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A Serre-type Theorem
for the Elliptic Lie Algebras with Rank ≥ 2

By

Hiroyuki Yamane
∗

Abstract

In 2000, K. Saito and D. Yoshii gave a Serre-type theorem for the simply-laced
elliptic Lie algebras. We extend the theorem to that for the elliptic Lie algebras
associated with the (reduced marked) elliptic root systems with rank ≥ 2.

Introduction

In the early eighties, K. Saito [S] introduced the concept of the generalized
root systems and, in particular, the elliptic root systems. Since then, several
attempts have been done to construct Lie algebras having the property that
their “real roots” form those root systems (see [SY, Introduction]). In the final
year of the last century, K. Saito and D. Yoshii [SY] introduced three kinds of
“universal” presentations of the simply-laced elliptic Lie algebras g(R), that is,
the elliptic Lie algebras associated with the simply-laced elliptic root systems R.
We can say that the g(R) is maximal among the Lie algebras having the above
property (see also the second paragraph). Let us explain the presentations.
The first one uses the Borcherds lattice vertex algebras. This can be said to
be most beautiful and useful, because it does not depend on a marking G of R

and gives a basis of g(R) and its structure constants explicitly. The second one
uses (affine-type) Heisenberg algebras. This is also useful, especially to study
the representation theory of g(R) since it gives a triangular decomposition of
g(R). The third one is a Serre-type theorem, that is to say a presentation of
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442 Hiroyuki Yamane

g(R) by finite defining relations, which are expressed by means of the elliptic
diagram Γ(R, G), a Dynkin diagram introduced by K. Saito [S].

Let R be an elliptic root system; more precisely, (R, G) is assumed to be a
reduced marked elliptic root system for some G. D. Yoshii [Y] generalized the
second one to present the elliptic Lie algebras g(R). We shall do the same as
the third one to present g(R) in the case of l ≥ 2, where l is the rank of R (see
Theorem 4.1). We also show that if l ≥ 2 and Γ(R, G) �= A

(1,1)
l , g(R) is maximal

among the Lie algebras having the property mentioned above and satisfying
extra conditions (see Theorem 3.2). K. Saito and T. Takebayashi [ST] have
asked for such presentation as ours. We also notice results given in [M1, M2].

The definitions of some of the above terms shall be given in Appendix.
Now, let us explain about the content of the paper more concretely. We ab-

breviate the terminology “a reduced marked elliptic root system” to an r.m.e.-
root-system (see Appendix). Let l be a fixed positive integer. Let E be an
l + 4-dimensional C-vector space with a non-degenerate symmetric bilinear
form I : E × E → C. If x ∈ E satisfies I(x, x) �= 0, then we call it non-isotropic,
let x∨ := 2x/I(x, x) and define sx ∈ GL(E) by sx(y) = y − I(x∨, y)x. Let Π
be a subset of E formed by linearly independent non-isotropic l + 1 elements
satisfying the condition that the (l + 1)× (l + 1) matrix formed by the compo-
nents I(α∨, β), where α, β ∈ Π, coincides with an affine-type generalized Cartan
matrix. (See [K, §4.8] for the terminology.) Denote by W the affine Weyl group
〈sα|α ∈ Π〉 ⊂ GL(E). Let a be a fixed non-zero element of E with dim(Ca +
CΠ) = l + 2 and I(a, Ca + CΠ) = {0}. Let k : Π → N be a function such that
G.C.D.{k(α)|α ∈ Π} = 1, and k(α) = k(β) if β ∈ W.α. Let G := Ca and

R :=
⋃

w∈W

⋃
α∈Π

(w(α) + Zk(α)a).(0.1)

We see that (R, G) is an r.m.e.-root-system if and only if

∀µ ∈ R, sµ(R) = R .(0.2)

If this is the case, we call k the counting function. K. Saito [S] gave all the
counting functions concretely and showed that every r.m.e.-root-system is given
in this way. (Notice that l is the rank of R.)

We say that a triple (E , Π, k) satisfying the property (0.2) is a reduced
marked elliptic datum; we abbreviate the terminology to an r.m.e.-datum. (In
the text, an r.m.e.-datum (E , Π, k) shall be denoted as (E�

af , Πaf , k), and the
g(R) shall be denoted as g = g(E�

af , Πaf , k).)
In this paper, we shall give Lie algebras g�, g� and gΓ(R,G) and show that

all of them are isomorphic to g(R) (see Theorems 1.1, 3.1 and 4.1). These Lie
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algebras are virtually the same, but we use these different symbols to make
the paper easier to read. Here we give the definition of g� and explain about
how g� and gΓ(R,G) are obtained from g�. Let (E , Π, k) be an r.m.e.-datum
with l ≥ 2. Let α∗ := α + k(α)a for α ∈ Π. Let Π∗ := {α∗ |α ∈ Π}. Let
B := {±µ|µ ∈ Π ∪ Π∗}. Define the Lie algebra g� with generators:

hσ (σ ∈ E), Eµ (µ ∈ B)(0.3)

and defining relations:



xhσ + yhτ = hxσ+yτ for x, y ∈ C and σ, τ ∈ E ,
[hσ, hτ ] = 0 for σ, τ ∈ E ,
[hσ, Eµ] = I(σ, µ)Eµ for σ ∈ E and µ ∈ B,
[Eµ, E−µ] = hµ∨ for µ ∈ B,
(adEµ)xµ,ν Eν = 0 for µ, ν ∈ B with µ + ν �= 0,
(adE±α∗)yE±β = (adE±α)yE±β∗ for (α, β, y) ∈ A,
(adE±α)i(adE±α∗)y−iE±β = 0 for (α, β, y) ∈ A and 1 ≤ i ≤ y − 1,

(0.4)

where xµ,ν := min{n ∈ N|nµ+ν /∈ R∪G} and A := { (α, β, y) ∈ Π×Π×N |α �=
β, I(α, β) �= 0, k(α)y = k(β) }.

As a matter of the fact, some of (0.4) are redundant. We shall define g�

by the same generators as (0.3) and the defining relations which seem to be
necessary ones of (0.4).

K. Saito [S] introduced the elliptic diagram Γ(R, G), which is drawn by
use of a subset of Π ∪ Π∗. The subset is called the elliptic root basis and also
denoted by Γ(R, G). We shall define the gΓ(R,G) by the generators hσ (σ ∈ E),
E±µ (µ ∈ Γ(R, G)) and defining relations, which are obtained from those of g�

by adding some additional relations.
In §1, we shall prove that g� ∼= g(R) using properties of rank two affine

Lie algebras. In §2, we shall prove the properties. In §3, we shall show that
g� ∼= g� and show a maximality of g� except for A

(1,1)
l . In §4, we shall show

that gΓ(R,G) ∼= g�.

§1. Isomorphism from g to g�

Let l be a positive integer. Let Eaf be an l + 2 dimensional C vector
space with a non-degenerate symmetric bilinear form I : Eaf × Eaf → C. Let
Πaf = {α0, α1, . . . , αl} be a set of linearly independent l + 1 elements of Eaf

satisfying the condition that:
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(1) I(αi, αi) is a positive integer for any 0 ≤ i ≤ l,
(2) The (l+1)×(l+1) matrix A := (aij), where aij := 2I(αi, αj)/I(αi, αi),

is a generalized Cartan matrix of affine type (See [K, §4.8] for the terminology),
i.e., it satisfies the condition that there exists a unique x = t(x0, . . . , xl) ∈ Z

l+1
+

such that {v ∈ Z
l+1
+ |Av = 0} = Z+x.

We call the pair (Eaf , Πaf) the affine datum. The element δ := x0α0 + · · ·+
xlαl is called the lowest positive null root, where xi’s are the above integers.
Let Γaf(Eaf , Πaf) be the Dynkin diagram of the affine datum (Eaf , Πaf); we use
the same definition for the Dynkin diagrams as in [K, §4.8]; in [K, §4.8 TABLE
Aff 1,2,3], the Dynkin diagrams Γaf(Eaf , Πaf)’s of the affine data (Eaf , Πaf)’s are
listed, and they are named:

A
(1)
l (l ≥ 1), B

(1)
l (l ≥ 3), C

(1)
l (l ≥ 2), D

(1)
l (l ≥ 4),

G
(1)
2 (l = 2), F

(1)
4 (l = 4), E

(1)
l (l = 6, 7, 8),

A
(2)
2l (l ≥ 1), A

(2)
2l−1 (l ≥ 3), D

(2)
l+1 (l ≥ 2), E

(2)
6 (l = 4),

D
(3)
4 (l = 2).

(1.1)

We also use the same names as above. If Γaf(Eaf , Πaf) is X
(t)
n , one of (1.1),

we say that (Eaf , Πaf) is of type X
(t)
n . We follow the same numbering as in

[K, §4.8] for the vertices of the Γaf(Eaf , Πaf). Let Πaf, fi := {αi|1 ≤ i ≤ l} and
Eaf, fi := Cα1 ⊕ · · · ⊕Cαl. Then Eaf = Eaf, fi ⊕Cδ⊕CΛδ, where Λδ ∈ Eaf is such
that I(Λδ, Eaf, fi) = {0}, I(Λδ, δ) = 1 and I(Λδ, Λδ) = 0.

For each affine datum (Eaf , Πaf = {α0, . . . , αl}), we define the C vector
space E�

af to be Eaf ⊕ Ca ⊕ CΛa, and extend the symmetric bilinear form I( , )
on Eaf to the one on E�

af by I(E�
af , Ca ⊕ CΛa) = {0}, I(a, a) = I(Λa, Λa) = 0,

I(a, Λa) = 1. Let k : Πaf ∪ −Πaf → {1, 2, 3, 4} be a function satisfying the
following properties:

(1) k(−α) = k(α),

(2) there exists an α such that k(α) = 1,

(3) if I(α, α) ≤ I(β, β) and I(α, β) �= 0, then k(α) ≤ k(β) and I(β, β)k(α)
= I(α, α)k(β)c for some c ∈ {1, 2, 3, 4}.

We call the triple (E�
af , Πaf , k) a reduced marked elliptic datum; we abbreviate

this terminology to an r.m.e.-datum. K. Saito [S] showed that a function k′ :
Πaf → {1, 2, 3, 4} satisfies the properties (1), (2) and (3) above with k′ in place
of k if and only if k′ is a counting function (see Introduction). In particular,
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the definition of an r.m.e.-datum given here and the one given in Introduction
are equivalent.

Definition 1.1 (See also [Y]). Let (E�
af , Πaf , k) be an r.m.e.-datum.

(1) For σ ∈ E�
af with I(σ, σ) �= 0, let σ∨ := 2σ/I(σ, σ) ∈ E�

af . For σ, τ ∈ E�
af , let

J(σ∨, τ ) :=

{
I(σ∨, τ ) if I(σ∨, τ ) ∈ −Z+ and I(σ, σ) �= 0,

0 otherwise.

(2) For the above (E�
af , Πaf , k), we define a Lie algebra g = g(E�

af , Πaf , k) by
generators:

Z, hσ (σ ∈ E�
af), Eα (α ∈ Πaf ∪ −Πaf), H

(i)
α∨ (α ∈ Πaf ∪ −Πaf , i ∈ Z)

and relations:

xhσ + yhτ = hxσ+yτ , [hσ, hτ ] = 0,(H1)

[hσ, Eα] = I(σ, α)Eα, [hσ, H
(i)
α∨ ] = I(ia, σ)k(α)H(i)

α∨ ,(H2)

(adEα)1−J(α∨,β)Eβ =

{
h−α∨ if α + β = 0,
0 otherwise,

(H3)

Z = ha, H
(0)
α∨ = hα∨ , H

(i)
−α∨ = −H

(i)
α∨ ,(H4)

[H(i)
α∨ , H

(j)
β∨ ] =

{
ik(α)I(α∨, β∨)Z if ik(α) + jk(β) = 0,
0 otherwise,

(H5)

[H(i)
α∨ , Eβ] =

{
1
2I(α∨, β)[H(j)

β∨ , Eβ] if ik(α) = jk(β),
0 if ik(α) /∈ k(β)Z,

(H6)

[H(i)
α∨ , [H(j)

α∨ , Eα]] = 2[H(i+j)
α∨ , Eα], [[H(i)

α∨ , Eα], E−α] = −2H
(i)
α∨ ,(H7)

[[H(i)
α∨ , Eα], Eβ] = 0 if I(α, β) ≥ 0,(H8)

where σ, τ ∈ E�
af , x, y ∈ C, i, j ∈ Z and α, β ∈ Πaf ∪ −Πaf .

Here, for an r.m.e.-datum (E�
af , Πaf , k) with l ≥ 2, we introduce an algebra

presented by finite generators and finite relations.

Definition 1.2. Let (E�
af , Πaf , k) be an r.m.e.-datum. Assume l ≥ 2.

(1) For α ∈ Πaf , let α∗ := α + k(α)a ∈ E�
af .

(2) For the above (E�
af , Πaf , k), we define a Lie algebra g� = g�(E�

af , Πaf , k)
by generators:

hσ (σ ∈ E�
af), Eα, E−α, Eα∗ , E−α∗ (α ∈ Πaf),
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and relations:

xhσ + yhτ = hxσ+yτ (x, y ∈ C), [hσ, hτ ] = 0,(S1) {
[hσ, Eα] = I(σ, α)Eα, [hσ, Eα∗ ] = I(σ, α∗)Eα∗ ,

[hσ, E−α] = −I(σ, α)E−α, [hσ, E−α∗ ] = −I(σ, α∗)E−α∗ ,
(S2) 

[Eα, E−α] = −hα∨ , [Eα∗ , E−α∗ ] = −h(α∗)∨ ,

[Eα, Eα∗ ] = 0, [E−α, E−α∗ ] = 0,

(adEα)3E−α∗ = 0, (adE−α)3Eα∗ = 0,

(adEα∗)3E−α = 0, (adE−α∗)3Eα = 0,

(S3)


[Eα, E−β] = 0, [Eα, E−β∗ ] = 0, [Eα∗ , E−β∗ ] = 0,

(adEα)1−I(α∨,β)(Eβ) = 0, (adE−α)1−I(α∨,β)(E−β) = 0,

(adEα)1−I(α∨,β)(Eβ∗) = 0, (adE−α)1−I(α∨,β)(E−β∗) = 0
for α, β ∈ Πaf with α �= β,

(S4)


(adEα∗)yEβ = (adEα)yEβ∗ ,

(adE−α∗)yE−β = (adE−α)yE−β∗

for α, β ∈ Πaf with I(α, β) �= 0 and I(α, α) ≤ I(β, β),
where y := k(β)/k(α),

(S5)

{
(adEβ∗)2Eα = 0, (adE−β∗)2E−α = 0
for α, β ∈ Πaf with I(β∨, α) = −1 and k(β) = k(α),

(S6) 
(adEα∗)3Eβ = 0, [Eα, [Eα∗ , Eβ]] = 0,
(adE−α∗)3E−β = 0, [E−α, [E−α∗ , E−β]] = 0
for α, β ∈ Πaf with I(β∨, α) = −1 and k(β) = 2k(α),

(S7)


[Eα, [Eα, [Eα∗ , Eβ]]] = 0, [Eα, [Eα∗ , [Eα∗ , Eβ]]] = 0,
[E−α, [E−α, [E−α∗ , E−β]]] = 0, [E−α, [E−α∗ , [E−α∗ , E−β]]] = 0
for α, β ∈ Πaf with I(β∨, α) = −1 and k(β) = 3k(α),

(S8)

{
[Eα∗ , Eβ∗ ] = 0, [E−α∗ , E−β∗ ] = 0
for α, β ∈ Πaf with I(α, β) = 0.

(S9)

Here we state one of our main theorems:

Theorem 1.1. Let (E�
af , Πaf = {α0, . . . , αl}, k) be an r.m.e.-datum.

Assume l ≥ 2. Then there exists an isomorphism ϕ : g�(E�
af , Πaf , k) →

g(E�
af , Πaf , k) such that ϕ(hσ) = hσ (σ ∈ E�

af), ϕ(E±α) = E±α, ϕ(Eα∗) =
2−1[H(1)

α∨ , Eα], ϕ(E−α∗) = −2−1[H(−1)
α∨ , E−α] (α ∈ Πaf). Moreover ϕ(Ĥ(i)

±α)
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= H
(i)
±α (α ∈ Πaf and i ∈ Z), where

Ĥ
(i)
α∨ :=


(−2−1)i−1(adEα∗adE−α)i−1[E−α, Eα∗ ] if i > 0,
hα∨ if i = 0,
−(−2−1)−i−1(adE−α∗adEα)−i−1[Eα, E−α∗ ] if i < 0,

(1.2)

and Ĥ
(i)
−α∨ := −Ĥ

(i)
α∨ .

The proof shall be given after Proposition 1.1 is stated below.

Let S be a subset of Πaf . Let g(S) be the Lie algebra defined by the
generators Z, hσ (σ ∈ E�

af), E±α (α ∈ S), H
(i)
±α∨ (α ∈ S, i ∈ Z) and the same

defining relations as (Hj) (1 ≤ j ≤ 8). Let g(�;S) be the Lie algebra defined
by the generators hσ (σ ∈ E�

af), E±α, E±α∗ (α ∈ S) and the same defining
relations as (Sj) (1 ≤ j ≤ 9).

Proposition 1.1. Keep the notation as above. Let α, β ∈ Πaf be such
that α �= β and I(α, β) �= 0. Let S := {α, β}. Then there exists an isomorphism
ϕ(S) : g(�;S) → g(S) satisfying the same equalities as in Theorem 1.1 with ϕ(S)

in place of ϕ.

The proposition follows immediately from Lemma 2.2 and Propositions 2.1
and 2.2, which shall be given in §2.

Proof of Theorem 1.1. By Proposition 1.1, we see that for α, β ∈ Πaf with
α �= β and I(α, β) �= 0,

ha, hΛa
, hγ∨ , E±γ , Ĥ

(i)
γ∨ (γ ∈ {α, β})

satisfy the relations (Hj), 1 ≤ j ≤ 8, with Ĥ
(i)
µ∨ in place of H

(i)
µ∨ .

From the definition of Ĥ
(i)
µ∨ , it is clear that for α, β ∈ Πaf with I(α, β) = 0,

the elements E±γ , Ĥ
(i)
γ∨ (γ = α, β) satisfy the same relations as (H3), (H5),

(H6) and (H8) with Ĥ
(i)
γ∨ in place of H

(i)
γ∨ .

By the above argument, we see that there exists a homomorphism χ : g →
g� such that χ(hσ) = hσ, χ(E±α) = E±α, χ(H(i)

±α∨) = Ĥ
(i)
±α∨ .

Using again Proposition 1.1 and an argument similar to the above one, we
can easily see that the homomorphism ϕ : g� → g in the statement can be
defined. We can easily see that ϕ is the inverse map of χ. �
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§2. Rank Two Affine Lie Algebras

§2.1. Three kinds of definitions

The automorphism nα. Let (E�
af , Πaf , k) be an r.m.e.-datum. Let g� =

g�(E�
af , Πaf , k). For α ∈ Πaf ∪ −Πaf , define the automorphism nα : g� → g�

by
nα := (exp adEα)(exp adE−α)(exp adEα).

It is well-known that

nα(hσ) = hsα(σ),(2.1)

where sα(σ) = σ − 2I(α,σ)
I(α,α) α. Moreover we have:

nαEα = −E−α, nαhα∨ = −hα∨ , nαE−α = −Eα,(2.2) 
nαE±α∗ = 1

2 (adE∓α)2E±α∗ ,

nα[E∓α, E±α∗ ] = −[E∓α, E±α∗ ],
nα(adE∓α)2E±α∗ = 2E±α∗

(2.3)

and, for β, α ∈ Πaf with α �= β, we have:

nα(adE±α)iE±µ =
(−1)ii!

(M − i)!
(adE±α)M−iE±µ,(2.4)

where µ := β or β∗, M := −2I(α,β)
I(α,α) and 0 ≤ i ≤ M .

The formulas in (2.1)–(2.4) follows immediately from Lemma 2.1 below.
Let a be a Lie algebra and let Xi (i ∈ I) be generators of a. We say that

X ∈ a is locally nilpotent if for every i ∈ I, (adX)miXi = 0 for some mi ∈ N.
For such an X, we can define exp(adX) ∈ Aut(a). Let C = (X+, Y, X−) be
a triple consisting of elements X+, Y , X− of a. We say that such a C is an
sl2-triple if [X+, X−] = −2Y and [Y, X±] = ±2X±. Here notice that [X+, X−]
is not 2Y but −2Y . If X± are locally nilpotent, we say that C is locally finite
and define

n(C) := exp(adX+) exp(adX−) exp(adX+) ∈ Aut(a).

Lemma 2.1. Keep the notation as above. Let C = (X+, Y, X−) be a
locally finite sl2 triple. Let n := n(C). Let Z ∈ a be such that [X−, Z] = 0 and
[Y, Z] = −mZ for some m ∈ Z+. Then (adX+)m+1Z = 0 and

n((adX+)iZ) =
(−1)ii!
(m − i)!

(adX+)m−iZ.

for 0 ≤ i ≤ m.
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Proof. Use a representation theory of sl2, especially the completely re-
ducibility and the fact that

π(m)(n) = (π(2)(n)⊗m−1)|S =

((
0 1

−1 0

)⊗m−1 )
|S

,

where π(m) is the m-dimensional irreducible representation π(m) of 〈X+, Y ,
X−〉 ∼= sl2, and S is the subspace of the symmetric tensors.

Kac-Moody Algebras. Let (Eaf , Πaf) be an affine datum. Let KM =
KM(Eaf , Πaf) be the Lie algebra defined by generators hσ (σ ∈ Eaf), Eα

(α ∈ Πaf ∪ −Πaf) and relations:

xhσ + yhτ = hxσ+yτ , [hσ, hτ ] = 0,(AS1)

[hσ, Eα] = I(σ, α)Eα,(AS2)

(adEα)1−J(α∨,β)Eβ =

{
h−α∨ if α + β = 0,
0 otherwise,

(AS3)

Then KM is the affine Lie algebra of type Γaf(Eaf , Πaf).
Let PriAff be the set of affine data (Eaf , Πaf = {α0, α1, α2}) such that

Γaf(Eaf , Πaf) is A
(1)
2 , C

(1)
2 , G

(1)
2 , D

(2)
3 or D

(3)
4 . Notice that A

(2)
4 /∈ PriAff.

Let (Eaf , Πaf) ∈ PriAff. Define the function g : Πaf,fi ∪ −Πaf,fi → {1, 2, 3}
by:

(g(±α1), g(±α2)) =


(1, 1) if Γaf(Eaf , Πaf) = A

(1)
2 , C

(1)
2 or G

(1)
2 ,

(2, 1) if Γaf(Eaf , Πaf) = D
(2)
3 ,

(1, 3) if Γaf(Eaf , Πaf) = D
(3)
4 .

Let G = G(Eaf , Πaf) be the Lie algebra defined by generators hσ (σ ∈ Eaf), Eα

(α ∈ Πaf,fi ∪ −Πaf,fi) , H
(i)
α∨ (α ∈ Πaf,fi ∪ −Πaf,fi, i ∈ Z) and relations:{

The relations obtained from those of (Hj)
by replacing k and a with g and −δ.

(PHj) (1 ≤ j ≤ 8)

Let G� = G�(Eaf , Πaf) be the Lie algebra defined by generators hσ (σ ∈ Eaf),
Eα, Eα∗ (α ∈ Πaf,fi ∪ −Πaf,fi, i ∈ Z) and relations:{

The relations obtained from those of (Sj)
by replacing k and a with g and −δ.

(PSj) (1 ≤ j ≤ 9)
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It is easy to see:

Lemma 2.2. Let (E�
af , Πaf , k) be an r.m.e.-datum. Assume l ≥ 2. Let

α, β ∈ Πaf be such that α �= β and I(α, β) �= 0. Let S := {α, β}. Then
there exist (E ′

af , Π
′
af) ∈ PriAff, an injective isometric map p(S) : E ′

af → E�
af

and c ∈ {1, 2} such that p(S)(Πaf,fi) = S, p(S)(δ) = −ca, p(S)(Λδ) = −c−1Λa,

and k(p(αi)) = cg(αi). (Notice that G = G(E ′
af , Π

′
af) can be identified with

a subalgebra of g(S) by identifying hσ, E±α, H
(i)
α∨ with hp(σ), E±p(α), H

(i)
p(α)∨ .

Under the identification, we have g(S) = G⊕r, where r := {hτ | I(τ, E ′
af) = {0}}.

Similar things hold for G�(E ′
af , Π

′
af) and g(�;S).)

§2.2. Isomorphisms between rank two affine algebras

We use the same symbols for elements, hσ, Eα etc., of the Lie algebras
treated in this paper. In §2.1, we introduced the automorphism nα of g�.
We shall also denote by nα the automorphism n((Eα, hα∨ , E−α)) even for the
other Lie algebras. Moreover the same formulas as (2.1)–(2.4) also hold for
the algebras. They shall also be referred to as (2.1)–(2.4). Let a be a Lie
algebra treated in this paper. Let Ea := Eaf if a = KM, G or G�. Otherwise
let Ea := E�

af . Let ha be the subalgebra {hσ |σ ∈ Ea } of a; by abuse of the
notation, we shall also denote ha by h. We denote by aσ the weight space with
respect to σ ∈ E , i.e.,

aσ := {X ∈ a | [hτ , X] = I(σ, τ )X (τ ∈ Ea) }.

The following lemma shall be used to prove Proposition 2.1.

Lemma 2.3. Let (Eaf , Πaf) ∈ PriAff. For G = G(Eaf , Πaf) and KM =
KM(Eaf , Πaf), we have dimGσ ≤ dimKMσ for σ ∈ Eaf .

Proof. We use the same argument as in [SY, §5]. Recall the elements α1,
α2 ∈ Πaf,fi. Let Q0 := Zδ, Q+ := (Z+α1 + Z+α2 + Q0) \ Q0 and Q− := −Q+.
Let Qre := ∪i=1,2∪w∈Waf,fi (w(αi)+Zg(αi)δ), where Waf,fi = 〈sα1 , sα2〉. Notice
that Qre ⊂ Q+ ∪ Q−. Using the relations (PHj), 1 ≤ j ≤ 8, we can easily see
the facts below:

(1) G =
⊕

σ∈(Q+∪Q0∪Q−)

Gσ.

(2) G±αi+g(αi)nδ = C[H(−n)
±α∨

i
, E±αi

] and G±mαi+nδ = {0} for m ≥ 2 or
n /∈ g(αi)Z.
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(3) For σ ∈ Q+ \ ∪i=1,2(Z+αi + Q0), we have G±σ =
∑

[G±σ1 ,G±σ1 ],
where the summation is taken over σ1, σ2 ∈ Q+ with σ1 + σ2 = σ.

(4) G0 = h and Gnδ =
∑

i=1,2 CH
(n/g(αi))
α∨

i
for n �= 0, where H

(x)
α∨

i
:= 0 if

x /∈ Z.

Moreover we notice the facts
(5) dimGσ = dimnαi

Gσ = dimGβ , where β = sαi
(σ) = σ − I(α∨

i , σ)αi.

(6) For each σ ∈ Q+, since I(σ, σ) > 0, we have I(α∨
i , σ) > 0 for some i.

By using the facts (1)–(6) and by using induction on r1 + r2 for σ =
r1α1 + r2α2 + nδ ∈ Q+, we see:

dimGσ ≤



1 if σ ∈ Qre,

4 if σ = 0,

2 if σ = nδ and n/g(α1), n/g(α2) ∈ Z \ {0},
1 if σ = nδ and n/g(α1) /∈ Z or n/g(α1) /∈ Z,

0 otherwise
= dimKMσ,

where the last equality can be seen by the concrete description of KM given
in [K, Chapters 7, 8].

Let (Eaf , Πaf = {α0, α1, α2}) ∈ PriAff. Define the elements Ẽα∗ , Ẽ−α∗ ,
H̃

(i)
±α∨ (α ∈ Πaf,fi, i ∈ Z) of KM(Eaf , Πaf) as follows:

(1) If Γaf(Eaf , Πaf) = A
(1)
2 , put Ẽ±α∗

2
:= n−1

α1
E∓α0 and Ẽ±α∗

1
:= −[[E∓α2 ,

Ẽ±α∗
2
], E±α1 ].

(2) If Γaf(Eaf , Πaf) = C
(1)
2 , put Ẽ±α∗

2
:= n−1

α1
E∓α0 and Ẽ±α∗

1
:= −[[E∓α2 ,

Ẽ±α∗
2
], E±α1 ].

(3) If Γaf(Eaf , Πaf) = G
(1)
2 , put Ẽ±α∗

2
:= n−1

α1
n−1

α2
E∓α0 and Ẽ±α∗

1
:=

−[[E∓α2 , Ẽ±α∗
2
], E±α1 ].

(4) If Γaf(Eaf , Πaf) = D
(2)
3 , put Ẽ±α∗

2
:= n−1

α1
E∓α0 and Ẽ±α∗

1
:= 4−1 ×

[[[[E∓α2 , Ẽ±α∗
2
], E∓α2 ], Ẽ±α∗

2
], E±α1 ].

(5) If Γaf(Eaf , Πaf) = D
(3)
4 , put Ẽ±α∗

1
:= n−1

α2
n−1

α1
E∓α0 and Ẽ±α∗

2
:=

−12−1[[[[[[E∓α1 , Ẽ±α∗
1
], E∓α1 ], Ẽ±α∗

1
], E∓α1 ], Ẽ±α∗

1
], E±α2 ].

(6) Define H̃
(i)
±α∨ in the same way as that for H

(i)
±α∨ in (1.2) with hα∨ , E±α,

Ẽ±α∗ in place of hα∨ , E±α, E±α∗ .

The two propositions below were used in the proof of Proposition 1.1.

Proposition 2.1. Let (Eaf , Πaf) ∈ PriAff. Then there exists a unique
isomorphism ξ : G(Eaf , Πaf) → KM(Eaf , Πaf) such that ξ(hσ) = hσ, ξ(E±α) =
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E±α and ξ(H(i)
±α∨) = H̃

(i)
±α∨ , ξ(2−1[H(±1)

±α∨ , E±α]) = Ẽ±α∗ , where σ ∈ Eaf , α ∈
Πaf,fi and i ∈ Z.

Proof. By the concrete description [K, Chapters 7, 8] of the affine Lie
algebras, we see that the epimorphism ξ in the statement exists. By Lemma 2.3,
we see that dimGσ = dimKMσ for all σ, and that ξ is injective.

Proposition 2.2. Let (Eaf , Πaf) ∈ PriAff. Then there exists a unique
isomorphism θ : KM(Eaf , Πaf) → G�(Eaf , Πaf) such that θ(hσ) = hσ, θ(E±α)
= E±α and θ(Ẽ±α∗) = E±α∗ , where σ ∈ Eaf , α ∈ Πaf,fi. Moreover θ(H̃(i)

±α∨) =
Ĥ

(i)
±α∨ , where α ∈ Πaf,fi, i ∈ Z and where Ĥ

(i)
±α∨ ∈ G�(Eaf , Πaf) are defined in

the same way as in (1.2).

Proof. Define the elements Ê±α0 of G�(Eaf , Πaf) by

Ê±α0 :=


nα1E∓α∗

2
if Γaf(Eaf , Πaf) is A

(1)
2 , C

(1)
2 or D

(2)
3 ,

nα2nα1E∓α∗
2

if Γaf(Eaf , Πaf) is G
(1)
2 ,

nα1nα2E∓α∗
1

if Γaf(Eaf , Πaf) is D
(3)
4 .

We first show that the elements hσ, Ê±α0 , E±α1 , E±α2 satisfy the same relations
as (AS1), (AS2) and (AS3) in §2.1 with Ê±α0 in place of E±α0 . It is clear from
(2.1) that [Êα0 , Ê−α0 ] = h−α∨

0
. So we only need to show that

(adÊα0)
1−J(α∨

0 ,γ)(Eγ) = 0(2.5)

and

(adÊ−α0)
1−J(−α∨

0 ,−γ)(E−γ) = 0,(2.6)

where γ = ±αi (i = 1, 2). We shall prove the equality (2.5) for each (Eaf , Πaf) ∈
PriAff in §2.3. The equality (2.6) can be proved similarly.

Define the homomorphism θ : KM(Eaf , Πaf) → G�(Eaf , Πaf) by θ(hσ) =
hσ, θ(E±αi

) = E±αi
(1 ≤ i ≤ 2) and θ(E±α0) = Ê±α0 . Put i = 2 if Γaf(Eaf , Πaf)

is D
(3)
4 ; and put i = 1 otherwise. It is clear that θ(Ẽ±α∗

i
) = E±α∗

i
. Let

j ∈ {1, 2} be such that j �= i. By (PS5), we see that

E±α∗
j
∈ C(adE∓αi

)k(αj)/k(αi)(adE±α∗
i
)k(αj)/k(αi)E±αj

.

Hence θ is surjective. By Proposition 3.2 in §3, we see that ker θ ∩ h = {0}.
By the abstract definition [K, §1.3] of the Kac-Moody algebra, we see that
ker θ = {0}. Hence θ is an isomorphism. By the concrete description [K,
Chapters 7, 8] of the affine Lie algebras, we see that θ(Ẽ±α∗

j
) = E±α∗

j
. It is

clear that θ(H̃(i)
±α∨) = Ĥ

(i)
±α∨ .
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§2.3. Proof of (2.5)

Here, we shall use the notation for the elements of Πaf as follows: α and
β denote the two elements of Πaf,fi = {α1, α2} and are assumed to be such
that I(α, α) ≤ I(β, β); β� denotes α0 if Γaf(Eaf , Πaf) is A

(1)
2 , C

(1)
2 or G

(1)
2 ; α�

denotes α0 if Γaf(Eaf , Πaf) is D
(2)
3 or D

(3)
4 . We shall use the formulas (2.1)–(2.4)

and the relations (PSj) (1 ≤ j ≤ 9), and often omit telling which formula or
relation to use in the cases where equalities are explicit.

The A
(1)
2 case. Notice that β� = δ − (α + β) = sα(−β∗). Then we have

the Dynkin diagram A
(1)
2 :

α β

β�

� ���
�
��

We have Êβ� = [E−α, E−β∗ ] = [E−α∗ , E−β] and have:

[E−γ , Êβ� ] = 0, (adEγ)2Êβ� = 0,

where γ is α or β. Notice that [Eα, Êβ� ] = −E−β∗ . Then we have (adÊβ�)2Eα

= 0. Similarly we have (adÊβ�)2Eβ = 0.
The C

(1)
2 case. Notice that β� = δ − (2α + β) = sα(−β∗). We have the

Dynkin diagram C
(1)
2 :

β� α β� � �<>

We have:
Êβ� =

1
2
[E−α, [E−α, E−β∗ ]] (by (2.4))

=
1
2
[E−α∗ , [E−α, E−β]] (by (PS3) and (PS5)).

It is clear that [E−α, Êβ� ] = 0, (adEα)3Êβ� = 0 and [Êβ� , Eβ] = 0. We see
that

[Êβ� , E−β] =
1
2
[[E−α∗ , E−β], [E−α, E−β]] =

1
4
(adE−β)2[E−α∗ , E−α] = 0.

We see that (adÊβ�)2Eα = nα(adE−β∗)2(−E−α) = 0.
The G

(1)
2 case. Notice that β� := δ − (3α + 2β) = sβsα(−β∗). Then we

have the Dynkin diagram G
(1)
2 :

α β β��< � �



�
�

�
�

�
�

�
�

454 Hiroyuki Yamane

We have

Êβ� = nβnαE−β∗ = nβ

(
1
6
(adE−α)3E−β∗

)
=−1

6
(adnβE−α)2nβ [E−β, E−α∗ ] =

1
6
(ad[E−β, E−α])2E−α∗

It is clear that:
(adEβ)2Êβ� =

1
3
(adE−α)2E−α∗ = 0 .

Notice that:

[[E−α, E−β], [E−α, E−β∗ ]] = [[E−α, E−β], [E−α∗ , E−β]] = nβ [E−α, E−α∗ ] = 0,

and we see:

[E−β, Êβ� ] =
1
6
[[E−β, E−α], [[E−β, E−α], [E−β, E−α∗ ]]] = 0,

[E−α, Êβ� ] = nβnα

[
1
2
[[E−α, [E−α, E−β]], E−β∗ ]

]
=−1

2
nβnα[[E−αE−β], [E−α, E−β∗ ]] = 0,

[Êβ� , Eα] =
1
6
[[[E−β, E−α], [[E−β∗ , E−α], E−α]], Eα]

=
1
6
(−3[E−β, [[E−β∗ , E−α], E−α]] − 4[[E−β, E−α], [E−β∗ , E−α]])

=
1
6
[[E−β∗ , E−α], [E−β, E−α]] = 0

and

(adÊβ�)2Eβ = nβnα(adE−β∗)2
(

1
6
(adE−α)3E−β

)
(by (2.4))

=−1
3
nβnα(ad[E−β∗ , E−α])2[E−β, E−α] (by (PS6))

= 0.

The D
(2)
3 case. Notice that α� = δ − (α + β) = sβ(−α∗). We have the

Dynkin diagram D
(2)
3 :

α� β α� � �< >
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We see that Êα� = [E−β, E−α∗ ]. It is clear that [E−β, Êα� ] = 0 and
(adEβ)2Êα� = 0. It follows from (PS7) that [E−α, Êα� ] = 0 and (adÊα�)3Eβ

= nβ(adE−α∗)3(−E−β) = 0. We have:

[Êα� , Eα]

= [[E−β, E−α∗ ], Eα]

= [E−β, [E−α∗ , Eα]]

= n−1
α

[
1
2
[E−α, [E−α, E−β]],−[E−α∗ , Eα]

]
= n−1

α [[E−α, E−β], E−α∗ ] (by (PS2), (PS3) and (PS7))

= 0 (by (PS7)).

The D
(3)
4 case. Notice that α� = δ−(2α+β) = sαsβ(−α∗). The following

is the Dynkin diagram D
(3)
4 :

α� α β� �< �
We have

Êα� = nαnβE−α∗ = nα[E−β, E−α∗ ]

=
[
1
6
(adE−α)3E−β,

1
2
(adEα)2E−α∗

]
=

3
12

([(adE−α)2E−β, [Eα, E−α∗ ]] + [Eα, [(adE−α)2E−β, E−α∗ ]])

=
1
4
[(adE−α)2E−β, [Eα, E−α∗ ]] (by (PS8))

= [[E−α, E−β], E−α∗ ].

It is clear that [Êα� , Eβ] = 0 and [Êα� , E−α] = 0. It follows that [Êα� , E−β] =
nβ [E−α, E−α∗ ] = 0. We see that (adEα)2Êα� = nα(adE−α)2(nβE−α∗) =
nα(adE−α)2([E−βE−α∗ ]) = 0. We also see that:

ad(Êα�)2Eα

= −nα[[E−β, E−α∗ ], [[E−β, E−α∗ ], E−α]]

= nα[E−α∗ , [E−β, [[E−β, E−α∗ ], E−α]]]]

= nα[E−α∗ , [[E−β, E−α∗ ], [E−β, E−α]]]

= nα

[
E−α∗ ,

1
2
(adE−β)2[E−α∗ , E−α]

]
= 0.
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§3. Root Spaces

Let (Eaf = {α0, . . . , αl}, k) be an affine datum. Recall the affine Lie algebra
KM = KM(Eaf , Πaf) in §2.1. Let ( | ) : KM×KM → C be the same invariant
form as in [K, Theorem 2.2]. Let C[t, t−1] be the Laurent polynomial algebra.
Define the Lie algebra structure on the vector space

L(KM, 1) := KM ⊗ C[t, t−1] ⊕ Cv ⊕ Cw

by

[X1 ⊗ a1(t) + b1v + c1w, X2 ⊗ a2(t) + b2v + c2w]

= [X1, X2] ⊗ a1(t)a2(t) + (X1|X2)Res
(

da1(t)
dt

a2(t)
)

v

−c2X1 ⊗ t
da1(t)

dt
+ c1X2 ⊗ t

da2(t)
dt

,

where Res(
∑

xit
i) = x−1.

Let (E�
af , Πaf = {α0, . . . , αl}, k) be an r.m.e.-datum such that l ≥ 2. Let

k∨(α) := k(α)−1 max{k(α)|α ∈ Πaf}. Let E	
af be the 1 +

∑
k∨(αi) dimensional

C vector space such that

(1) there exists a non-degenerate symmetric form I : E	
af × E	

af → C,
(2) there exist linearly independent elements αi,j ∈ E	

af (0 ≤ i ≤ l, 1 ≤ j ≤
k∨(αi)) such that

(2-1) I(αi,j1 , αi,j2) = 0 if j1 �= j2,
(2-2) I(αi,j , αi,j) = k∨(αi)I(αi, αi),
(2-3) I(αi1,j1 , αi2,j2) = 0 if I(αi1 , αi2) = 0,
(2-4) I((αi1,j1)

∨, αi2,j2) = δj1,j2I((αi1)
∨, αi2) if I(αi1 , αi2) �= 0

and k(αi1) = k(αi2),
(2-5) if I(αi1 , αi2) �= 0 and k∨(αi1) < k∨(αi2), then

I((αi1,j1)
∨, αi2,j2) = I((αi2,j2)

∨, αi1,j1)

=


−1 if k∨(αi1) = 1,
−1 if k∨(αi1) = 2, k∨(αi2) = 4 and j1 − j2 ∈ 2Z,
0 otherwise.

Let Π	
af := {αi,j}. We see that (E	

af , Π
	
af) is an affine datum. Let KM	 :=

KM(E	
af , Π

	
af).
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Being inspired by [P], we have:

Proposition 3.1. Keep the notation as above. Then there exists a ho-
momorphism:

χ : g�(E�
af , Πaf , k) → L(KM	, 1)

such that

χ(E±αi
) =

k∨(αi)∑
j=1

E±αi,j
⊗ 1,

χ(E±α∗
i
) =

k∨(αi)∑
j=1

exp
(
± π

√
−1

k∨(αi)
(2j − 1 − k∨(αi))

)
E±αi,j

⊗ t±k(αi)

and χ(ha) = v, χ(hΛa
) = w, and such that χ(hσ) �= 0 for σ ∈ E�

af \ {0}.

By the same argument as above with G� in place of g�, we also have:

Proposition 3.2. Keep the notation as in the proof of Proposition 2.2.
Then ker θ ∩ h = {0}.

Root spaces of g�. Let g� = g�(E�
af , Πaf , k) be as above. Recall the

element Ĥ
(i)
α∨ of g� from Theorem 1.1, where α ∈ Πaf and i ∈ Z. Define the

subset R of E�
af by

R :=
⋃

w∈W

⋃
α∈Πaf

(w(α) + Zk(α)a),(3.1)

where W is the affine Weyl group 〈sα|α ∈ Πaf〉 (see also (0.1)). By Proposi-
tion 3.1, we see that

[Ĥ(i)
α∨ , Eα] �= 0(3.2)

(α ∈ Πaf ∪ −Πaf) since [[Ĥ(i)
α∨ , Eα], [Ĥ(−i)

α∨ , E−α]] = 8
I(α,α)hα+ik(α)a �= 0. By

Theorem 1.1, Proposition 3.1 and (3.2) and by using the same argument as in
the proof of Lemma 2.3 (see also [SY, §5]), we have:

Proposition 3.3 (See also [Y]). As a C-vector space,

g
� =

( ⊕
β∈R

g
�
β

)⊕ ( ⊕
m,n∈Z

g
�
mδ+na

)
.(3.3)
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It also follows that:

dim g
�
β = 1(3.4)

for β ∈ R, and

g
�
0 = h.(3.5)

In particular, dim g
�
0 = l + 4. Moreover, for β ∈ R, there exist α ∈ Πaf , i ∈ Z

and αi1 , . . . , αiu
∈ Πaf such that

g
�
β = Cnαi1

· · ·nαiu
[Ĥ(i)

α∨ , Eα].

We introduce the Lie algebra g�, which was mentioned in Introduction.

Definition 3.1 (See also Introduction). Keep the notation as above.
Assume l ≥ 2. Let B := {α, −α, α∗, −α∗ |α ∈ Πaf}, xµ,ν := min{n ∈
N|nµ + ν /∈ R ∪ Ca} and A := { (α, β, y) ∈ Πaf × Πaf × N |α �= β, I(α, β) �=
0, k(α)y = k(β) }. Define the Lie algebra g� with generators:

hσ (σ ∈ E), Eµ (µ ∈ B)

and defining relations:



xhσ + yhτ = hxσ+yτ for x, y ∈ C and σ, τ ∈ E ,
[hσ, hτ ] = 0 for σ, τ ∈ E ,
[hσ, Eµ] = I(σ, µ)Eµ for σ ∈ E and µ ∈ B,
[Eµ, E−µ] = hµ∨ for µ ∈ B,
(adEµ)xµ,ν Eν = 0 for µ, ν ∈ B with µ + ν �= 0,
(adE±α∗)yE±β = (adE±α)yE±β∗ for (α, β, y) ∈ A,
(adE±α)i(adE±α∗)y−iE±β = 0 for (α, β, y) ∈ A and 1 ≤ i ≤ y − 1.

(3.6)

The following theorem was also mentioned in Introduction.

Theorem 3.1. Assume l ≥ 2. There exists an isomorphism ψ : g� →
g� such that ψ(hσ) = hσ and ψ(Eµ) = εµEµ for some εµ = ±1.

Proof. The existence of the homomorphism ψ is clear. By Proposition 3.3,
we see that the inverse map ψ−1 exists.
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Invariant form and a maximality theorem. Keep the notation as above.
We shall also denote by ( | ) the invariant form on KM	 defined by:

(X1 ⊗ a1(t) + b1v + c1w|X2 ⊗ a2(t) + b2v + c2w)

= (X1|X2)Res(ta1(t)a2(t)) + b1c2 + b2c1.

We shall also denote by ( | ) the invariant form on g� defined by the composition
of the above ( | ) and χψ−1 × χψ−1. Then we have:

(hσ|hτ ) = I(σ, τ ) (σ, τ ∈ E�
af)(3.7)

and

ker( | ) ⊂
⊕

m, n∈Z

(m,n)�=(0,0)

g
�
mδ+na.(3.8)

Theorem 3.2. Assume that l ≥ 2 and Γaf(Eaf , Πaf) is not A
(1)
l (see §1

and notice Γ(R, G) �= A
(1,1)
l (see §4 and Appendix)). Let g
 = g
(E�

af , Πaf , k)
be a Lie algebra satisfying:

(1) g
 has the same properties as (3.3)–(3.5) with g
 in place of g�,
(2) g
 is generated by h and g


µ with µ ∈ B,
(3) There exists an invariant form on g
 having the same properties as in

(3.7)–(3.8).

Then there exists an epimorphism η : g� → g
 such that η(hσ) = hσ for σ ∈ E�
af .

Proof. By a well-known argument (see [K, Theorem 2.2]), we can choose
basis elements Eµ of g


µ with µ ∈ B so that [Eµ, E−µ] = hµ∨ . Then Eµ’s
satisfy the same equalities as (3.6) except for the sixth one. Notice nµ =
n((Eµ, hµ∨ ,−E−µ)) ∈ Aut(g
) can be defined for µ ∈ B (see §2.2). Assume
that (α, β, y) ∈ A (see (3.6)). Assume that if y = 1, then I(α∨, β) = −1. Then
we have:

nα∗E±β = c±1
α,βnαE±β∗(3.9)

for some cα,β ∈ C \ {0}. We can normalize E±γ∗ so that cα,β = 1 hold for all
α, β. Then the equality (3.9) is nothing but the sixth one. This completes the
proof.
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§4. Relations with Elliptic Root Basis

Here we recall the notion of the elliptic diagram [S, (5,2)]. Let (E�
af , Πaf , k)

be an r.m.e.-datum, where Πaf = {α0, . . . , αl}. In this section, as in the pre-
vious sections, we assume that l ≥ 2. Recall the positive integers x0, . . . , xl

from §1. If α ∈ Πaf is αi, let xα := xi and mα := I(α, α)xα/k(α). Let
mmax := max{mα|α ∈ Πaf} and Πmax := {α ∈ Π|mα = mmax}. For a subset
S of Πaf , let S∗ := {α∗|α ∈ S}. Let Γ(R, G) := Πaf ∪ Π∗

max. The Γ(R, G) is
called the elliptic root basis (see also [SY, (2.4)]).

Following [S], we define the elliptic diagram (which we shall identify with
the elliptic root basis Γ(R, G)) by the following rule:

(i) the vertices are in one-to-one correspondence with the elements of
Γ(R, G),

(ii) the bond and arrow between the two vertices α, β ∈ Γ(R, G) is defined
in the usual manner (see [K, §4.8]), except for the additional convention: a
double dotted bond � � if I(α, α) = I(β, β) = I(β, α) > 0.

We shall give the list of the elliptic diagrams in Appendix. Following [S]
and [ST], we shall also use the following convention:

t
� �� =

t−1
� �� =


� � if t = 1,� �> if t = 2,� �> if t = 3.

For a subset S of Πaf , let Γ(R, G; S) := Γ(R, G) ∩ (S ∪ S∗). We shall
identify Γ(R, G; S) with the subdiagram of the elliptic diagram Γ(R, G) formed
by the vertices in Γ(R, G; S) and the bonds and arrows between them.

Definition 4.1. Keep the notation as above. Assume l ≥ 2. Let gΓ(R,G)

be the Lie algebra defined by the generators:

hσ (σ ∈ E�
af), Eα, E−α (α ∈ Πaf), Eα∗ , E−α∗ (α ∈ Πmax)(4.1)

and the defining relations (see Warning below):

(1 ≤ j ≤ 9)

{
The same relations as the ones among (Sj) expressed
only by the same symbols as (4.1),

(BSj)
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[Eα∗ , [Eα, Eβ]] = 0, [E−α∗ , [E−α, E−β]] = 0

if Γ(R, G; {α, β}) =
α β

α∗

s
� �
�
�
���

�
��

with s = 1, 2, 3,

(BS10)



[[Eα∗ , Eβ], [Eα, Eβ]] = 0, [[E−α∗ , E−β], [E−α, E−β]] = 0

if Γ(R, G; {α, β}) =
α β

α∗

s
� �
�
�
���

�
��

with s = 2, 3,

(BS11)



[(adEβ)−I(β∨,α)Eα, (adEβ∗)−I(β∨,γ)Eγ ] = 0,

[(adE−β)−I(β∨,α)E−α, (adE−β∗)−I(β∨,γ)E−γ ] = 0,

if Γ(R, G; {α, β, γ}) =
α β γ

β∗

s t
� � �

�
�
�

�
� ��

������
with s, t = 1, 2±1, 3±1.

(BS12)

Warning: Here we make comments on the above (BSj).
(1) Needless to say, for 1 ≤ j ≤ 9, (BSj) does not include a relation

corresponding to one of (Sj) expressed by symbols including Eα∗ or E−α∗ with
α /∈ Πmax.

(2) For 5 ≤ j ≤ 8, (BSj) uses the condition with a counting function k,
but a unique counting function is associated with the elliptic diagram Γ(R, G).
The k is obtained uniquely from the Γ(R, G) in the following way:

(i) If Γ(R, G; {α, β}) =
α β� � ,

α β

α∗

� �
�
�
�� or

α β

α∗ β∗

� �
� �
�
���
�� , then

k(α) = k(β).

(ii) Assume that Γ(R, G; {α, β}) =
α β

α∗

s
� �
�
�
���

�
��

. If s = 1, 2 or 3, then
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k(β) = k(α). If s = 2−1, 3−1, then k(β) = s−1k(α).

(iii) Assume that Γ(R, G; {α, β}) =
α β

α∗ β∗

2
� �
� �
�
���
���

�

�
�����

. If I(α∗, µ) = 0 for all

µ ∈ Γ(R, G) \ Γ(R, G; {α, β}), then k(β) = 2k(α). If I(β∗, µ) = 0 for all
µ ∈ Γ(R, G) \ Γ(R, G; {α, β}), then k(β) = k(α).

(3) Denote (BS12) by (BS12)α,β,γ to clarify α, β, γ. Then (BS12)γ,β,α

is redundant; the relations in (BS12)γ,β,α are obtained from (BS12)α,β,γ and
(BSj) (1 ≤ j ≤ 11). See (2) of the proof of Proposition 4.2.

We define the elements E±α∗ of gΓ(R,G) for α /∈ Πmax in the following way.
By seeing the list of the elliptic diagrams in Appendix, we see that there exists
a unique subset S = {β1, . . . , βp} of Πaf such that βp = α, and

Γ(R, G; S) =
β1 β2 β3 βp−1 βp

β∗
1

s
� � � � �
�
�
���

�
��

with s = 1, 2±1, 3±1. Then, using an induction, we define:

E±α∗ := (−1)M (adE∓βp−1)
M (adE±β∗

p−1
)ME±α ∈ g

Γ(R,G),(4.2)

where M := −I(β∨
p−1, α).

Recall the Lie algebra g� = g�(E�
af , Πaf , k) from Definition 1.2.

Theorem 4.1. Keep the notation as above. Assume l ≥ 2. Then there
exists a unique isomorphism Ω : g� → gΓ(R,G) such that Ω(hσ) = hσ (σ ∈ E�

af),
Ω(E±α) = E±α, Ω(E±α∗) = E±α∗ (α ∈ Πaf).

The proof shall be given at the end of this section.

Keep the notation as above. Let S be a subset of Πaf . Let gΓ(R,G;S) be
the Lie algebra defined by the generators hσ (σ ∈ E�

af), E±µ (µ ∈ Γ(R, G; S))
and the same defining relations as (BSj) (1 ≤ j ≤ 12).
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Lemma 4.1. Keep the notation as above. Let α, β ∈ Πaf be such that
α �= β. Let S := {α, β} and µ ∈ Γ(R, G; S). Then C := (Eµ, hµ∨ , E−µ) is a
locally finite sl2-triple in gΓ(R,G;S).

Proof. We may assume that I(α, β) �= 0 and Γ(R, G; S)∩S∗ �= ∅. Assume
Γ(R, G; S) = S ∪ S∗. It is clear that gΓ(R,G;S) = g(�;S). The lemma for
the S follows from Lemma 2.2 and Proposition 2.2. So we may assume that
Γ(R, G; S) = S∪{α∗}. Moreover we may assume that 3k(α) = k(β); otherwise
the lemma is clear from the relations (BSj). Let Ê±α� := nαnβE∓α∗ . Since
E±α∗ = n−1

β n−1
α Ê∓α� , gΓ(R,G;S) is generated by hσ, E±α, E±β and Ê±α� .

Using the same argument as in the D
(3)
4 case in §2.3, we see that Ê±α� is

locally nilpotent. Hence E±α∗ are locally nilpotent, which completes the proof
immediately.

Proposition 4.1. Let µ ∈ Πaf ∪Π∗
af and C := (Eµ, hµ∨ , E−µ). Then C

is a locally finite sl2-triple of gΓ(R,G).

Proof. If µ ∈ Γ(R, G), the proposition follows immediately from
Lemma 4.1. Assume µ /∈ Γ(R, G), i.e., µ = α∗ for some α ∈ Πaf \ Πmax.
Recall the definition of E±µ = E±α∗ from (4.2). By Lemmas 2.1 and 4.1 and
by an induction on p, we see that

E±µ = n−1
βp−1

nβ∗
p−1

E±α,(4.3)

where nν := n((Eν , hν∨ , E−ν)) (ν = βp−1, β∗
p−1), and we also see that E±µ are

locally nilpotent since E±α are locally nilpotent.

For µ ∈ Πaf ∪ Π∗
af , let n±µ := n((E±µ, h±µ∨ , E∓µ)) ∈ Aut(gΓ(R,G)). The

n±µ can be defined owing to the proposition above.

Proposition 4.2. Let S be a subset of Πaf such that S∗ ∩ Γ(R, G) �= ∅
and Γ(R, G; S) is connected. Then there exists an epimorphism Ω(S) : g(�;S) →
gΓ(R,G;S) such that Ω(S)(hσ) = hσ (σ ∈ E�

af) and Ω(S)(E±µ) = E±µ (µ ∈
S ∪ S∗).

Proof. We shall complete the proof after proving the proposition for some
special S’s.

(1) Γ(R, G; S) =
α β

α∗

s
� �
�
�
���

�
��

with s = 1, 2±1, 3±1. Let M := −I(α∨, β).
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By Lemma 2.1 and Proposition 4.1, we have nµE±β = (adE±µ)ME±β for
µ = α, α∗. We can easily see that

[E±α, nα∗E±β] = 0 and [nαE±β, nα∗E±β] = 0

by checking directly them for each s; for example, use (BS10-11) if s ≥ 1; if
s = 3−1, we have

6−2[nαEβ, nα∗Eβ] = [(adEα)3Eβ, (adEα∗)3Eβ] = (adEα∗)3[(adEα)3Eβ, Eβ]

= (adEα∗)3[[Eα, Eβ], (adEα)2Eβ]

= 0 (by (BS7)).

Since E±β∗ = n−1
α nα∗E±β (see (4.3)), we have [E±β, E±β∗ ] = 0, and by the

same formula as (2.2), we have [E∓α, E±β∗ ] = 0. By Lemma 2.1, we have
(adE∓β)3E±β∗ = 0, (adE∓β∗)3E±β = 0, (adE±α)ME±β∗ = 0 and
(adE±β∗)−I(β∨,α)E±α = 0, which completes the proof of the proposition for
the present S.

(2) Γ(R, G; S) =
α β γ

β∗

s t
� � �

�
�
�

�
� ��

������
with s, t = 1, 2±1, 3±1. Let g(µ)

be the subalgebra of gΓ(R,G;S) generated by E±µ and E±µ∗ , where µ is α

or γ. Using an argument similar to that in (1), we see that it suffices to
show [g(α), g(γ)] = 0, and, by (BS12), we see that [E±α, g(γ)] = 0. Hence
[E±α∗ , g(γ)] = [n−1

β nβ∗E±α, g(γ)] = n−1
β nβ∗ [E±α, g(γ)] = 0, where we can show

n−1
β∗ nβg(γ) = g(γ) using Ω({β,γ}) of this proposition and using Proposition 2.2

and Lemma 2.2.

(3) Γ(R, G; S) =
α β

α∗ β∗

s
γ

t
� �
� �
�
���
���

�

�
����� ��

��
�

�� ��

�
��

�
��

with s, t = 1, 2±1. Use an argument

similar to (2).

(4) Γ(R, G; S) =
α β γ

α∗

s
� � �
�
�
���

�
��

with s = 1, 2±1, 3±1. We first show
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that

[E±β∗ , [E±β, E±γ ]] = 0.(4.4)

Using the relations (BSj) and an argument similar to that in (1), we see that
if s = 1, 2 or 3, then

0 = [[[Eα, [Eα∗ , Eβ]], Eγ ], Eβ]

= [[Eα, [Eα∗ , [Eβ, Eγ ]]], Eβ]

= [[Eα, Eβ], [Eα∗ , [Eβ, Eγ ]]] + [Eα, [[Eα∗, Eβ], [Eβ, Eγ ]]]

= [[Eα, Eβ], [[Eα∗ , Eβ], Eγ ]] + [[Eα∗, Eβ], [[Eα, Eβ], Eγ ]]

= 2[[Eα∗ , Eβ], [[Eα, Eβ], Eγ ]] (by (BS11))

= 2[nα∗Eβ, [nαEβ, Eγ ]]

= 2nα[Eβ∗ , [Eβ, Eγ ]]

and that if s−1 = 2 or 3, then letting c := s−1, we have:

0 = (adEα)c−1(adEα∗)cnβ [Eα, Eγ ]

= (adEα)c−1(adEα∗)c[[Eβ, Eα], [Eβ, Eγ ]]

= (adEα)c−1(adEα∗)c[Eβ, [[Eβ, Eα], Eγ ]]

=−[(adEα∗)cEβ, [(adEα)cEβ, Eγ ]]

=−(c!)2[nα∗Eβ, [nαEβ , Eγ ]]

=−(c!)2nα[Eβ∗ , [Eβ, Eγ ]].

Similarly we have [E−β∗ , [E−β, E−γ ]] = 0. Thus we have (4.4). Using (4.4)
and arguments similar to those in (1) and (3), we get the proposition for the
present S.

(5) Γ(R, G; S) =
β1 β2 β3 βp−1 βp

β∗
1

s
� � � � �
�
�
���

�
��

with s = 1, 2±1, 3±1.

This can be done by iterating the argument in (4).
(6) We can complete the proof of the proposition for a general S easily by

using the list of the elliptic diagrams in Appendix and using the arguments in
(1)–(5).
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Proof of Theorem 4.1. It is clear from Proposition 4.2 that the homo-
morphism Ω of the statement exists. Recall Proposition 3.3. Notice that no
non-zero weight space of g� contains an element corresponding to a relation in
(BSj) (10 ≤ j ≤ 12). Then there exists the homomorphism Ξ : gΓ(R,G) → g�

such that Ξ(hσ) = hσ (σ ∈ E�
af) and Ξ(E±µ) = E±µ (µ ∈ Γ(R, G)). Us-

ing the relation (S5) and an argument similar to that for (4.3), we see that
Ξ(E±ν) = E±ν (ν ∈ Π∗

af \ Γ(R, G)). Clearly Ξ is the inverse map of Ω. �

Appendix

Definition of an r.m.e.-root System

Keep the notation as in the fourth paragraph of Introduction. For a sub-
space X of E , let X⊥ be the subspace of E of the elements y satisfying the
condition that I(x, y) = 0 for all x ∈ X . For a subset S of E and an additive
subgroup A of C, denote by QA(S) the A submodule of E generated by the
elements of S.

Let R be a subset of E . Assume that I(x, x) �= 0 for any x ∈ R. We say
that R is an elliptic root system if:

(r1) dimC QC(R) = l + 2 = rankZ QZ(R) and dimC QC(R) ∩ QC(R)⊥ = 2,

(r2) I(x∨, y) ∈ Z for x, y ∈ R; and I(σ,σ)
I(x,x) ∈ R+ for all x ∈ R and all

σ ∈ QZ(R),

(r3) sx(R) = R for all x ∈ R,

(r4) There exists no subspace X of E such that (X ∩ R) ∪ (X⊥ ∩ R) = R,
(X ∩ R) �= ∅ and (X⊥ ∩ R) �= ∅.
Here we call l the rank.

Let R be an elliptic root system. A one dimensional subspace G of QC(R)∩
QC(R)⊥ is called a marking if QQ(R) ∩ G �= {0}. The pair (R, G) of such R

and G is called a marked elliptic root system.
We say that a marked elliptic root system (R, G) is reduced if 2y − x /∈ G

for all x, y ∈ R. In this paper, the terminology “a reduced marked elliptic root
system” has been abbreviated to an r.m.e.-root-system.

An r.m.e.-root-system (R, G) is called simply-laced if Γ(R, G) is A
(1,1)
l with

l ≥ 2, D
(1,1)
l with l ≥ 4 or E

(1,1)
l with l = 6, 7, 8 (see the table below).

Table of the elliptic diagrams with l ≥ 2

Convention: In the following, we use the convention below:
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� �A(1)

� �
:= � �

� �
�
���
��

�
��� �

�
�

���

αi αj αi αi+1 αj

α∗
i α∗

j α∗
i α∗

i+1 α∗
j

(0 ≤ i ≤ j ≤ l).

A
(1,1)
l (l ≥ 2)

� �A(1)

� ��� �

�

�

	


�

�

�

α0 αl

α∗
0 α∗

l

B
(1,1)
l (l ≥ 3)

α1

α0

�
�
�
���
��

α2 αl−1

α∗
2 α∗

l−1

� �A(1)

� �
αl

2

���

				


���

B
(1,2)
l (l ≥ 3)

α1

α0

�
�
�
���
��

α2 αl−1

α∗
2 α∗

l−1

� �A(1)

� �
αl

α∗
l

2
�
�

�
�� �
��

�

�

�
�����

B
(2,1)
l (l ≥ 2)

α0

2

�		

����

		�

α1 αl−1

α∗
1 α∗

l−1

� �A(1)

� �
αl

2

���

				


���

B
(2,2)
l (l ≥ 2)

α0

α∗
0

2
�
�
�
���
��

�

�

�
�����

α1 αl−1

α∗
1 α∗

l−1

� �A(1)

� �
αl

α∗
l

2
�
�

�
�� �
��

�

�

�
�����

C
(1,1)
l (l ≥ 2)

α0

α∗
0

2
�
�
�
���
��

�

�
�
���
��

α1 αl−1

α∗
1 α∗

l−1

� �A(1)

� �
αl

α∗
l

2
�
�

�
�� �
��

�

�
�

���
��

C
(1,2)
l (l ≥ 2)

α0

2

�		

��

		

���

α1 αl−1

α∗
1 α∗

l−1

� �A(1)

� �
αl

2

���

		

��
		�

C
(2,1)
l (l ≥ 3)

α1

α0

�
�
�
���
��

α2 αl−1

α∗
2 α∗

l−1

� �A(1)

� �
αl

α∗
l

2
�
�

�
�� �
��

�

�
�

���
��

C
(2,2)
l (l ≥ 3)

α1

α0

�
�
�
���
��

α2 αl−1

α∗
2 α∗

l−1

� �A(1)

� �
αl

2

���

		

��
		�

B
(2,2)∗
l (l ≥ 2)

α0

2

�		

����

		�

α1 αl−1

α∗
1 α∗

l−1

� �A(1)

� �
αl

α∗
l

2
�
�

�
�� �
��

�

�

�
�����
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C
(1,1)∗
l (l ≥ 2)

α0

2

�		

��

		

���

α1 αl−1

α∗
1 α∗

l−1

� �A(1)

� �
αl

α∗
l

2
�
�

�
�� �
��

�

�
�

���
��

BC
(2,1)
l (l ≥ 2)

α0

α∗
0

2
�
�
�
���
��

�

�
�
���
��

α1 αl−1

α∗
1 α∗

l−1

� �A(1)

� �
αl

2

���

				


���

BC
(2,4)
l (l ≥ 2)

α0

2

�		

��

		

���

α1 αl−1

α∗
1 α∗

l−1

� �A(1)

� �
αl

α∗
l

2
�
�

�
�� �
��

�

�

�
�����

BC
(2,2)
l (1) (l ≥ 2)

α0

2

�		

��

		

���

α1 αl−1

α∗
1 α∗

l−1

� �A(1)

� �
αl

2

���

				


���

BC
(2,2)
l (2) (l ≥ 2)

α0

α∗
0

2
�
�
�
���
��

�

�
�
���
��

α1 αl−1

α∗
1 α∗

l−1

� �A(1)

� �
αl

α∗
l

2
�
�

�
�� �
��

�

�

�
�����

D
(1,1)
l (l ≥ 4)

α1

α0

�
�
�
���
��

α2 αl−2

α∗
2 α∗

l−2

� �A(1)

� �
αl−1

αl

�
�

�
�� �
��

E
(1,1)
6

α0 α6

α3 α4 α5

α∗
3 α2 α1

� �		

��

�
� � �

� �
�

�� �
��

E
(1,1)
7

α7

α4 α3 α2 α1

α∗
4 α5 α6 α0

�		

��

�
� � � �

� � �
�

�� �
��

E
(1,1)
8

α8

α5 α6 α7

α∗
5 α4 α3 α2 α1 α0

�		

��

�
� � �

� � � � �
�

�� �
��

F
(1,1)
4

α0 α1 α3 α4

α2

α∗
2

� �		

��

�
�2

� ���

				


���

F
(1,2)
4

α0 α1 α2

α3

α∗
3

α4� � �		

��

�
�2

���

		

		

���

F
(2,1)
4

α0 α1 α2

α3

α∗
3

α4� � �		
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Table of the elliptic diagrams with l = 1
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� � = � �< > and
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� �� = � �〉 .
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