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Poles and α-points of Meromorphic Solutions
of the First Painlevé Hierarchy
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∗

Abstract

The first Painlevé hierarchy, which is a sequence of higher order analogues of the
first Painlevé equation, follows from the singular manifold equations for the mKdV
hierarchy. For meromorphic solutions of the first Painlevé hierarchy, we give a lower
estimate for the number of poles; which is regarded as an extension of one corre-
sponding to the first Painlevé equation, and which indicates a conjecture on the
growth order. From our main result, two corollaries follow: one is the transcendency
of meromorphic solutions, and the other is a lower estimate for the frequency of α-
points. An essential part of our proof is estimation of certain sums concerning the
poles of each meromorphic solution.

§1. Introduction

For a meromorphic function f(z) in the whole complex plane C, the count-
ing function for poles of f(z) is defined by

N(r, f) :=
∫ r

0

(n(ρ, f) − n(0, f))
dρ

ρ
+ n(0, f) log r,

where n(r, f) denotes the number of poles inside the disk |z| ≤ r, each counted
according to its multiplicity. Moreover, we use the notation (cf. [6], [8]):

m(r, f) :=
1
2π

∫ 2π

0

log+ |f(reiφ)|dφ, log+ x := max{0, log x},

T (r, f) := m(r, f) + N(r, f)
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denoting, respectively, the proximity and the characteristic functions; the
growth order of f(z) is defined by

σ(f) := lim sup
r→∞

log T (r, f)
log r

.

Let w(z) be an arbitrary solution of the first Painlevé equation

w′′ = 6w2 + z(PI)

(′= d/dz). Then, w(z) is a transcendental meromorphic function. By a well-
known argument in the Nevanlinna theory, lim supr→∞(N(r, w)/ log r) = ∞
(cf. Remark 1.2), which implies that w(z) admits infinitely many poles. This
fact is quantitatively represented as

lim sup
r→∞

log N(r, w)
log r

≥ 5
2

(1.1)

(cf. [11]); and, more precisely,

N(r, w) � r5/2

log r
(1.2)

(cf. [5, §7], [13]). These combined with T (r, w) � r5/2 (cf. [5, §8], [12], [14])
imply that the growth order of w(z) is equal to 5/2. (For real-valued functions
φ(r) and ψ(r) on the interval (r0, +∞), we write φ(r) � ψ(r) or ψ(r) � φ(r)
if φ(r) = O(ψ(r)) as r → +∞. In the case where h(z) is a function of z ∈ C,

we also write |h(z)| � ψ(r) if |h(z)| = O(ψ(r)) as |z| = r → +∞.)
A sequence of higher order analogues of (PI) is given in the following

manner (cf. [5, §16], [7]). Let dν [w] (ν = 0, 1, 2, . . . ) be differential polynomials
in w determined by the recursion relation

d0[w] = 1,(1.3)

Ddν+1[w] = (D3 − 8wD − 4w′)dν [w], D = d/dz, ν ∈ N ∪ {0}(1.4)

(cf. Lemma 2.6 with its proof). Some of them are written in the form

d1[w]/4 =−w + C10,

d2[w]/4 =−w′′ + 6w2 + C21d1[w] + C20,

d3[w]/4 =−w(4) + 20ww′′ + 10(w′)2 − 40w3 + C32d2[w] + C31d1[w] + C30,

d4[w]/4 =−w(6) + 28ww(4) + 56w′w(3) + 42(w′′)2 − 280(w2w′′ + w(w′)2 − w4)

+ C43d3[w] + C42d2[w] + C41d1[w] + C40,
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where Cij are arbitrary constants. Consider a sequence of 2ν-th order equations
of the form

dν+1[w] + 4z = 0, ν ∈ N,(PI2ν)

which is called the first Painlevé hierarchy. Equation (PI2) essentially coincides
with (PI). These equations follow from the singular manifold equations for the
mKdV hierarchy (cf. [7], [9], [15]). As in the case of (PI), it is basic and
interesting to study analytic properties of meromorphic solutions of (PI2ν), for
example, to determine the growth order of them.

The purpose of this paper is to show the following, which is an extension
of (1.1), and which is a first step toward this question:

Theorem 1.1. Suppose that wν(z) be a meromorphic solution of (PI2ν).
Then we have

lim sup
r→∞

log N(r, wν)
log r

≥ 2ν + 3
ν + 1

,(1.5)

namely the growth order of wν(z) is not less than (2ν + 3)/(ν + 1).

Corollary 1.2. Equation (PI2ν) admits no rational solutions.

Furthermore, the frequency of α-points is estimated as follows:

Corollary 1.3. For each α ∈ C,

lim sup
r→∞

log N(r, 1/(wν − α))
log r

≥ 2ν + 3
ν + 1

.(1.6)

Theorem 1.1 with the special case ν = 1 leads us to the following:

Conjecture. The growth order of wν(z) is equal to (2ν + 3)/(ν + 1).

Remark 1.1. Since N(r, wν) � n(r, wν) log r, the quantity N(r, wν) in
(1.5) can be replaced by n(r, wν).

Remark 1.2. For a meromorphic function f(z), the deficiency of ∞ is
defined by δ(∞, f) := lim infr→∞(m(r, f)/T (r, f)) ([6], [8]). For every solution
w(z) of (PI), we have δ(∞, w) = 0; and this fact combined with the transcen-
dency of w(z) implies lim supr→∞(N(r, w)/ log r) = ∞ (cf. e.g. [5, §10]). For
wν(z), analogous deficiency relations are valid: δ(∞, wν) = 0, and for each
α ∈ C, δ(α, wν) := δ(∞, 1/(wν − α)) = 0 (cf. (3.7) and (4.1) of the proofs of
Theorem 1.1 and Corollary 1.3).
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Remark 1.3. The second Painlevé equation

w′′ = 2w3 + zw + a, a ∈ C(PII)

belongs to the second Painlevé hierarchy (PII2ν) (ν ∈ N) (cf. [1], [2], [3], [7]).
Value distribution properties of solutions of (PII2ν) are studied by Gromak and
He ([4]) and by Li and He ([10]); for example, every transcendental meromor-
phic solution wII,ν(z) satisfies δ(∞, wII,ν) = 0.

Theorem 1.1 and its corollaries are proved in Sections 3 and 4. In the
proofs, we need some basic facts in the Nevanlinna theory and some properties
of differential polynomials. They are reviewed or explained in Section 2. To
prove Theorem 1.1, we deal with certain sums concerning the poles of each
meromorphic solution, which are essential in the proof; and these sums are
evaluated in the final section.

§2. Basic Facts

§2.1. Nevanlinna Theory

We review basic facts in the Nevanlinna theory which are necessary in the
proofs of our results (cf. [5, Appendix B], [6], [8, Chapters 1 and 2]). Let f(z)
be an arbitrary non-constant meromorphic function.

Lemma 2.1. For an arbitrary α ∈ C,

T (r, 1/(f − α)) = T (r, f) + O(1).

Lemma 2.2. (i) T (r, f) is a monotone increasing function of r.
(ii) T (r, f) � log r if and only if f(z) is a rational function.
(iii) If f(z) is transcendental, then T (r, f)/ log r → ∞ as r → ∞.

The following lemmas ([5, Lemmas B.11 and B.12], [8, Lemma 2.4.2 and Propo-
sition 9.2.3]) are useful in the study of differential equations.

Lemma 2.3. Let f(z) be a non-constant meromorphic function satis-
fying fλ+1 = P (z, f) (λ ∈ N), where P (z, u) is a polynomial in z, u and
derivatives of u. Suppose that the total degree of P (z, u) with respect to u and
its derivatives does not exceed λ. Then m(r, f) � log T (r, f) + log r as r → ∞
outside an exceptional set with finite linear measure.

Lemma 2.4. Let f(z) be a non-constant meromorphic function satisfy-
ing F (z, f) = 0, where F (z, u) is a polynomial in z, u and derivatives of u. Sup-
pose that α ∈ C satisfies F (z, α) 	≡ 0. Then m(r, 1/(f−α)) � log T (r, f)+log r

as r → ∞ outside an exceptional set with finite linear measure.
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For real-valued functions, we have ([5, Lemma B.10], [8, Lemma 1,1,1])

Lemma 2.5. Let φ(r) and ψ(r) be real-valued monotone increasing
functions on (0, +∞). Suppose that φ(r) ≤ ψ(r) outside an exceptional set
with finite linear measure. Then φ(r) ≤ ψ(2r) on (r0, +∞), where r0 is some
positive number.

§2.2. Differential Polynomials

For an arbitrary nonnegative integer p ∈ N ∪ {0}, set

[w, w′, . . . , w(p)]ι :=
p∏

κ=0

(w(κ))ικ , w(0) = w,

where ι = (ι0, ι1, . . . , ιp) ∈ (N ∪ {0})p+1. For the index ι, we put

‖ι‖ :=
p∑

κ=0

(κ + 2)ικ.

Consider the differential polynomial

ϕ[w] =
∑
ι∈Iϕ

cι[w, w′, . . . , w(p)]ι, cι ∈ C\{0},

where Iϕ ⊂ (N∪ {0})p+1 is a finite set of indices. For ϕ[w] ( 	≡ 0), we define its
weight by

wt(ϕ[w]) = max{‖ι‖
∣∣ ι ∈ Iϕ};

in particular, if ϕ[w] ≡ c0 ∈ C\{0}, then wt(c0) = 0. For any integer q > p,

the differential polynomial ϕ[w] admits another expression

ϕ̃[w] =
∑
ι∈Iϕ

cι[w, w′, . . . , w(p), . . . , w(q)](ι,o)

with (ι,o) = (ι0, ι1, . . . , ιp, 0, . . . , 0). Then, wt(ϕ[w]) = wt(ϕ̃[w]), namely the
definition of the weight is independent of the choice of the size q of the index.
Let ϕ[w] ( 	≡ 0) and ψ[w] ( 	≡ 0) be arbitrary differential polynomials. Then,

wt(ϕ[w] + ψ[w]) = max{wt(ϕ[w]), wt(ψ[w])},
wt(ϕ[w]ψ[w]) = wt(ϕ[w]) + wt(ψ[w]).
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Remark 2.1. As will be shown later (cf. Lemma 2.7), every pole of wν(z)
is double. Hence, for every pole of [wν , w′

ν , . . . , w
(2ν)
ν ]ι, the multiplicity of it

is equal to ‖ι‖. This fact is a background of the definition of the weight of
differential polynomials.

We note the following:

Lemma 2.6. For each ν ∈ N ∪ {0}, dν+1[w] is expressible in the form

dν+1[w] = γν+1w
ν+1 +

∑
‖ι‖≤2(ν+1)

ι0≤ν

cι[w, w′, . . . , w(2ν)]ι,(2.1)

where

(i) ι = (ι0, ι1, . . . , ι2ν) ∈ (N ∪ {0})2ν+1,

(ii) γν+1 ∈ C \ {0}, cι ∈ C.

Proof. By (1.4), for every ν ∈ N,

ν∑
µ=0

dν−µ[w]Ddµ+1[w] =
ν∑

µ=0

dν−µ[w](D3 − 8wD − 4w′)dµ[w],

and hence, by (1.3),

Ddν+1[w] = −
ν−1∑
µ=0

dν−µ[w]Ddµ+1[w]

+
ν∑

µ=0

(
dν−µ[w]D3 − 8wdν−µ[w]D − 4w′dν−µ[w]

)
dµ[w].

Substituting the identities

ν−1∑
µ=0

dν−µ[w]Ddµ+1[w] =
1
2
D

(
ν−1∑
µ=0

dν−µ[w]dµ+1[w]

)
,

ν∑
µ=0

dν−µ[w]D3dµ[w] = D

(
ν∑

µ=0

dν−µ[w]D2dµ[w] − 1
2

ν∑
µ=0

Ddν−µ[w] · Ddµ[w]

)
,

w
ν∑

µ=0

dν−µ[w]Ddµ[w] =
1
2
D

(
w

ν∑
µ=0

dν−µ[w]dµ[w]

)
− w′

2

ν∑
µ=0

dν−µ[w]dµ[w],
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we have

Ddν+1[w] = D

(
ν∑

µ=0

(
dν−µ[w]D2 − 1

2
Ddν−µ[w] · D − 4wdν−µ[w]

)
dµ[w]

)

− 1
2
D

(
ν−1∑
µ=0

dν−µ[w]dµ+1[w]

)
,

which implies that

dν+1[w] =
ν∑

µ=0

(
dν−µ[w]D2 − 1

2
Ddν−µ[w] · D − 4wdν−µ[w]

)
dµ[w](2.2)

− 1
2

ν−1∑
µ=0

dν−µ[w]dµ+1[w] + Cν ,

where Cν is an arbitrary constant. By (2.2) combined with (1.3), dν+1[w] is a
differential polynomial. Moreover, in dν+1[w], the derivative with the highest
order is w(2ν). Indeed, this fact is inductively checked by using (1.3) and (1.4).
Hence, for every ν ∈ N ∪ {0}, dν+1[w] is written in the form

dν+1[w] =
∑
ι∈Iν

c̃ι[w, w′, . . . , w(2ν)]ι, ι = (ι0, ι1, . . . , ι2ν), c̃ι ∈ C\{0},
(2.3)

where Iν ⊂ (N∪{0})2ν+1 is a finite set of indices. We prove (2.1) by induction
on ν. Clearly it is valid for ν = 0. Suppose that (2.1) is valid for every ν ≤ N ;
namely, wt(dν+1[w]) ≤ 2(ν +1) for every ν ≤ N, and γN+1 ∈ C\{0}. Since, for
ι 	= o,

wt(D([w, w′, . . . , w(2ν)]ι)) = wt

(
[w, w′, . . . , w(2ν)]ι

2ν∑
µ=0

ιµw(µ+1)/w(µ)

)

= max
{
wt(wι0(w′)ι1 · · · (w(2ν))ι2ν w(µ+1)/w(µ))

∣∣ 0 ≤ µ ≤ 2ν, ιµ 	= 0
}

= max
{
‖ι‖ + (µ + 2)(−1) + (µ + 3) · 1

∣∣ 0 ≤ µ ≤ 2ν, ιµ 	= 0
}

= ‖ι‖ + 1

= wt([w, w′, . . . , w(2ν)]ι) + 1,

we have wt(Dldν+1[w]) = l + wt(dν+1[w]) ≤ l + 2(ν + 1) for ν ≤ N and for
l = 1, 2. Hence, by (2.2) with ν = N+1, wt(dN+2[w]) ≤ 2(N+1)+2 = 2(N+2).
Furthermore, by (1.4),

DdN+2[w] =−8wD(γN+1w
N+1) − 4w′ · γN+1w

N+1 + · · ·
=−4γN+1(2N + 3)wN+1w′ + · · · ,
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which implies that γN+2 = −4(2N + 3)(N + 2)−1γN+1 ∈ C\{0}. Hence, (2.1)
is valid for ν = N + 1 as well. This completes the proof.

Lemma 2.7. For a meromorphic solution wν(z) of (PI2ν), let a0 be an
arbitrary pole of it. Then, around z = a0,

wν(z) = c(a0)(z − a0)−2 + O(1),

where c(a0) = k(a0)(k(a0) + 1)/2 for some integer k(a0) ∈ {1, . . . , ν}.

Proof. Around the pole z = a0, we write wν(z) = b(z − a0)−σ + · · · ,

b 	= 0. Suppose that σ ≥ 3. It is inductively shown that dk[wν ](z) =
bk(z − a0)−σk + · · · , bk 	= 0 for every k ∈ N, because this formula with k

implies

Ddk+1[wν ](z) = (D3 − 8wν(z)D − 4w′
ν(z))dk[wν ](z)

= (−8(−σk) − 4(−σ))bbk(z − a0)−σ(k+1)−1 + · · ·
= 4(2k + 1)σbbk(z − a0)−σ(k+1)−1 + · · · ,

namely

dk+1[wν ](z) = −4(2k + 1)(k + 1)−1bbk(z − a0)−σ(k+1) + · · · .

Hence, if σ ≥ 3, substitution of dν+1[wν ](z) = bν+1(z − a0)−σ(ν+1) + · · · into
(PI2ν) yields a contradiction. Supposing that σ = 1, by an analogous argument,
we can show that dν+1[wν ](z) = b′ν+1(z − a0)−(2ν+1) + · · · , b′ν+1 	= 0, and
also derive a contradiction. Therefore, z = a0 is a double pole. Put wν(z) =
b0(z−a0)−2+· · · , b0 	= 0. Since substitution of dk[wν ](z) = Ak(z−a0)−2k+· · · ,

k ∈ N into (1.4) yields that dk+1[wν ](z) = Ak+1(z − a0)−2(k+1) + · · · with

Ak+1 = −4(2k + 1)(k + 1)−1(b0 − k(k + 1)/2)Ak.

By this fact,

Aν+1 = Bν+1b0

ν∏
k=1

(b0 − k(k + 1)/2), Bν+1 	= 0.

Substituting dν+1[wν ](z) into (PI2ν), we have b0 = k(k + 1)/2 for some k ∈
{1, . . . , ν}. Furthermore, the relation

Ddν+2[wν ](z) = (D3 − 8wν(z)D − 4w′
ν(z))dν+1[wν ](z)

= (D3 − 8wν(z)D − 4w′
ν(z))(−4z) = 32wν(z) + 16zw′

ν(z)

= 16D(zwν(z)) + 16wν(z),
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namely

16wν(z) = D(dν+2[wν ](z) − 16zwν(z))

means that the residue of wν(z) at the pole z = a0 vanishes. This completes
the proof.

§3. Proof of Theorem 1.1

To prove (1.5), we suppose the contrary:

lim sup
r→∞

log N(r, wν)
log r

<
2ν + 3
ν + 1

,(3.1)

namely, for some ε > 0, N(r, wν) � r(2ν+3)/(ν+1)−ε, from which it follows that

n(r) = n(r, wν) � r(2ν+3)/(ν+1)−ε,(3.2)

because

N(2r, wν) ≥
∫ 2r

r

(
n(ρ, wν) − n(0, wν)

)dρ

ρ
≥

(
n(r, wν) + O(1)

)
log 2.

Starting from (3.1), we would like to derive a contradiction. Let {aj}j∈J be
a sequence of all distinct poles of wν(z) arranged as |a1| ≤ · · · ≤ |aj | ≤ · · · ,
where J = N or {1, . . . , p} (p ∈ N) or ∅. Clearly these poles do not accumulate
at any point in C. By Lemma 2.7, we write wν(z) in the form

wν(z) = Φ(z) + g(z),(3.3)

Φ(z) =
∑
j∈J

c(aj)
(
(z − aj)−2 − a−2

j

)
,(3.4)

where g(z) is an entire function. In (3.4), we make the following conventions:
(i) if a1 = 0, then the term (z − a1)−2 − a−2

1 is replaced by z−2; (ii) if J = ∅,
then Φ(z) ≡ 0. In what follows, we may suppose that Φ(z) 	≡ 0, because the
case where Φ(z) ≡ 0 is similarly treated by adding a slight modification. Under
(3.2), we have the following lemmas whose proofs will be given afterward:

Lemma 3.1. For every r > 1, there exists zr satisfying 0.7r ≤ |zr| ≤ r,∑
|aj |<2r

|zr − aj |−2 � r1/(ν+1)−ε/2,
∑

|aj |<2r

|zr − aj |−3 � r(3/2)/(ν+1)−ε.
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Lemma 3.2. Let r be an arbitrary number satisfying r > 1. Then,∑
|aj |≥2r

∣∣(z − aj)−2 − a−2
j

∣∣ � r1/(ν+1)−ε,
∑

|aj |≥2r

|z − aj |−3 � 1

for |z| ≤ r, and ∑
0<|aj |<2r

|a−2
j | � r1/(ν+1)−ε.

Lemma 3.3. There exists a set E ⊂ (0,∞) with finite linear measure
such that ∑

0<|aj |<∞

∣∣(z − aj)−2 − a−2
j

∣∣ � |z|9 for |z| ∈ (0,∞) \ E.

By Lemma 2.6, wν(z) satisfies the equation

−γν+1w
ν+1 =

∑
‖ι‖≤2(ν+1)

ι0≤ν

cιw
ι0(w′)ι1 · · · (w(2ν))ι2ν + 4z.(3.5)

For each term on the right-hand side, note that
2ν∑

κ=0

ικ ≤ ν,(3.6)

because 2
∑2ν

κ=0 ικ = ‖ι‖ −
∑2ν

κ=0 κικ = 2(ν + 1) is valid if and only if ι =
(ι0, ι1, . . . , ι2ν) = (ν+1, 0, . . . , 0). By Lemma 2.3, there exists a set E∗ ⊂ (0,∞)
with finite linear measure such that

m(r, wν) � log T (r, wν) + log r(3.7)

as r → ∞, r 	∈ E∗. (Note that (PI2ν) does not admit a constant solution.)
Combining this with (3.1), we have T (r, wν) � r(2ν+3)/(ν+1) and m(r, wν) �
log r for r 	∈ E∗. By Lemma 3.3, for r 	∈ E ∪ E∗,

T (r, g) = m(r, g) = m(r, wν − Φ) ≤ m(r, wν) + m(r, Φ) � log r.

By Lemmas 2.5 and 2.2, this is valid for r approaching ∞ without an exceptional
set, and hence g(z) is a polynomial.

By Lemmas 3.1 and 3.2, for every r > 1, there exists zr, 0.7r ≤ |zr| ≤ r

satisfying

|Φ(zr)| �
∑

|aj |<2r

|zr − aj |−2 +
∑

0<|aj |<2r

|a−2
j |(3.8)

+
∑

|aj |≥2r

|(zr − aj)−2 − a−2
j | � r1/(ν+1)−ε/2.
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Then, also for every κ = 1, 2, . . . , 2ν,

|Φ(κ)(zr)| � r(κ/2+1)/(ν+1)−ε.(3.9)

Indeed, observing that

|Φ(κ)(zr)| �
∑

|aj |<2r

|zr − aj |−2−κ +
∑

|aj |≥2r

|zr − aj |−2−κ,

we have the following:

(i) if κ is odd,

|Φ(κ)(zr)| �
( ∑

|aj |<2r

|zr − aj |−3

)( ∑
|aj |<2r

|zr − aj |−2

)(κ−1)/2

+
∑

|aj |≥2r

|zr − aj |−3

� r(3/2)/(ν+1)−εr(1/(ν+1)−ε/2)(κ−1)/2

� r(κ/2+1)/(ν+1)−ε;

(ii) if κ is even,

|Φ(κ)(zr)| �
( ∑

|aj |<2r

|zr − aj |−2

)κ/2+1

+
∑

|aj |≥2r

|zr − aj |−3

� r(1/(ν+1)−ε/2)(κ/2+1) � r(κ/2+1)/(ν+1)−ε.

From (3.5), we have

|wν(zr)| �
(
|zr| +

∑
‖ι‖≤2(ν+1)

ι0≤ν

∣∣wν(zr)ι0w′
ν(zr)ι1 · · ·w(2ν)

ν (zr)ι2ν
∣∣)1/(ν+1)

.

(3.10)

Now suppose that deg g(z) = δ0 ≥ 1. Substitute w
(κ)
ν (zr) = g(κ)(zr) +

Φ(κ)(zr) (κ = 0, 1, . . . , 2ν) into (3.10), and observe that

|wν(zr)| ≥ |g(zr)| − |Φ(zr)| = |g(zr)| + O(r1/(ν+1)) � rδ0 ,

and that, for every ι satisfying ι0 ≤ ν and ‖ι‖ ≤ 2(ν + 1),∣∣wν(zr)ι0w′
ν(zr)ι1 · · ·w(2ν)

ν (zr)ι2ν
∣∣

� (|g(zr)| + |Φ(zr)|)ι0(|g(zr)| + |Φ′(zr)|)ι1 · · · (|g(zr)| + |Φ(2ν)(zr)|)ι2ν

� |zr|δ0(ι0+ι1+···+ι2ν) � rδ0ν
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(cf. (3.6), (3.8) and (3.9)). Then, we have the contradiction rδ0 �
(|zr| + rδ0ν)1/(ν+1) � rδ0ν/(ν+1); which implies that g(z) ≡ C ∈ C. Substi-
tuting w = wν(z) = Φ(z) + C into (PI2ν), and observing that, for every ι

satisfying 0 < ‖ι‖ ≤ 2(ν + 1),

∣∣wν(zr)ι0w′
ν(zr)ι1 · · ·w(2ν)

ν (zr)ι2ν
∣∣

� (|Φ(zr)| + |C|)ι0 |Φ′(zr)|ι1 · · · |Φ(2ν)(zr)|ι2ν � rχ(ι)−ε/2

with χ(ι) =
∑2ν

κ=0(κ/2 + 1)ικ/(ν + 1) = (‖ι‖/2)/(ν + 1) ≤ 1 (cf. (3.8) and
(3.9)), we have

0.7r ≤ |zr| � |dν+1[wν ](zr)| � r1−ε/2,

which is a contradiction. We have thus proved (1.5).

§4. Proofs of Corollaries 1.2 and 1.3

Corollary 1.2 immediately follows from Theorem 1.1. To prove Corol-
lary 1.3, note that w ≡ α (∈ C) is not a solution of (PI2ν). By Lemma 2.4,

m(r, 1/(wν − α)) � log T (r, wν) + log r(4.1)

as r → ∞ for r 	∈ E1, where E1 ⊂ (0,∞) is a set with finite linear measure.
Since wν(z) is transcendental, by Lemmas 2.1 and 2.2, we have

N(r, 1/(wν − α))
T (r, wν)

= 1 − m(r, 1/(wν − α)) + O(1)
T (r, wν)

→ 1 as r → ∞, r 	∈ E1;

and hence

N(r, 1/(wν − α)) ≥ (1/2)T (r, wν) for r ∈ (r1,∞) \ E1,(4.2)

for some r1 > 0. On the other hand, by (3.7), N(r, wν)/T (r, wν) → 1 as r → ∞,

r 	∈ E∗. Hence,

(1/2)N(r, wν) ≤ T (r, wν) for r ∈ (r2,∞) \ E∗,(4.3)

for some r2 > 0. Using Lemma 2.5, from (4.2) and (4.3), we derive that
N(r, wν) ≤ 4N(2r, 1/(wν − α)) for r ∈ (r3,∞), where r3 > 0 is sufficiently
large. This inequality combined with (1.5) yields the conclusion (1.6) of Corol-
lary 1.3.
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§5. Proofs of Lemmas 3.1, 3.2 and 3.3

§5.1. Proof of Lemma 3.1

Put Dr = {z | |z| ≤ r} and ∆0 = C \
(⋃

j≥1 Uj

)
; where Uj = {z | |z − aj | <

|aj |−(1/2)/(ν+1)} if aj 	= 0, and U1 = {z | |z| < 1} if a1 = 0. Since, by (3.2),

∑
1<|aj |<r

|aj |−1/(ν+1) =
∫ r

1

ρ−1/(ν+1)dn(ρ)

=
[
ρ−1/(ν+1)n(ρ)

]r

1
+

1
ν + 1

∫ r

1

ρ−1−1/(ν+1)n(ρ)dρ � r2−ε,

we can take r0 so large that 7πr2/8 ≤ µ(∆0 ∩ Dr) < πr2 for every r > r0,

where µ(X) denotes the area of a set X. For every r > 1, if |aj | < 2r, then∫∫
Dr\Uj

|z − aj |−2dxdy ≤
∫∫

|aj |−(1/2)/(ν+1)≤ρ≤3r
0≤θ≤2π

ρ−1dρdθ � log r,

and ∫∫
Dr\Uj

|z − aj |−3dxdy ≤
∫∫

|aj |−(1/2)/(ν+1)≤ρ≤3r
0≤θ≤2π

ρ−2dρdθ � r(1/2)/(ν+1).

Hence, ∫∫
∆0∩Dr

∑
|aj |<2r

|z − aj |−2dxdy � n(2r) log r ≤ K0r
(2ν+3)/(ν+1)−ε/2,(5.1)

∫∫
∆0∩Dr

∑
|aj |<2r

|z − aj |−3dxdy � n(2r)r(1/2)/(ν+1) ≤ K0r
2+(3/2)/(ν+1)−ε,(5.2)

where K0 is some positive number. Consider the sets

F 1
r =

{
z ∈ ∆0 ∩ Dr

∣∣∣∣∣
∑

|aj |<2r

|z − aj |−2 ≤ 8π−1K0r
1/(ν+1)−ε/2

}
,

F 2
r =

{
z ∈ ∆0 ∩ Dr

∣∣∣∣∣
∑

|aj |<2r

|z − aj |−3 ≤ 8π−1K0r
(3/2)/(ν+1)−ε

}
.

Suppose that µ(F 1
r ) < 3πr2/4. Then∫∫

∆0∩Dr\F 1
r

∑
|aj |<2r

|z − aj |−2dxdy > 8π−1K0r
1/(ν+1)−ε/2(7/8 − 3/4)πr2

= K0r
(2ν+3)/(ν+1)−ε/2,
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which contradicts (5.1). This implies that µ(F 1
r ) ≥ 3πr2/4. By the same argu-

ment, we have µ(F 2
r ) ≥ 3πr2/4. Hence, µ(F 1

r ∩ F 2
r ) ≥ πr2/2. Observing that

µ({z | |z| < 0.7r}) = 0.49πr2, we have {z | 0.7r ≤ |z| ≤ r} ∩ (F 1
r ∩ F 2

r ) 	= ∅,
which implies the conclusion.

§5.2. Proof of Lemma 3.2

For |aj | ≥ 2r, and for z ∈ Dr, observing that |z/aj | ≤ 1/2, we have
|z − aj |−3 ≤ 8|aj |−3, and

|(z − aj)−2 − a−2
j | = 2|z‖aj |−3|1 − (z/aj)/2||1 − z/aj |−2 ≤ 10r|aj |−3.

Hence, by (3.2),

∑
|aj |≥2r

∣∣(z − aj)−2 − a−2
j

∣∣ � r
∑

|aj |≥2r

|aj |−3 � r

∫ ∞

2r

t−3dn(t)

� r

∫ ∞

2r

t−4n(t)dt � r1/(ν+1)−ε,

∑
|aj |≥2r

|z − aj |−3 �
∑

|aj |≥2r

|aj |−3 �
∫ ∞

2r

t−3dn(t) � 1,

and

∑
0<|aj |<2r

|a−2
j | �

∫ 2r

1

t−2dn(t) + O(1)

� r1/(ν+1)−ε +
∫ 2r

1

t−3n(t)dt + O(1) � r1/(ν+1)−ε.

Thus the lemma is proved.

§5.3. Proof of Lemma 3.3

We put

E = (0, |a1| + 1) ∪
( ⋃

j∈J\{1}

(
|aj | − |aj |−3, |aj | + |aj |−3

))
.

Since, by (3.2),

∑
j∈J\{1}

|aj |−3 �
∫ ∞

1

t−3dn(t) + O(1) �
∫ ∞

1

t−4n(t)dt + O(1) � 1,
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the total length of E is finite. If |z| 	∈ E, then( ∑
0<|aj |<2|z|

+
∑

|aj |≥2|z|

)∣∣(z − aj)−2 − a−2
j

∣∣
� (|z|6 + 1)n(2|z|) + |z|1/(ν+1) � |z|9.

This completes the proof.

References

[1] Airault, H., Rational solutions of Painlevé equations, Stud. Appl. Math., 61 (1979),
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