk—1,...,z1€EF

< sup (C’—1 ! d(x,x1)2> V0.
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The latter is clearly zero for = outside some sufficiently big compact subset.

This completes the proof of the lemma. O
Lemma 5.3.  Let fi1, fo,..., fn € Co(M). Then for vy € Ty
(5.18)

n

sup (Z Jies ) — Z% (ks Y—1) )

Y1725V €M 1 1 'k —th-1

= ( k(zr) — he(z1, 20, . . . n)) ~Yo(dz).
M$1,w2,

Proof. Given v1,7%2,..-,% € Tpr with o(yk,vk—1) < 00, 1 < k < n.

Write vo = Y5y Oyis Tk = pOyast d,; . Following [RS99, Lemma 4.1(iv)], renum-

bering if necessary, we may assume

IRe i
(5.19) 0k, Yh-1)* = ) Zd(%a%—ﬁz
i=1
Thus,
(5. 20)
Z (fres ) — Z o(ks 1-1)?
o e
o0 n (o) 1 n
— i 2
—Zka Z§Ztk_tk7 d(Vies Vie—1)
i=1 k=1 i=1
=3 (S b g
i=1 1
< Z sup (ka Ty) $1,$2,-~~,$n)>
i1 BT
/ sup (Z fr(zg) xl,xz,...,mn)> Yo(dx).
M T1,T2,.
(Note that the last integral exists by Lemma 5.2)
Hence,
(5.21)

sup (Z i) — Ztk —0(k: 1) )

Y1,Y25 Y €M k=1

< / sup <ka 1‘1,.132,...,1'77,)) ’YO(dm)
M n \k=1

T1,T2,...
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To prove the dual inequality, we again set

g(x) := sup (Z Tr(zr) (21,29, .. ,:vn)>

Z1,L25.3Tn
Choose a compact subset K containing the supports of g and fj for all 1 <
k < n. This is possible due to Lemma 5.2. Moreover, there exists an integer

Np such that 7§ € K¢ for i > Ny. Now, for any ¢ > 0, there is (2%,...,2%) €
M x M x --- x M such that

(5.22) ka ) (mhxg,...,x;)

e

> sup (ka(lfk)_h,yé(ﬁﬁl,l‘g,...,xn)>_FO_

Define v, := zj, i < No, 7}, := 7, @ > No, and set vy, := 3372, .5 We have
setting z =

(523) Y (feom) = %9(% Ve-1)?

n  No n
D NACHOED _1t (Vis Ve—1)
k=1i=1 =1 kT Uk
n  No n
Zkz::lgfk(xi) _kz::ltk—tk 1 QZd ahoat )
=Z<ka(x§€) hos (21, 25, 55%))
i=1 \k=1
No

Since € is arbitrary, the dual inequality follows and the lemma is proved. [

Proposition 5.4. L, (7v1,7%2,---,7) = Dpey ﬁg(vk,vk_ly for
all Y05 V15 -3 Yn € FM
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Proof. By Lemma 5.3,

(f1,-3fn)€ECO(M)™

- sup (Z Ry Ztk 0(Fr> V1) ))
k=1

Y1525+ Y €L M b1

n
(524) 170(71772%"77”) = sup (Z fk7’yk
k=1

Since for fi,...,fn € Co(M)

(5:25) > (frm)—  sup (Z i k) Ztk o(Vk> Ye—1) )
k=1 -

) 27~--77n€FM k=1 k=1

Y1
n
k=1

2
tk_tk ) 0(Vrs Th—1)"
we have
- 1
(5.26) Ly, (vi,725- ) < Zm@(%ﬁk—l)Q-
k=1 -

On the other hand, by the general theorem on the inverse Legendre transform
of convex functions (see [DZ92, Lemma 4.5.8]) and Proposition 5.1, 5.3, we see
that

1 n
27Q(7k77k71)2 = sup { fka’yk
1

=t~ te (f1rensFn)ECO(M)™ | iz

n n
- sup S (i) =Y ’ka:)’k—l)2>}
<k 1 b _tk !

F1:9250 s ¥n €EXT (M) k=1
which is smaller than L, (y1,72, ..., 7). u

Proposition 5.5.  For any o € 'y the rate functional I, is good on
'Yy, ie., for any L > 0 the level set

RL = {(71,,’}/”)61_‘]\/[‘ 0’717727"'?’771)§L}

. R
s compact in I';.

Proof. By Proposition 5.1 the rate functional I, is lower semi-continuous
on I'},. So, we only need to show that every level set is relatively compact in
I't;. So, let L > 0. It is sufficient to prove that for each 1 < k < n the set

RY .= (Ry),
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is relatively compact, where Il : I'}; — I'ps is the natural projection on the
k-th component. Let 7o > 0, v € I'ps. Then for any w € I'yx~,

(527)  4(Blao,r0)) = / XB(eare) (8) w(d, dy)
M x M
Xt @G () )
M x M
4 / Xbon ro 3y ()X B0y (1) (d, )
M x M

S/ XB(ZEO,T’O-‘—\/E)(QJ) W(dl’,dy)
MxM
Jrl/ d(z,y)? w(dz, dy)

2 Mx M

1
= vo(B(z0,70 + V2)) + = / d(z,y)? w(dz, dy).
2 MxM
Taking the infimum over w we get

Y(B(x0,70)) < Y0(B(xo,70 + V2)) + 0(70,7)>.

Ify=y € R’z, then by definition there exist v1,...,Vk—1, Vk+1,---»Yn € I'ns
so that (y1,...,7,) € Rr. Hence (since Y, (ti — t;—1) = 1)

n

2
- 1
o(v0, 1) (Z o(v; -1 ) < Z . o(n,m-1)? < L.
=1 =1 -

Thus,

sup Yk (B(w0,70)) < 70(B(wo,70 + V2)) + L
YLERE
Since o was arbitrary, this implies that R% is relatively compact in X*. Since
I'ps is Polish, it is closed in X1, so the assertion follows. O

86. Large Deviation Estimates for Finite Dimensional Projections:
the Lower Bounds

The lower bound holds under even a little stronger topology on I'p; which
was introduced in [KLRO3], namely, the topology on I's, induced by the fol-
lowing metric:

oo

B m |Bm(m) — Bm(72)|
(6.1) doo (1,72) = du(71,72) + mZ:f (1+ [Bm(11) = Bm(72)])’
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where d,, is any metric compatible with the vague topology.
Let U be an d,-open neighborhood in I'j; described by

i=1 i=1
where W,. := B(zg,r), r >0, y1,. ..,y are fixed points in W,., and §p > 0.

Proposition 6.1. Let vg € I's. Then, for any 61 > 0 and distinct

ntegers i1, ..., in,
(69) lipind <o Py (X, €U) >~ > dlyy 20+~ 5 (5 1)
' 1{{1713706 o8 2 = y]aVo ! 01

1 -
- Z §d(’7(l)€?W7?)2a

kg{i1,i2,...,in}

where d(v§, WE) denotes the distance from ~§ to WE and v — ~yo with respect
to doo, n I'o

Proof. Let {ym, m > 1} be any sequence in I, such that doo (Ym,v0) — 0.

It is sufficient to show (6.3) for such a sequence. Write v, = >°:2; d,; and

o0 . . .
Yo = >.i21 04i- Rearranging elements in v, if necessary, we may assume that
limy,— o0 75, = 7§ for @ > 1 (see the proof of Theorem 6.1 in [KLRO03]). For
distinct integers iy, 149,13, ..., i,, define

Aihiz,--.,in = {le S Wr,.. BZ" S WT, Zd ,yj) < (50,
Jj=1

B ewe k¢ {il,...,in}}.
Then

{XeeU}t = U Aisig,eosins

11,12,..50n

hence,

P, (X.€eU)= > Py (Aiis.i,):

115125500
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So, for any distinct integers i1, 42,3, ..., %, we have

P’an (X € U) '7771 (Ail RO 77;71)

/ / Hpe m(dzy) m(dzs) . ..m(d,)

j=1
{2171 (117yj) <do,
z; €W}

< [ Pu(B-ewy)
k¢{i1,iz,...,in}

11,82,0.,% 01,02,y
:a61,27 7nxb51727 in

Note that for any §; > 0,
S das i < (1 5 ) Sodlags) 4 (10 D ot
j=1 L= j=1

This and (3.2) imply

d(vid 79@')2}

o e [_ 2-6
a7117127'~-)7/n Z /. .. ( - )6
j=1 C1 (§)m(B(Pyz‘lea \/g))

(5071 & (25,5) <bo,
;€W }

/ / e’“’( )H me,f»

=1
L d%(wj,y5) <0, J
xJEW }

7‘1—1d VE Zvjz 2
x eXp(—(l + &)%) m(day) m(dzs) . .. m(da).

Since i elo ——L ) =0, we have
B g<HJ 1cl<6>m<B<vm,m>>

, 1 1
liminf elogalt2 1”>——<(S —|—1)50— 1—|—51
1

n
2
e—0,m—o0 - 24 Z Yj» ryO .

To treat bii2:in we need the following.

Lemma 6.2.  Let ¢1(1), c2(1) be as in Lemma 3.1 (for T :=1). Then

N c1(1) exp(—cz(l)d(a:o,z)Q)
(6.4) [log P(d(0, BZ) > 7)| < — e1(1) exp(—cs (1)d(z0,2)7)

for allr >0 and x € M with d(zg,x) > 2r and e < 1.
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Proof. Note that d(zo, BY) > d(xg,z) — d(z, BY). Using d(xg,x) > 2r
and Lemma 3.1 it follows that

P(d(zo, BY) > 1) > P(d(x BY) < ld(ﬂlﬂo,x)>

[\

- p<d(z,B§) > %d(axo,x)>

>1—cy(1) exp(—ca(1)d(zo, z)?).
Hence,

|log P(d(xo, BY) > r)| = —log P(d(zo, BY) > )

glog(l_q(l)exp(l 2(1)d(xo, )2 ))

e1(1) exp(—es(1)d(ao, 7)?)
B l°g(” 1= )exp( 2(1)d(a, >2)>
c1(1) exp(—ca(1)d(z0,7)%)
T 1-a(l)exp(-c ( )d(xo,2)?)’
which proves the assertion. O

Corollary 6.3.  We have
1

. 01,02 0ein _ _ © k Ti7c)2
(6.5) _Jim elogbt =-3 S deE W)
k@{ir,ein}
Proof. Note that
glog bl tzin = Z elog P (d(zo, Be) > 7).

kg{h 7~--7i71}

By the large deviation principle of Brownian motion,

1 -
lim  elog P, (d(x, B:) > r) = —id(%’f, We)2.

e—0,m—o00
Since 79 € T'so and 7, — 70 with respect to do, (6.5) now follows from
Lemma 6.2 and the dominated convergence theorem. O

Using Corollary 6.3 and letting § — 0 we get Proposition 6.1.

Proposition 6.4. Let v9 € I's. Suppose that O C T's is an open
subset w.r.t. doo. Then,

liminf elogPy(X. € 0) > — Hlf 0(70,7)%,
e—=0,7=0

where v — o with respect to doo in '
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We first prove the analogue of Proposition 6.4 for the vague topology.

Proposition 6.5. Let 79 € I'oo. Suppose that O C T'p; is an open
subset w.r.t. the vague topology. Then,

liminf elog Py (X. € 0) > — mf 0(70,7)?,

e—0,9=70

where v — Yo with respect to doo in '

Proof. 1t is sufficient to prove

liminf elog Py (X. € O) > —0(70,9)?

e—=0,7—=0

for any 4 € O. So, fix 4 € O. Without loss of generality, we can assume that

’707 Zd77 O

Choose an increasing sequence W, —of geodesic balls such that |JW, = M
and

Z% , A(OW,,) =

Let é;,1 > 1, be a sequence of positive numbers converging to zero. Set

Un,l = {’y el'y ‘ 7(8Wr") =0, ’}/|WM 25 4 with Zd JCZ, < 51}

Obviously, {U,, ., | n, m € N} form a basis of neighbourhoods for 4 in the vague
topology. Since O is open, there exist ng, lp such that U,; C O for n > ny,
l > l().

By Proposition 6.1 it holds that for n > ng, [ > Iy and any §; > 0,

liminf elog Py (X, € O)

e—=0,7=0

> liminf elog Py(X. € Uyn;)

e—0,9=70
RN IP SR AR SRRV R £4)
- 2 P ’ 2\ 91 b 41 2 T
First letting [ — oo and then §; — 0, we obtain that
— 1

(6.6) hmlnf elog Py (X, € O) >——Zd7 7%)? — Z

—0,7— 2
Y70 = +1

d(’}/o ) WCL)

n
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By the choice of W,., d(7§, W) < d(~§,4") for k > m,, + 1. Hence, it follows
from (6.6) that

1 & o
liminf elnP, (X. € O) > —3 Zd(”yz,%)Q = —0(70,%)?,

e—=0,7—0 P

which completes the proof. O

Let 4 € I's. To prove Proposition 6.4 we have to consider d.,-neighbour-
hoods of 4 of the form:

(6.7) U(5,n,9) : { =Y 6,

and intersections of finitely many of them with vaguely open sets in I'y;.

~ B.(9)] < 6}.

Lemma 6.6. Let vy € I'. Then

(6.8) liminf elog Py (X. € U(4,n,6)) > —o(v0,4)°,

e—0,v—v0

where v — v with respect to doy n '

Proof. Let {ym} be a sequence such that doo(Vm,v0) — 0. It suffices to
show (6.8) for such a sequence. We may assume p(vo,%) < oo and

oo
o(v0, % Z

where o = > d.:, ¥ = > 04:. For the numeration of yo = >>0,:, by [KLRO3]
there exists a numeration of vy, say ¥, = Y d,: , such that for i > 1, 7/, — 7§

l\3|)—‘

as m — co. From now on, we stick to such a numeration. For any N > 1, we
have

oo

Z exXp [—%d(%ﬁfn)} Bon(VYm) Zexp [__d(xm’ym)}

i=N+1

— Ban(v0) ZeXp [——d(zoﬁo)}

oo

= 5 el Lot

i=N+1

as m — OoQ.
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So we can choose Ny so that

o _
1 ] 96
' Z exp{_%d(l‘()a’y )_ < Za
1 =No+1
> 1 16
. Z eXp[*%d(xov’Yoz)_ <1
1=No+1
> 1 a1 0
| Z eXP[*%d(xov’Ym )_ <1
i=Np+1
for all m > 1.
Define
U(¥,n,0,1) = {’y =0y | Ji1,... 0N, st
1 ; 5
o)) <2,
> eXP[ —d(w0,77)) < 5

JE{i1,ing }

No 1 : No 1
Zexp [—Ed(l‘()”}/zk)} - Zexp I:_Ed(x07:yk)i| ‘ < Z}
k=1 k=1

(=gl

It is easy to see that
U(%,n,6,1) C U(4,n,0).

Furthermore, there exists 4 > 0 such that for §; < 4,

U(’Ay’ n, Sa 61) C U(;}/? n, 87 1)7

3 il,...,iNO s.t.

=]

No
> eXP[*%d(wmj)] < 2o diy* AN < 51}.
k=1

J&{i1,ing }
Now it is enough to prove that

(6.9) liminf elog Py, (X. € U(%,n,8,1)) > —o(70,%)>.

e—0,m—o00
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412
For 6; < 5, we have

P, (X. €U#,n,6,1))

1 , 0
——d(o, ;}<— d(B.'4)? <6
B z ) )
(where B." is the Brownian motion starting at ~7,)

No
- P,, (Z d(B.',41)? < 51>
i=1
(5 el i) <)

i=No+1
=al" x b
Note that for any d2 > 0,
Dot b < (14 5 ) L dal AP+ (148 D3 nk)
i=1 i=1 i=1

Using
) .. m(dz?),

al' = / / Hpe Yo T

0 d(zt A )2<51

as in the proof of Proposition 6.1, we have

(1+1>5 1+62 Zd

P

liminf elogal® > ———
e—0,m—o00 8 24

(6.10)

Next we are going to show that

liminf elogbl" = 0.

e—0,m—o0

For this end, it is sufficient to establish

liminf &7 > 0.
e—0,m—o00

(6.11)



LARGE DEVIATIONS ON CONFIGURATION SPACES 413

By the choice of Ny, it is easy to see that

{ > exp[—%dm,B;)%Z}a N {d(azo,BEi>>§d<xo,vﬁn>}

1 =No+1 Z‘*N()%’l

> ﬂ { Vi, Be') < d(xoﬁm)}

i=No+1

since d(x0,7,,) < d(wo, B") + d(7;,, Be").-
Hence, by Lemma 3.1, for ¢ < 1,

_P7m< Z exp[—% (xo, B ‘ <g>

i=No+1

> 1 P;y(d(ﬂn,B < dxmm)
i=No+1
°° d(
> H <1clexp< Ca xoﬁm >)
i=No+1
e d i \2
Zv H <1C1 exp<62 (:L'(Z"Ym) )
i=No+1
& d i \2
:exp[ Z log(l—clexp<—w>>1
i=No+1

1 0 d i \2
Zexphzclexp(_w)]_
i=1

The last expression is bigger than some positive constant independent of m
since sup,,, By, (Vm) < oo for all n > 1. Therefore, (6.11) follows.
Combining (6.10) and (6.11) we arrive at
liminf elog P, (X. € U(§,n,6)) > b 1+ e 51
e—0,7v—"0 K ’ - 2-94 0o
1 4l
i A2
ﬂ(l + d2) Zd(’Yoﬁ ).

i=1

Letting first 6; — 0, then d2 — 0 and finally § — 0 we get

No
1 o
liminf clog Py (X. € U(¥,n,0)) > =3 Y " d(v6,4")? > —e(v0.9)*.
=1

e—=0,7—=0

This completes the proof. O
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We will sketch the case for the intersection of two d.-neighbourhoods in

the next lemma.
Let 2o € R, § > 0. Define

(6.12) Ul(z0,1,8) : { =36,

— Zo‘ < S}
Let U be an d,-open neighborhood in I'j; described by

(6.13)
U:{VEFM‘VWWTO):Q 'y|W 2(5 with Zd T4y Yi) <60}

where W, := B(xo,70), 70 > 0, Y1, .- ., Yn, are fixed points in W, and §p > 0.
Set V =U(z9,n,0) NU.

Lemma 6.7. Let v € I'ss. Then for any 4 € V, we have

(6.14) liminf elog P, (X. € V) > —o(70,%)?,

e—0,7—v0

where v — o with respect to doo in '

Proof. Let {ym} be a sequence such that doo(Vm,v0) — 0. It suffices to
show (6.14) for such a sequence. Again, we may assume o(7p,%) < oo and

707 Z% ’3/

where o = > d,:, ¥ = >_04:. For the numeration of yo = >-0,:, by [KLRO3]
there exists a numeration of v, say ¥m = ) d,: , such that for i > 1, v;, — 75
as m — oo. We will stick to such a numeration Let 6, := 6 — |Bn(%) — 20
Since 4 € U(z0,7,0), & > 0. Choose 5 < 91 L such that exp(—5-d(zo, z)) < b2
implies d(zg, z) > 19, where rg is as in the deﬁmtlon of U. On the other hand,
since 4 € U, there exist 4%* € 4, k = 1,...,np, such that

@|W,,.O=Z %,ZdW 2 Yk)? < do.

k=

Now, arguing as in the proof of Proposition 6.6, we can choose Ny > iy, so
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that

> exp|- S dlen 4] <

, 2n ’

i=Ng+1

E eXp[*z—d(xov’Yo )} <

. n

i=Np+1

EOO eXp[—id(xo v, i)} <
27’L ) m

i=No+1

B S xS

=

)

for all m > 1. For such Ny, there exists 5 > 0 such that for all §3 < § and
(21,22, ., 2N,) € MNo |ZN° d(z;,4%)?| < 63 implies

(i) | 350, exp(—skd(wo, ;) — Y% exp(—g=d(wo,37)] < 81,
(H) 220:1 d(zlkayk)2 < 507
(ili) #{i;2; € Wy } = no.

So, for 05 < 4,
U(’Ay, n, 617 63) Vv,

where

U(5,m,01,83) = { Za
Z exp[—%d(mo, }

J€{it,..ing }

Now it is enough to prove that

(6.15) liminf elog Py, (X. € U(§,n,01,03)) = —o(70,%)*.
e—0,m—o0

H’L'l,...,iNO s.t.

Sanstra).

»Jklcq\

The rest of the proof is exactly the same as the corresponding proof of Propo-
sition 6.6. So, we omit it here. O

Finite intersections can be done similarly. Since arbitrary finite intersec-
tions of ds.-neighbourhoods as above form a base for the ds.-neighbourhoods
of any 4 € ', we can then prove Proposition 6.4 in the same way as Propo-

sition 6.5.

Theorem 6.8.  Let y9 € I's and let p. be the law of Y° on I'}, under
P, . Then for any subset G C I';, which is open with respect to the product

topology induced by d,,

liminfel Q) >—  inf L.V,
pipelonne@) 2 = et
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Proof. It suffices to show that for any (y1,72,...,7.) € G with I, (7, ...,
Tn) < 00,

lim iglfelog we(G) > =Ly (71, -+ s Yn)-
E—

Obviously, if ,4 € ' such that o(v,%) < co and v € T'y, then ¥ € I',. So,
we may assume that v1,...,7, € [, since sois yg. For v € ', let Pi(y,U) :=
P,(X; € U) be the transition function. For a d-open neighbourhood O,, of
Yn in T, it follows from Proposition 6.4 that

0(Yn—1,7n)?
tn - tn—l ’

where v — 7,_1 with respect to d in I's,. Thus, given §,, > 0, there exist

liminf elog Pz, —¢, ,)(7,0n) > —

e—=0,y—=Yn—-1

en > 0 and a ds.-open neighbourhood O,,_1 of v,_1 in 'y, such that
(6.16)

1 n—1"In 2
Ps(tnftnfﬂ(’)/;On) Z exXp |:_g <% - 6n>:| for e S Eny Y € On—l-

The same arguments imply that for §; > 0,02 > 0,...,d0,_1 > 0 there exist
dso-open neighbourhoods O; of v; in I'sw and ¢; > 0, ¢ = 1,2,...,n — 1, such
that

(6.17)

1 i—1,7%)2
Pety—t,_) (7, Oi) > exp {—g (% - 52)} for e <€, v € O04—1.
3 11—

Moreover, making them smaller if necessary, we may assume O1 x0Og X --xQO,, C
G. Then for e <e; Aeg A--- Aey, we have

(6.18)
ME(G) > /,65(01 X 02 X oo X On)

= / P5t1 (707d771)</ Pe(tg—tl)(nlvdn2)>
01 O2

X X / Pe(ty1—tn—2) (=2, @p—1) X Pe(t,—t,_1)(1n—1,0n)
On-1

1 n—1» ’I’L2
zexp[—(—"(7 L) 5)]/ Pty (you diny)
g tn_tn—l 0,

/ Pg(tg_tl)(m,dnz) X X / Pe(tn,g—tn,g)(nn—sad77n—2)
O On_2

2

Pty y—t,_) (=2, On—1)

Z"'ZGXP[ ( o(Ve—1,7%)? +Z5k>}

bt —tp—1
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Therefore,
liminf elog p(G) > Ly (11, -, %) — ;ak.
Letting >"7_, 65 — 0, the theorem follows. O

87. The Sample Path Large Deviations

In this section we fix 70 € I'c. Let P° denote the law of (Xc¢)icjo,1
on C.([0,1] — T'p), i.e., the set of all continuous paths t — w, from [0, 1]
to 'y such that wy = . We equip C,,([0,1] — T'p) with the topology
of uniform convergence, where I'); is equipped with the vague topology. For
w € Cy,([0,1] — T'ps), define

() N IR Dk

O=to<ti<-<tn=1 i Tk —lr—1

where the supremum is taken over all finite partitions of the interval [0, 1]. I(w)
is the energy of w associated to the Wasserstein type distance g. The function
I is obviously lower semicontinuous. Furthermore, by [RS99, Lemma 4.1(vii)]
closed g-balls are compact. Therefore, since for w € {I < const.} we have
w([0,1]) € {e(v,:) < oo} and since on {p(7,:) < oo} the p-topology is
stronger than the d,-topology, Arzela’s Theorem implies that {I < const.}
is compact in C,,([0,1] — T's).

Theorem 7.1.  {P°, ¢ > 0} satisfies a large deviation principle on C.,
([0,1] — T'ar) with good rate function I(-) given in (7.1), i.e.,

(1) for any closed subset C' C C,,([0,1] — T'ps),

limsupelog P¢(C) < — inf I(w).
£—0 wel

(ii) for any open subset O C C.,,([0,1] — T'ar),

o . S _ '
hran_}(r)lfslogp (0) > Jrelg) I(w)

Proof. 'The results in Sections 4 and 6 imply (see Theorem 4.6.1 in [DZ92])

that {P%,e > 0} satisfies a large deviation principle under a weaker topology on

C+([0,1] — T'ps) with the same good rate function I(-). So, the assertion
follows from the exponential tightness proven in Proposition 7.3 below. O

We need the following lemma.
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Lemma 7.2. Let B denote a real valued standard Brownian motion.
Let ¢y be a constant satisfying

A= E[exp(co sup Ei)] < 00.
0<u<l1

For f € CZ(M), set \p = MW. Then for 0 < s <t <1,

B,) — f(B.))
w2 Efen(n TELEDN Caopariz)
Proof. By Ito’s formula,
(73) 58~ 1By = af il + [ asE)a,

where M/ is a martingale with (M7);, = fot |V £)?(By) du. This implies
2

(f(B) —1(B))" _,
t—s - t—

(01 — M}

)2
(7.4) Pl V]

By the martingale representation theorem, there is a real-valued Brownian
motion B such that M/ — MS = Basy,—(mrsy,- Thus, it follows from (7.4)

s

that
2 ~ 2
By) — f(B (B v f12(Buydu)
— S t_
2
<2 swp DvoyAfR
0<u<||VFI2 (t-s) t — 8
(7.6) =2||Vf|2, sup BI+|Af|Z%,
0<u<1

where B, = \/%—SB@_S)U is again a real-valued Brownian motion and we used
the scaling invariance property of standard Brownian motion in the last step.
Hence,

(7.7) E |:eXp()\f (f(B) - f(BS)f)}

t—s

< Bl (A2 swp B+ 1AS12)|

< A exp(||Af]3).

Let P? be the law of (Xc¢)ie[0,1) on Cyy ([0, 1] — T'ag).
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Proposition 7.3.  {P¢, e > 0} is exponentially tight on C([0,1] — Tas),
i.e., for any L > 0, there exists a compact subset K;, C C, ([0,1] — Tar)
satisfying

(7.8) lim sup log P*(K¢) < —L.

E—0Q0

Proof. Fix a countable, dense subset {f,,n > 1} of Co(M) such that
fn € C2(M) and the family {f,,n > 1} is closed under addition. For L, > 0,
n € N, define a subset of C,,([0,1] — x) by

oo

(7.9) K,y = [){weCy([0,1] = Tu) |

n=1

Wiy ) — (we, fu)| < Lot —s[27%,0 < s, ¢ < 1}

where 0 < § < 1 is fixed. It is known from [Kal97] that K is compact. For
L > 0, we will choose L,, properly so that (7.8) is satisfied with K, := K¢z, 3.

Suppose supp[fn] C B(zo, N,). Select an integer k,, such that

d(a:o,% (Np, +1y/2(n+ L))V (2N, + 1)

for all j > k. This is possible as lim;_, d(xo,'yg) = 4o00. Set

Co
cs = sup |log(u?)ud|, A, := .
Sup [og(uu’] IV + Dk

where ¢y is as in Lemma 7.2. Now, choose L,, such that

<\/ELn

805

2
(7.10) — 1) > L+n+ky||Af]|% + knlog(A),

where A is as in Lemma 7.1. Define K, := Ky, y with K¢z, 1 asin (7.9). We
claim that K, satisfies (7.8). To prove this we set

An = {w S CWO([O, 1] — F]y[) ‘
(Wi, fu) = (e, fu)| < Lalt —s[27%,0 < s, t <1}.

Then

(7.11) PE(K§) < i
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Since the support of f,, is contained in B(xg, N,,), we have

(7.12) Pe(A5) = Py, (A ﬂ{ inf inf d(zg, B?,) < Nn}>

Jj>kn u<ll

(4 it o 0 > )

j2kn u<

< <
< P o 22 < )

P’Yo(
j=1

> L|t — s|27°

Z fa(BL) = fu(BL)

forsome()gsgtgl)

=I5+ IIC.

Clearly,

NE

(713) I: <

n

Py, (mfd(xo,B w) < Ny +1)

I\

JZkn

P, (lgf d(zo, B,) < N, + 1,

I
gk

J2kn
supd(+, BL,) > d(wo,v}) — inf d(xo, BL,))
u<1 u<l
<Y P, (supd(vo,Bj ) > d(x0,7)) — Ny — 1)~
j2kn

By Corollary 3.2 and setting ¢; := ¢1(1), ¢g := ca(1),

(7.14) P%(supdwo, 2 2 d(zo,7]) = Nu 1)

d(x0,7) — Ny, — 1)
<clexp<—02( (wo ’}’0)6 ) )

Combining (7.13), (7.14) and the choice of k,, we arrive at

> d(x0,7) — N, —1)°
(715) IZ § Z c1 eXp(CQ( (1‘0 70)6 v ) )
J2kn
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Z o exp< “+L)> exp(C% (d(xo,vé)g—Nn - 1)2)

j>kn

n—+ L = 1 d(xy, 72
SWRELNE SPNERLCE. 3

J2kn

since v € I's. For the term II;, we note that by Lemma 7.2,

(7.16) E[exp< |5k fa(B) )MB;;'S)\QH

e(t—s

< AR exp(kn || Afall%)-

Set

11 Fnop(BIY— f.(Bi)|?
Dg,n ::/ / exp<>\n’23_1f( Et) f( 55)’ >dtd8
o Jo |t — s

Then (7.16) implies that
1
(7.17) E[D:n] < A exp (k|| Aful%).-

Set p(u) := u=. Then by Garsia’s Lemma (cf. [BY82]),

el (en(5)) o

8¢s 1_5
m( log(De.) + 1)t - 5/

kn
(7.18) D falBL) = fa(BL)| <
j=1

<
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It follows that

IIE = P70< Fa(BL) = fu(BL)| > Lyt — s|%_5 for some 0 < s <t < 1)
=1
805
< P%< An( log(De.p.) + 1) Ln>
LoV, 2
. {D% (( Jl))}
= Pen = exp( —————
LoV 2
n n o __ 1 1
Sexp(—( 8056 ) )E[Dsln]
(an_ )2
<exp <— 8co E )Ak" exp(anAanio)
(an, )2
719) e~ 4 kalog(4) + kAL )

L
(7.20) < exp (-%) :

where we used the definition of L,, in the last step.
Combining (7.11), (7.15) and (7.20) gives

9

< (é1+1)exp <_§) i exp(—n).

(7.21) PE(KS) <@+ eXp(—n + L)

n=1
Consequently,
(7.22) lim elog P (K7) < —L.
and the proof is complete. O

88. Interacting Case

In this section, we will prove a sample path large deviation principle for
the interacting random particles introduced in Section 2. Recall that M, :=
{Q, X, F, Fi,Q~,v € I'ns} denotes the diffusion associated with the following
Dirichlet form:

Eolu) =5 [ (V. Vohyu? () m(an),

D(€y) =D,
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where D is given by
D= {ue bie) | [(Ctuwi) + ) eoa) < .
The following theorem is a special case of the general result obtained in [Ebe96].
Theorem 8.1.  The diffusion (Q, (X¢)i>0, F, Ft, Q~, v €L M) is given by

1
dQ, |7, = exp{Mtlogw — 5(z\4log¢>t}clP7|ft,

where M'°8Y stands for the martingale part of the Fukushima’s decomposition
of the additive functional log(X;) — log1(Xy) (see [Fuk80]) and

sy = [0 0x)a

is the bracket, where T'(¢, 1) is defined as in Section 2.

Theorem 8.2.  Assume fFM exp(5%(7))7r(d7) < oo for some § >
0. Then there exists a subset Fiy C Ty with w(Fpr) = 1 such that for v9 € Fay
the following holds

(i) for any closed subset C' C Cy,([0,1] — T'pr),

limsupelog @, (X.. € C) < — inf I(w),
e—0 wel

(ii) for any open subset O C C,,(]0,1] — T'ar),

11£1L161f510g Q(X.. €0) > _irelfo I(w).

In particular, if W is bounded, Fy; can be chosen to be equal to I'.

Proof. Let Pr(-) := fFM P, (-)m(dv). Denote by E, the expectation w.r.t.
P,. By Jensen’s inequality, for any € > 0

B, [exp (5 / 1 s dﬂ </ B, [exp <5”Z;w (Xss)ﬂ ds

= /FM exp (5F(://j,21/)) (7)) m(dy) < oo.
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This implies that

1
F = {7 ‘ E, [exp(é/o F(Z;d’) (X%)ds>} < oo for all k > 1}

has full 7 measure. Set Fi; := I'oo N F} and fix vy € Fis. Let us prove (ii) first.
Assume O is open and set

7, = eXp{]\4log1/zy 5 <M10g1/1>t}.

We may assume A := inf,co I(w) < co. For any é; > 0, it follows that

(81) R (Xe €0)
=P, (Z:;X.. € 0)

>exp< ) <Z >exp(_5_) X.. eo)
>exp( )[ (X €0) - (z <exp(—5€—1>ﬂ

where P, (Z, < exp(—‘%1 )) can be estimated as follows: for a > 0,

(8.2)

€ F (5
=P, [exp —aMEY 4 g/o (2;1/1) (Xs)ds) > exp(%)}

A
¢)
o]
e}
/I\
‘ -
~
t
[=)
| — |
¢)
o]

e}
/‘\
1\3
=
iy
e
e

)}

where
1
2
D, (e) := E, [exp((Qa2 + a)/ (1/121/1)( Xs) ds)} ,
o ¥
and we have used the fact that exp(—2aM§°g¢ — 2a? fOE %(Xs)ds) is a
supermartingale.
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On the other hand, for any d5 > 0, by Theorem 7.1 there is £; > 0 such that if
e <ey,

(8.3) P, (X.. € 0) > exp ( At o ) .

€

Choose a = )‘fs—f‘b. It follows from (8.1), (8.2) and (8.3) that if ¢ < ey,

(8210 (X.. €0) > exp (‘i—_l) “ {exp (_A - 52) _Due) exp<_/\ + 252”

e 9

S e

By the choice of 7y, it is easy to see that

(8.5) lim [1 — exp (—5—2> Da(fs)] =1
e—0 9
Hence, we obtain from (8.4), (8.5) that

limi(r)lfslogQ,YO(Xa €0)> -6 —A—da.

Since 01, 02 were arbitrary, (ii) follows.

Let us now prove (i). Because of the choice of 7, by similar arguments as used
above one can see that lim._.g E, [Z?] = 1 for any p > 0. For any ¢; > 0,
a > 0, we have

QWO (Xe. €C) = Py, (Z€;X€- €C)
=P (Ze;Xe. € C,Ze < eF)+ Py (Ze; X € O, 2 > )
< Py (Xe € C)e + By (2071 2.

€

It follows that

limsup elog @, (X.. € C)

e—0

< (hmsupelog P, (X, €eC)+ 51) v (limsupslog B[22 - a61>
e—0

e—0

< (_ inf I() +51) V (—ady).

First letting a — oo and then §; — 0, we prove (i). O
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