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A BPE Model for the Burgers Equation

By

Shigeyoshi Ogawa
∗ and Arturo Kohatsu-Higa

∗∗

Abstract

We study the BPE (Brownian particle equation) model of the Burgers equation
presented in the preceding article [6]. More precisely, we are interested in establishing
the existence and uniqueness properties of solutions using probabilistic techniques.

§1. BPE Model for the Burgers Equation

In this article, we are concerned with the stochastic representation for the
Burgers equation. For this purpose we presented in the preceding article [6]
the two BPE models, one of which is as follows;

∂tu(t, x) + εẆ∂xu(t, x) =
1
ε
f(u(t, x))Ẇ , f(x) = x2

u(0, x) = u0(x).

Here t ∈ [0, T ], x ∈ IR, u(t, x) = E(u(t, x)) and Ẇ denotes the white noise
process. We already know by [6] (see Theorem 2.1) that for f regular (smooth
with bounded derivatives) this problem has one and only one solution. This
requirement is needed so that one can use classical results in the theory of PDEs.

Here, we would like to establish the result for f(x) = x2 via a probabilistic
method so as to make the discussion self-contained and this is the principal ob-
jective of the present note. More precisely, we are to show that the solution can
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488 Shigeyoshi Ogawa and Arturo Kohatsu-Higa

be constructed through a system of stochastic integral equations that can be ob-
tained by applying the method of stochastic characteristics to the Cauchy prob-
lem (1). We will in general present a heuristic solution for the following equation

∂tu(t, x) + (a + σẆ )∂xu(t, x) = νf(u(t, x))Ẇ , f(x) = x2(1)

u(0, x) = u0(x).

For two smooth coefficients a and σ. In particular the above example will follow
from using a = 0, σ = ε and ν = 1/ε.

A different stochastic representation has been obtained by Bossy and Talay
[1], [2].

§2. Preliminaries – Noncausal Stochastic Calculus

Since the stochastic integral of noncausal type, introduced by S.Ogawa in
1979 [11], plays an essential role in the BPE theory, we will briefly introduce
it following [7] so that the discussion is self-contained. For more details of the
noncausal calculus we refer the reader to [7], [9].

§2.1. Causal functions and B-differentiability

In Itô’s theory, the stochastic integral, say with respect to the Brownian
motion {Wt(ω); t ∈ [0, T ]}, denoted by

∫
f(t, ω)d+Wt, is defined only for inte-

grands f(t, ω) that are causal (or non anticipative) with respect to the history
of the Brownian motion. Namely, f(t, ω) is supposed to be adapted (sometimes
also called “causal”) to the filtration {Ft, t ≥ 0} where the Ft = σ{Ws; 0 ≤
s ≤ t}. In many situations one meets problems of noncausal character, there-
fore there is a need for another theory of stochastic calculus which is free from
the restriction of causality. The noncausal calculus is one of such theories.

In what follows, we will fix the probability space (Ω,F , P ) on which is
defined the IR-valued Brownian motion. We denote by H the totality of all
random functions f(t, ω), measurable in (t, ω) with respect to the field B(IR+)⊗
F , such that P{

∫ T

0
|f(t, ω)|2dt < ∞} = 1, and by M+

p is the subset of H
containing all Lp-causal random functions, that is, the set of functions f(t, ω)
such that they are;

(M.1) measurable in (t, ω) with respect to the field B(IR+) ⊗ F , and
especially

(M.2) adapted to the family of σ-fields {Ft}, where Ft = σ{Ws;
0 ≤ s ≤ t},

(M.3) and has finite moments of order p, E(
∫ T

0
|f(t, ω)|pdt) < ∞.
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An H-class random function g(t, ω) is said to be differentiable in Lp(Ω)
with respect to the Brownian motion Wt (or B+

p -differentiable) provided that
supt E|g(t)|p < ∞ and there exists an M+

p -class random function say ĝ(t, ω)
such that, for any small enough h > 0,

sup
t,s,|t−s|<h

E|g(t, ω) − g(s, ω) −
∫ t

s

ĝ(r, ω)d+Wr|p = o(hp/2)

where the integral
∫
·d+W stands for Itô’s stochastic integral. The function

ĝ(r, ω) is called the B+
p -derivative1 of g and denoted by ∂+g

∂W (r) . It is not difficult
to see that if the function g(t, ω) is B+

p -differentiable then its B+
p -derivative is

uniquely determined as soon as its derivative is in L2([0, T ] × Ω)(see [12]) and
that it satisfies a chain rule when g is adapted. That is, let f ∈ C2 with bounded
second derivative and g be B+

p differentiable for p ≥ 4, then the B+
p/2-derivative

of f(g) exists and we have

∂+f(g)
∂W (r)

= f ′(g(r))
∂+g

∂W (r)
.

The proof of this assertion is not difficult to obtain if one uses Ito’s formula
appropriately. The B+

p -differentiability of the random function with respect to
the multi-dimensional Brownian motion is defined in a similar way. Also one can
define similarly the processes adapted to the filtration of the backward Wiener
process, which we will denote by M−

p . The backward stochastic integral will
be denoted by

∫
·d−Ws. Then one defines the B−

p -derivative with respect to

backward integration and in such a case one denotes it by ∂−g
∂W (r) .

Note. The notion of B-derivatives and the notations ∂+

∂Wt
, ∂−

∂Wt
were first

introduced by S. Ogawa in [13], and later in [6], [7]. But the definition of the
∂−

∂Wt
given in those papers is slightly different from the one given here.

§2.2. Noncausal stochastic integral

Given a random function f(t, ω) ∈ H and an arbitrary complete orthonor-
mal system {φn} in L2([0, T ]), we consider the formal random series

∞∑
n

∫ T

0

f(t, ω)φn(t)dt ×
∫ T

0

φn(t)dWt.

The stochastic integral of noncausal type was introduced by S. Ogawa in
1979 [11], in the following form:

1The notion of the B+
p -derivative is different from the “stochastic derivative” which was

introduced by A. Skorokhod
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Definition 1. A random function f(t, ω) ∈ H is said to be integrable
with respect to the basis {φn} (or φ-integrable) when the random series above
converges in probability and the sum, denoted by

∫ T

0
f(t, ω)dφWt, is called the

stochastic integral of noncausal type with respect to the basis {φn}.

Obviously when f ∈ M+
p for some p > 0, then the above integral and the

stochastic Ito integral coincide.

§2.3. Relation between symmetric and noncausal integrals

We call a random function, f(t, ω), a semimartingale, when it admits the
decomposition f(t, ω) = a(t, ω)+

∫ t

0
f̂(s)d+Ws where f̂ ∈ Lp([0, T ]×Ω) for some

p ≥ 2 and a(·) is such that almost every sample path is of bounded variation in
t over [0, T ]. Notice that if sup

t∈[0,T ]

E|a(t)|p < ∞ and sup
t,s|t−s|<h

E|a(t) − a(s)|p =

o(hp/2) then f is B+
p -differentiable. Note that a does not need to be adapted

to the filtration in order to have that f is B+
p -differentiable and ∂+f

∂W (t) = f̂(t).
Next we give some basic results about the relation between the symmetric

integrals and the noncausal integral. Let H denote the Haar basis.

Theorem 2 ([10]). Every causal B+
p -differentiable function (for some

p > 0) is integrable in noncausal sense with respect to the system of Haar
functions and the integral coincides with that of the symmetric integral of the
same function. That is,∫ T

0

f(s)dHWs =
∫ T

0

f(s)d+Ws +
1
2

∫ T

0

∂+f

∂W (s)
ds.

A similar relationship is satisfied if f is adapted with respect to the back-
ward filtration except that the stochastic integral becomes the backward sto-
chastic integral which we denote by

∫
d−W and the Lebesgue integral term has

a negative sign in front. The advantage of the above representation is that the
integral on the left side of the above equation is always well defined and that we
can use it in various situations without having to explain which integral we are
using. One can generalize the above integrals to a broader class of basis. We
say that a c.o.n.s. {φn} is regular provided that it satisfies the next condition:

sup
n

∫ T

0

|un(s)|2ds < ∞, un(t) =
∑
k≤n

φk(t)
∫ t

0

φk(s)ds.

Theorem 3 ([10]). Every semimartingale (causal or not) is φ-integra-
ble, iff the basis {φn} is regular. In this case, the noncausal integral coincides
with the symmetric integral.
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From now on we denote the above integral by
∫
·dφW and we will always

assume that the basis {φn} is regular. Furthermore, we also have the following
two equalities∫ T

0

f(s)dφWs =
∫ T

0

f(s)d+Ws +
1
2

∫ T

0

∂+f

∂W (s)
ds, if f ∈ M+

p for some p > 0,

∫ T

0

f(s)dφWs =
∫ T

0

f(s)d−Ws −
1
2

∫ T

0

∂−f

∂W (s)
ds, if f ∈ M−

p for some p > 0.

§3. Description of The Stochastic Representation

In this section we give the main theorem where the method of stochastic
characteristics is applied to the case of linear BPEs. This idea could eventually
be used to solve a hyperbolic-type stochastic partial differential equation. From
now on we denote the essential supremum norm by | · |∞.

Another important ingredient in the description of the stochastic repre-
sentation is the solution of the stochastic equation

X(t,x)
s = x−

∫ t

s

a
(
u, X(t,x)

u

)
du−

∫ t

s

σ
(
u, X(t,x)

u

)
dφWu (0 ≤ s ≤ t ≤ T, x ∈ IR).

The solution X exists for Lipschitz coefficients. If the coefficients are
smooth with bounded derivatives then its density function pt,x(s, y) exists, is
smooth and has an upper bound of Gaussian type due to the uniform ellipticity
of σ. That is, for s < t ≤ T and any α, β ∈ IN, there exists a positive constant
M = M(α, β) such that we have (see [3], page 261 for details)

∣∣∣∣∂α+βpt,x

∂xα∂yβ
(s, y)

∣∣∣∣≤ M exp
(
− |x−y|2

M(t−s)

)
√

2π(t − s)(α+β+1)/2
,(2)

∣∣∣∣∂α+βpt,y+x(s, y)
∂xα∂yβ

∣∣∣∣≤ M exp
(
− |x|2

M(t−s)

)
√

2π(t − s)(α+1)/2
.

We assume without loss of generality that the constant M is increasing in α

and β. Furthermore p satisfies the parabolic PDE

∂pt,x

∂t
(s, y) =

σ2(t, x)
2

∂2pt,x

∂x2
(s, y) + b(t, x)

∂pt,x

∂x
(s, y),(3)

where b(t, x) = a(t, x) − 1
2σσ′(t, x).

Theorem 4. Suppose that the initial data u0(x) satisfies the condition,

u0 ∈ C2 and that |u0|∞ + |u′
0|∞ + |u′′

0 |∞ < C(0).
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Furthermore suppose that a(t, ·), σ(t, ·) ∈ C∞
b (IR) uniformly in t ∈ [0, T ] and

that there exists positive constants c0 and c such that for all (t, x) ∈ [0, T ]× IR,
|σ(t, x)| ≥ c0 > 0 and |σ(t, ·)|∞ + |σ′(t, ·)|∞ < c. Then if cνC(0)M3/2(2, 2) is
small enough then the integral equations

u(t, x) = u0(X
(t,x)
0 ) + ν

∫ t

0

u(s, X(t,x)
s )2dφWs(4)

have only one global solution u. The average of u, u(t, x) = Eu(t, x) solves the
following Cauchy problem for the Burgers equation:

∂u

∂t
+ νσ(t, x)

∂u2

∂x
(t, x) =

σ(t, x)2

2
∂2u

∂x2
(t, x) + b(t, x)

∂u

∂x
(t, x)(5)

u(0, x) = u0(x).

M is a constant that will depend on the smoothness of the coefficients a and
σ as well as in the constant c0. The restriction on the size of cνC(0)M3/2(2, 2)
can be explicitly characterized but as it depends on other constants that appear
later in the proofs we will state it explicitly in the proof of Lemma 6.

Note that in the above theorems the integral
∫
·dφWs is the stochastic

integral of noncausal type which, applied to the causal (or non anticipating)
integrand, coincides with the integrals of symmetric type (i.e. the so called
Stratonovich’s integral or the I1/2 integral introduced by S. Ogawa [13]). Sup-
pose that f(u)(t, x) = f(E(u(t, x))) is twice differentiable in x with bounded
second derivative, then we have the next relation, as X

(t,x)
· ∈ M−

p , for any
p > 0

∫ t

0

f(u)
(
s, X(t,x)

s

)
dφWs

=
∫ t

0

f(u)
(
s, X(t,x)

s

)
d−Ws −

1
2

∫ t

0

∂−f(u)(·, X(t,x)
· )

∂W (s)
ds.

We easily see from the equations above that the B−
p -derivative of the integrand

is given by the following (using the chain rule)

∂−f(u)(·, X(t,x)
· )

∂Ws
=

(
f ′(u)

∂u

∂x

)
(s, X(t,x)

s )
∂−X

(t,x)
·

∂Ws

=
(

f ′(u)
∂u

∂x
σ

)
(s, X(t,x)

s ).
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Therefore ∫ t

0

f(u)(s, X(t,x)
s )dφWs

=
∫ t

0

f(u)(s, X(t,x)
s )d−Ws −

1
2

∫ t

0

f ′(u)
∂u

∂x
σ(s, X(t,x)

s )ds.

§4. Proof of the Main Theorem

From now we use the following notation for the constants which will be
fixed throughout the proof. In particular, we fix |σ|∞ + |σ′|∞ < c, |u0|∞ +
|u′

0|∞ + |u′′
0 |∞ < C(0). We carry out this proof in several steps:

§4.1. Successive approximation

For the construction of the solution we apply the Picard’s method to our
integral equations. Let {uk} be a sequence of random functions defined induc-
tively by

uk+1(t, x) = u0(X(t,x)(0)) + ν

∫ t

0

u2
k(s, X(t,x)(s))dφWs (k ≥ 0),(6)

where u0(t, x) = u0(x).

The following lemma states some simple differentiability properties of ūk(t, x) =
E(uk(t, x)) in order to be able to apply the chain rule. Later in Lemmas 7 and
8 these properties will be refined.

Lemma 5. If u0 ∈ C2(IR) with |u0|∞ + |u′
0|∞ + |u′′

0 |∞ < C(0), then
uk ∈ C1,2([0, T ] × IR), |uk|∞ + |u′

k|∞ + |u′′
k |∞ < C(k) ∀k for some positive

constants C(k).

Proof. The proof is done by induction. Suppose that the result is true for
k. Then one has by the chain rule that for fixed (t, x)

∂−u2
k(·, X(t,x)(·))

∂Ws
= 2uku′

k(s, X(t,x)(s))
∂−X(t,x)(·)

∂Ws
= 2σuku′

k(s, X(t,x)(s))

where u′
k(s, y) = ∂uk

∂y (s, y). Therefore we have the following representation for
the stochastic integral term in (6),∫ t

0

u2
k(s, X(t,x)(s))dφWs

=
∫ t

0

u2
k(s, X(t,x)(s))d−Ws −

∫ t

0

σuku′
k(s, X(t,x)(s))ds.
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Taking this into account, we get from equation (6) the following equation for
the average uk(t, x) = Euk(t, x);

uk+1(t, x) = Eu0(X(t,x)(0)) − νE

∫ t

0

σuku′
k(s, X(t,x)(s))ds(7)

= Eu0(X(t,x)(0)) − ν

∫ t

0

∫
IR

σuku′
k(s, y)pt,x(s, y)dyds

= Eu0(X(t,x)(0)) +
ν

2

∫ t

0

∫
IR

uk(s, y)2
∂(σpt,x)

∂y
(s, y)dyds.

The last equality follows because limy→∞ u2
k(s, y)pt,x(s, y) = 0, for each fixed

k, s < t and x. Therefore one has that

|uk+1|∞ ≤ (C(0) + νM3/2C(k)2c(t +
√

t)).

Now we differentiate with respect to x the second equality in (7) to obtain that

u′
k+1(t, x) =

∂

∂x
Eu0(X(t,x)(0)) − ν

∫ t

0

∫
IR

σuku′
k(s, y)

∂pt,x

∂x
(s, y)dyds

Therefore one obtains bounds for |u′
k+1|∞ similarly. In preparation for the

estimates of u′′
k+1 note that

∂pt,x(s, u + x)
∂x

=
∂pt,x

∂x
(s, u + x) +

∂pt,x

∂y
(s, u + x).

For this “diagonal” derivative we will apply the estimate (2). Using a change
of variables (y = u + x), the above equality and an integration by parts we
have

∫ t

0

∫
IR

σuku′
k(s, u + x)

∂pt,x

∂x
(s, u + x)duds

=
∫ t

0

∫
IR

∂(σuku′
k)

∂y
(s, u + x)pt,x(s, u + x)duds

+
∫ t

0

∫
IR

σuku′
k(s, u + x)

∂pt,x(s, u + x)
∂x

duds.
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Differentiating this again we find that

|u′′
k+1(t, x)| ≤

∣∣∣∣ ∂2

∂x2
Eu0(X(t,x)(0))

∣∣∣∣
+

∣∣∣∣ν
∫ t

0

∫
R

∂(σuku′
k)

∂y
(s, y)

∂

∂x
pt,x(s, y)dyds

∣∣∣∣
+

∣∣∣∣ν
∫ t

0

∫
R

∂(σuku′
k)

∂y
(s, u + x)

∂pt,x(s, u + x)
∂x

duds

∣∣∣∣
+

∣∣∣∣ν
∫ t

0

∫
R

σuku′
k(s, u + x)

∂2pt,x(s, u + x)
∂x2

duds

∣∣∣∣ .
On the other hand, using properties of the derivatives of the flow X(t,x)(0) and
the hypotheses on u0, one obtains that there is a positive constant C such that
| ∂2

∂x2 Eu0(X(t,x)(0))| ≤ C. Finally using inequality (2) we have

|u′′
k+1(t, x)| ≤C + ν

∫ t

0

∫
R

3cC(k)2M
exp

(
− |x−y|2

M(t−s)

)
√

2π(t − s)
dyds

+ ν

∫ t

0

∫
R

4cC(k)2M
exp

(
− |u|2

M(t−s)

)
√

2π(t − s)1/2
duds.

Therefore

|u′′
k+1|∞ ≤ (C + νM3/2C(k)2c(4t + 6

√
t)).

�

§4.2. Lemmas

We will show the convergence of the sequence {uk}. The key is to show
the next two lemmas.

Lemma 6. For any two positive constants C(0) and c such that cνM3/2

C(0) is small enough and any 0 < t0 < 1 the following Volterra equation has a
unique bounded solution y(t) up to t ≤ t0

y(t) = C(0) +
cν

2
M3/2

∫ t

0

y2(s)
(

1 +
1√

t − s

)
ds.(8)
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Proof. Put y(t) =
∑∞

k=0 αktk/2 and substitute this into the equation (8),
then we will have the equality as follows,

∞∑
k=0

αktk/2 = C(0) +
cν

2
M3/2

∫ t

0

( ∞∑
k=0

αksk/2

)2 (
1 +

1√
t − s

)
ds

= C(0) +
cν

2
M3/2

∞∑
k1,k2=0

αk1αk2B

(
k1 + k2

2
+ 1,

1
2

)
t

k1+k2+1
2

+ cνM3/2
∞∑

k1,k2=0

αk1αk2

k1 + k2 + 2
t

k1+k2
2 +1.

Comparing the coefficients on both sides of the equation above, we can
find the coefficients αk as α0 = C(0),

αk =
cν

2
M3/2B

(
k + 1

2
,
1
2

) ∑
k1+k2+1=k

αk1αk2 +
cνM3/2

k

∑
k1+k2+2=k

αk1αk2 .

(9)

On the other hand, we can see (using Stirling’s approximation for the Gamma
function, see the appendix) that

lim
k→∞

√
k + 1 · B

(
k + 1

2
,
1
2

)
=

√
2π

and that

lim
k→∞

∑
k1+k2+1=k

1√
k1 + 1

1√
k2 + 1

= lim
k→∞

1
k

∑
k1+k2+1=k

1√
k1+1

k

√
k2+1

k

=
∫ 1

0

dx√
x(1 − x)

= π.

Hence we see that there exists positive constants γ1, γ2 such that for any
k, we have the estimates,

B

(
k + 1

2
,
1
2

)
≤ γ1

1√
k + 1

,
∑

k1+k2+1=k

1√
k1 + 1

1√
k2 + 1

≤ γ2π.

Given these, we claim that αk ≤ C(0)√
k+1

for any k ≥ 0. In fact, for k = 0 and

k = 1 the result is trivial if
√

2cνM3/2C(0) < 1 (α1 = cνM3/2C(0)2).
Now suppose the result is valid up to k − 1 and that cνM3/2C(0)γ2π(

γ1
2 +

√
3
4

)
< 1 then we get from (9) the following inequality that proves the
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assertion;

αk ≤ cν

2
M3/2C(0)2B

(
k + 1

2
,
1
2

) ∑
k1+k2+1=k

1√
(k1 + 1)(k2 + 1)

+
cνM3/2C(0)2

k

∑
k1+k2+2=k

1√
(k1 + 1) (k2 + 1)

≤
(

cνM3/2C(0)2γ1

2
√

k + 1
+

cνM3/2C(0)2

k

)
γ2π ≤ C(0)√

k + 1
.

Note that the restriction on the constant cνM3/2C(0) is explicit and fixed by
the constants γ1 and γ2.

The series

∑
k

αktk/2 ≤ C(0)


1 +

∑
k≥1

tk/2

√
k + 1


 ,

converges absolutely over the interval [0, t0] with t0 < 1 and this completes the
proof of existence. For uniqueness one follows the usual proof of taking the
difference between the two solutions and using the boundedness together with
Gronwall’s inequality. �

Lemma 7. For small enough t(≤ t0) it holds that sup
t∈[0,t0],x,k

|uk(t, x)|

≤ C1 where C1 = C(0)(1 + Aβ(t0)) where Aβ(t0) =
∑

k≥1
t
k/2
0√
k+1

.

Proof. From the equation (7) we get,

|uk+1(t, x)| ≤ C(0) +
ν

2

∫ t

0

∫
IR

u2
k(s, y)

∣∣∣∣ ∂

∂y
(σpt,x)(s, y)

∣∣∣∣dyds.

Since∣∣∣∣
(

σ′pt,x + σ
∂

∂y
pt,x

)
(s, y)

∣∣∣∣ ≤ c√
2π(t − s)

(
M +

M√
t − s

)
exp

(
− |x − y|2

M(t − s)

)
,

then one has that∫
IR

∣∣∣∣ ∂

∂y
(σpt,x)(s, y)

∣∣∣∣dy ≤ cM3/2

(
1 +

1√
t − s

)
.

This, in turn, implies the following inequality,

sup
x
|uk+1(t, x)| ≤ C(0) +

cνM3/2

2

∫ t

0

{
sup

y
u2

k(s, y)
}(

1 +
1√

t − s

)
ds.
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The next step consists of proving that for any k ∈ N, we have that

sup
x

|uk(t, x)| ≤ y(t) (∀t ≤ t0).

By applying induction we have first that supx|u0(t, x)| ≤ C(0) ≤ y(t). Now
suppose the inequality is satisfied for k. Then using the above inequality and
the previous Lemma 6 we have that the inequality is satisfied for k + 1. �

Following a similar discussion to that given in the proof of the Lemma 6,
we can establish the following result;

Lemma 8. For small enough t(≤ t0), there exists a positive constant
C2 such that sup

t∈[0,t0],x,k

|u′
k(t, x)| < C2.

Proof. First, one differentiates (7) to obtain

u′
k+1(t, x) = E

(
u′

0(X
(t,x)(0))

∂X(t,x)(0)
∂x

)

− ν

∫ t

0

∫
IR

σuku′
k(s, y)

∂

∂x
(pt,x)(s, y)dyds.

As before the proof follows by induction. First we have that supx,t∈[0,t0]|u′
0(t, x)|

≤ C(0). Then we have using the previous Lemma that there exists a positive
constant A(C(0), t0) such that

sup
x

∣∣u′
k+1(t, x)

∣∣ ≤ A(C(0), t0) + cC1νM3/2

∫ t

0

sup
x
|u′

k(s, x)|
(

1 +
1√

t − s

)
ds.

Using the Gronwall lemma in the Appendix, one finally obtains that

sup
x

∣∣u′
k+1(t, x)

∣∣ ≤ A(C(0), t0) exp((t + 2
√

t)cC1νM3/2).

Similarly, one obtains the same conclusion for the second derivative. That
is, supt∈[0,t0],x,k |u′′

k(t, x)| is bounded. Without loss of generality we assume
that C2 > C1.

§4.3. Convergence of the sequence {uk}

Proposition 9. The sequence {uk(t, x)} converges to u(t, x) uniformly
in (t, x) ∈ [0, t0 ∧ 1] × IR as k → ∞. Here u(t, x) is the unique solution to the
integral equation

u(t, x) = Eu0(X(t,x)(0)) +
ν

2

∫ t

0

∫
IR

u2(s, y)
∂

∂y
(σpt,x)(s, y)dyds.(10)
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Proof. From the equation (7) and Lemma 7, we get for t ≤ t0 ∧ 1 the
following,

|uk(t, x) − uk−1(t, x)|= ν

2

∣∣∣∣
∫ t

0

∫
IR

[{(u2
k−1)

′ − (u2
k−2)

′}σpt,x](s, y)dyds

∣∣∣∣
=

ν

2

∣∣∣∣
∫ t

0

∫
IR

[
{u2

k−1 − u2
k−2}

∂

∂y
(σpt,x)

]
(s, y)dyds

∣∣∣∣
≤C1ν

∫ t

0

∫
IR

|uk−1 − uk−2|(s, y)
∣∣∣∣ ∂

∂y
(σpt,x)(s, y)

∣∣∣∣ dyds.

Put Bk(t) = sup
x
|uk(t, x)−uk−1(t, x)|, then from the inequality above we obtain,

Bk(t)≤C1ν

∫ t

0

Bk−1(s)
∫

IR

∣∣∣∣ ∂

∂y
(σpt,x)(s, y)

∣∣∣∣ dyds(11)

≤C1cνM3/2

∫ t

0

Bk−1(s)
(

1 +
1√

t − s

)
ds.

Hence by induction we get the inequality as follows for some positive constant
C3,

Bk(t) ≤ Ck
3




k∏
j=2

B

(
j + 1

2
,
1
2

)
 t

k
2 .(12)

In fact, for k = 1, one has that

B1(t)≤
∣∣∣E(u0(X

(t,x)
0 ) − u0(x))

∣∣∣ +
∫ t

0

sup
x
|u0(s, x)|2

(
1 +

1√
t − s

)
ds

≤C4

√
t

for some positive constant C4. Now we can rewrite inequality (11) as

Bk(t) ≤ 2C1cνM3/2

∫ t

0

Bk−1(s)√
t − s

ds.

Here we take C4 ∨ (2C1cνM3/2) ≤ C3. Supposing that (12) is satisfied up to
k − 1, we have

Bk(t)≤ 2C1cνM3/2

∫ t

0

Ck−1
3

{∏k−1
j=2 B( j+1

2 , 1
2 )
}

s
k−1
2

√
t − s

ds

≤Ck
3




k−1∏
j=2

B

(
j + 1

2
,
1
2

)
 t

k
2

∫ 1

0

s
k−1
2

√
1 − s

ds.
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Since

lim
k→∞

Ck
3 {

∏k
j=2 B( j+1

2 , 1
2 )}

Ck+1
3 {

∏k+1
j=2 B( j+1

2 , 1
2 )}

= lim
k→∞

1
C3B(k+2

2 , 1
2 )

= ∞,

we see that the series
∑

k Bk(t) converges uniformly for t < t0∧1. This finishes
the proof. �

Following the similar discussion and taking the Lemma 8 into account, we
also establish the next result.

Proposition 10. The sequence {u′
k(t, x)} converges uniformly on any

finite slab [0, t0] × IR to u′ as k tends to ∞.

Proof. As before,

|u′
k(t, x) − u′

k−1(t, x)|

= ν

∣∣∣∣
∫ t

0

∫
IR

[
σ{uk−1u

′
k−1 − uk−2u

′
k−2}

∂

∂x
(pt,x)

]
(s, y)dyds

∣∣∣∣
≤ C2cν

∫ t

0

∫
IR

|uk−1 − uk−2|(s, y)
∣∣∣∣ ∂

∂x
(pt,x)(s, y)

∣∣∣∣ dyds

+ C1cν

∫ t

0

∫
IR

|u′
k−1 − u′

k−2|(s, y)
∣∣∣∣ ∂

∂x
(pt,x)(s, y)

∣∣∣∣ dyds.

Define B′
k(t) = supx|u′

k(t, x) − u′
k−1(t, x)|. Then we have

B′
k(t) ≤ 2C2cνM3/2

(∫ t

0

Bk−1(s)√
t − s

ds+
∫ t

0

B′
k−1(s)√
t − s

ds

)
.

As before one also proves in this case that
∑

k B′
k(t) converges uniformly for

t < t0 ∧ 1. Denote the limit of u′
k by v. Then it satisfies the equation

v(t, x) = Eu0

(
X(t,x)(0)

∂X(t,x)(0)
∂x

)
+ ν

∫ t

0

∫
IR

(u v) (s, y)
∂

∂x
(σpt,x)(s, y)dyds.

The convergence being uniform also gives that u is differentiable in x. The
above equation has a unique solution which is also satisfied by u′ if one differ-
entiates (10). This finishes the proof. �

Based on these Propositions, we let k tend to infinity on both sides of the
first equation in (7) to find that the limk uk = u is the solution of the following,

u(t, x) = Eu0(X(t,x)(0)) − ν

∫ t

0

∫
IR

u u′(s, y)σpt,x(s, y)dyds.(13)
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Proposition 11. The solution, bounded in x, of the equation (13) is
unique.

Proof. Let u, v be the solutions that are bounded in x. Then we have,

|u(t, x) − v(t, x)| ≤ ν

2

∫ t

0

∫
IR

|u2(s, y) − v2(s, y)|
∣∣∣∣∣ ∂

∂y
(σpt,x)(s, y)

∣∣∣∣∣dyds.

Hence,

sup
x

|u(t, x) − v(t, x)| ≤ C1cνM3/2

∫ t

0

sup
y

|u(s, y) − v(s, y)| 1√
t − s

ds.

By applying the Gronwall’s lemma (see the Appendix) to this inequality we get
the conclusion. �

Similarly as in the previous arguments one can also prove the convergence
and existence of the second derivative of u(t, x). In fact, one has that

|u′′
k(t, x) − u′′

k−1(t, x)|

≤
∣∣∣∣ν
∫ t

0

∫
R

∂

∂y
(σ(uk−1u

′
k−1 − uk−2u

′
k−2))(s, y)

(
∂

∂y
+

∂

∂x

)
p(t,x)(s, y)dyds

∣∣∣∣
+ν

∫ t

0

∫
R

|σ
(
uk−1u

′
k−1 − uk−2u

′
k−2

)
(s, y)|

M exp
(
− |x−y|2

M(t−s)

)
√

2π(t − s)1/2
dyds.

The conclusion follows by Gronwall’s lemma.

§4.4. Convergence of the sequence {uk}

We have that∫ t

0

u2
k(s, X(t,x)(s))dφWs

=
∫ t

0

u2
k(s, X(t,x)(s))d−Ws −

∫ t

0

σuku′
k(s, X(t,x)(s))ds.

Therefore Propositions 9 and 10 applied to uk+1 in (6) imply that as k tends
to ∞, the sequence

∫ t

0
u2

k(s, X(t,x)(s))dφWs converges (in the L2(Ω)×L2
loc(IR)-

sense) to the limit
∫ t

0
u2(s, X(t,x)(s))dφWs, uniformly in t ∈ [0, t0]. Conse-

quently we have limk→∞ uk(t, x) = ∃v(t, x) (uniformly in t), where v is given
by the

v(t, x) = u0(X(t,x)(0)) + ν

∫ t

0

u2(s, X(t,x)(s))dφWs.
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Since Ev(t, x) = ū(t, x) by virtue of the Proposition 11, we see that the limit
v(t, x) is the unique solution of the integral equation (4).

In fact suppose that we are given two solutions to (4), say v1 and v2, then
by Proposition 11 one has that E(v1(t, x)) = E(v2(t, x)) = ū(t, x). Therefore if
one replaces this into the equation (4) one has that v1(t, x) = v2(t, x) = u(t, x).

Thus we have shown the existence and uniqueness of the local solution
u(t, x), 0 ≤ t ≤ t0 ≤ T . The proof of the Theorem 4 is completed when we
show that the discussion can be extended to the case t ∈ [t0, T ]. But this is an
immediate consequence of the flow property below;

u(t, x) = u(t0, X(t,x)(t0)) + ν

∫ t

t0

u2(s, X(t,x)(s))dφWs, t ≥ t0. �

In order to carry this step one has to note that u(t0, x) is independent of
σ{Ws − Wt0 , s ≥ t0} and that t0 < 1 is independent of all constants as stated
in Lemma 6. Also the constants found in Lemmas 7 and 8 do not explode in
a finite number of iterations therefore the extension of the previous arguments
follow.

§4.5. Verification of equation (5)

It is trivial that the initial condition is satisfied as ū(0, x) = Eu0(X
(0,x)
0 ) =

u0(x). Repeating the same arguments as we have done previously, one proves
that u(t, x) is two times differentiable in space. That is, one proves that the
sequence u′′

k converges uniformly and that its limit is u′′(t, x). From (3) and
(13) we have that u(t, x) is differentiable in time and

∂u

∂t
(t, x) =

1
2
σ(t, x)2

∫
IR

u0(y)
∂2pt,x

∂x2
(0, y)dy + b(t, x)

∫
IR

u0(y)
∂pt,x

∂x
(0, y)dy

− νσ(t, x)2

2

∫ t

0

ds

∫
IR

σu u′(s, y)
∂2pt,x

∂x2
(s, y)dy

− νb(t, x)
∫ t

0

ds

∫
IR

σu u′(s, y)
∂pt,x

∂x
(s, y)dy

− νσ(t, x)u u′(t, x)

=
σ(t, x)2

2
∂2u

∂x2
(t, x) + b(t, x)

∂u

∂x
(t, x) − νσ(t, x)

∂u2

∂x
(t, x).

�
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§5. Concluding Remarks

Here we have obtained a new stochastic representation formula for the so-
lution of the Burgers equation. This is called a Brownian particle equation.
Its possible approximation process will require the use of a particle method to
approximate the expectation in the equation. We hope that this representation
will allow numerical simulation of the process u and the study of other prop-
erties related with this process for small values of ν. We have assumed here
that the coefficients a and b are bounded but one could derive the above results
with linear growth conditions doing appropriate changes in the arguments given
for the proofs. In comparison with the stochastic representation obtained in
[1] and [2] we do not require any integrability properties of u0. In particular,
one may have that

∫
IR
|u0(x)|dx = ∞ and still the stochastic representation in

Theorem 4 is valid.
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§7. Appendix

Here we prove the following assertion

lim
k→∞

√
k + 1 · B

(
k + 1

2
,
1
2

)
=

√
2π

First, using the definition of the beta function we have that

B

(
k + 1

2
,
1
2

)
=

Γ
(

1
2

)
Γ
(

k+1
2

)
Γ
(

k
2 + 1

)
One studies the above quantities in the cases k even and odd. We will do one
case leaving the other for the reader. For k = 2n, n ∈ N , we have by properties
of the gamma function that Γ(k

2 + 1) = k
2 ! and that

Γ
(

k + 1
2

)
=

k − 1
2

Γ
(

k − 1
2

)

=
(k − 1)!!

2k/2
Γ
(

1
2

)

=
k!

2k
(

k
2

)
!
Γ
(

1
2

)
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Therefore we have that

B

(
k + 1

2
,
1
2

)
=

Γ
(

1
2

)2 k!
2k( k

2 )!(
k
2

)
!

Using Stirling’s approximation for the factorial we have

B

(
k + 1

2
,
1
2

)
∼ πkk+1/2

√
2π2k

(
k
2

)k+1

∼
√

2π√
k

In the other case k = 2n + 1 one proceeds similarly finding the same limit. �

The Gronwall inequality we used here is of some particular type due to
the fact that the kernel function is degenerate. For this reason we give a brief
account of this inequality.

Lemma 12. Let y(t) be a real, non-negative function such that it sat-
isfies

y(t) ≤ A1 + A2

∫ t

0

y(s)√
t − s

ds, t ∈ [0, T ],

for two positive constants A1 and A2. Then

y(t) ≤ A1 exp(2A2

√
t).

The idea of the proof is to apply 6. Theorem 1 in Mitrinović et al., page
358 for the kernel

k(t, s) =
1√

t − s + ε

obtain the Gronwall inequality that will depend on ε and then take limits as ε

goes to 0. �
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