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Abstract

In this paper, we establish a sample path large deviation principle for a class
of diffusion processes on configuration spaces over a Riemannian manifold. The rate
functional turns out to be the energy of the paths associated to the L2-Wasserstein
distance.
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§1. Introduction

Since Varadhan’s work [Var67] on large deviations for the small time
asymptotics for diffusion processes a large number of papers has been devoted
to this subject. For diffusions on finite dimensional state spaces we would like to
mention here particularly Norris’s work [Nor97] and also the references therein.
In recent years, small time large deviations of diffusions have also been studied
in infinite dimensions, (see [Fan94, FZ99, AZ02, Hin02, Ram01, Sch96, Zha00]).

In this paper we prove a small time large deviation principle for a class of
diffusions on configuration space (i.e., infinite particle systems in continuum)
on the sample path level. The paper in the literature, which is closest to our
situation, is the paper by Schied for the case of the super-Brownian motion.
Our diffusions, however, take values in ΓM , i.e., the space of all Z+ ∪ {+∞}-
valued Radon measures on a finite dimensional, connected complete Rieman-
nian manifold M . So, (at least if M is not compact) the diffusions on ΓM can
be heuristically written as

Xt =
∞∑

i=1

δXi
t
,

representing interacting random particles. One way to construct such a diffu-
sion is to use the theory of Dirichlet forms (see, for example, [MR00, AKR96a]).
The geometry and analysis on configuration space ΓM was carried out in
[AKR96a, AKR96b, AKR98a, AKR98b]. The intrinsic metric of the associated
Dirichlet form was identified as an L2-Wasserstein type distance in [RS99]. As
said before in this paper, we establish a sample path large deviation principle
for the diffusion process Xt, t ≥ 0, on the path space Ω := C([0, 1] → ΓM ). Our
strategy is to first establish the principle for the so called Brownian motion on
configuration space i.e., the independent particle process on M , which is the
harder part, and then to obtain the large deviation principle for more general
diffusions via Girsanov transformation. The rate functional turns out to be
the energy of the paths associated to the L2-Wasserstein type distance from
[RS99]. When the manifold M is the real line, the small time asymptotics (not
the sample path large deviation) was analyzed in [Zha01].
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We want to emphasize that in the case of the independent particle pro-
cess we do not use its construction by Dirichlet forms, but rather the pathwise
construction from [KLR03], which (as shown in [KLR03]) is possible for an ex-
plicitly described set Γ∞ ⊂ ΓM of initial configurations. Γ∞ is also an invariant
set for the process, i.e., (Xt)t≥0 stays in Γ∞ for all times. We, therefore, can
prove the sample path large deviation principle for all initial conditions γ ∈ Γ∞.
We also use the metric d∞ introduced on Γ∞ in [KLR03] in a decisive way. d∞
induces a stronger topology on Γ∞ than the vague topology and is crucially
used in Section 6 below (cf. Theorem 6.8).

The paper is organized as follows. In Section 2 we present our framework
giving all conditions on M used below. We also recall relevant definitions and
results from [KLR03]. In Section 3, we prove exponential estimates which are
necessary for the sequel. Section 4 is devoted to the upper bound estimates for
finite dimensional projections of the diffusion. In Section 5 the rate functional
is identified. The lower bound estimates for finite dimensional projections are
discussed in Section 6. The sample path large deviation principle is finally
proved in Section 7. In Section 8, we establish the large deviation principle for
a more general class of diffusions.

§2. Framework

Let M be a complete, connected Riemannian manifold as in the introduc-
tion. For simplicity we assume that M has dimension bigger than two. Let
pt(x, y) denote the heat kernel on M . Throughout the paper, we assume that
the manifold M satisfies the following conditions:

A.1. For any δ > 0 there exists a constant c1(δ) such that

exp
[
−d(x,y)2

(2−δ)t

]
c1(δ)m(B(y,

√
t))

≤ pt(x, y) ≤ c1(δ)
exp

[
−d(x,y)2

(2+δ)t

]
m(B(y,

√
t))

(2.1)

for all x, y ∈ M , t ≤ 2T , where B(y,
√

t) denotes the geodesic ball centered at
y with radius

√
t.

A.2. For some fixed point x0 ∈ M , there exist cx0 > 0, N ∈ N such that

m(B(x0, r)) ≤ cx0r
N , r > 0,(2.2)

where m(dx) denotes for the Riemannian volume on M .
A.3. For any r > 0,

inf
x∈M

m(B(x, r)) > 0.(2.3)
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Remark 2.1. (i) Condition (A.1) is satisfied if, for example, the Ricci
curvature is bounded from below, see [Stu92]. (A.3) holds if M has bounded
geometry. We refer the reader to [Dav89] for more details.

(ii) We note that (e.g. by the proof of [KLR03, Lemma 8.2]) (A.1)–(A.3)
imply the conditions (C.1), (C.2), (C.3) in [KLR03] imposed there for one of
the main results, namely Corollary 8.1 and Remark 8.3 in that paper, which
we shall use below in a crucial way.

Let ΓM be the space of all Z+ ∪ {+∞}-valued Radon measures on M .
Equipped with the vague topology ΓM is a Polish space. The set of all γ ∈ ΓM

such that γ({x}) ∈ {0, 1} is called the configuration space over M . For simplic-
ity, we also call ΓM configuration space over M . The geometry and analysis
on configuration space has been developed in [AKR96a, AKR96b, AKR98a,
AKR98b]. Let us recall some results and definitions from these papers. For
f ∈ C0(M) (the space of all continuous functions on M having compact sup-
port), set

〈f, γ〉 :=
∫

M

f(x) γ(dx) =
∑
x∈γ

f(x).

Define the space of smooth cylindrical functions on ΓM , FC∞
b , as the set of

functions on ΓM of the form

u(γ) = F (〈f1, γ〉, . . . , 〈fn, γ〉), γ ∈ ΓM ,(2.4)

for some n ∈ N, F ∈ C∞
b (Rn), and f1, . . . , fn ∈ C∞

0 (M). For u as in (2.4)
define its gradient ∇u as a mapping from ΓM ×M to TM (the tangent bundle
of M):

∇u(γ, x) :=
n∑

i=1

∂iF
(
〈f1, γ〉, . . . , 〈fn, γ〉

)
∇fi(x), γ ∈ ΓM , x ∈ M.

Here ∂i denotes partial derivative with respect to the i-th coordinate, and ∇ is
the usual gradient on M .

Denote by m the Riemannian volume on M . Let π be the Poisson mea-
sure on ΓM with intensity m, i.e., the unique measure on ΓM whose Laplace
transform is given by∫

ΓM

e〈f,γ〉 π(dγ) = exp
(∫

M

(ef(x) − 1) m(dx)
)

for all f ∈ C0(M). Introduce the pre-Dirichlet form:

E0(u, v) :=
∫

ΓM

〈∇u,∇v〉γ π(dγ)(2.5)

u, v ∈ FC∞
b ,
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where 〈∇u,∇v〉γ =
∫

M
∇u(γ, x)·∇v(γ, x)γ(dx). It has been shown in [AKR98a]

and [MR00] that E0(u, v) =
∫
ΓM

〈∇u,∇v〉γπ(dγ) is closable on L2(ΓM , π) and
its closure, denoted by (E , D(E)), is a quasi-regular Dirichlet form. Thus by
the theory of Dirichlet forms (see [MR92]), there exists a diffusion process
M := {Ω,F ,Ft, Xt, Pγ , γ ∈ ΓM} associated with the Dirichlet form (E , D(E)),
where Ω := C([0,∞) → ΓM ) is the canonical path space. The diffusion M itself
is also called Brownian motion on the configuration space. It was also proved in
[AKR98a] that starting with π as initial distribution the process has the same
law as the well known independent particle process (already studied by Doob
in [Doo53]). Correspondingly, for γ ∈ ΓM Pγ should be the distribution of the
process

Xγ
t :=

∑
x∈γ

δBx
t
, t ≥ 0,(2.6)

where (Bx
t )t≥0 are independent Brownian motions starting at x ∈ γ and δx

denotes Dirac measure at x. However, it is easy to see that this is not true
for any γ ∈ ΓM . For example, even when M = R, Xt =

∑
i δBi

t
with initial

configuration γ =
∑∞

i=1 δlog(i) will not be a Radon measure on R for some
t > 0.

In [KLR03, Corollary 8.1 and Remark 8.3] it was proved that (Xt)t≥0

defined in (2.6), however, a.s. does take values in ΓM for all t ≥ 0 if one starts
from points in a particular set Γ∞ and in fact (Xt)t≥0 stays in Γ∞ for all t ≥ 0.
Let us recall the definition of Γ∞ from [KLR03]. First we fix a base point x0

in M once and for all. Let d(x, y) denote the Riemannian distance on M . For
each positive integer m, we define the functional

Bm(γ) :=
〈

exp
[
− 1

m
d(x0, ·)

]
, γ

〉
=
∑
x∈γ

exp
[
− 1

m
d(x0, x)

]
, γ ∈ ΓM ,(2.7)

and define Γm by

Γm :=
{
γ ∈ ΓM

∣∣ γ({x}) ∈ {0, 1} for all x ∈ M and Bm(γ) < ∞
}
.(2.8)

Set

Γ∞ :=
∞⋂

m=1

Γm.(2.9)

From now on we shall always use the version (Xγ
t )t≥0 defined as in (2.6) above,

for γ ∈ Γ∞, of the process M constructed by Dirichlet form methods. For
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390 Michael Röckner and Tusheng S. Zhang

topological reasons we shall, however, consider (Xγ
t )t≥0 to take values in the

bigger space ΓM ⊃ Γ∞, since Γ∞ with the vague topology is not Polish.
In Section 8, we shall present how our results on the sample path large

deviations can be extended to other diffusions on ΓM . Let us describe the latter
here.

Let ψ ∈ D(E) such that 0 < ψ and
∫

ψ2dπ = 1. As in [Ebe96] we define a
new Dirichlet form on L2(ΓM , ψ2dπ) by

Eψ(u, v) :=
∫

ΓM

〈∇u,∇v〉γψ2(γ) π(dγ),(2.10)

D(Eψ) = DEψ,1
,

where Eψ,1(u, u) := Eψ(u, u) +
∫

u2(γ)ψ2(γ)π(dγ) and D is given by

D :=
{

u ∈ D(E)
∣∣∣∣
∫ (

Γ(u, u)(γ) + u2(γ)
)
ψ2(γ) π(dγ) < ∞

}
.

The diffusion process associated with the new Dirichlet form (Eψ, D(Eψ)) will
be denoted by Mψ := {Ω,F ,Ft, Xt, Qγ , γ ∈ ΓM}, which are no longer inde-
pendent Brownian particles.

For u ∈ D(Eψ), set Γ(u, u)(γ) := 〈∇u,∇u〉γ . Recall that the intrinsic
metric of the Dirichlet form (Eψ, D(Eψ)) is defined by

�(γ, η) := sup
{
u(γ) − u(η)

∣∣ u ∈ D(Eψ) ∩ C(ΓM ) and Γ(u, u) ≤ 1
}

for γ, η ∈ ΓM . It was proved in [RS99] that � is a Wasserstein type distance on
ΓM given by

�(γ, η) := inf

{√∫
M×M

1
2
d(x, y)2 ω(dx, dy)

∣∣∣∣∣ ω ∈ Γγ×η

}
,(2.11)

where Γγ×η denotes the set of ω ∈ ΓM×M having marginals γ and η, and d(x, y)
stands for the Riemannian distance on M . We emphasize that � is independent
of ψ.

§3. Some Preliminary Exponential Estimates

From this section until the end of Section 7, ψ is assumed to be one.

Lemma 3.1. Let T > 0. Then there exist c1(T ) and c2(T ) such that

P
(
d(x, Bx

t ) > r
)
≤ c1(T ) exp

(
−c2(T )r2

t

)
, for all r > 0, t ≤ T, x ∈ M,

(3.1)

where Bx
t stands for the Brownian motion on M starting from x.
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Proof. By condition A.1, for any δ > 0 there exists a constant c1(δ) such
that

exp
[
−d(x,y)2

(2−δ)t

]
c1(δ)m(B(y,

√
t))

≤ pt(x, y) ≤ c1(δ)
exp

[
−d(x,y)2

(2+δ)t

]
m(B(y,

√
t))

(3.2)

for all x, y ∈ M , t ≤ 2T .
Choose δ, δ1, δ2 ∈ (0,∞) such that 1 ≤ a := 2+δ

2−δ2

1
1−δ1

≤ 2. It follows from (3.2)
that

P (d(x, Bx
t ) > r) =

∫
d(x,y)>r

pt(x, y)m(dy)

≤
∫

d(x,y)>r

c1(δ)
exp

[
−d(x,y)2

(2+δ)t

]
m(B(y,

√
t))

m(dy)

≤ exp
[
− δ1r

2

(2 + δ)t

] ∫
d(x,y)>r

c1(δ)
exp

[
− (1−δ1)d(x,y)2

(2+δ)t

]
m(B(y,

√
t))

m(dy)

= exp
[
− δ1r

2

(2 + δ)t

] ∫
d(x,y)>r

c1(δ)
exp

[
− d(x,y)2

(2−δ2)t̃

]
m(B(y,

√
t))

m(dy)

(where t̃ := ( 2+δ
2−δ2

1
1−δ1

)t = at ≤ 2T.)

≤ exp
[
− δ1r

2

(2 + δ)t

] ∫
d(x,y)>r

c1(δ)c1(δ2)

×
m
(
B
(
y,
√

t̃
))

m(B(y,
√

t))
1

c1(δ2)

exp
[
− d(x,y)2

(2−δ2)t̃

]
m
(
B
(
y,
√

t̃
)) m(dy)

≤ cc1(δ)c1(δ2) exp
[
− δ1r

2

(2 + δ)t

]

× exp
[
(d − 1)(

√
a − 1)

√
t
] ∫

d(x,y)>r

pt̃(x, y) m(dy)

≤ c1 exp
[
− δ1r

2

(2 + δ)t

]

where we have used the inequality:

m
(
B
(
y,
√

t̃
))

m(B(y,
√

t))
≤ c exp

[
(d − 1)(

√
a − 1)

√
t
]

which can be found, for example, in [GW00].
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Corollary 3.2. Let T > 0. Then there exists constants c1(T ), c2(T ) >

0 such that for all s ∈ (0, T ]

P

(
sup

0≤t≤s
d(x, Bx

t ) > r

)
≤ c1(T ) exp

(
−c2(T )r2

s

)
for all x ∈ M, r > 0.

Proof. The corollary follows from Lemma 3.1 above and Lemma 8.1 in
[KLR03].

§4. Large Deviation Estimates for Finite Dimensional Projections:
Upper Bounds

Throughout this section, we fix a finite partition D = {0 = t0 < t1 < t2 <

· · · < tn = 1} of [0, 1]. Let Y ε be the random vector Y ε = (Xεt1 , Xεt2 , . . . ,

Xεtn
). Let X denote the set of all signed Radon measures on M . Equip X

with the vague topology generated by

{
Uf,α =

{
ν ∈ X

∣∣ |〈f, ν〉 − α| < δ
}
, f ∈ C0(M), α ∈ R, δ > 0

}
.

X is a locally convex topological vector space with its topological dual X ∗

being identified as C0(M). It is well known that ΓM is a closed subspace of X .
Denote by B(x0, r) the geodesic ball {x | d(x0, x) < r} of M .

Lemma 4.1. For any δ > 0, there exists c3(δ) > 0 such that for all
r > 0, ε ≤ 1, c > 0,

Eγi
0

[
e

1
ε cχB(x0,r)(Bε)

]
≤ 1 + c3(δ) exp

[
−
(
(d(γi

0, x0) − r)2 − 2(2 + δ)c
)

2(2 + δ)ε

]
,(4.1)

where Pγi
0

is the law of the Brownian motion on M starting from γi
0.

Proof. By (3.2),

(4.2)
Eγi

0

[
e

1
ε cχB(x0,r)(Bε)

]
= e

1
ε c

∫
B(x0,r)

pε(γi
0, y) m(dy) +

∫
B(x0,r)c

pε(γi
0, y) m(dy)

≤ 1 + e
1
ε c

∫
B(x0,r)

c1(δ)
exp

[
−d(γi

0,y)2

(2+δ)ε

]
m(B(y,

√
ε))

m(dy).
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Note that for y ∈ B(x0, r), we have d(γi
0, y) > d(γi

0, x0) − r. Using the lower
bound in (3.2) as in Lemma 3.1, we see that (4.2) is dominated by

1 + e
1
ε c exp

[
− (d(γi

0, x0) − r)2

2(2 + δ)ε

] ∫
B(x0,r)

c1(δ)
exp

[
−d(γi

0,y)2

2(2+δ)ε

]
m(B(y,

√
ε))

m(dy)

≤ 1 + e
1
ε c exp

[
− (d(γi

0, x0) − r)2

2(2 + δ)ε

] ∫
B(x0,r)

c3(δ)pε̃(γi
0, y) m(dy)

≤ 1 + c3(δ) exp
[
−
(
(d(γi

0, x0) − r)2 − 2(2 + δ)c
)

2(2 + δ)ε

]
,

which proves the assertion.

Define Xn = X × X × · · · × X . Then it follows that

(Xn)∗ =X ∗ ⊕X ∗ ⊕ · · · ⊕ X ∗(4.3)

= C0(M) ⊕ C0(M) ⊕ · · · ⊕ C0(M).

For x, x1, x2, . . . , xn ∈ M , set

hx(x1, x2, . . . , xn) :=
1
2

n∑
k=1

1
(tk − tk−1)

d(xk, xk−1)2, where x0 = x.

Lemma 4.2. Let F = (f1, f2, . . . , fn) ∈ (Xn)∗. Then

Λ(F ) := lim
ε→0

ε log Pγ0

[
e

1
ε F (Y ε)

]
(4.4)

=
∫

M

sup
(x1,x2,...,xn)

[
n∑

k=1

fk(xk) − hx(x1, x2, . . . , xn)

]
γ0(dx).

Proof. By the independence,

Λ(F ) = lim
ε→0

ε log Eγ0

[
e

1
ε

∑n
k=1〈fk,Xεtk

〉](4.5)

= lim
ε→0

ε log Eγ0

[
e

1
ε

∑n
k=1

∑∞
i=1 fk(Bi

εtk
)]

= lim
ε→0

ε log Eγ0

[
e
∑∞

i=1
1
ε

∑n
k=1 fk(Bi

εtk
)]

= lim
ε→0

ε log Πγi
0∈γ0

Eγi
0

[
e

1
ε

∑n
k=1 fk(Bi

εtk
)]

= lim
ε→0

∑
i

ε log Eγi
0

[
e

1
ε

∑n
k=1 fk(Bεtk

)
]
.
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By the large deviation principle of Brownian motion (see, for example, [Aze80]),
it follows that

lim
ε→0

ε log Eγi
0

[
e

1
ε

∑n
k=1 fk(Bεtk

)
]

= sup
(x1,x2,...,xn)

[
n∑

k=1

fk(xk) − hγi
0
(x1, x2, . . . , xn)

]
.

Taking the limit inside the series in (4.5), we get

Λ(F ) =
∑

i

sup
(x1,x2,...,xn)

[
n∑

k=1

fk(xk) − hγi
0
(x1, x2, . . . , xn)

]
(4.6)

=
∫

M

sup
(x1,x2,...,xn)

[
n∑

k=1

fk(xk) − hx(x1, x2, . . . , xn)

]
γ0(dx).

It now remains to justify that we can take the limit inside the series. We
suppose that the supports of fk, 0 ≤ k ≤ n, are contained in B(x0, r0) for some
r0. By Lemma 4.1, we have

Eγi
0

[
e±

n
ε fk(Bεtk

)
]
≤Eγi

0

[
e

n
ε ‖fk‖∞χB(x0,r0)(Bεtk

)
]

≤ 1 + c3(δ) exp
[
−
(
(d(γi

0, x0) − r0)2 − 2(2 + δ)ntk‖fk‖∞
)

2(2 + δ)εtk

]
.

Hence by Schwartz’s inequality,
(
Eγi

0

[
e

n
ε fk(Bεtk

)
])−1

≤ Eγi
0

[
e−

n
ε fk(Bεtk

)
]

≤ 1 + c3(δ) exp
[
−
(
(d(γi

0, x0) − r0)2 − 2(2 + δ)ntk‖fk‖∞
)

2(2 + δ)εtk

]
.

Using Hölder’s inequality we have that

Eγi
0

[
e

1
ε

∑n
k=1 fk(Bεtk

)
]

≤
n∏

k=1

(
1 + c3(δ) exp

[
−
(
(d(γi

0, x0) − r0)2 − 2(2 + δ)ntk‖fk‖∞
)

2(2 + δ)εtk

]) 1
n

.

Similarly,

(
Eγi

0

[
e

1
ε

∑n
k=1 fk(Bεtk

)
])−1

≤
n∏

k=1

(
1 + c3(δ) exp

[
−
(
(d(γi

0, x0) − r0)2 − 2(2 + δ)ntk‖fk‖∞
)

2(2 + δ)εtk

]) 1
n

.
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Hence it follows that for ε ≤ 1,

∣∣∣log Eγi
0

[
e

1
ε

∑n
k=1 fk(Bεtk

)
]∣∣∣

≤
n∑

k=1

1
n

log
(

1 + c3(δ) exp
[
−
(
(d(γi

0, x0) − r0)2 − 2(2 + δ)ntk‖fk‖∞
)

2(2 + δ)εtk

])

≤
n∑

k=1

c3(δ)
1
n

exp
[
−
(
(d(γi

0, x0) − r0)2 − 2(2 + δ)ntk‖fk‖∞
)

2(2 + δ)εtk

]
.

Since
∑∞

i=1 exp[− 1
md(x0, γ

i
0)] < ∞ for all m, the above estimates show

that

∑
i

ε log Eγi
0

[
e

1
ε

∑n
k=1 fk(Bεtk

)
]

converges absolutely and uniformly with respect to ε, which justifies to take
the limit inside the series.

Proposition 4.3. Let µε be the law of Y ε on Xn under Pγ0 . Then
{µε, ε ∈ (0, 1]} is exponentially tight, namely, for any L > 0, there exists a
compact subset KL ⊂ Xn such that

lim sup
ε→0

ε log Pγ0(Y
ε ∈ Kc

L) ≤ −L(4.7)

Proof. We first prove that the law of Xε is exponentially tight. So, let
ε ∈ (0, 1]. Note that a set of the form

K{Ln} =
⋂
n

{
µ ∈ X

∣∣ |µ|(B(x0, n)) ≤ Ln

}
(4.8)

with Ln ∈ (0,∞), is relatively compact. Given L̂ > 0, we will choose Ln so
that

lim sup
ε→0

ε log Pγ0

(
Xε ∈ Kc

{Ln}
)
≤ −L̂.(4.9)

Let mn := �{i | d(γi
0, x0) ≤ n +

√
2(2 + δ)}. By Lemma 4.1,

Eγi
0

[
e

1
ε χB(x0,n)(Bε)

]
≤ 1 + c3 exp

[
−
(
(d(γi

0, x0) − n)2 − 2(2 + δ)
)

2(2 + δ)ε

]
.
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Hence for all ε ≤ 1,

Pγ0

(
Xε(B(x0, n)) > Ln

)
≤ e−

Ln
ε Eγ0

[
e

1
ε

∑∞
i=1 χB(x0,n)(B

i
ε)
]

= e−
Ln
ε

∞∏
i=1

Eγi
0

[
e

1
ε χB(x0,n)(B

i
ε)
]

≤ e−
Ln
ε

∞∏
i=1

(
1 + c3(δ) exp

[
−
(
(d(γi

0, x0) − n)2 − 2(2 + δ)
)

2(2 + δ)ε

])

≤ e−
Ln
ε

∏
(d(γi

0,x0)−n)2

−2(2+δ) > 0

(
1 + c3(δ) exp

[
−
(
(d(γi

0, x0) − n)2 − 2(2 + δ)
)

2(2 + δ)ε

])

×
∏

|d(γi
0,x0)−n|≤

√
2(2+δ)

(
1 + c3(δ) exp

[1
ε

])

≤ e−
Ln
ε exp

{
c3(δ)

∑
i

e−
((d(γi

0,x0)−n)2−2(2+δ))
2(2+δ)

}
(1 + c3(δ)e

1
ε )mn

≤ e−
Ln
ε exp

{
c3(δ)

∑
i

e−
((d(γi

0,x0)−n)2−2(2+δ))
2(2+δ)

}
(1 + c3(δ))mne

mn
ε

= exp
{
−Ln − mn

ε
+ c3(δ)

∑
i

e−
((d(γi

0,x0)−n)2−2(2+δ))
2(2+δ) + mn log(1 + c3(δ))

}
.

Define

Ln := L̂ + mn + c3(δ)
∑

i

e−
(d(γi

0,x0)−n)2−2(2+δ))
2(2+δ) + mn log(1 + c3(δ)) + n

and define KL̂ := K{Ln} where K{Ln} is defined as in (4.8). Then we have

Pγ0

(
Xε ∈ (Kc

{Ln})
)
≤

∞∑
n=1

Pγ0

(
Xε(B(x0, n)) > Ln

)

≤
∞∑

n=1

exp
{
− L̂ + n

ε

}
≤ 1

e − 1
e−

L̂
ε .

This implies (4.9).
Let L > 0 and choose L̂ such that inf1≤k≤n( L̂

tk
) > L. Let KL̂ be defined as

above. Put

KL = (KL̂)n
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Then KL is compact and

lim sup
ε→0

ε log Pγ0(Y
ε ∈ Kc

L) = lim sup
ε→0

ε log Pγ0

( n⋃
k=1

(Xεtk
∈ Kc

L̂
)
)

≤ lim sup
ε→0

ε log
(

n max
1≤k≤n

Pγ0(Xεtk
∈ Kc

L̂
)
)

= max
1≤k≤n

1
tk

(
lim sup

ε→0
εtk log Pγ0(Xεtk

∈ Kc
L̂
)
)

≤ max
1≤k≤n

1
tk

(−L̂) ≤ −L.

Define, for (η1, . . . , ηn) ∈ Xn,

(4.10) Iγ0(η1, . . . , ηn) := sup
(f1,...,fn)∈C0(M)n

(
n∑

k=1

〈fk, ηk〉

−
∫

M

sup
(x1,x2,...,xn)

[
n∑

k=1

fk(xk) − hx(x1, x2, . . . , xn)

]
γ0(dx)

)
.

Theorem 4.4. Let µε be the law of Y ε on Xn under Pγ0 . Then, for
any closed subset F ⊂ Xn,

lim sup
ε→0

ε log µε(F ) ≤ − inf
(η1,...,ηn)∈F

Iγ0(η1, . . . , ηn).

Proof. The assertion follows by a combination of Lemma 4.2, Proposi-
tion 4.3 above and Theorem 4.5.20 in [DZ92].

§5. Identification of the Rate Functional

The main task of this section is to identify the rate function Iγ0(η1, . . . , ηn)
as
∑n

k=1
1

(tk−tk−1)
�(ηk, ηk−1)2 with η0 = γ0. This turns out to be highly non-

trivial. We will also show that the rate functional is good. Let X+ denote the
set of positive Radon measures on M . The definition of � in (2.11) extends to
X+ naturally with ΓM replaced by X+. Below, unless otherwise stated we fix
γ0 ∈ X+. We also fix positive numbers a1, a2, . . . , an. Introduce a functional
H(γ1, . . . , γn) on (X+)n by

H(γ1, . . . , γn) =
n∑

k=1

ak�(γk, γk−1)2.(5.1)
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Proposition 5.1. H is convex and lower semi-continuous on (X+)n,

equipped with the product topology of vague convergence.

Proof. Let γ1, γ2, γ̄1, γ̄2 ∈ χ+. For any 0 < α < 1, we first show that

�
(
αγ1 + (1 − α)γ2, αγ̄1 + (1 − α)γ̄2

)2 ≤ α�(γ1, γ̄1)2 + (1 − α)�(γ2, γ̄2)2.(5.2)

To this end, we may and will assume �(γ1, γ̄1) < ∞ and �(γ2, γ̄2) < ∞. By
Lemma 4.1 in [RS99] (although the Lemma was stated for ΓM , its proof works
also for X+), there exist η, η̄ ∈ X+(M × M) (the set of all positive Radon
measures on M × M) with

η(dx, M) = γ1(dx), η(M, dy) = γ̄1(dy), η̄(dx, M)

= γ2(dx), η̄(M, dy) = γ̄2(dy)

and such that

�(γ1, γ̄1)2 =
1
2

∫
M×M

d(x, y)2 η(dx, dy)(5.3)

�(γ2, γ̄2)2 =
1
2

∫
M×M

d(x, y)2 η̄(dx, dy).(5.4)

Define η∗ = αη + (1 − α)η̄. Then,

η∗(dx, M) = αγ1(dx) + (1 − α)γ2(dx)

η∗(M, dy) = αγ̄1(dy) + (1 − α)γ̄2(dy).

Thus,

�
(
αγ1 + (1 − α)γ2, αγ̄1 + (1 − α)γ̄2

)2(5.5)

≤
∫

M×M

d(x, y)2 η∗(dx, dy)

= α

∫
M×M

d(x, y)2 η(dx, dy) + (1 − α)
∫

M×M

d(x, y)2 η̄(dx, dy)

= α�(γ1, γ̄1)2 + (1 − α)�(γ2, γ̄2)2,

which proves (5.2). Let �γ1 = (γ1
1 , . . . , γ1

n), �γ2 = (γ2
1 , . . . , γ2

n) ∈ (X+)n. It
follows from (5.5) that

(5.6)

H(α�γ1 + (1 − α)�γ2) =
n∑

k=1

ak�
(
αγ1

k + (1 − α)γ2
k, αγ1

k−1 + (1 − α)γ2
k−1

)2

≤ α
n∑

k=1

ak�(γ1
k, γ1

k−1)
2 + (1 − α)

n∑
k=1

ak�(γ2
k, γ2

k−1)
2

= αH(�γ1) + (1 − α)H(�γ2),
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showing that H(·) is convex. Next we will prove that H is lower semi-
continuous. Let {�γm, m ≥ 1} be a sequence of elements in (X+)n converg-
ing vaguely to �γ. We need to show that

H(�γ) ≤ lim inf
m→∞

H(�γm).(5.7)

For this purpose, we may and will assume that the limit limm→∞ H(�γm) exists
and is finite as well as each H(�γm). Write �γm = (γm

1 , γm
2 , . . . , γm

n ) and �γ =
(γ1, γ2, . . . , γn). By Lemma 4.1 in [RS99] there exists ηm

k,k−1 ∈ X+(M × M)
with ηm

k,k−1(dx, M) = γm
k (dx), ηm

k,k−1(M, dy) = γm
k−1(dy), such that

�(γm
k , γm

k−1)
2 =

∫
M×M

d(x, y)2 ηm
k,k−1(dx, dy).(5.8)

Thus,

lim
m→∞

H(�γm) = lim
m→∞

n∑
k=1

ak

∫
M×M

d(x, y)2 ηm
k,k−1(dx, dy).(5.9)

Let Π1 be the projection operator from M ×M to M defined by Π1(x, y) = x.
For any compact set K ⊂ M × M and k ≥ 1, we have

sup
m

ηm
k,k−1(K) ≤ sup

m

∏∗
1η

m
k,k−1

(∏
1(K)

)
= sup

m
γm

k

(∏
1(K)

)
< ∞

since γm
k converges vaguely to γk as m → ∞. This implies that for each

1 ≤ k ≤ n, the family {ηm
k,k−1, m ≥ 1} is relatively compact with respect to

the topology of vague convergence. Now, choose a common subsequence {ml}
such that

lim
l→∞

ηml

k,k−1 = η0
k,k−1(5.10)

vaguely for each 1 ≤ k ≤ n. Next we prove that

η0
k,k−1(dx, M) = γk(dx), η0

k,k−1(M, dy) = γk−1(dy)

Notice that this is not automatically a consequence of the vague convergence.
We only prove one of them, say, η0

k,k−1(dx, M) = γk(dx), the other is proved
analogously. Choose a sequence {φj(y), j ≥ 1} of continuous functions on M

satisfying 0 ≤ φj(y) ≤ 1, φj(y) = 1 on B(x0, j), φj(y) = 0 on B(x0, j + 1)c.
Take f ∈ C0(M). Suppose supp[f ] ⊂ B(x0, m0) for some m0. Then

(5.11)∫
M×M

f(x) η0
k,k−1(dx, dy) = lim

j→∞

∫
M×M

f(x)φj(y) η0
k,k−1(dx, dy)

= lim
j→∞

lim
l→∞

∫
M×M

f(x)φj(y) ηml

k,k−1(dx, dy).
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But,

(5.12)

lim sup
l→∞

∣∣∣∣
∫

M×M

f(x)φj(y) ηml

k,k−1(dx, dy) −
∫

M×M

f(x) ηml

k,k−1(dx, dy)
∣∣∣∣

≤ lim sup
l→∞

∫
M×M

|f(x)|(1 − φj(y)) ηml

k,k−1(dx, dy)

≤ ‖f‖∞ lim sup
l→∞

∫
M×M

χB(x0,m0)(x)χB(x0,j)c(y) ηml

k,k−1(dx, dy)

≤ ‖f‖∞ sup
l

∫
{d2(x,y)≥(j−m0)2}

ηml

k,k−1(dx, dy)

≤ ‖f‖∞
1

(j − m0)2
sup

l

∫
M×M

d2(x, y) ηml

k,k−1(dx, dy)

≤ M

(j − m0)2

for some M > 0. Combining (5.11) and (5.12) we arrive at∫
M×M

f(x) η0
k,k−1(dx, dy) = lim

j→∞
lim

l→∞

∫
M×M

f(x)φj(y) ηml

k,k−1(dx, dy)

= lim sup
l→∞

∫
M×M

f(x) ηml

k,k−1(dx, dy)

= lim
l→∞

∫
M

f(x) γml

k (dx)

=
∫

M

f(x) γk(dx).

Since f was arbitrary, we conclude that η0
k,k−1(dx, M) = γk(dy).

Since
∫

M×M
d2(x, y) η(dx, dy) is obviously lower semi-continuous with respect

to η, it follows that

H(�γ) ≤
n∑

k=1

ak

∫
M×M

d2(x, y) η0
k,k−1(dx, dy)(5.13)

≤
n∑

k=1

ak lim inf
l→∞

∫
M×M

d2(x, y) ηml

k,k−1(dx, dy)

≤ lim inf
l→∞

n∑
k=1

ak

∫
M×M

d2(x, y) ηml

k,k−1(dx, dy)

= lim
l→∞

H(�γml
).
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Lemma 5.2. Let f1, f2, . . . , fn ∈ C0(M). Then

g(x) := sup
x1,x2,...,xn

(
n∑

k=1

fk(xk) − hx(x1, x2, . . . , xn)

)
, x ∈ M,(5.14)

is lower semi-continuous and has compact support.

Proof. Clearly g is lower semi-continuous. We need to show g(x) = 0
outside some sufficiently big compact subset. Let K be a compact subset of M

that contains the support of fk for all 1 ≤ k ≤ n. We may only consider x ∈ Kc.
For such x, we have that g(x) ≥ 0 since

∑n
k=1 fk(xk) − hx(x1, x2, . . . , xn) = 0

for x1 = x2 = · · · = xn = x. Furthermore, denoting by C the supremum of the
function

∑n
k=1 fk(·), we have

g(x) ≤ sup
(x1,...,xn)∈(Kc×···×Kc)c

(
n∑

k=1

fk(xk) − hx(x1, x2, . . . , xn)

)
(5.15)

∨ sup
(x1,...,xn)∈Kc×···×Kc

(
−hx(x1, x2, . . . , xn)

)
≤ sup

(x1,...,xn)∈(Kc×···×Kc)c

(
C − hx(x1, x2, . . . , xn)

)
∨ 0

≤
n∨

k=1

sup
(x1,...,xn) : xk∈K

(
C − hx(x1, x2, . . . , xn)

)
∨ 0.

Thus, it suffices to prove that for each 1 ≤ k ≤ n,

gk(x) := sup
(x1,...,xn) : xk∈K

(
C − hx(x1, x2, . . . , xn)

)
∨ 0 = 0(5.16)

outside some compact subset. Since xk ∈ K, we can find a compact subset
Fk−1 such that for xk−1 ∈ F c

k−1,

C − hx(x1, x2, . . . , xn) ≤ C − 1
2

1
tk − tk−1

d(xk, xk−1)2 < 0.

Therefore, gk(x) can be written as

gk(x) = sup
(x1,...,xn):xk∈K,

xk−1∈Fk−1

(
C − hx(x1, x2, . . . , xn)

)
∨ 0.

Repeating the same arguments, we can find compact subsets Fk−2, Fk−3, . . . , F1

such that

gk(x) = sup
(x1,...,xn):xk∈K,

xk−1∈Fk−1,...,x1∈F1

(
C − hx(x1, x2, . . . , xn)

)
∨ 0(5.17)

≤ sup
x1∈F1

(
C − 1

2
1

t1 − t0
d(x, x1)2

)
∨ 0.
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The latter is clearly zero for x outside some sufficiently big compact subset.
This completes the proof of the lemma.

Lemma 5.3. Let f1, f2, . . . , fn ∈ C0(M). Then for γ0 ∈ ΓM

(5.18)

sup
γ1,γ2,...,γn∈ΓM

(
n∑

k=1

〈fk, γk〉 −
n∑

k=1

1
tk − tk−1

�(γk, γk−1)2
)

=
∫

M

sup
x1,x2,...,xn

(
n∑

k=1

fk(xk) − hx(x1, x2, . . . , xn)

)
γ0(dx).

Proof. Given γ1, γ2, . . . , γn ∈ ΓM with �(γk, γk−1) < ∞, 1 ≤ k ≤ n.
Write γ0 =

∑∞
i=1 δγi

0
, γk =

∑∞
i=1 δγi

k
. Following [RS99, Lemma 4.1(iv)], renum-

bering if necessary, we may assume

�(γk, γk−1)2 =
1
2

∞∑
i=1

d(γi
k, γi

k−1)
2.(5.19)

Thus,

(5.20)
n∑

k=1

〈fk, γk〉−
n∑

k=1

1
tk − tk−1

�(γk, γk−1)2

=
∞∑

i=1

n∑
k=1

fk(γi
k) −

∞∑
i=1

1
2

n∑
k=1

1
tk − tk−1

d(γi
k, γi

k−1)
2

=
∞∑

i=1

(
n∑

k=1

fk(γi
k) − hγi

0
(γi

1, γ
i
2, . . . , γ

i
n)

)

≤
∞∑

i=1

sup
x1,x2,...,xn

(
n∑

k=1

fk(xk) − hγi
0
(x1, x2, . . . , xn)

)

=
∫

M

sup
x1,x2,...,xn

(
n∑

k=1

fk(xk) − hx(x1, x2, . . . , xn)

)
γ0(dx).

(Note that the last integral exists by Lemma 5.2)
Hence,

sup
γ1,γ2,...,γn∈ΓM

(
n∑

k=1

〈fk, γk〉 −
n∑

k=1

1
tk − tk−1

�(γk, γk−1)2
)(5.21)

≤
∫

M

sup
x1,x2,...,xn

(
n∑

k=1

fk(xk) − hx(x1, x2, . . . , xn)

)
γ0(dx)
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To prove the dual inequality, we again set

g(x) := sup
x1,x2,...,xn

(
n∑

k=1

fk(xk) − hx(x1, x2, . . . , xn)

)
.

Choose a compact subset K containing the supports of g and fk for all 1 ≤
k ≤ n. This is possible due to Lemma 5.2. Moreover, there exists an integer
N0 such that γi

0 ∈ Kc for i > N0. Now, for any ε > 0, there is (xi
1, . . . , x

i
n) ∈

M × M × · · · × M such that

(5.22)
n∑

k=1

fk(xi
k) − hγi

0
(xi

1, x
i
2, . . . , x

i
n)

> sup
x1,x2,...,xn

(
n∑

k=1

fk(xk) − hγi
0
(x1, x2, . . . , xn)

)
− ε

N0
.

Define γi
k := xi

k, i ≤ N0, γi
k := γi

0, i > N0, and set γk :=
∑∞

i=1 δγi
k
. We have

setting xi
0 := γi

0

n∑
k=1

〈fk, γk〉 −
n∑

k=1

1
tk − tk−1

�(γk, γk−1)2(5.23)

=
n∑

k=1

N0∑
i=1

fk(γi
k) −

n∑
k=1

1
tk − tk−1

�(γk, γk−1)2

≥
n∑

k=1

N0∑
i=1

fk(xi
k) −

n∑
k=1

1
tk − tk−1

1
2

N0∑
i=1

d(xi
k, xi

k−1)
2

=
N0∑
i=1

(
n∑

k=1

fk(xi
k) − hγi

0
(xi

1, x
i
2, . . . , x

i
n)

)

>

N0∑
i=1

g(γi
0) − ε

=
∫

M

g(x) γ0(dx) − ε.

Since ε is arbitrary, the dual inequality follows and the lemma is proved.

Proposition 5.4. Iγ0(γ1, γ2, . . . , γn) =
∑n

k=1
1

tk−tk−1
�(γk, γk−1)2 for

all γ0, γ1, . . . , γn ∈ ΓM .



�

�

�

�

�

�

�

�
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Proof. By Lemma 5.3,

(5.24) Iγ0(γ1, γ2, . . . , γn) = sup
(f1,...,fn)∈C0(M)n

(
n∑

k=1

〈fk, γk〉

− sup
γ̃1,γ̃2,...,γ̃n∈ΓM

(
n∑

k=1

〈fk, γ̃k〉 −
n∑

k=1

1
tk − tk−1

�(γ̃k, γ̃k−1)2
))

.

Since for f1, . . . ,fn ∈ C0(M)

n∑
k=1

〈fk, γk〉 − sup
γ̃1,γ̃2,...,γ̃n∈ΓM

(
n∑

k=1

〈fk, γ̃k〉 −
n∑

k=1

1
tk − tk−1

�(γ̃k, γ̃k−1)2
)

(5.25)

≤
n∑

k=1

1
tk − tk−1

�(γk, γk−1)2,

we have

Iγ0(γ1, γ2, . . . , γn) ≤
n∑

k=1

1
tk − tk−1

�(γk, γk−1)2.(5.26)

On the other hand, by the general theorem on the inverse Legendre transform
of convex functions (see [DZ92, Lemma 4.5.8]) and Proposition 5.1, 5.3, we see
that

n∑
k=1

1
tk − tk−1

�(γk, γk−1)2 = sup
(f1,...,fn)∈C0(M)n

{
n∑

k=1

〈fk, γk〉

− sup
γ̃1,γ̃2,...,γ̃n∈χ+(M)

(
n∑

k=1

〈fk, γ̃k〉 −
n∑

k=1

1
tk − tk−1

�(γ̃k, γ̃k−1)2
)}

which is smaller than Iγ0(γ1, γ2, . . . , γn).

Proposition 5.5. For any γ0 ∈ ΓM the rate functional Iγ0 is good on
Γn

M , i.e., for any L > 0 the level set

RL :=
{
(γ1, . . . , γn) ∈ Γn

M

∣∣ Iγ0(γ1, γ2, . . . , γn) ≤ L
}

is compact in Γn
M .

Proof. By Proposition 5.1 the rate functional Iγ0 is lower semi-continuous
on Γn

M . So, we only need to show that every level set is relatively compact in
Γn

M . So, let L > 0. It is sufficient to prove that for each 1 ≤ k ≤ n the set

Rk
L := Πk(RL),
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is relatively compact, where Πk : Γn
M → ΓM is the natural projection on the

k-th component. Let r0 > 0, γ ∈ ΓM . Then for any ω ∈ Γγ0×γ ,

γ(B(x0, r0)) =
∫

M×M

χB(x0,r0)(y) ω(dx, dy)(5.27)

=
∫

M×M

χB(x0,r0+
√

2)(x)χB(x0,r0)(y) ω(dx, dy)

+
∫

M×M

χB(x0,r0+
√

2)c(x)χB(x0,r0)(y) ω(dx, dy)

≤
∫

M×M

χB(x0,r0+
√

2)(x) ω(dx, dy)

+
1
2

∫
M×M

d(x, y)2 ω(dx, dy)

= γ0(B(x0, r0 +
√

2)) +
1
2

∫
M×M

d(x, y)2 ω(dx, dy).

Taking the infimum over ω we get

γ(B(x0, r0)) ≤ γ0(B(x0, r0 +
√

2)) + �(γ0, γ)2.

If γ = γk ∈ Rk
L, then by definition there exist γ1, . . . , γk−1, γk+1, . . . , γn ∈ ΓM

so that (γ1, . . . , γn) ∈ RL. Hence (since
∑n

l=1(tl − tl−1) = 1)

�(γ0, γk)2 ≤
(

n∑
l=1

�(γl, γl−1)

)2

≤
n∑

l=1

1
tl − tl−1

�(γl, γl−1)2 ≤ L.

Thus,

sup
γk∈Rk

L

γk(B(x0, r0)) ≤ γ0(B(x0, r0 +
√

2)) + L

Since r0 was arbitrary, this implies that Rk
L is relatively compact in X+. Since

ΓM is Polish, it is closed in X+, so the assertion follows.

§6. Large Deviation Estimates for Finite Dimensional Projections:
the Lower Bounds

The lower bound holds under even a little stronger topology on ΓM which
was introduced in [KLR03], namely, the topology on Γ∞ induced by the fol-
lowing metric:

d∞(γ1, γ2) := dv(γ1, γ2) +
∞∑

m=1

2−m |Bm(γ1) − Bm(γ2)|
(1 + |Bm(γ1) − Bm(γ2)|)

,(6.1)
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where dv is any metric compatible with the vague topology.
Let U be an dv-open neighborhood in ΓM described by

U =
{

γ ∈ ΓM

∣∣∣∣ γ(∂Wr) = 0, γ|Wr
=

n∑
i=1

δxi
with

n∑
i=1

d(xi, yi)2 < δ0

}
,(6.2)

where Wr := B(x0, r), r > 0, y1, . . . , yn are fixed points in Wr, and δ0 > 0.

Proposition 6.1. Let γ0 ∈ Γ∞. Then, for any δ1 > 0 and distinct
integers i1, . . . , in,

lim inf
ε→0,γ→γ0

ε log Pγ(Xε ∈ U) ≥ −1
2

n∑
j=1

d(yj , γ
ij

0 )2(1 + δ1) −
1
2

(
1
δ1

+ 1
)

δ0(6.3)

−
∑

k �∈{i1,i2,...,in}

1
2
d(γk

0 , W̄ c
r )2,

where d(γk
0 , W̄ c

r ) denotes the distance from γk
0 to W̄ c

r and γ → γ0 with respect
to d∞, in Γ∞.

Proof. Let {γm, m ≥ 1} be any sequence in Γ∞ such that d∞(γm, γ0) → 0.
It is sufficient to show (6.3) for such a sequence. Write γm =

∑∞
i=1 δγi

m
and

γ0 =
∑∞

i=1 δγi
0
. Rearranging elements in γm if necessary, we may assume that

limm→∞ γi
m = γi

0 for i ≥ 1 (see the proof of Theorem 6.1 in [KLR03]). For
distinct integers i1, i2, i3, . . . , in, define

Ai1,i2,...,in
:=
{

Bi1
ε ∈ Wr, . . . , B

in
ε ∈ Wr,

n∑
j=1

d(Bij
ε , yj)2 < δ0,

Bk
ε ∈ W̄ c

r , k �∈ {i1, . . . , in}
}

.

Then

{Xε ∈ U} =
⋃

i1,i2,...,in

Ai1,i2,...,in
,

hence,

Pγm
(Xε ∈ U) =

∞∑
i1,i2,...,in

Pγm
(Ai1,i2,...,in

).



�

�

�

�

�

�

�

�

Large Deviations on Configuration Spaces 407

So, for any distinct integers i1, i2, i3, . . . , in we have

Pγm
(Xε ∈ U) ≥ Pγm

(Ai1,i2,...,in
)

=
∫

· · ·
∫

{
∑n

j=1 d(xj ,yj)
2<δ0,

xj∈Wr}

n∏
j=1

pε(γij
m, xj) m(dx1) m(dx2) . . .m(dxn)

×
∏

k �∈{i1,i2,...,in}
Pγk

m
(Bε ∈ W̄ c

r )

= ai1,i2,...,in
ε × bi1,i2,...,in

ε .

Note that for any δ1 > 0,
n∑

j=1

d(xj , γ
ij
m)2 ≤

(
1 +

1
δ1

) n∑
j=1

d(xj , yj)2 + (1 + δ1)
n∑

j=1

d(yj , γ
ij
m)2.

This and (3.2) imply

ai1,i2,...,in
ε ≥

∫
· · ·
∫

{
∑n

j=1 d2(xj ,yj)<δ0,

xj∈Wr}

n∏
j=1

exp
[
−d(γ

ij
m ,xj)2

(2−δ)ε

]
c1(δ)m(B(γij

m,
√

ε))
m(dx1) . . .m(dxn)

≥
∫

· · ·
∫

{
∑n

j=1 d2(xj ,yj)<δ0,

xj∈Wr}

exp
(
−

(1 + 1
δ1

)δ0

(2 − δ)ε

) n∏
j=1

1

c1(δ)m(B(γij
m,

√
ε))

× exp
(
−(1 + δ1)

∑n
j=1 d(yj , γ

ij
m)2

(2 − δ)ε

)
m(dx1) m(dx2) . . .m(dxn).

Since lim
ε→0,m→∞

ε log
(∏n

j=1
1

c1(δ)m(B(γ
ij
m ,

√
ε))

)
= 0, we have

lim inf
ε→0,m→∞

ε log ai1,i2,...,in
ε ≥ − 1

2 − δ

(
1
δ1

+ 1
)

δ0 − (1 + δ1)
1

2 − δ

n∑
j=1

d(yj , γ
ij

0 )2.

To treat bi1,i2,...,in
ε , we need the following.

Lemma 6.2. Let c1(1), c2(1) be as in Lemma 3.1 (for T := 1). Then

∣∣log P
(
d(x0, B

x
ε ) > r

)∣∣ ≤ c1(1) exp
(
−c2(1)d(x0, x)2

)
1 − c1(1) exp

(
−c2(1)d(x0, x)2

)(6.4)

for all r > 0 and x ∈ M with d(x0, x) > 2r and ε ≤ 1.
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Proof. Note that d(x0, B
x
ε ) > d(x0, x) − d(x, Bx

ε ). Using d(x0, x) > 2r

and Lemma 3.1 it follows that

P
(
d(x0, B

x
ε ) > r

)
≥ P

(
d(x, Bx

ε ) ≤ 1
2
d(x0, x)

)

= 1 − P

(
d(x, Bx

ε ) >
1
2
d(x0, x)

)
≥ 1 − c1(1) exp

(
−c2(1)d(x0, x)2

)
.

Hence,∣∣log P
(
d(x0, B

x
ε ) > r

)∣∣ = − log P
(
d(x0, B

x
ε ) > r

)
≤ log

(
1

1 − c1(1) exp
(
−c2(1)d(x0, x)2

))

= log
(

1 +
c1(1) exp

(
−c2(1)d(x0, x)2

)
1 − c1(1) exp

(
−c2(1)d(x0, x)2

))

≤
c1(1) exp

(
−c2(1)d(x0, x)2

)
1 − c1(1) exp

(
−c2(1)d(x0, x)2

) ,

which proves the assertion.

Corollary 6.3. We have

lim
ε→0,m→∞

ε log bi1,i2,...,in
ε = −1

2

∑
k �∈{i1,...,in}

d(γk
0 , W̄ c

r )2.(6.5)

Proof. Note that

ε log bi1,i2,...,in
ε =

∑
k �∈{i1,...,in}

ε log Pγk
m

(
d(x0, Bε) > r

)
.

By the large deviation principle of Brownian motion,

lim
ε→0,m→∞

ε log Pγk
m

(
d(x0, Bε) > r

)
= −1

2
d(γk

0 , W̄ c
r )2.

Since γ0 ∈ Γ∞ and γm → γ0 with respect to d∞, (6.5) now follows from
Lemma 6.2 and the dominated convergence theorem.

Using Corollary 6.3 and letting δ → 0 we get Proposition 6.1.

Proposition 6.4. Let γ0 ∈ Γ∞. Suppose that O ⊂ Γ∞ is an open
subset w.r.t. d∞. Then,

lim inf
ε→0,γ→γ0

ε log Pγ(Xε ∈ O) ≥ − inf
γ∈O

�(γ0, γ)2,

where γ → γ0 with respect to d∞ in Γ∞.
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We first prove the analogue of Proposition 6.4 for the vague topology.

Proposition 6.5. Let γ0 ∈ Γ∞. Suppose that O ⊂ ΓM is an open
subset w.r.t. the vague topology. Then,

lim inf
ε→0,γ→γ0

ε log Pγ(Xε ∈ O) ≥ − inf
γ∈O

�(γ0, γ)2,

where γ → γ0 with respect to d∞ in Γ∞.

Proof. It is sufficient to prove

lim inf
ε→0,γ→γ0

ε log Pγ(Xε ∈ O) ≥ −�(γ0, γ̂)2

for any γ̂ ∈ O. So, fix γ̂ ∈ O. Without loss of generality, we can assume that

�(γ0, γ̂)2 =
1
2

∞∑
i=1

d(γ̂i, γi
0)

2 < ∞.

Choose an increasing sequence Wrn
of geodesic balls such that

⋃
Wrn

= M

and

γ̂|Wrn
=

mn∑
i=1

δγ̂i , γ̂(∂Wrn
) = 0.

Let δl, l ≥ 1, be a sequence of positive numbers converging to zero. Set

Un,l :=
{

γ ∈ ΓM

∣∣∣∣ γ(∂Wrn
) = 0, γ|Wrn

=
mn∑
i=1

δxi
with

mn∑
i=1

d(xi, γ̂
i)2 < δl

}
.

Obviously, {Un,m |n, m ∈ N} form a basis of neighbourhoods for γ̂ in the vague
topology. Since O is open, there exist n0, l0 such that Un,l ⊂ O for n ≥ n0,
l ≥ l0.
By Proposition 6.1 it holds that for n ≥ n0, l ≥ l0 and any δ1 > 0,

lim inf
ε→0,γ→γ0

ε log Pγ(Xε ∈ O)

≥ lim inf
ε→0,γ→γ0

ε log Pγ(Xε ∈ Un,l)

≥ −1
2

mn∑
i=1

d(γ̂i, γi
0)

2(1 + δ1) −
1
2

(
1
δ1

+ 1
)

δl −
∞∑

k=mn+1

1
2
d(γk

0 , W̄ c
rn

)2.

First letting l → ∞ and then δ1 → 0, we obtain that

lim inf
ε→0,γ→γ0

ε log Pγ(Xε ∈ O) ≥ −1
2

mn∑
i=1

d(γ̂i, γi
0)

2 −
∞∑

k=mn+1

1
2
d(γk

0 , W̄ c
rn

)2.(6.6)



�

�

�

�

�

�

�

�
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By the choice of Wrn
, d(γk

0 , W̄ c
rn

) ≤ d(γk
0 , γ̂k) for k ≥ mn +1. Hence, it follows

from (6.6) that

lim inf
ε→0,γ→γ0

ε ln Pγm
(Xε ∈ O) ≥ −1

2

∞∑
i=1

d(γ̂i, γi
0)

2 = −�(γ0, γ̂)2,

which completes the proof.

Let γ̂ ∈ Γ∞. To prove Proposition 6.4 we have to consider d∞-neighbour-
hoods of γ̂ of the form:

U(γ̂, n, δ̄) :=
{
γ =

∑
δγi

∣∣∣ |Bn(γ) − Bn(γ̂)| < δ̄
}
.(6.7)

and intersections of finitely many of them with vaguely open sets in ΓM .

Lemma 6.6. Let γ0 ∈ Γ∞. Then

lim inf
ε→0,γ→γ0

ε log Pγ

(
Xε ∈ U(γ̂, n, δ̄)

)
≥ −�(γ0, γ̂)2,(6.8)

where γ → γ0 with respect to d∞ in Γ∞.

Proof. Let {γm} be a sequence such that d∞(γm, γ0) → 0. It suffices to
show (6.8) for such a sequence. We may assume �(γ0, γ̂) < ∞ and

�(γ0, γ̂)2 =
∞∑

i=1

1
2
d(γi

0, γ̂
i)2,

where γ0 =
∑

δγi
0
, γ̂ =

∑
δγ̂i . For the numeration of γ0 =

∑
δγi

0
, by [KLR03]

there exists a numeration of γm, say γm =
∑

δγi
m

, such that for i ≥ 1, γi
m → γi

0

as m → ∞. From now on, we stick to such a numeration. For any N ≥ 1, we
have

∞∑
i=N+1

exp
[
− 1

2n
d(x0, γ

i
m)
]

= B2n(γm) −
N∑

i=1

exp
[
− 1

2n
d(x0, γ

i
m)
]

→ B2n(γ0) −
N∑

i=1

exp
[
− 1

2n
d(x0, γ

i
0)
]

=
∞∑

i=N+1

exp
[
− 1

2n
d(x0, γ

i
0)
]

as m → ∞.
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So we can choose N0 so that

∞∑
i=N0+1

exp
[
− 1

2n
d(x0, γ̂

i)
]

<
δ̄

4
,

∞∑
i=N0+1

exp
[
− 1

2n
d(x0, γ0

i)
]

<
δ̄

4
,

∞∑
i=N0+1

exp
[
− 1

2n
d(x0, γm

i)
]

<
δ̄

4

for all m ≥ 1.
Define

U(γ̂, n, δ̄, 1) =
{

γ = δγi

∣∣∣∣ ∃ i1, . . . , iN0 s.t.

∑
j �∈{i1,...,iN0}

exp
[
− 1

n
d(x0, γ

j)
]

<
δ̄

4
,

∣∣∣∣
N0∑
k=1

exp
[
− 1

n
d(x0, γ

ik)
]
−

N0∑
k=1

exp
[
− 1

n
d(x0, γ̂

k)
]∣∣∣∣ <

δ̄

4

}
.

It is easy to see that

U(γ̂, n, δ̄, 1) ⊂ U(γ̂, n, δ̄).

Furthermore, there exists δ̃ > 0 such that for δ1 ≤ δ̃,

U(γ̂, n, δ̄, δ1) ⊂ U(γ̂, n, δ̄, 1),

where

U(γ̂, n, δ̄, δ1) =
{

γ = δγi

∣∣∣∣ ∃ i1, . . . , iN0 s.t.

∑
j �∈{i1,...,iN0}

exp
[
− 1

n
d(x0, γ

j)
]

<
δ̄

4
,

N0∑
k=1

d(γik , γ̂k)2 < δ1

}
.

Now it is enough to prove that

lim inf
ε→0,m→∞

ε log Pγm

(
Xε ∈ U(γ̂, n, δ̄, 1)

)
≥ −�(γ0, γ̂)2.(6.9)
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For δ1 ≤ δ̃, we have

Pγm

(
Xε ∈ U(γ̂, n, δ̄, 1)

)
≥ Pγm

(
Xε ∈ U(γ̂, n, δ̄, δ1)

)
≥ Pγm

( ∞∑
i=N0+1

exp
[
− 1

n
d(x0, Bε

i)
]

<
δ̄

4
,

N0∑
i=1

d(Bε
i, γ̂i)2 < δ1

)

(where Bε
i is the Brownian motion starting at γi

m)

= Pγm

(
N0∑
i=1

d(Bε
i, γ̂i)2 < δ1

)

× Pγm

( ∞∑
i=N0+1

exp
[
− 1

n
d(x0, Bε

i)
]

<
δ̄

4

)

:= am
ε × bm

ε .

Note that for any δ2 > 0,

N0∑
i=1

d(xi, γi
m)2 ≤

(
1 +

1
δ2

) N0∑
i=1

d(xi, γ̂i)2 + (1 + δ2)
N0∑
i=1

d(γ̂i, γi
m)2.

Using

am
ε =

∫
· · ·
∫

∑N0
i=1 d(xi,γ̂i)2<δ1

N0∏
i=1

pε(γi
m, xi) m(dx1) . . .m(dxN0),

as in the proof of Proposition 6.1, we have

lim inf
ε→0,m→∞

ε log am
ε ≥ − 1

2 − δ

(
1 +

1
δ2

)
δ1 −

1
2 − δ

(1 + δ2)
N0∑
i=1

d(γi
0, γ̂

i)2.(6.10)

Next we are going to show that

lim inf
ε→0,m→∞

ε log bm
ε = 0.

For this end, it is sufficient to establish

lim inf
ε→0,m→∞

bm
ε > 0.(6.11)
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By the choice of N0, it is easy to see that{ ∞∑
i=N0+1

exp
[
− 1

n
d(x0, Bε

i)
]

<
δ̄

4

}
⊃

∞⋂
i=N0+1

{
d(x0, Bε

i) >
1
2
d(x0, γ

i
m)
}

⊃
∞⋂

i=N0+1

{
d(γi

m, Bε
i) <

1
2
d(x0, γ

i
m)
}

since d(x0, γ
i
m) ≤ d(x0, Bε

i) + d(γi
m, Bε

i).
Hence, by Lemma 3.1, for ε ≤ 1,

bm
ε = Pγm

( ∞∑
i=N0+1

exp
[
− 1

n
d(x0, Bε

i)
]

<
δ̄

4

)

≥
∞∏

i=N0+1

Pγi
m

(
d(γi

m, Bε
i) <

1
2
d(x0, γ

i
m)
)

≥
∞∏

i=N0+1

(
1 − c1 exp

(
−c2d(x0, γ

i
m)2

4ε

))

≥
∞∏

i=N0+1

(
1 − c1 exp

(
−c2d(x0, γ

i
m)2

4

))

= exp

[ ∞∑
i=N0+1

log
(

1 − c1 exp
(
−c2d(x0, γ

i
m)2

4

))]

≥ exp
[
−1

2

∞∑
i=1

c1 exp
(
−c2d(x0, γ

i
m)2

4

)]
.

The last expression is bigger than some positive constant independent of m

since supm Bn(γm) < ∞ for all n ≥ 1. Therefore, (6.11) follows.
Combining (6.10) and (6.11) we arrive at

lim inf
ε→0,γ→γ0

ε log Pγ

(
Xε ∈ U(γ̂, n, δ̄)

)
≥ − 1

2 − δ

(
1 +

1
δ2

)
δ1

− 1
2 − δ

(1 + δ2)
N0∑
i=1

d(γi
0, γ̂

i)2.

Letting first δ1 → 0, then δ2 → 0 and finally δ → 0 we get

lim inf
ε→0,γ→γ0

ε log Pγ

(
Xε ∈ U(γ̂, n, δ̄)

)
≥ −1

2

N0∑
i=1

d(γi
0, γ̂

i)2 ≥ −�(γ0, γ̂)2.

This completes the proof.
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We will sketch the case for the intersection of two d∞-neighbourhoods in
the next lemma.
Let z0 ∈ R, δ̄ > 0. Define

U(z0, n, δ̄) :=
{

γ =
∑

δγi

∣∣∣ |Bn(γ) − z0| < δ̄
}

.(6.12)

Let U be an dv-open neighborhood in ΓM described by

U =
{

γ ∈ ΓM

∣∣∣∣ γ(∂Wr0) = 0, γ|Wr0
=

n0∑
i=1

δxi
with

n0∑
i=1

d(xi, yi)2 < δ0

}
,

(6.13)

where Wr0 := B(x0, r0), r0 > 0, y1, . . . , yn0 are fixed points in Wr0 , and δ0 > 0.
Set V = U(z0, n, δ̄) ∩ U .

Lemma 6.7. Let γ0 ∈ Γ∞. Then for any γ̂ ∈ V , we have

lim inf
ε→0,γ→γ0

ε log Pγ(Xε ∈ V ) ≥ −�(γ0, γ̂)2,(6.14)

where γ → γ0 with respect to d∞ in Γ∞.

Proof. Let {γm} be a sequence such that d∞(γm, γ0) → 0. It suffices to
show (6.14) for such a sequence. Again, we may assume �(γ0, γ̂) < ∞ and

�(γ0, γ̂)2 =
∞∑

i=1

1
2
d(γi

0, γ̂
i)2,

where γ0 =
∑

δγi
0
, γ̂ =

∑
δγ̂i . For the numeration of γ0 =

∑
δγi

0
, by [KLR03]

there exists a numeration of γm, say γm =
∑

δγi
m

, such that for i ≥ 1, γi
m → γi

0

as m → ∞. We will stick to such a numeration. Let δ1 := δ̄ − |Bn(γ̂) − z0|.
Since γ̂ ∈ U(z0, n, δ̄), δ1 > 0. Choose δ2 < δ1

4 such that exp(− 1
2nd(x0, x)) < δ2

implies d(x0, x) > r0, where r0 is as in the definition of U . On the other hand,
since γ̂ ∈ U , there exist γ̂ik ∈ γ̂, k = 1, . . . , n0, such that

γ̂|Wr0
=

n0∑
k=1

δγ̂ik ,

n0∑
k=1

d(γ̂ik , yk)2 < δ0.

Now, arguing as in the proof of Proposition 6.6, we can choose N0 ≥ in0 so
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that
∞∑

i=N0+1

exp
[
− 1

2n
d(x0, γ̂

i)
]

<
δ̄

4
,

∞∑
i=N0+1

exp
[
− 1

2n
d(x0, γ0

i)
]

<
δ̄

4
,

∞∑
i=N0+1

exp
[
− 1

2n
d(x0, γm

i)
]

<
δ̄

4
,

for all m ≥ 1. For such N0, there exists δ̃ > 0 such that for all δ3 ≤ δ̃ and
(z1, z2, . . . , zN0) ∈ MN0 , |

∑N0
i=1 d(zi, γ̂

i)2| < δ3 implies

(i) |
∑N0

i=1 exp(− 1
2nd(x0, zi) −

∑N0
i=1 exp(− 1

2nd(x0, γ̂
i)| < δ1,

(ii)
∑n0

k=1 d(zik
, yk)2 < δ0,

(iii) �{i; zi ∈ Wr0} = n0.

So, for δ3 ≤ δ̃,
U(γ̂, n, δ1, δ3) ⊂ V,

where

U(γ̂, n, δ1, δ3) =
{

γ =
∑

i

δγi

∣∣∣∣ ∃ i1, . . . , iN0 s.t.

∑
j �∈{i1,...,iN0}

exp
[
− 1

2n
d(x0, γ

j)
]

<
δ̄

4
,

N0∑
k=1

d(γik , γ̂k)2 < δ1

}
.

Now it is enough to prove that

lim inf
ε→0,m→∞

ε log Pγm

(
Xε ∈ U(γ̂, n, δ1, δ3)

)
≥ −�(γ0, γ̂)2.(6.15)

The rest of the proof is exactly the same as the corresponding proof of Propo-
sition 6.6. So, we omit it here.

Finite intersections can be done similarly. Since arbitrary finite intersec-
tions of d∞-neighbourhoods as above form a base for the d∞-neighbourhoods
of any γ̂ ∈ Γ∞, we can then prove Proposition 6.4 in the same way as Propo-
sition 6.5.

Theorem 6.8. Let γ0 ∈ Γ∞ and let µε be the law of Y ε on Γn
M under

Pγ0 . Then for any subset G ⊂ Γn
M , which is open with respect to the product

topology induced by dv,

lim inf
ε→0

ε log µε(G) ≥ − inf
(γ1,...,γn)∈G

Iγ0(γ1, . . . , γn)
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Proof. It suffices to show that for any (γ1, γ2, . . . , γn) ∈ G with Iγ0(γ1, . . . ,

γn) < ∞,

lim inf
ε→0

ε log µε(G) ≥ −Iγ0(γ1, . . . , γn).

Obviously, if γ, γ̃ ∈ ΓM such that �(γ, γ̃) < ∞ and γ ∈ Γ∞, then γ̃ ∈ Γ∞. So,
we may assume that γ1, . . . , γn ∈ Γ∞, since so is γ0. For γ ∈ Γ∞, let Pt(γ, U) :=
Pγ(Xt ∈ U) be the transition function. For a d∞-open neighbourhood On of
γn in Γ∞, it follows from Proposition 6.4 that

lim inf
ε→0,γ→γn−1

ε log Pε(tn−tn−1)(γ, On) ≥ −�(γn−1, γn)2

tn − tn−1
,

where γ → γn−1 with respect to d∞ in Γ∞. Thus, given δn > 0, there exist
εn > 0 and a d∞-open neighbourhood On−1 of γn−1 in Γ∞ such that

Pε(tn−tn−1)(γ, On) ≥ exp
[
−1

ε

(
�(γn−1, γn)2

tn − tn−1
− δn

)]
for ε ≤ εn, γ ∈ On−1.

(6.16)

The same arguments imply that for δ1 > 0, δ2 > 0, . . . , δn−1 > 0 there exist
d∞-open neighbourhoods Oi of γi in Γ∞ and εi > 0, i = 1, 2, . . . , n − 1, such
that

Pε(ti−ti−1)(γ, Oi) ≥ exp
[
−1

ε

(
�(γi−1, γi)2

ti − ti−1
− δi

)]
for ε ≤ εi, γ ∈ Oi−1.

(6.17)

Moreover, making them smaller if necessary, we may assume O1×O2×· · ·×On ⊂
G. Then for ε ≤ ε1 ∧ ε2 ∧ · · · ∧ εn, we have

(6.18)
µε(G) ≥ µε(O1 × O2 × · · · × On)

=
∫

O1

Pεt1(γ0, dη1)

(∫
O2

Pε(t2−t1)(η1, dη2)

)

× · · · ×
∫

On−1

Pε(tn−1−tn−2)(ηn−2, dηn−1) × Pε(tn−tn−1)(ηn−1, On)

≥ exp
[
−1

ε

(
�(γn−1, γn)2

tn − tn−1
− δn

)]∫
O1

Pεt1(γ0, dη1)∫
O2

Pε(t2−t1)(η1, dη2) × · · · ×
∫

On−2

Pε(tn−2−tn−3)(ηn−3, dηn−2)

Pε(tn−1−tn−2)(ηn−2, On−1)

≥ · · · ≥ exp
[
−1

ε

( n∑
k=1

�(γk−1, γk)2

tk − tk−1
+

n∑
k=1

δk

)]
.



�

�

�

�

�

�

�

�

Large Deviations on Configuration Spaces 417

Therefore,

lim inf
ε→0

ε log µε(G) ≥ −Iγ0(γ1, . . . , γn) −
n∑

k=1

δk.

Letting
∑n

k=1 δk → 0, the theorem follows.

§7. The Sample Path Large Deviations

In this section we fix γ0 ∈ Γ∞. Let P ε denote the law of (Xεt)t∈[0,1]

on Cγ0([0, 1] → ΓM ), i.e., the set of all continuous paths t → ωt from [0, 1]
to ΓM such that ω0 = γ0. We equip Cγ0([0, 1] → ΓM ) with the topology
of uniform convergence, where ΓM is equipped with the vague topology. For
ω ∈ Cγ0([0, 1] → ΓM ), define

I(ω) := sup
0=t0<t1<···<tn=1

{ n∑
k=1

�(ωtk−1 , ωtk
)2

tk − tk−1

}
,(7.1)

where the supremum is taken over all finite partitions of the interval [0, 1]. I(ω)
is the energy of ω associated to the Wasserstein type distance �. The function
I is obviously lower semicontinuous. Furthermore, by [RS99, Lemma 4.1(vii)]
closed �-balls are compact. Therefore, since for ω ∈ {I ≤ const.} we have
ω([0, 1]) ⊂ {�(γ0, ·) < ∞} and since on {�(γ0, ·) < ∞} the �-topology is
stronger than the dv-topology, Arzela’s Theorem implies that {I ≤ const.}
is compact in Cγ0([0, 1] → ΓM ).

Theorem 7.1. {P ε, ε > 0} satisfies a large deviation principle on Cγ0

([0, 1] → ΓM ) with good rate function I(·) given in (7.1), i.e.,

(i) for any closed subset C ⊂ Cγ0([0, 1] → ΓM ),

lim sup
ε→0

ε log P ε(C) ≤ − inf
ω∈C

I(ω).

(ii) for any open subset O ⊂ Cγ0([0, 1] → ΓM ),

lim inf
ε→0

ε log P ε(O) ≥ − inf
ω∈O

I(ω).

Proof. The results in Sections 4 and 6 imply (see Theorem 4.6.1 in [DZ92])
that {P ε, ε > 0} satisfies a large deviation principle under a weaker topology on
Cγ0([0, 1] → ΓM ) with the same good rate function I(·). So, the assertion
follows from the exponential tightness proven in Proposition 7.3 below.

We need the following lemma.



�

�

�

�

�

�

�

�
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Lemma 7.2. Let B̂ denote a real valued standard Brownian motion.
Let c0 be a constant satisfying

A := E
[
exp

(
c0 sup

0≤u≤1
B̂2

u

)]
< ∞.

For f ∈ C2
0 (M), set λf = c0

2‖∇f‖2
∞+1 . Then for 0 ≤ s < t ≤ 1,

E

[
exp

(
λf

(
f(Bt) − f(Bs)

)2
t − s

)]
≤ A exp(‖∆f‖2

∞).(7.2)

Proof. By Ito’s formula,

f(Bt) − f(Bs) = Mf
t − Mf

s +
∫ t

s

1
2
∆f(Bu) du,(7.3)

where Mf is a martingale with 〈Mf 〉t =
∫ t

0
|∇f |2(Bu) du. This implies(

f(Bt) − f(Bs)
)2

t − s
≤ 2

(Mf
t − Mf

s )2

t − s
+ ‖∆f‖2

∞.(7.4)

By the martingale representation theorem, there is a real-valued Brownian
motion B̂ such that Mf

t − Mf
s = B̂〈Mf 〉t−〈Mf 〉s

. Thus, it follows from (7.4)
that (

f(Bt) − f(Bs)
)2

t − s
≤ 2

(
B̂∫ t

s
|∇f |2(Bu)du

)2
t − s

+ ‖∆f‖2
∞(7.5)

≤ 2 sup
0≤u≤‖∇f‖2

∞(t−s)

B̂2
u

t − s
+ ‖∆f‖2

∞

= 2‖∇f‖2
∞ sup

0≤u≤1
B̃2

u + ‖∆f‖2
∞,(7.6)

where B̃u := 1√
t−s

B̂(t−s)u is again a real-valued Brownian motion and we used
the scaling invariance property of standard Brownian motion in the last step.
Hence,

E

[
exp

(
λf

(
f(B̂t) − f(B̂s)

)2
t − s

)]
(7.7)

≤ E
[
exp

(
λf2‖∇f‖2

∞ sup
0≤u≤1

B̃2
u + ‖∆f‖2

∞

)]
≤ A exp(‖∆f‖2

∞).

Let P ε be the law of (Xεt)t∈[0,1] on Cγ0([0, 1] → ΓM ).
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Proposition 7.3. {P ε, ε > 0} is exponentially tight on C([0, 1] → ΓM ),
i.e., for any L > 0, there exists a compact subset KL ⊂ Cγ0([0, 1] → ΓM )
satisfying

lim sup
ε→∞

log P ε(Kc
L) ≤ −L.(7.8)

Proof. Fix a countable, dense subset {fn, n ≥ 1} of C0(M) such that
fn ∈ C2

0 (M) and the family {fn, n ≥ 1} is closed under addition. For Ln > 0,
n ∈ N, define a subset of Cγ0([0, 1] → χ) by

(7.9) K{Ln} :=
∞⋂

n=1

{
ω ∈ Cγ0([0, 1] → ΓM )

∣∣
|〈ωt, fn〉 − 〈ws, fn〉| ≤ Ln|t − s| 12−δ, 0 ≤ s, t ≤ 1

}
where 0 < δ < 1

2 is fixed. It is known from [Kal97] that K is compact. For
L > 0, we will choose Ln properly so that (7.8) is satisfied with KL := K{Ln}.
Suppose supp[fn] ⊂ B(x0, Nn). Select an integer kn such that

d(x0, γ
j
0) ≥ (Nn + 1

√
2(n + L)) ∨ (2Nn + 1)

for all j ≥ kn. This is possible as limj→∞ d(x0, γ
j
0) = +∞. Set

cδ := sup
0≤u≤1

| log(u2)uδ|, λn :=
c0

(2‖∇fn‖2
∞ + 1)kn

.

where c0 is as in Lemma 7.2. Now, choose Ln such that

(√
λnLn

8cδ
− 1

)2

≥ L + n + kn‖∆fn‖2
∞ + kn log(A),(7.10)

where A is as in Lemma 7.1. Define KL := K{Ln} with K{Ln} as in (7.9). We
claim that KL satisfies (7.8). To prove this we set

An :=
{
ω ∈ Cγ0([0, 1] → ΓM )

∣∣
|〈ωt, fn〉 − 〈ws, fn〉| ≤ Ln|t − s| 12−δ, 0 ≤ s, t ≤ 1

}
.

Then

P ε(Kc
L) ≤

∞∑
n=1

P ε(Ac
n).(7.11)
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Since the support of fn is contained in B(x0, Nn), we have

P ε(Ac
n) = Pγ0

(
Ac

n

⋂{
inf

j≥kn

inf
u≤1

d(x0, B
j
εu) ≤ Nn

})
(7.12)

+ Pγ0

(
Ac

n

⋂{
inf

j≥kn

inf
u≤1

d(x0, B
j
εu) > Nn

})
≤ Pγ0

(
inf

j≥kn

inf
u≤1

d(x0, B
j
εu) ≤ Nn

)

+ Pγ0

(∣∣∣∣
kn∑
j=1

fn(Bj
εt) − fn(Bj

εs)
∣∣∣∣ > Ln|t − s| 12−δ

for some 0 ≤ s ≤ t ≤ 1
)

=: Iε
n + IIε

n.

Clearly,

Iε
n ≤

∞∑
j≥kn

Pγ0

(
inf
u≤1

d(x0, B
j
εu) < Nn + 1

)
(7.13)

=
∞∑

j≥kn

Pγ0

(
inf
u≤1

d(x0, B
j
εu) ≤ Nn + 1,

sup
u≤1

d(γj
0, B

j
εu) ≥ d(x0, γ

j
0) − inf

u≤1
d(x0, B

j
εu)
)

≤
∞∑

j≥kn

Pγ0

(
sup
u≤1

d(γj
0, B

j
εu) ≥ d(x0, γ

j
0) − Nn − 1

)
.

By Corollary 3.2 and setting c1 := c1(1), c2 := c2(1),

(7.14) Pγ0

(
sup
u≤1

d(γj
0, B

j
εu) ≥ d(x0, γ

j
0) − Nn − 1

)

≤ c1 exp
(
−c2

(
d(x0, γ

j
0) − Nn − 1

)2
ε

)
.

Combining (7.13), (7.14) and the choice of kn we arrive at

Iε
n ≤

∞∑
j≥kn

c1 exp
(
−c2

(
d(x0, γ

j
0) − Nn − 1

)2
ε

)
(7.15)
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=
∞∑

j≥kn

c1 exp
(
− (n + L)

ε

)
exp

(
−c2

1
2

(
d(x0, γ

j
0) − Nn − 1

)2
ε

)

≤ c1 exp
(
− (n + L)

ε

) ∞∑
j≥kn

exp
(
−c2

1
8

d(x0, γ
j
0)

2

ε

)

≤ ĉ1 exp
(
− (n + L)

ε

)
,

since γ0 ∈ Γ∞. For the term IIε
n, we note that by Lemma 7.2,

E

[
exp

(
λn

∣∣∑kn

j=1 fn(Bj
εt) − fn(Bj

εs)
∣∣2

ε(t − s)

)]
(7.16)

≤E

[
exp

(
λnkn

kn∑
j=1

(
fn(Bj

εt) − fn(Bj
εs)
)2

ε(t − s)

)]

=
kn∏

j=1

E

[
exp

(
λnkn

(
fn(Bj

εt) − fn(Bj
εs)
)2

ε(t − s)

)]

≤Akn exp(kn‖∆fn‖2
∞).

Set

Dε,n :=
∫ 1

0

∫ 1

0

exp
(

λn

∣∣∑kn

j=1 fn(Bj
εt) − fn(Bj

εs)
∣∣2

|t − s|

)
dt ds.

Then (7.16) implies that

E
[
D

1
ε
ε,n

]
≤ Akn exp

(
kn‖∆fn‖2

∞
)
.(7.17)

Set p(u) := u
1
2 . Then by Garsia’s Lemma (cf. [BY82]),

∣∣∣∣
kn∑

j=1

fn(Bj
εt) − fn(Bj

εs)
∣∣∣∣ ≤ 8√

λn

∫ |t−s|

0

(
log
(

Dε,n

u2

)) 1
2

dp(u)(7.18)

≤ 8cδ√
λn

(√
log(Dε,n) + 1

)
|t − s| 12−δ.
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It follows that

IIε
n = Pγ0

(∣∣∣∣
kn∑

j=1

fn(Bj
εt) − fn(Bj

εs)
∣∣∣∣>Ln|t − s| 12−δ for some 0 ≤ s ≤ t ≤ 1

)

≤ Pγ0

(
8cδ√
λn

(√
log(Dε,n) + 1

)
> Ln

)

= Pγ0

{
D

1
ε
ε,n > exp

((Ln

√
λn

8cδ
− 1

)2
ε

)}

≤ exp
(
−
(

Ln

√
λn

8cδ
− 1

)2
ε

)
E
[
D

1
ε
ε,n

]

≤ exp
(
−
(

Ln

√
λn

8cδ
− 1

)2
ε

)
Akn exp

(
kn‖∆fn‖2

∞
)

= exp
(
−
(

Ln

√
λn

8cδ
− 1

)2
ε

+ kn log(A) + kn‖∆fn‖2
∞

)
(7.19)

≤ exp
(
−n + L

ε

)
,(7.20)

where we used the definition of Ln in the last step.
Combining (7.11), (7.15) and (7.20) gives

P ε
γ0

(Kc
L) ≤ (ĉ1 + 1)

∞∑
n=1

exp
(
−n + L

ε

)
(7.21)

≤ (ĉ1 + 1) exp
(
−L

ε

) ∞∑
n=1

exp(−n).

Consequently,

lim
ε→0

ε log P ε
γ0

(Kc
L) ≤ −L.(7.22)

and the proof is complete.

§8. Interacting Case

In this section, we will prove a sample path large deviation principle for
the interacting random particles introduced in Section 2. Recall that Mψ :=
{Ω, Xt,F ,Ft, Qγ , γ ∈ ΓM} denotes the diffusion associated with the following
Dirichlet form:

Eψ(u, v) =
1
2

∫
ΓM

〈∇u,∇v〉γψ2(γ) π(dγ),

D(Eψ) =DEψ,1
,
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where D is given by

D :=
{

u ∈ D(E)
∣∣∣∣
∫ (

Γ(u, u)(γ) + u2(γ)
)
ψ2(γ) π(dγ) < ∞

}
.

The following theorem is a special case of the general result obtained in [Ebe96].

Theorem 8.1. The diffusion (Ω, (Xt)t≥0,F ,Ft, Qγ , γ∈ΓM) is given by

dQγ |Ft
= exp

{
M log ψ

t − 1
2
〈M log ψ〉t

}
dPγ |Ft

,

where M log ψ stands for the martingale part of the Fukushima’s decomposition
of the additive functional log ψ(Xt) − log ψ(X0) (see [Fuk80]) and

〈M log ψ〉t =
∫ t

0

Γ(ψ, ψ)
ψ2

(Xs) ds

is the bracket, where Γ(ψ, ψ) is defined as in Section 2.

Theorem 8.2. Assume
∫
ΓM

exp(δ Γ(ψ,ψ)
ψ2 (γ))π(dγ) < ∞ for some δ >

0. Then there exists a subset FM ⊂ Γ∞ with π(FM ) = 1 such that for γ0 ∈ FM

the following holds

(i) for any closed subset C ⊂ Cγ0([0, 1] → ΓM ),

lim sup
ε→0

ε log Qγ0(Xε· ∈ C) ≤ − inf
ω∈C

I(ω),

(ii) for any open subset O ⊂ Cγ0([0, 1] → ΓM ),

lim inf
ε→0

ε log Qγ0(Xε· ∈ O) ≥ − inf
ω∈O

I(ω).

In particular, if Γ(ψ,ψ)
ψ2 is bounded, FM can be chosen to be equal to Γ∞.

Proof. Let Pπ(·) :=
∫
ΓM

Pγ(·)π(dγ). Denote by Eπ the expectation w.r.t.
Pπ. By Jensen’s inequality, for any ε > 0

Eπ

[
exp

(
δ

∫ 1

0

Γ(ψ, ψ)
ψ2

(Xεs) ds

)]
≤
∫ 1

0

Eπ

[
exp

(
δ
Γ(ψ, ψ)

ψ2
(Xεs)

)]
ds

=
∫

ΓM

exp
(

δ
Γ(ψ, ψ)

ψ2
(γ)

)
π(dγ) < ∞.
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This implies that

F1 :=
{

γ

∣∣∣∣ Eγ

[
exp

(
δ

∫ 1

0

Γ(ψ, ψ)
ψ2

(X s
k
) ds

)]
< ∞ for all k ≥ 1

}

has full π measure. Set FM := Γ∞∩F1 and fix γ0 ∈ FM . Let us prove (ii) first.
Assume O is open and set

Zt := exp
{

M log ψ
t − 1

2
〈M log ψ〉t

}
.

We may assume λ := infω∈O I(ω) < ∞. For any δ1 > 0, it follows that

Qγ0(Xε· ∈ O)(8.1)

= Pγ0(Zε; Xε· ∈ O)

≥ exp
(
−δ1

ε

)
Pγ0

(
Zε > exp

(
−δ1

ε

)
, Xε· ∈ O

)

≥ exp
(
−δ1

ε

)[
Pγ0(Xε· ∈ O) − Pγ0

(
Zε ≤ exp

(
−δ1

ε

))]

where Pγ0(Zε ≤ exp(− δ1
ε )) can be estimated as follows: for a > 0,

Pγ0

(
Zε ≤ exp

(
−δ1

ε

))(8.2)

= Pγ0

(
Z−1

ε ≥ exp
(

δ1

ε

))

= Pγ0

[
exp

(
−aM log ψ

ε +
a

2

∫ ε

0

Γ(ψ, ψ)
ψ2

(Xs) ds

)
≥ exp

(
aδ1

ε

)]

≤ exp
(
−aδ1

ε

)
Eγ0

[
exp

(
−2aM log ψ

ε − 2a2

∫ ε

0

Γ(ψ, ψ)
ψ2

(Xs) ds

)] 1
2

× Eγ0

[
exp

(
(2a2 + a)

∫ ε

0

Γ(ψ, ψ)
ψ2

(Xs) ds

)] 1
2

≤ exp
(
−aδ1

ε

)
Da(ε),

where

Da(ε) := Eγ0

[
exp

(
(2a2 + a)

∫ ε

0

Γ(ψ, ψ)
ψ2

(Xs) ds

)] 1
2

,

and we have used the fact that exp
(
−2aM log ψ

ε − 2a2
∫ ε

0
Γ(ψ,ψ)

ψ2 (Xs)ds
)

is a
supermartingale.
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On the other hand, for any δ2 > 0, by Theorem 7.1 there is ε1 > 0 such that if
ε ≤ ε1,

Pγ0(Xε· ∈ O) ≥ exp
(
−λ + δ2

ε

)
.(8.3)

Choose a = λ+2δ2
δ1

. It follows from (8.1), (8.2) and (8.3) that if ε ≤ ε1,

Qγ0(Xε· ∈ O) ≥ exp
(
−δ1

ε

)
×
[
exp

(
−λ + δ2

ε

)
− Da(ε) exp

(
−λ + 2δ2

ε

)](8.4)

= exp
(
−δ1

ε

)
exp

(
−λ + δ2

ε

)[
1 − exp

(
−δ2

ε

)
Da(ε)

]
.

By the choice of γ0, it is easy to see that

lim
ε→0

[
1 − exp

(
−δ2

ε

)
Da(ε)

]
= 1.(8.5)

Hence, we obtain from (8.4), (8.5) that

lim inf
ε→0

ε log Qγ0(Xε· ∈ O) ≥ −δ1 − λ − δ2.

Since δ1, δ2 were arbitrary, (ii) follows.
Let us now prove (i). Because of the choice of γ0, by similar arguments as used
above one can see that limε→0 Eγ0 [Z

p
ε ] = 1 for any p > 0. For any δ1 > 0,

a > 0, we have

Qγ0(Xε· ∈ C) = Pγ0(Zε; Xε· ∈ C)

= Pγ0(Zε; Xε· ∈ C, Zε ≤ e
δ1
ε ) + Pγ0(Zε; Xε· ∈ C, Zε > e

δ1
ε )

≤ Pγ0(Xε· ∈ C)e
δ1
ε + Eγ0 [Z

a+1
ε ]e−

aδ1
ε .

It follows that

lim sup
ε→0

ε log Qγ0(Xε· ∈ C)

≤
(
lim sup

ε→0
ε log Pγ0(Xε· ∈ C) + δ1

)
∨
(
lim sup

ε→0
ε log Eγ0 [Z

a+1
ε ] − aδ1

)
≤
(
− inf

ω∈C
I(ω) + δ1

)
∨ (−aδ1).

First letting a → ∞ and then δ1 → 0, we prove (i).
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