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Decomposition Problem on Endomorphisms
of Projective Varieties
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Yoshio Fujimoto∗

Abstract

Let Z := X × Y be a product variety of nonsingular projective varieties X and
Y . Suppose that KY is not nef but KX is nef. The aim of this note is to study
decomposition problems on an endomorphism f : Z → Z of Z.

§1. Introduction

In this paper, we study some kind of decomposition problems concerning
endomorphisms of nonsingular projective varieties. By an endomorphism, we
mean a surjective morphism f : X → X from a complex variety X to itself. We
begin with a brief background. We first quote an example from our previous
paper [2]. Let X be a nonminimal smooth projective 3-fold with κ(X) = 0
which has a nonisomorphic endomorphism f : X → X. Then a suitable finite
étale covering u : Z → X of X is isomorphic to the direct product E × S of
an elliptic curve E and a smooth nonminimal algebraic surface S in which S

is birationally equivalent to an abelian surface or a K3 surface. Furthermore,
there exists an endomorphism f ′ : Z → Z with u◦f ′ = f ◦u such that f ′ can be
decomposed as f ′ = g×h for an endomorphism g : E → E and an isomorphism
h : S ∼= S (cf. [2, MAIN THEOREM]). In view of these results, we are naturally
led to the following questions.

Question. Let X be a nonsingular projective variety with nonnegative
Kodaira dimension. Suppose that there exists an endomorphism f : X → X

which is not an isomorphism.
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430 Yoshio Fujimoto

(1) For a generic point p ∈ X, let S(p) be the Zariski closure of the set
{fn(p) | n = 1, 2, . . .}. If S(p) �= X, then is a suitable finite étale covering S′(p)
of S(p) an abelian variety ?

(2) Furthermore assume that the canonical bundle KX of X is not nef.
Then does each extremal rational curve on X intersect transversally with S(p)?

This is a natural question yet to be investigated. As a first step, we shall
focus our attention to the following question.

Question (Dn). Let X and Y be positive-dimensional projective manifolds
with nonnegative Kodaira dimension such that the canonical bundle KY of Y is
not nef but KX is nef. Here we put n := dim(Y ). For each extremal ray R of Y ,
let ϕ := ContR : Y → Y ′ be the contraction morphism of R and M := Exc(ϕ)
the exceptional set of ϕ. Assume that

(∗) no irreducible component of ϕ(M) is covered by a family of para-abelian
varieties. (Here a nonsingular projective variety V is called a para-abelian
variety if it admits a finite étale covering A→ V from an abelian variety A.)

Suppose that there exists an endomorphism f : Z → Z of the direct product
Z := X × Y . Then is it true that a suitable power fk (k > 0) of f induces an
automorphism g : Y → Y of Y such that q ◦ fk = g ◦ q for the second projection
q : Z → Y ?

If the Question (Dn) has an affirmative answer, there exists a relative
automorphism u of Z over Y such that u ◦ fk = h× g for some endomorphism
h : X → X of X and an isomorphism g : Y ∼= Y of Y . Note that if the condition
(∗) is not satisfied, Question (Dn) does not necessarily have an affirmative
answer (cf. Remark 2). The main purpose of this note is to give a partial
answer to this question.

MAIN THEOREM.
Question (Dn) has an affirmative answer for n = 2 and 3.

Notation. In this paper, by a smooth projective n-fold X, we mean
a nonsingular projective manifold of dimension n defined over the complex
number field C.

bi(X): the i-th Betti number of X.
KX : the canonical bundle of X.
κ(X): the Kodaira dimension of X.
N1(X) := ({1-cycles on X}/ ≡) ⊗Z R, where ≡ denotes the numerical

equivalence.
NE(X) := the smallest convex cone in N1(X) containing all effective 1-

cycles.
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NE(X) := Kleiman-Mori cone of X, i.e. the closure of NE(X) in N1(X)
for the metric topology.

ρ(X) := dimRN1(X), the Picard number of X.
[C]: the numerical equivalence class of a 1-cycle C.
By an extremal ray R of X, we mean a KX -negative extremal ray of

NE(X). An irreducible curve C on X is called an extremal curve if [C] spans
some extremal ray R of NE(X).

g(C): the genus of a smooth curve C.
Let Y be a compact complex variety (i.e. a reduced and irreducible complex

space). Then:
Aut(Y ) : the complex Lie group of biholomorphic automorphisms of Y .
Aut0(Y ) : the identity component of Aut(Y ).
Sur(Y ) : the set of surjective holomorphic maps from Y to itself, which

carries a complex space structure (cf. [3].)
For f ∈ Sur(Y ), fk := f ◦ · · · ◦ f stands for the k-times composite of f .
For compact complex spaces M and W ,
Merdom(M,W ): the set of dominant meromorphic maps from M to W .

§2. Preliminaries

We begin with an easy lemma.

Lemma 1. Let f : V → W be a surjective morphism between normal
projective varieties. Then f∗NE(V ) = NE(W ).

Proof. Since f∗NE(V ) ⊂ NE(W ), we have f∗NE(V ) ⊂ NE(W ) by the
continuity of f∗. If a line bundle L on W is positive on f∗NE(V ) \ {0}, f∗L is
semipositive on NE(V ), that is, f∗L is nef. Since f is surjective, L is also nef.
Hence f∗NE(V ) = NE(W ).

We prove some facts that provide the key step toward the proof of MAIN
THEOREM.

Theorem 2. Let Z := X × Y be the direct product of positive-
dimensional projective manifolds X and Y . Suppose that KY is not nef but
KX is nef. Let q∗ : NE(Z) → NE(Y ) be the surjective map induced by the
second projection q : Z → Y . Then we have the following:

(1) The push-forward mapping q∗ gives a one-to-one correspondence be-
tween the set of extremal rays of Z and the set of extremal rays of Y .

(2) For each extremal ray R of Z, the contraction morphism ϕ : = ContR :
Z → Z ′ associated to R can be decomposed as ϕ = idX×Ψ: Z := X×Y → Z ′ ∼=
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432 Yoshio Fujimoto

X × Y ′, where Ψ := ContR′ : Y → Y ′ is the contraction morphism associated
to the extremal ray R′ := q∗R of Y .

Lemma 3. No extremal curve e on Z is contained in a fiber of q :Z→Y .

Proof. Assume the contrary. Let p : Z → X be the first projection. Since
KZ ∼ p∗KX + q∗KY , we have (KZ , e) = (p∗KX , e) = (KX , p∗e).

By hypothesis, we have (KZ , e) < 0 and (KX , p∗e) ≥ 0. This is a contra-
diction.

Lemma 4. Under the same assumption as in Theorem 2, let ϕ : Z → Z ′

be the contraction morphism associated to the extremal ray R of Z. Then there
exists a surjective morphism g : Z ′ → X such that p = g ◦ ϕ for the first
projection p : Z → X.

Proof. Since κ(Z) ≥ 0, ϕ : Z → Z ′ is a birational morphism. Since Z ′

is normal, it is sufficient to show that p ◦ ϕ−1(z′) is a point for all z′ ∈ Z ′.
For z′ ∈ Z ′ \ ϕ(Exc(ϕ)), this is clear. For z′ ∈ ϕ(Exc(ϕ)), take an extremal
rational curve e on ϕ−1(z′) which spans R (cf. [9]). By Lemma 3, C := q(e) is
a rational curve on Y .

Claim. p(e) is a point on X.
Assume the contrary. Then D := p(e) is a rational curve on X and e

is contained in the surface S := D × C (⊂ X × Y =: Z). Let C ′ (resp. D′)
be the normalization of C (resp. D) and e′ the strict transform of e by the
birational morphism π : S′ := D′ × C ′ → S := D × C. Since e′ moves
and sweeps out S′ (∼= P1 × P1) and ϕ ◦ π(e′) is a point on Z ′, we have
dim ϕ ◦ π(S′) ≤ 1. If dim ϕ(S) = 1, then S′ has three different fiber space
structures. This is a contradiction, since ρ(S′) = 2. Hence ϕ(S) is a point
and each fiber F of q|S : S → C spans the same extremal ray R. However,
by Lemma 3, F is not contained in a fiber of q : Z → Y . This is again a
contradiction.

Hence p(C) is a point for any extremal curve C which spans R. For
arbitrary 2 points x, y ∈ ϕ−1(z′), take a chain of irreducible curves Ci’s on
ϕ−1(z′) which connect x and y. By the same argument, p(Ci) is a point.
Hence p(x) = p(y) and p ◦ ϕ−1(z′) is a point on X.

Using Lemma 4, we now prove Theorem 2.

Proof of Theorem 2.
Step 1. First we show that for each extremal ray R of Z, R′ := q∗R is

also an extremal ray of Y . Let C be an extremal curve on Z which spans R.
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Then, by Lemma 4, p(C) = {o} is a point on X. Let s : Y → Z be a constant
section of q : Z → Y defined by s(y) = (o, y), y ∈ Y . Then the ray R′ := q∗R
is spanned by an irreducible curve C ′ := q(C) and there exists an isomorphism
q|C : C ∼= C ′ with (q|C)−1 = s|C′ .

We show that R′ is extremal. Assume that [C ′] = u + v for some u, v ∈
NE(Y ). Since [C] = s∗[C ′] = s∗u + s∗v spans the extremal ray R of Z, we
have s∗u, s∗v ∈ R. Thus we get u, v ∈ q∗R =: R′, since q∗ ◦ s∗ = id. Moreover,
(KY , C

′) = (q∗KY , C) = (KZ , C) < 0, whence R′ is an extremal ray of Y .

Step 2. Let t : Y → Z be a constant section of q : Z → Y defined by
t(y) = (o, y) for some fixed point o ∈ X. Then, for each extremal ray R′ of Y ,
t∗R′ is also an extremal ray of Z.

Proof. Let C ′ be an extremal curve on Y which spans R′ and put C :=
t(C ′). Then (KZ , C) = (q∗KY , C) = (KY , C

′) < 0. Hence, by the cone
theorem (cf. [9]), we have [C] ≡ a[e] +D in NE(Z), where a > 0, D ∈ NE(Z)
and e is an extremal curve which spans the extremal ray R of Z. By step 1, e is
contained in a fiber of p : Z → X. Clearly, e is numerically equivalent to t◦q(e)
on Z. Hence we may assume that e ⊂ p−1(o). Then [C ′] = [q∗C] ≡ a[e′]+ q∗D,
where e′ := q(e). Since [C ′] spans the extremal ray R′, e′ also spans R′. Since
[e] = [t∗e′] spans the ray t∗R′, we have t∗R′ = R, which is an extremal ray of
Z.

(1) is derived from Step 1 and Step 2.

Step 3. Let ϕ : Z → Z ′ be the contraction morphism associated to an
extremal ray R of Z. By Step 1, R′ := q∗R is an extremal ray of Y . Let
Ψ: Y → Y ′ be the contraction morphism associated to R′. Since Z ′ is normal
and Ψ ◦ q ◦ ϕ−1(z) is a point for all z ∈ Z ′, there exists a surjective morphism
h : Z ′ → Y ′ such that Ψ ◦ q = h ◦ ϕ. By Lemma 4, there exists a surjective
morphism g : Z ′ → X such that p = g ◦ ϕ. If we put u := g × h : Z ′ → X × Y ′

and v := idX × Ψ: Z = X × Y → X × Y ′, then we have u ◦ ϕ = v. Since the
relative Picard number ρ(Z/X×Y ′) = 1, u is a finite morphism. Note that u is
also a birational morphism and X × Y ′ is normal. Hence u is an isomorphism
by Zariski’s main theorem.

Proposition 5. Let g : X · · · → W be a dominant meromorphic map
between compact complex spaces X and W . Suppose that Merdom(M,W ) is
a finite set for every compact complex space M . Then, for every dominant
meromorphic map f : X · · · → X from X onto itself, there exists a suitable
power fm (m > 0) of f such that g ◦ fm = g.
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Proof. The following simple proof is due to N. Nakayama.
The set {g ◦ fm | m = 1, 2, . . .} is contained in a finite set Merdom(X,W ).

Hence there exist m, r ∈ N such that (g ◦ fm) ◦ fr = g ◦ fm+r = g ◦ fr. Since
fr : X · · · → X is dominant, we have thus shown g ◦ fm = g as claimed.

Corollary 5.1. Let W be a compact complex variety of general type
or Kobayashi hyperbolic type (cf. [4]). Let Y be a compact complex variety and
f : Z := Y ×W · · · → Z := Y ×W a dominant meromorphic map from Z onto
itself. Then there exists a suitable power fm (m > 0) of f such that q ◦ fm = q

for the second projection q : Z →W .

Proof. By [5] and [10], Merdom(M,W ) is a finite set for every compact
complex space M .

Remark 1.

(1) If we drop the assumption that W is of general type or Kobayashi
hyperbolic, Corollary 5.1 does not necessarily hold. We shall give such an
example. Let E be an elliptic curve and put Y = W = E, Z := Y × W . Let
f : Z → Z be a surjective endomorphism of Z defined by f(y, w) = (y, y + w),
for y ∈ Y , w ∈ W . Then it is easy to see that there exists no automorphism
gn : W →W such that gn ◦ q = q ◦ fn for the second projection q : Z →W .

(2) Corollary 5.1 does not necessarily hold unless we take a suitable power
fm (m > 0) of f : Z · · · → Z. We shall give such an example.

Let C be a smooth curve of genus g(C) ≥ 2 and put Y = W = C, Z :=
Y ×W . Let f : Z → Z be an automorphism of Z defined by f(y, w) = (w, y)
for y ∈ Y , w ∈ W . Then it is easy to see that there exists no automorphism
g : W →W such that g ◦ q = q ◦ f for the second projection q : Z →W .

(3) In Proposition 5, any dominant meromorphic (resp. holomorphic) map
α : W · · · →W (resp. β : W →W ) from W onto itself is a bimeromorphic map
(resp. an isomorphism).

Proof. Both {αm | m = 1, 2, . . .} and {βm | m = 1, 2, . . .} are contained
in a finite set Merdom(W,W ). Therefore, there exist positive integers m, r, n,
t ∈ N such that (αm)◦αr = αm+r = αr and (βn)◦βt = βn+t = βt. Since the
mappings αr : W · · · → W and βt : W → W are dominant, we have αm = idW

and βn = idW . Hence deg(α) = deg(β) = 1 and the claim is derived.

Proposition 6. Let X be a nonuniruled smooth projective variety and
Y a rationally connected projective variety (cf. [6]). Suppose that there exists
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an endomorphism f : Z → Z of the product variety Z := X × Y . Then there
exist a finite étale covering g : X → X and an endomorphism h : Y → Y such
that f = g × h. Furthermore, if Y is nonsingular and f : Z → Z is a finite
étale covering, then h is an isomorphism.

Proof. Let p : Z → X be the first projection. Assume that, for some
point x0 ∈ X, p ◦ f ◦ p−1(x0) is not a point on X. Then, by the rigidity
lemma (cf. [7]), p ◦ f ◦ p−1(x) is a positive-dimensional variety for all x ∈ X.
Since f : Z → Z is surjective, X is covered by a family of rationally connected
varieties {p ◦ f ◦ p−1(x)}x∈X , hence is covered by a family of rational curves.
This contradicts the assumption that X is nonuniruled. Hence p ◦ f ◦ p−1(x) is
a point for all x ∈ X by the rigidity lemma and there exists an endomorphism
g : X → X such that p ◦ f = g ◦ p. For each x ∈ X, if we denote by fx the
restriction of f to p−1(x) ∼= Y , we obtain a morphism u : X → Sur(Y ) by
u(x) := fx. Since u(X) is a compact subvariety of Sur(Y ), it follows from [3,
Theorem 3.1] that u(X) is contained in a left Aut0(Y )-orbit of g := fo for a
fixed point o ∈ Y . Since X is compact and Aut0(Y ) is affine by [1, Lemma 2.5
and Corollary 5.8], u is a constant map and fx is independent of x ∈ X. If we
put fx =: h ∈ Sur(Y ), then f = g × h. By the next Lemma 7, g : X → X is a
finite étale covering. Moreover, if Y is nonsingular, Y is simply connected by
[6]. Thus the last claim is derived.

Lemma 7. Let f : V → V be an endomorphism of a smooth nonunir-
uled projective n-fold V . Then f is a finite étale covering.

Proof. By [2, Lemma 2.3, (1)], f : V → V is a finite morphism. Then
KV ∼ f∗KV + R, where R is the ramification divisor of f . Hence KV ∼
(fk)∗KV +(fk−1)∗R+· · ·+f∗R+R for all k > 0. By [8], we have (KV , H

n−1) ≥
0 and ((fk)∗KV , H

n−1) ≥ 0 for a sufficiently ample divisor H, since V is not
uniruled. Assume that R �= 0. If we let k → ∞, then (KV , H

n−1) = ∞, which
is a contradiction. Hence R = 0 and the claim is derived.

§3. Proof of MAIN THEOREM

We recall from [2] some basic facts; extremal rays of nonsingular projective
varieties are preserved by an étale endomorphism.

Proposition 8 (cf. [2, Proposition 4.2]). Let f : Y → X be a finite
surjective morphism between smooth projective n-folds with ρ(X) = ρ(Y ). Then
we have the following:



�

�

�

�

�

�

�

�

436 Yoshio Fujimoto

(1) The pull-back mapping f∗ : N1(X) → N1(Y ) (resp. the push-forward
mapping f∗ : N1(Y ) → N1(X)) is an isomorphism and f∗NE(X) = NE(Y )
(resp. f∗NE(Y ) = NE(X)).

(2) Moreover, if f is a finite étale covering and the canonical bundle KX of
X is not nef, there is a one-to-one correspondence between the set of extremal
rays of X and the set of extremal rays of Y .

Proposition 9 (cf. [2, Proposition 4.12]). Under the same assumption
as in Proposition 8, (2), for each extremal ray R of X, let ϕ := ContR : X → X ′

(resp. ψ := ContR′ : Y → Y ′ ) be the contraction morphism associated to R

(resp. R′ := f∗R). Then there exists a unique finite surjective morphism
f ′ : Y ′ → X ′ such that

(1) ϕ ◦ f = f ′ ◦ ψ,
(2) f−1(Exc(ϕ)) = Exc(ψ) and f ′−1(ϕ(Exc(ϕ))) = ψ(Exc(ψ)) set-

theoretically.
Moreover, ϕ is a birational contraction if and only if ψ is a birational

contraction and ϕ is a divisorial contraction if and only if ψ is a divisorial
contraction.

Proof. We first show that f : Y → X induces a surjective morphism
f ′ : Y ′ → X ′. Since X ′ is normal, it suffices to show that ϕ ◦ f ◦ ψ−1(y′)
is a point on X ′ for all y′ ∈ Y ′. For y′ ∈ Y ′ \ ψ(Exc(ψ)), this is clear. For
y′ ∈ ψ(Exc(ψ)), we have dim ψ−1(y′) ≥ 1. Fix a point p ∈ ψ−1(y′). For each
x ∈ ψ−1(y′), take a chain of irreducible curves Ci’s on ψ−1(y′) which connect
x and p. Since [Ci] spans the extremal ray R′ := f∗R of Y , [f(Ci)] spans the
extremal ray R = f∗R′ of X by Proposition 8. Hence ϕ ◦ f(Ci) is a point and
ϕ ◦ f(x) = ϕ ◦ f(p) is a fixed point on X ′ for all x ∈ ψ−1(y′). Thus there exists
a surjective morphism f ′ : Y ′ → X ′ such that ϕ ◦ f = f ′ ◦ ψ.

Next we show that f ′ is a finite morphism. Assume the contrary. Then
dim f ′−1(x′) > 0 for some point x′ ∈ X ′. For an arbitrary irreducible curve ∆
in f ′−1(x′), take an irreducible curve C ′ on Y such that ψ(C ′) = ∆. The
irreducible curve C := f(C ′) on X is contracted to a point x′ by ϕ and
[C] spans the extremal ray R of X. Hence by Proposition 8, [C ′] spans
the extremal ray R′ := f∗R of Y and C ′ is contracted to a point by ψ.
This is a contradiction. All the other assertions are clear from the construc-
tion.

Now we are ready to prove MAIN THEOREM. We shall derive some
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sufficient conditions for the Question (Dn) to have an affirmative answer.

Theorem 10. Let X and Y be positive-dimensional projective mani-
folds with nonnegative Kodaira dimension. Assume that

(1) the canonical bundle KY of Y is not nef but KX is nef,
(2) there exists some extremal ray R′ of Y such that the contraction mor-

phism ψ = contR′ : Y → Y ′ associated to R′ contracts an irreducible divisor E
on Y to a point.

Let f : Z → Z be an endomorphism of the direct product Z := X × Y .
Then there exists an automorphism g of Y such that q ◦f = g ◦q for the second
projection q : Z → Y .

Proof. Since κ(Z) ≥ 0, f : Z → Z is a finite étale covering by Lemma 7.
By Theorem 2, there exists a unique extremal ray R of Z such that q∗R =
R′. For each n, Rn := (fn)∗R (here R0 := R) is an extremal ray of Z by
Proposition 8. Hence, by Proposition 9, there exist a contraction morphism
ϕn := ContRn

: Z → Zn and a unique finite morphism gn : Zn → Zn+1 such
that ϕn+1◦f = gn◦ϕn. Then, by Theorem 2, there exists a decomposition ϕn =
idX × ψn : Z := X × Y → Zn

∼= X × Yn, where ψn : Y → Yn is the extremal
contraction associated to the extremal ray R′

n := q∗Rn of Y . Furthermore,
ψn : Y → Yn contracts an irreducible divisor En on Y to a point pn ∈ Yn

and (gn)−1(X × {pn+1}) = X × {pn} by virtue of Theorem 2 combined with
the use of Proposition 9. Hence, by the rigidity lemma, there exists a unique
morphism hn : Yn → Yn+1 such that qn+1 ◦ gn = hn ◦ qn and h−1

n (pn+1) = {pn}
for the second projection qn : Zn = Xn × Yn → Yn. Note that ψn : Y → Yn is a
birational morphism and ψn ◦ q = qn ◦ϕn : X × Y → Yn. Thus q ◦ f ◦ q−1(p) is
a point for general p ∈ Y . Again, by the rigidity lemma, there exists a unique
endomorphism αn : Y → Y such that q ◦ f = αn ◦ q and ψn+1 ◦ αn = hn ◦ ψn.
Then, combining Theorem 2 and Proposition 9, we see that Exc(ϕn) ∼= X×En,
f−1(X × En+1) = X × En, and thus α−1

n (En+1) = En set-theoretically. Since
−En is ψn-ample, (−En)p = −(−En|En

)p−1 �= 0 for all n, where we put p :=
dim(Y ) and E0 := E. Moreover, since αn : Y → Y is a finite étale covering, we
have α∗

nEn+1 ∼ En and

(−E)p = (−En+1)p ×
n∏

i=0

deg(αi)

for all n. Therefore, αn : Y → Y is an isomorphism for a sufficiently large
positive integer n. If we put g := αn : Y ∼= Y , we have thus shown q ◦ f = g ◦ q
as claimed.
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Theorem 11. Let X and Y be positive-dimensional projective mani-
folds with nonnegative Kodaira dimension. Assume that

(1) the canonical bundle KY of Y is not nef but KX is nef,
(2) there exist at most finitely many extremal rays of Y ,
(3) there exists a contraction morphism ψ := ContR′ : Y → Y ′ associated

to some extremal ray R′ of Y such that some irreducible component M of
ψ(Exc(ψ)) satisfies either of the following conditions :

(a) M is a rationally connected variety (cf. [6]), or
(b) Merdom(V,M) is a finite set for all compact complex variety V .
Suppose that there exists an endomorphism f : Z → Z of the direct product

Z := X × Y . Then a suitable power fk (k > 0) of f induces an endomorphism
g : Y → Y of Y such that q ◦ fk = g ◦ q for the second projection q : Z → Y .
Furthermore, if Y ′ is nonsingular in both cases and M is also nonsingular in
the case (3a), then g : Y → Y can be taken to be an isomorphism.

Proof. Since κ(Z) ≥ 0, f : Z → Z is a finite étale covering by Lemma 7.
Then, by virtue of Proposition 8 combined with the use of Theorem 2, the
push-forward map f∗ : NE(Z) → NE(Z) induces a permutation of the finite
set which consists of all the extremal rays of Z. Hence, for a suitable power
F := fk(k > 0) of f , we have F∗R = R for each extremal ray R of Z. Hence,
by Proposition 9, there exists a unique finite surjective morphism F ′ : Z ′ → Z ′

such that F ′ ◦ ϕ = ϕ ◦ F for the contraction morphism ϕ := ContR : Z → Z ′

associated to the extremal ray R of Z. By Theorem 2, R′ := q∗R is also an
extremal ray of Y such that

(i) ϕ = idX × ψ : Z := X × Y → Z ′ ∼= X × Y ′ for the contraction mor-
phism ψ : Y → Y ′ associated to R′, and

(ii) E := ϕ(Exc(ϕ)) = X × ψ(Exc(ψ)) and F ′−1(E) = E.

Therefore, the finite morphism F ′ : Z ′ → Z ′ induces a permutation of the
finite set consisting of all the irreducible components of E.

Suppose that R′ satisfies the assumptions of the theorem. By replacing
F ′ : Z ′ → Z ′ (hence F : Z → Z) with a suitable power of F ′ (resp. F ), we may
assume that F ′−1(X ×M) = X ×M .

Then by Propositions 5 and 6, if we replace F : Z → Z with a suitable
power Fn (n > 0) of F , F ′ : Z ′ → Z ′ induces an endomorphism w : M → M

such that (q′|X×M ) ◦ (F ′|X×M ) = w ◦ (q′|X×M ) for the second projection
q′ : X × Y ′ → Y ′. By the rigidity lemma, there exists an endomorphism

h : Y ′ → Y ′ such that h◦q′ = q′◦F ′ and h|M = w. Since F
′−1(X×M) = X×M ,
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we infer that h−1(M) = M . Since ψ : Y → Y ′ is a birational morphism,
q ◦ F ◦ q−1(y) is a point for all y ∈ Y by the rigidity lemma. Thus there exists
an étale endomorphism g : Y → Y of Y such that g◦q = q◦F and ψ◦g = h◦ψ.

Now we prove the last claim. Note that:

(i) in the case (3.b), w : M →M is an isomorphism by Remark 1, (3), and

(ii) in the case (3.a), if M is nonsingular and w : M → M is a finite étale
covering, w : M →M is an isomorphism by Proposition 6.

If Y ′ is nonsingular, h : Y ′ → Y ′ is a finite étale covering and hence
w : M → M is an isomorphism in both cases. Hence deg(h) = deg(w) = 1
and h : Y ′ → Y ′ is an isomorphism. Since ψ : Y → Y ′ is a birational mor-
phism, the étale covering g : Y → Y is an isomorphism.

As a corollary of these results, we shall prove MAIN THEOREM.

Proof of MAIN THEOREM.
(1) In the case where n = 2, each extremal ray of Y is spanned by a unique

(−1)-curve. Hence the claim immediately follows from Theorem 10.

(2) Next we treat the case where n = 3.

Since Y is a nonsingular projective 3-fold with κ(Y ) ≥ 0, all the extremal
contractions are divisorial contractions and there exist only finitely many ex-
tremal rays of Y (cf. [2, Proposition 4.6]).

In [9], extremal divisorial contractions of nonsingular projective 3-folds
are classified into 5 types. In 4 cases (called type (E2)∼(E5) in [7]) where a
prime divisor is contracted to a point, Theorem 10 yields the assertion. Hence
we may assume that each extremal ray R of Y is of type (E1) (cf. [7]), that
is, the contraction morphism ContR : Y → Y ′ associated to R, is a birational
contraction, which is (the inverse of ) the blow-up along a smooth curve C on
Y ′. By assumption, C is not an elliptic curve. Since Y ′ and C are nonsingular,
the claim immediately follows from Corollary 5.1 and Theorem 11.

We conclude with a remark concerning the last theorem.

Remark 2.
(1) If we drop the assumption (2), Question (D3) does not necessarily

have an affirmative answer. We shall give such an example:
Let E be an elliptic curve and S a nonminimal algebraic surface with

κ(S) ≥ 0. PutX := E, Y := E×S and Z := X×Y (∼= E×E×S). Let f : Z → Z

be a nonisomorphic endomorphism of Z defined by f(x, y, s) := (2x, x + y, s)
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for x ∈ X, y ∈ Y and s ∈ S. It is easy to see that for all positive integer n,
there exists no endomorphism gn : Y → Y such that q ◦ fn = gn ◦ q for the
second projection q : Z → Y .

(2) If the Question (Dn) has an affirmative answer, there exists a relative
automorphism u of Z over Y such that u ◦ fk = h× g for some endomorphism
h : X → X of X. Furthermore, if b1(X) = 0, we can take u as u = idZ . The
proof is completely analogous to that of Proposition 6, so we omit it.

(3) By the same method as in the proof of Theorems 10 and 11, we can
show: Under the same assumption as in Theorem 10 or 11, Y has no noniso-
morphic endomorphism.
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