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The Equivariant Toda Lattice

By

Ezra Getzler
∗

The Toda lattice is an infinite dimensional dynamical system of commuting
flows

(∂, δn, δ̄n | n > 0),

acting on functions (q, ak, āk | k > 0) defined on a one-dimensional lattice.
In the limit of small lattice spacing ε, which is all that will concern us here
(Takasaki and Takebe [12]), the functions (q, ak, āk) become functions of a real
parameter x, and the role of translation by one unit of the lattice is taken by
the operator E = eε∂ , where ∂ is the infinitesimal generator of translations in
x.

The derivations δ1 and δ̄1 act on the variables q, a1 and ā1 by the formulas

δ1ā1 = δ̄1a1 = ∇q, δ1 log q = ∇a1, δ̄1 log q = ∇ā1,(1)

where ∇ : A → A is the infinite-order differential operator

∇= ε−1
(
E1/2 − E−1/2

)
=

∞∑
k=0

ε2k∂2k+1

22k(2k + 1)!

= ∂ + 1
24 ε2 ∂3 + O(ε4).

These formulas imply the Toda equation:

δ1δ̄1 log q = ∇2q.(2)

The higher Toda flows are symmetries of this equation.
An abstract mathematical formulation of the Toda lattice is obtained

by realizing the derivations (∂, δn, δ̄n) on the free differential algebra A =
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508 Ezra Getzler

Qε{q, ak, āk | k > 0}, defined over the ring Qε = Q[[ε]]. Reductions of the
Toda lattice correspond to differential ideals I in A invariant under conjuga-
tion and closed under the derivations δn and δ̄n. For example, the Toda chain
is described by the differential ideal with generators

I = {a1 − ā1, a2 − q, ā2 − q, ak, āk | k > 2},

so that A/I ∼= Qε{q, v}, where v is the image of a1 ∈ A.
In this paper, we study a new reduction of the Toda lattice, which we

call the equivariant Toda lattice. If ν is a formal parameter, this reduction is
defined by the following constraint on the Lax operator:

(δ1 − δ̄1)L = ν∂L.(3)

Let Iν ⊂ A[ν] be the corresponding differential ideal. We prove that the
differential algebra A[ν]/Iν is isomorphic to

Qε,ν{q, v, v̄}/(ν∂q −∇(v − v̄)) ⊗Qε,ν
Qε,ν [zk, z̄k | k > 0],

where Qε,ν = Qε[ν], v and v̄ are the images of a1 and ā1 ∈ A, and zk and z̄k

are constants of motion, which may be defined by the following equation:(
L − ν +

∞∑
k=1

zkL−k

)
∂L

∂v
= L.

In an influential paper, Eguchi and Yang [3] conjectured that the Gro-
mov-Witten invariants of CP1 are related to the Toda chain. (For more on
this conjecture, see Eguchi, Hori and Yang [4], Pandharipande [10] and Getzler
[5].) The equivariant Toda conjecture, as formulated in this paper in terms of
the equivariant Toda lattice, provides a similar description of the equivariant
Gromov-Witten invariants of CP

1, which specializes to the conjecture of Eguchi
and Yang in the non-equivariant limit.

Let T be the multiplicative group of C, and let X be a topological space
with an action of T. The equivariant cohomology H∗

T(X, Z) of X is a module
over the graded ring H•

T = H•(BT, Z) ∼= Z[ν], where ν ∈ H2
T. The equiv-

ariant cohomology H•
T(CP1, Z) of the projective line CP1 admits a presenta-

tion

H•
T(CP1, Z) ∼= Z[H, ν]/(H(H − ν)),

where H is the equivariant Chern class c1(O(1)) ∈ H2
T(CP

1, Z).



�

�

�

�

�

�

�

�

The Equivariant Toda Lattice 509

Denote the kth descendants of the cohomology classes 1 and H in Gromov-
Witten theory by τk,P and τk,Q respectively; also, abbreviate τ0,P and τ0,Q

to P and Q. The genus 0 equivariant Gromov-Witten invariants of CP1 are
integrals over the moduli space M0,n(CP

1) of stable maps of genus g with n

marked points:

〈τk1,P . . . τkm,P τ�1,Q . . . τ�n,Q〉g ∈ H•
T ⊗ Q ∼= Q[ν].

The large phase space is the formal affine space with coordinates {sk, tk | k ≥
0}. The genus g Gromov-Witten potential Fg of CP1 is the generating function
on the large phase space given by the formula

Fg =
∞∑

m,n=0

1
m! n!

∑
k1,...,km
�1,...,�n

sk1 . . . skm
t�1 . . . t�n

〈τk1,P . . . τkm,P τ�1,Q . . . τ�n,Q〉g.

We may combine the Gromov-Witten potentials into a single generating func-
tion by interpreting ε as a genus expansion parameter, and writing

F =
∞∑

g=0

ε2gFg.

Based on explicit calculations using the topological recursion relations in
genus 0 and 1, Pandharipande conjectured [11] that the following equation
holds for the total Gromov-Witten potential:

∂0∂̄0F = exp(∇2F).(4)

Here, ∇ = ε−1(E1/2 − E−1/2), where E = eε∂ , and ∂ = ∂/∂s0.
On applying the operator ∇2 to both sides of (4) and identifying the vector

fields ∂0 and ∂̄0 with the Toda flows δ1 and δ̄1, we obtain the Toda equation
(2) for q = exp(∇2F). Observe that ∂1 − ∂̄1 = ν∂; this equation is formally
identical to the constraint defining the equivariant Toda lattice.

The equivariant Toda lattice and the equivariant Gromov-Witten theory
of CP1 each involve sequences {δn, δ̄n} and {∂n = ∂/∂tn, ∂̄n = ∂/∂tn−ν∂/∂sn}
of commuting derivations, in the first case on the algebra A[ν]/Iν , and in the
second case on functions on the large phase space. These sequences of vector
fields may be compared by means of a morphism

A[ν]/Iν −→ Qε,ν [[sk, tk | k ≥ 0]]
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of differential algebras which sends the generators q, v and v̄ to exp(∇2F),
∇∂0F and ∇∂̄0F , and the constants zk and z̄k to 0. In fact, the following
relationship between these flows holds:

∞∑
k=0

zk+1∂k =
∞∑

n=1

znδn

(1 + zν)(2 + zν) . . . (n + zν)
,(5a)

∞∑
k=0

zk+1∂̄k =
∞∑

n=1

znδ̄n

(1 − zν)(2 − zν) . . . (n − zν)
.(5b)

We conjectured this in a preprint of this paper, based on a proof of the result in
genus 0 (see Section 4), together with calculations in genus 1 for small values of
n; it has recently been proved by Okounkov and Pandharipande [9], along with
the equivariant Toda equation (4). Thus, the equivariant Toda lattice yields
a description of the equivariant Gromov-Witten invariants of CP

1 in terms of
a Lax operator whose coefficients are obtained by an explicit recursion. In
particular, the descendent flows ∂/∂sk of the puncture operator P are given in
the non-equivariant limit by the formula

∂

∂sk
= lim

ν→0

(
δk+1 − δ̄k+1

ν(k + 1)!
− ck(δk + δ̄k)

k!

)
,(6)

where ck is the harmonic number ck = 1 + 1
2 + · · · + 1

k ; this is exactly as
conjectured by Eguchi and Yang [3].

In the second part of this paper (Sections 5–8), we relate the equivariant
Toda lattice to the dressing operator formalism. Let log(L) = W log(Λ)W−1

be the logarithm of the Lax operator L, related to the operator � = ε(∂W )W−1

by the formula

log(L) = log(Λ) − �.

Borrowing ideas of Carlet, Dubrovin and Zhang [1], we show that the equivari-
ant Toda lattice may be characterized by the expansion

Λ + v + qΛ−1 = L + ν� −
∞∑

k=1

zk

k
L−k.

In particular, the equation (δ1 − δ̄1)W = ν∂W is equivalent to the vanishing
of the coefficients zk. We also show that the equivariant Toda lattice has a
Hamiltonian structure which is a deformation of the first Hamiltonian structure
of the Toda chain. (We were however unable to find a bihamiltonian structure.)
This gives a more direct relationship between the results of Okounkov and
Pandharipande [9] and the original Toda conjecture.
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This paper closes with an appendix in which the formulas (5a) and (5b)
relating {∂k, ∂̄k} and {δn, δ̄n} are inverted.

§1. Difference Operators

In this section, we recall the mathematical structure underlying the Toda
lattice; this material is adapted from the fundamental papers of Ueno and
Takasaki [13] and Kupershmidt [8].

All of the commutative algebras which we consider in this paper carry
an involution p 
→ p̄, and all ideals which we consider are closed under this
involution. By a differential algebra, we mean a commutative algebra with
derivation ∂ such that

∂p̄ = ∂p.

A differential ideal is an ideal closed under the action of the differential ∂. If
S is a subset of a differential algebra A, denote the differential ideal generated
by S ∪ S̄ by (S), where S̄ = {x̄ | x ∈ S} is the conjugate of S.

If A is a differential algebra and S is a set, the free differential algebra
A{S} generated by S is the polynomial algebra

A[∂nx, ∂nx̄ | x ∈ S, n ≥ 0],

with differential ∂(∂nx) = ∂n+1x.
An evolutionary derivation δ of a differential algebra A is a derivation

such that [∂, δ] = 0. The evolutionary derivations form a Lie subalgebra of the
Lie algebra of derivations of A, with involution

δ̄p = δp̄.

Let A be a differential algebra over Qε, and let q ∈ A be a regular element
(that is, having no zero-divisors) such that q̄ = q. The localization q−1A of A is
a filtered differential algebra, with differential ∂(q−1) = −q−2∂q. Let Φ±(A, q)
be the associative algebras of difference operators

Φ+(A, q) =
{ ∞∑

k=−∞
pk Λk

∣∣∣∣ pk ∈ q−kA, pk = 0 for k � 0
}

,

Φ−(A, q) =
{ ∞∑

k=−∞
pk Λk

∣∣∣∣ pk ∈ A, pk = 0 for k  0
}

,
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with product∑
i

aiΛi ·
∑

j

bjΛj =
∑

k

( ∑
i+j=k

(
E−j/2ai

)(
Ei/2bj

))
Λk.

Note that Φ−(A, q) is in fact independent of q.
Let A 
→ A± be the projections on Φ±(A, q) defined by the formulas( ∞∑

k=−∞
pkΛk

)
+

=
∞∑

k=0

pkΛk,

( ∞∑
k=−∞

pkΛk

)
−

=
−1∑

k=−∞
pkΛk.

We see that A = A− + A+. Define the residue res : Φ±(A, q) → A by the
formula

res
( ∞∑

k=−∞
pkΛk

)
= p0.

For k ∈ Z, let [k] be the isomorphism of A

[k] =
Ek/2 − E−k/2

E1/2 − E−1/2
=

k∑
j=1

E(k+1)/2−j = k + O(ε2).

Define q[k] by the recursion

q[k+1] = Ekq · E−1/2q[k],

with initial condition q[0] = 1. The involution

A =
∞∑

k=−∞
pkΛk 
→ Ā =

∞∑
k=1

p̄k q[k]Λ−k + p̄0 +
∞∑

k=1

p̄−k q−[k]Λk,

defines an anti-isomorphism between the algebras Φ+(A, q) and Φ−(A, q).

§2. The Toda Lattice

To formulate the Toda lattice, we introduce the differential algebra

A = Qε{q, ak | k > 0}/(q − q̄).

It will be useful to define the symbol a0 to equal 1.
The Lax operator of the Toda lattice is the difference operator

L = Λ +
∞∑

k=1

akΛ−k+1 ∈ Φ−(A, q);
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its conjugate L̄ is given by the formula

L̄ = qΛ−1 +
∞∑

k=1

ākq−[k−1]Λk−1 ∈ Φ+(A, q).

Introduce elements pk(n) ∈ A, defined for all n ≥ 0 and k ∈ Z:

Ln =
n∑

k=−∞
pk(n)Λk.

To define the evolutionary derivation δn on the generators ak of A, intro-
duce the difference operator Bn = Ln

+, and impose the Lax equation δnL =
ε−1[Bn, L]. This equation means that

ε−1[Bn, L] =
∞∑

k=1

δnak Λ−k+1.

In order for this to be meaningful, it must be shown that the coefficient of Λk

in [Bn, L] vanishes for k > 0. This follows from the identity [Ln, L] = 0: we
have

[Bn, L] = [Bn, L] − [Ln, L] = −[Ln
−, L],

and it is clear that the coefficient of Λk in [Ln
−, L] vanishes if k > 0. We also

see that δnak equals the coefficient of Λ−k+1 in

−ε−1
k∑

j=0

[pj−k(n)Λj−k, ajΛ−j+1],

hence that

δnak −∇p−k(n)(7)

= ε−1
k−1∑
j=1

(
E(1−j)/2pj−k(n) E(k−j)/2aj − E(j−1)/2pj−k(n) E(j−k)/2aj

)

=
k−1∑
j=1

(
E(1−j)/2pj−k(n)∇[k − j]aj − E(j−k)/2aj∇[j − 1]pj−k(n)

)
.

In particular, δna1 = ∇p−1(n).
To define δn on the remaining generators q and āk of A, we impose the

Lax equation δnL̄ = ε−1[Bn, L̄]. In particular, we see that

δnq = q∇p0(n),(8)
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and hence that δnq[k] = q[k]∇[k]p0(n). It also follows that

δn(q−[k−1]āk) = q−[k−1]
(
δnāk − āk∇[k − 1]p0(n)

)
equals the coefficient of Λk−1 in

ε−1
k∑

j=0

[pk−j(n)Λk−j , q−[j−1]ājΛj−1],

hence that

δnāk = āk∇[k − 1]p0(n) + ε−1q[k−1]
k∑

j=0

Ak,j ,

where

Ak,j = E(1−j)/2pk−j(n) E(k−j)/2q−[j−1]āj − E(j−1)/2pk−j(n) E(j−k)/2q−[j−1]āj

= E(1−j)/2
(
q[k−j]pk−j(n)

)
E(k−j)/2āj − E(j−1)/2

(
q[k−j]pk−j(n)

)
E(j−k)/2āj .

Thus, we see that

δnāk =∇
(
q[k]pk(n)

)
+

k−1∑
j=1

(
E(1−j)/2

(
q[k−j]pk−j(n)

)
∇[k − j]āj(9)

−E(j−k)/2āj∇[j − 1]
(
q[k−j]pk−j(n)

))
.

In particular, δnā1 = ∇
(
qp1(n)

)
.

We now recall the proof that the derivations δm and δn commute. The
proof relies on the Zakharov-Shabat equation

δmBn − δnBm = ε−1[Bm, Bn].(10)

To prove this equation, observe that

δmBn = (δmLn)+ = ε−1[Bm, Ln]+ = ε−1[Bm, Bn + Ln
−]+

= ε−1[Bm, Bn] + ε−1[Bm, Ln
−]+.

Since [Lm, Ln] = 0, we also see that

[Bm, Ln]+ = [Lm − Lm
− , Ln]+ = −[Lm

− , Bn]+.

It follows that

δmBn − δnBm = ε−1
(
[Bm, Bn] + [Bm, Ln

−]+
)

+ ε−1[Ln
−, Bm]+ = ε−1[Bm, Bn].
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From (10), we easily see that the derivations δm and δn commute:

[δm, δn]L = ε−1δm[Bn, L] − ε−1δn[Bm, L]

= ε−1[δmBn, L] + ε−2[Bn, [Bm, L]] − ε−1[δnBm, L] − ε−2[Bm, [Bn, L]]

= ε−1[δmBn − δnBm, L] + ε−2[Bn, [Bm, L]] − ε−2[Bm, [Bn, L]] = 0.

The derivation δ̄n is defined to be the conjugate of δn, acting on the gen-
erators of A by the formulas

δ̄nq = δnq, δ̄nak = δnāk, δ̄nāk = δnak.

The following proposition establishes the Lax equation for this derivation.

Proposition 2.1. Let Cn = −L̄n
−; then δ̄nL = ε−1[Cn, L] and δ̄nL̄ =

ε−1[Cn, L̄].

Proof. We have

δ̄nL̄ = δ̄nqΛ−1 +
∞∑

k=1

q−[k−1]
(
δ̄nāk − ākq−[k−1]δ̄nq[k−1]

)
Λk−1

=
∞∑

k=1

δ̄nākΛ−k+1 + ∇p0(n)Λ −
∞∑

k=1

ak∇[k − 1]p0(n)Λ−k+1

=
∞∑

k=1

δnakΛ−k+1 − [p0(n), L] = ε−1[Bn, L] − [p0(n), L] = ε−1[Cn, L̄].

A similar proof shows that δ̄nL = ε−1[Cn, L].

It is automatic that the derivations δ̄m and δ̄n commute, since their con-
jugates do. To see that δm commutes with δ̄n, we use the Zakharov-Shabat
equation

δmB̄n − δ̄nBm = ε−1[Bm, B̄n].(11)

This is proved by combining the equations

δmB̄n = (δmL̄n)− = ε−1[Bm, L̄n]− = ε−1[Bm, B̄n]−,

and

δ̄mBn = (δ̄nLm)+ = ε−1[B̄n, Lm]+ = ε−1[B̄n, Bm]+.
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It follows from (11) that δm and δ̄n commute:

[δm, δ̄n]L = ε−1δm[B̄n, L] − ε−1δ̄n[Bm, L]

= ε−1[δmB̄n, L] + ε−2[B̄n, [Bm, L]] − ε−1[δ̄nBm, L] − ε−2[Bm, [B̄n, L]]

= ε−1[δmB̄n − δ̄nBm, L] + ε−2[B̄n, [Bm, L]] − ε−2[Bm, [B̄n, L]] = 0.

Denote by α : A → Qε the homomorphism which sends the generators
{q, ak, āk} of A to 0. By formulas (7), (8) and (9), we see that δnq, δnak and
δnāk all lie in the ideal (∂A) of A, and hence

α · δn = 0.(12)

§3. The Equivariant Toda Lattice

Informally, a reduction of the Toda lattice is an invariant submanifold of
the configuration space fixed by the involution; we formalize this as follows.

Definition 3.1. A reduction of the Toda lattice is a differential ideal
I ⊂ A invariant under conjugation and preserved by the action of the deriva-
tions δn and δ̄n.

The simplest example of such a reduction is the Toda chain, defined by
the constraint L = L̄; the associated differential ideal

I = (a1 − ā1, a2 − q, ak | k > 2)

is generated by the coefficients of L − L̄. To see that I is closed under the
action of the derivations δn, it suffices to observe that the operator L − L̄

satisfies the Lax equation δn(L−L̄) = ε−1[Bn, L−L̄], and that the coefficients of
ε−1[Bn, L−L̄] are contained in the differential ideal generated by the coefficients
of L − L̄.

The constraint L = L̄ is equivalent to the relation δn = δ̄n among the Toda
flows, for all n; in particular, the Toda equation (2) becomes in this limit the
equation δ2

1 log q = ∇2q.
In this paper, we study a reduction of the Toda lattice which is a deforma-

tion of the Toda chain. Let A[ν] be the extension of the differential algebra A
by a variable ν, such that ∂ν = 0 and ν̄ = −ν, and consider families of reduc-
tions of the Toda lattice parametrized by A[ν]; that is, we consider differential
ideals in A[ν] satisfying the conditions of Definition 3.1.
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Definition 3.2. The equivariant Toda lattice is the reduction of the
Toda lattice defined over A[ν] by the constraints

(δ1 − δ̄1)L = ν∂L, (δ1 − δ̄1)L̄ = ν∂L̄.(13)

Let Iν be the differential ideal determining this reduction.

Let K be the difference operator

K = B1 − C1 = Λ + a1 + qΛ−1.(14)

Substituting the Lax equations into the constraints (13), we obtain an equiva-
lent formulation of the equivariant Toda lattice: it is characterized by the pair
of equations

ε−1[K, L] = ν∂L, ε−1[K, L̄] = ν∂L̄.(15)

In other words, the differential ideal Iν defining the equivariant Toda lattice is
generated by the coefficients of these equations.

The following theorem collects the main properties of the differential ideal
Iν . Let P : A → A be the infinite-order differential operator

P =
∂

∇ =
∞∑

g=0

ε2g(21−2g − 1)B2g

(2g)!
∂2g

= 1 − 1
24 ε2 ∂2 + O(ε4).

Theorem 3.1. The differential ideal Iν defining the equivariant Toda
lattice equals (η, ∂ζk | k > 0), where

η = q∇(a1 − ā1) − ν∂q,

ζk = p−1(k) − qp1(k) − νPp0(k).

The differential algebra A[ν]/Iν is isomorphic to

Ã = Qε,ν{q, v, zk | k > 0}/(q − q̄, y, ∂zk | k > 0),

where v and zk are identified with the images of a1 and ζk in A[ν]/Iν , and
y = q∇(v − v̄) − ν∂q.

The Toda flows δn and δ̄n map ζk ∈ A[ν] to Iν ; in particular, the variables
zk ∈ Ã are constants of motion for the flows of the Toda lattice.
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Proof. Let Ĩν be the differential ideal (η, ∂ζk | k > 0). Define elements
fk(n), gk(n) ∈ A by the formulas

ε−1[K, Ln] − ν∂Ln =
∞∑

k=−∞
fk(n)Λ−k, ε−1[K, L̄n] − ν∂L̄n =

∞∑
k=−∞

gk(n)Λk.

The differential ideal Iν is generated by the coefficients fk = fk(1) and gk =
gk(1). The formulas

ε−1[K, Ln] − ν∂Ln =
n∑

i=1

Li−1
(
ε−1[K, L] − ν∂L

)
Ln−i,

ε−1[K, L̄n] − ν∂L̄n =
n∑

i=1

L̄i−1
(
ε−1[K, L̄] − ν∂L̄

)
L̄n−i,

show that the coefficients fk(n) and gk(n) lie in Iν ; hence ∂ζn = Pf0(n) and
∂ζ̄n = Pg0(n) do as well, showing that Ĩν ⊂ Iν . We wish to prove the equality
of these two differential ideals.

To do this, we show, by induction on k, that the coefficients fk lie in Ĩν .
We have fk = 0 for k < 0. If fj ∈ Ĩν for j < k, we see that

∇zk+1 = res
(
ε−1[K, Lk+1] − ν∂Lk+1

)
=

k∑
i=0

res
(
Li(ε−1[K, L] − ν∂L)Lk−i

)
≡ [k + 1]fk (mod Ĩν),

hence fk ∈ Ĩν . A similar induction shows that gk ∈ Ĩν ; this induction starts
with the fact that g−1 = η lies in Ĩν .

Since ζk − [k]ak+1 ∈ (q, a1, . . . , ak), we see that the differential algebra
A/Iν is isomorphic to

Ã = Qε,ν{q, v, zk | k > 0}/(q − q̄, y, ∂zk | k > 0).

It remains to prove that δnζk and δ̄nζk lie in Iν . By the Zakharov-Shabat
equations (10) and (11), we see that

δnK = δn(B1 − C1) = (δ1 − δ̄1)Bn + ε−1[Bn, B1 − C1]

= ν∂Bn + ε−1[Bn, K].
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It follows that

∇δnζk = δnf0(k) = δn res(ε−1[K, Lk] − ν∂Lk)

= res(ε−1[δnK, Lk] + ε−1[K, δnLk] − ν∂δnLk)

= ε−1 res([ν∂Bn + ε−1[Bn, K], Lk] + ε−1[K, [Bn, Lk]] − ν∂[Bn, Lk])

= ε−1 res([Bn, ε−1[K, Lk] − ν∂Lk])

=∇
n∑

j=1

[j]
(
pj(n)fj(k)

)
.

The extension of α to a homomorphism from A[ν] to Qε,ν continues to
satisfy (12). It follows that α(δnζk) = 0, hence we obtain an explicit equation
for δnζk:

δnζk =
n∑

j=1

[j]
(
pj(n)fj(k)

)
∈ Iν .

The proof that δ̄nζk ∈ Iν follows along the same lines.

Let us illustrate this theorem by calculating the coefficients a2 and a3 of
the Lax operator L as elements of Ã. Applying res : Φ−(A, q) → A to the
equation ε−1[K, L] = ν∂L, we see that

a2 = q + νPv + z1.(16)

Taking the coefficient of Λ−1 in the equation ε−1[K, L] = ν∂L, we see that

∇a3 + (a2 − q)∇v = ν∂a2.

Lemma 3.1. ∇f Pg = 1
2∇

(
f [2]Pg

)
− 1

2 [2]
(
f∂g

)
Proof. We have

∇f Pg = ε−1E1/2
(
f E−1/2Pg

)
− ε−1E−1/2

(
f E1/2Pg

)
.

The result follows, since E±1/2P = 1
2 [2]P ± 1

2ε∂.

By this lemma,

(a2 − q)∇v = ν∇v Pv + z1∇v = ν∇
(

1
2v[2]Pv − 1

4P[2]v2
)

+ z1∇v.

It follows that

a3 = ν
(
P
(

1
4 [2]v2 + q

)
− 1

2v[2]Pv
)

+ ν2Pv − z1v + 1
2z2.(17)
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This method of calculating the coefficients ak becomes cumbersome for
larger values of k: instead, it is better to use the recursion in Ã

p−1(n) = qp1(n) + νPp0(n) + zn(18)

which is a consequence of Theorem 3.1.
Let Ψ be the algebra of difference operators

Ψ = {A ∈ Φ−(Ã, q) | ε−1[K, A] = ν∂A}.

Let L ∈ Ψ be the Lax operator defined by the recursion

p−1(n) = qp1(n) + νPp0(n).(19)

This Lax operator plays a special role in the theory: the following lemma shows
that the algebra Ψ may be identified with the commutative algebra Ã0((L)),
where

Ã0 = Qε,ν [zk, z̄k | k > 0]

is the kernel of the derivation ∂ : Ã → Ã.

Lemma 3.2. The homomorphism α̃ : Ã → Ã0 which sends the gen-
erators ∂nq, ∂nv and ∂nv̄ of Ã to 0 induces an isomorphism between Ψ and
Ã0((Λ−1)).

Proof. Since α̃(L) = Λ, the map α̃ : Ψ → Ã0((Λ−1)) is surjective. Suppose
that A ∈ Ψ lies in the kernel of α̃, and let k be the smallest integer such that
the coefficient x ∈ Ã of Λ−k in A is nonzero. We have

ε−1[K, A] − ν∂A = ∇x Λ1−k + O(Λ−k),

hence x ∈ Ã0. In this way, we see that α̃ : Ψ → Ã0((Λ−1)) is injective.

Theorem 3.2. The evolutionary derivation e = ∂v + ∂v̄ of Ã preserves
Ψ, and e(L) satisfies the formula(

L − ν +
∞∑

k=1

zkL−k

)
e(L) = L.

Proof. If A ∈ Ψ, we have

ε−1[K, e(A)] − ν∂e(A) = e(ε−1[K, A] − ν∂A) − [e(K), A] = 0,

since e(K) = 1. This shows that e preserves Ψ.
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For n > 0, we have by (19) that α̃(e(p−1(n))) = να̃(e(p0(n))), or equiva-
lently, ∮

(L − ν)e(Ln)
dL

L
= 0.

Since Ψ is a commutative algebra, e(L) commutes with L, hence e(Ln) =
nLn−1e(L), and ∮

(L − ν)Ln−2e(L) dL = 0, n > 0.

This shows that the coefficient of L−k in (L − ν)e(L) vanishes, hence
(L − ν)e(L) = L.

Since L/e(L) lies in Ψ, there is an expansion

L

e(L)
= L − ν +

1
2πi

∞∑
n=0

L−n−1

∮
Ln dL

e(L)
.

(The constant term is determined by the fact that e(L) = 1+νΛ−1 +O(Λ−2).)
We have

dL

e(L)
=

dL

e(L)
= (L − ν)

dL

L
,

hence

1
2πi

∮
Ln dL

e(L)
=

1
2πi

∮
Ln (L − ν)

dL

L
.

It follows from the recursion (18) that

zn = α̃(p−1(n)) − να̃(p0(n)) =
1

2πi

∮
Ln (L − ν)

dL

L
,

and the theorem follows.

§4. The Dispersionless Limit of the Equivariant Toda Lattice

In this section, we consider the dispersionless limit of the equivariant Toda
lattice, in which ε → 0; we only consider the case in which the constants of
motion zk are set to 0. If A ∈ Φ±(Ã, q), we write

A0 = lim
ε→0

A ∈ Q[ν, q, v]((Λ−1)).
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In the dispersionless limit, the algebra Φ−(Ã, q) degenerates to the commuta-
tive algebra Ã((Λ−1)), and the leading order in the commutator is the Poisson
bracket

{A0, B0} = lim
ε→0

ε−1[A, B] = (Λ∂ΛA0)∂B0 − ∂A0(Λ∂ΛB0).

It is not hard to write down explicit formulas for the Lax operator L of the
equivariant Toda lattice and its conjugate L̄ in the dispersionless limit.

Define the (unsigned) Stirling numbers (of the first kind)
[
n
k

]
by the gen-

erating function

n∑
k=0

[
n

k

]
νk =

n−1∏
j=0

(ν + j).

We have the recursion [
n

k

]
= (n − 1)

[
n − 1

k

]
+

[
n − 1
k − 1

]
.(20)

Theorem 4.1. We have

L0 = K0 + ν

∞∑
n=0

( ν

Λ

)n n∑
k=0

(−1)n−k

[
n

k

]
log(K0/Λ)n−k+1

(n − k + 1)!

(K0

Λ

)−n

, and

L̄0 = K0 − ν

∞∑
n=0

(−νΛ
q

)n n∑
k=0

(−1)n−k

[
n

k

]
log(ΛK0)n−k+1

(n − k + 1)!

(ΛK0

q

)−n

.

Proof. Denote by L0 the expression which we wish to prove equals L0. It
is clear that α̃(L) = Λ, hence it suffices to prove the equation

{K0, L0} = ν∂K0,

which is the dispersionless limit of the equation ε−1[K, L] = ν∂L.
Since {K0, log(K0/Λ)} = ∂K0, we have

{K0, L0} = ν∂K0

∞∑
n=0

( ν

Λ

)n n∑
k=0

(−1)n−k

[
n

k

]
log(K0/Λ)n−k

(n − k)!

(K0

Λ

)−n

.

Since ∂ log(K0/Λ) = K−1
0 ∂K0, we have

∂L0 = ∂K0

(
1 +

∞∑
n=0

( ν

Λ

)n n∑
k=0

(−1)n−kAn,k

[
n

k

](K0

Λ

)−n−1
)

,
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where

An,k =
log(K0/Λ)n−k

(n − k)!
− n log(K0/Λ)n−k+1

(n − k + 1)!
.

The equation {K0, L0} = ν∂L0 follows from (20).
Define e◦j(L0) by induction: e◦0(L0) = L0 and e◦(j+1)(L0) = e(e◦j(L0)).

Then

e◦j(L0) = δj,0 K0

+ ν1−j
∞∑

n=0

( ν

Λ

)n
n−j+1∑

k=0

(−1)n−k−j

[
n

k

]
log(K0/Λ)n−k−j+1

(n − k − j + 1)!

(K0

Λ

)−n

.

This formula is proved by induction on j, using the formulas e(K0) = 1 and
e(log(K0/Λ)) = K−1

0 .
There is an embedding of the differential algebra Ã in the differential

algebra

Ã{u}/(∂q − q∂u) ∼= Qε,ν [q]{u, v},

given by mapping v̄ to v − νPu. In the dispersionless limit, this embedding
maps v̄ to v − νu. We will prove the formula for L̄0 by working with Laurent
series in this larger algebra.

The Laurent series L̄0 is obtained from L0 by replacing v by v − νu, Λ by
q/Λ, and ν by −ν. Let L̃0 be the result of substituting v − νu for v in L0; it is
given by the formula

L̃0 =
∞∑

j=0

(−νu)j

j!
e◦j(L)

= K0 + ν

∞∑
n=0

( ν

Λ

)n n+1∑
j=0

n−j+1∑
k=0

(−1)n−k

[
n

k

]
uj log(K0/Λ)n−k−j+1

j!(n − k − j + 1)!

(K0

Λ

)−n

= K0 + ν
∞∑

n=0

( ν

Λ

)n n+1∑
k=0

(−1)n−k

[
n

k

]
log(qK0/Λ)n−k+1

(n − k + 1)!

(K0

Λ

)−n

.

We obtain L̄0 on substituting −ν for ν and Λ for q/Λ.

We may now prove the formulas (5a) and (5b) relating the dispersionless
limit of the equivariant Toda lattice to the equivariant genus 0 Gromov-Witten
potential of CP

1.
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In the genus 0 limit, the functions q = exp(u) and v on the large phase
space become exp(∂2F0) and ∂∂0F0, and v̄ becomes v − νu. The proof of
Theorem 4.2 of [5] extends to the equivariant case, and shows that

∂nu = sn + O(|s|2 + |t|2), ∂nv = δ1,n + tn + O(|s|2 + |t|2).(21)

Hence, we may identify the large phase space with the space of formal jets in
an affine space with coordinates u and v.

The following lemma shows that the vector field e lifts to the puncture
vector field on the large phase space.

Lemma 4.1. The puncture vector field

e = ∂ −
∞∑

n=0

(
sn+1

∂

∂sn
+ tn+1

∂

∂tn

)
on the large phase space acts on elements of Q[ν, q, v] by the derivation ∂v.

Proof. Observe that the puncture vector field e commutes with ∂1; this
reflects the fact that CP

1 is one-dimensional. The puncture (or string) equation
says that

e(F0) = s0t0 + 1
2νt20.(22)

Applying the differential operators ∂0∂ and ∂2 to this equation, we see that
e(v) = 1 and e(u) = 0.

Define generating functions πk(z) ∈ Q[ν, q, v]((z)) by the formula

L0(z) =
∞∑

n=−∞

zn

[n]!
Ln

0 =
∞∑

k=−∞
πk(z)Λk,

where [n]! is the rational function

[n]! =
Γ(νz + n + 1)

Γ(νz + 1)
= (1 + zν)(2 + zν) . . . (n + zν).

It follows from the recursion (19) for the coefficients of L that

π−1(z) = qπ1(z) + νπ0(z).(23)

Lemma 4.2. e(πk(z)) = zπk(z) and ∂qπk(z) = zπk+1(z).
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Proof. We have

(L0 − ν)e(L0(z)) =
∞∑

n=−∞

nzn

[n]!
Ln−1

0 (L0 − ν)e(L0) =
∞∑

n=−∞

nzn

[n]!
Ln

0

=
∞∑

n=−∞

(νz + n)zn

[n]!
Ln

0 −
∞∑

n=−∞

νzn+1

[n]!
Ln

0 = z(L0 − ν)L0(z).

The equation for e(πk(z)) follows on taking the coefficient of Λk. Since Λ∂qK0 =
e(K0), it follows from Theorem 4.1 that Λ∂qL0(z) = e(L0(z)). Taking the
coefficient of Λk+1, we obtain the formula for ∂qπk(z).

Theorem 4.2. The dispersionless limits of (5a) and (5b) hold.

Proof. We will concentrate on the proof of (5a). The proof of the disper-
sionless limit of (5b) is the same, up to conjugation.

Let ∂(z) be the generating function for vector fields

∂(z) =
∞∑

k=0

zk∂k.

We must prove that

∂(z)v =
∞∑

n=1

zn−1∂p0(n)
[n]!

, ∂(z)u =
∞∑

n=1

zn−1∂p−1(n)
[n]!

.

In terms of the generating functions

x = 1 + z∂(z)∂F0 − g0(z), y = ν + z∂(z)∂0F0 − g−1(z),

we wish to prove that ∂x(z) = ∂y(z) = 0. We will actually prove the stronger
result, that x(z) = y(z) = 0: in other words, that

∞∑
k=0

zk∂k∂F0 =
∞∑

n=1

zn−1p0(n)
[n]!

,
∞∑

k=0

zk∂k∂0F0 =
∞∑

n=1

zn−1p−1(n)
[n]!

.

A theorem of Dijkgraaf and Witten [2] establishes that the Toda equation
(2) holds in the dispersionless limit:

∂2
0F0 = q + νv.
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Combining the topological recursion relations for equivariant Gromov-Witten
invariants in genus 0 with Lemma 4.2, we see that

∂x(z) = z
(
x(z) ∂(v − νu) + y(z) ∂u

)
∂y(z) = z

(
x(z) ∂q + y(z) ∂v

)
.

On the other hand, the string equation shows that e(x(z)) = zx(z) and
e(y(z)) = zy(z).

Now apply the following principle (Proposition 4.1 of [5]):

A function f on the large phase space such that ∂f and e(f) lie in
Q[ν] itself lies in Q[ν].

Arguing by induction, we see that the coefficients of zk in x(z) and y(z) lie in
Q[ν]; in other words, x(z), y(z) ∈ Q[[ν, z]]. (In particular, we see that ∂k∂F0

and ∂k∂0F0 lie in Q[ν, q, v] for all k ≥ 0.)
The proof is finished by observing that, by the divisor equation for Gromov-

Witten invariants, the limits limq→0 x(z) and limq→0 y(z) are integrals over the
degree 0 moduli space M0,2(CP1, 0); however, this moduli space is empty, hence
x(z) = y(z) = 0.

As mentioned in the introduction, the analogue of Theorem 4.2 is now
known to hold in all genera (Okounkov and Pandharipande [9]).

§5. The Dressing Operator of the Toda Lattice

Let W be the universal dressing operator of the Toda lattice

W = 1 +
∞∑

k=1

wkΛ−k ∈ Φ−(B, q),

where B is the free differential algebra Qε{q, wk | k > 0}/(q − q̄). The coeffi-
cients w∗

k ∈ B of

W−1 = 1 +
∞∑

k=1

w∗
kΛ−k

are characterized by the recursion obtained by extracting the coefficient of Λ−k

in the equation WW−1 = 1:

w∗
k = −wk −

k−1∑
j=1

(
E(k−j)/2wj

)(
E−j/2w∗

k−j

)
.
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Lemma 5.1. There is an embedding A ↪→ B, characterized by the dress-
ing equation L = WΛW−1, or equivalently, LW = WΛ.

Proof. For all k > 0, ak+ε∇wk lies in the differential ideal (w1, . . . , wk−1).

The conjugate Lax operator L̄ is given by the dressing equation

L̄ = W
−1

(qΛ−1)W.

Define evolutionary derivations (δn, δ̄n | n > 0) of B by the formulas

εδnW + Ln
−W = εδ̄nW + L̄n

−W = 0.(24)

Under the embedding A ↪→ B, these derivations restrict to the flows of the
Toda lattice on A.

Let log(L) = W log(Λ)W−1, where log(Λ) is a formal symbol for the op-
erator ε∂. Define � to be the difference operator

� = log(Λ) − log(L) = ε(∂W )W−1

= ε

(
∂wk +

k−1∑
j=1

(
E(k−j)/2∂wj

)(
E−j/2w∗

k−j

))
.

The following is a result of Carlet, Dubrovin and Zhang [1]. (They work in the
context of the Toda chain, so they assume that a1 = ā1 and ak = 0, k > 2.)

Proposition 5.1. The difference operator � is an element of Φ−(A, q).

Proof. Write

� =
∞∑

k=1

bkΛ−k ∈ Φ−(B, q).

We show that bk ∈ A for all k > 0, by induction on k.
We have

ε∂L = ε∂(WΛW−1) = ε(∂W )ΛW−1 − εWΛW−1(∂W )W−1 = [�, L],

hence for each n > 0, ε∂Ln = [�, Ln]. Applying the linear map res : Φ−(A, q) →
A, we obtain the equation

∇
(

[n]bn +
n−1∑
k=1

[k](bkpk(n)) + Pp0(n)

)
= 0.(25)
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We see that α(∂W ) = 0, and hence α(�) = 0. Thus, the constant of
integration in (25) vanishes, and we obtain the recursion

bn = − 1
[n]

(
n−1∑
k=1

[k](bkpk(n)) + Pp0(n)

)
(26)

for the coefficients bk, showing that they are elements of A.

§6. Fractional Powers of the Lax Operator

In this section, we study the fractional powers of the Lax operator L; this
may be compared with the parallel construction for the KP hierarchy due to
Khesin and Zakharevich [6]. The study of these fractional powers is closely
related to the operator � introduced in the last section.

Let s be a complex number. The fractional power Ls of the Lax operator
L is defined by means of the dressing operator:

Ls = WΛsW−1 = Λs +
∞∑

k=1

ak(s)Λs−k ∈ Φ−(B, q).(27)

The coefficient ak(s) is given by the explicit formula

ak(s) = E−s/2wk +
k−1∑
j=1

(
E(k−j−s)/2wj

)(
E(s−j)/2w∗

k−j

)
+ Es/2w∗

k.

In particular, ak(0) = 0 and ak(1) = ak. Differentiating the definition (27) of
Ls with respect to s and setting s = 0, we obtain the formula

dLs

ds

∣∣∣
s=0

= −�,(28)

showing that a′
k(0) = −bk. The following proposition is proved by extending

this differential equation to all values s.

Proposition 6.1. The coefficient ak,i(s) in the expansion

ak(s) =
∞∑

i=0

εiak,i(s)

is a polynomial in s of degree i + 1 with coefficients in the differential algebra

A⊗Qε
Q ∼= Q{q, ak | k > 0}/(q − q̄).
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Proof. By its definition, the fractional power Ls satisfies the differential
equation

dLs

ds
= −1

2

(
Ls � + � Ls

)
.

Taking the coefficient of Λs−k on both sides, we obtain the differential equation

dak(s)
ds

= −1
2

k−1∑
j=1

(
E(s−j)/2bk−j E(k−j)/2aj(s) + E(j−s)/2bk−j E(j−k)/2aj(s)

)
,

where we interpret a0(s) as 1. By an application of Proposition 5.1, the result
follows.

§7. Perturbation Theory for �

Let Ω(A) be the vector space of Kähler differentials of the commutative
Qε-algebra A; this is a free module over A with basis {dq, dak, dāk | k > 0}.
The differential d : A → Ω(A) extends to a morphism

d : Φ−(A, q) → Φ−(A, q) ⊗A Ω(A).

We now calculate the differentials dLs and d� in terms of

dL =
∞∑

k=1

dak Λ−k+1.

A basic formula of perturbation theory (Kumar [7]) says that for f(z) an
analytic function of z,

df(L) =
∞∑

k=0

(−1)k

(k + 1)!
ad(L)k(f (k+1)(L)dL).

For f(z) = zs, this becomes

dLs =
∞∑

k=0

(−1)k
(

s
k+1

)
ad(L)k(Ls−k−1dL).(29)

For completeness, we will now prove this formula directly in the context in
which we need it.
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For s a natural number n, the right-hand side of (29) is a finite sum, and
the formula is then easily proved by induction on n: we have

d(Ln+1) = dLn · L + Ln · dL =
n−1∑
k=0

(−1)k
(

n
k+1

)
ad(L)k(Ln−k−1dL) · L + Ln · dL

=
n−1∑
k=0

(−1)k
(

n
k+1

)(
ad(L)k(Ln−kdL) − ad(L)k+1(Ln−k−1dL)

)
+ Ln · dL

=
n∑

k=0

(−1)k
((

n
k

)
+

(
n

k+1

))
ad(L)k(Ln−kdL)

=
n∑

k=0

(−1)k
(
n+1
k+1

)
ad(L)k(Ln−kdL).

By analytic continuation, (29) holds for all values of s. Indeed, the right-
hand side is convergent in the ε-adic topology, since the operation ad(L) may
be split into two terms: ad(Λ + a1) = O(ε), and

∞∑
k=2

ad(akΛ−k+1) = O(Λ−1).

It only remains to observe that by Proposition 6.1, the coefficient of εi in
dak,i(s) is polynomial in s.

It is now straightforward to calculate d�: taking the derivative of (29) with
respect to s and setting s = 0, we see that

d� = −
∞∑

k=0

1
k+1 ad(L)k(L−k−1 dL).(30)

Theorem 7.1. The constraint (15) defining the equivariant Toda lattice
is equivalent to the identity

K = L + ν� −
∞∑

k=1

zk

k
L−k.(31)

The vanishing of the constants zk is equivalent to the constraint

(δ1 − δ̄1)W = ν∂W,(32)

or equivalently, the equation (δ1 − δ̄1) = ν∂ on the differential algebra B.

Proof. Written in terms of �, (13) becomes

[K − ν�, L] = 0.
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This is equivalent to the statement that

K − ν� ∈ Qε,ν((L−1)).

It is not hard to see that for some constants ζk,

K − ν� − L =
∞∑

k=1

ζkL−k ∈ Qε,ν [[L−1]];(33)

the constant term vanishes since, by definition, res(K) and res(L) equal v, while
res(�) = 0.

It remains to identify the constants ζk. If δ is an evolutionary derivation
of the differential algebra Ã, (30) implies that

δ� = −
∞∑

k=0

1
k+1 ad(L)k(L−k−1δL).

In particular, since L commutes with e(L), we see that e(�) = −L−1e(L).
Likewise, e(L−k) = −kL−k−1. Applying the derivation e to both sides of (33),
we see that

1 = e(K) = e(L)
(

1 − νL−1 −
∞∑

k=1

kζkL−k−1

)
.

It follows from Theorem 3.2 that ζk = −zk/k.
We have

(K − L − ν�)W = (L+ + L̄−)W − LW − εν∂W

=−L−W + L̄−W − εν∂W = ε(δ1 − δ̄1 − ν∂)W.

Thus, the vanishing of the constants zk in (31) is equivalent to the constraint
(32).

Theorem 7.1 implies that the equivariant Gromov-Witten invariants of
CP

1 are described by the equivariant Toda lattice with zk = 0, k > 0. By
the work of Okounkov and Pandharipande [9], the equivariant Gromov-Witten
invariants of CP1 are associated with a τ -function of the Toda lattice which
satisfies (δ1 − δ̄1)τ = ν∂τ . The dressing operator W corresponding to this
τ -function is given by the formula

W = τ−1 exp
(
−

∞∑
n=1

δn

nΛn

)
τ ;
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it follows that W satisfies the equation (δ1 − δ̄1)W = ν∂W . Thus, the Lax op-
erator L defined by the recursion (19) governs the equivariant Gromov-Witten
invariants of CP1.

§8. Hamiltonian Structure

In this section, we use Theorem 7.1 to show that the equivariant Toda
lattice has a Hamiltonian structure.

Denote by R the quotient Ã/∂Ã, and denote by f 
→
∫

f dx the quotient
map from Ã to R. The idea which this notation is intended to represent is that
an element of Ã is a density f , whose associated functional

∫
f dx is obtained by

integration with respect to the space variable x. In particular,
∫
f dx vanishes

on densities f = ∇g.
Denote by Res the trace on Φ−(Ã, q) with values in R given by the formula

Res(f) =
∫

res(f) dx.

Clearly, this map vanishes on total derivatives; it also vanishes on commutators,
by the formula

Res
[∑

i

aiΛi,
∑

j

bjΛj

]
= ∇

∑
k

[k](akb−k).

There is a unique linear map

Res : Φ−(Ã, q) ⊗Ã Ω(Ã) → Ω(Ã)/∂Ω(Ã)

such that d Res(A) = Res(dA).
Associated to the equivariant Toda lattice, we have the basic sequence of

functionals

hn = 1
n+1 Res(Ln+1), n ≥ 0,

with differentials dhn = Res(LndL). In working with hn, the following lemma
is convenient.

Lemma 8.1.

p0(n + 1) =
n∑

k=0

[k + 1]
(
ak+1 pk(n)

)
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Proof. Applying the operator res to the equations Ln+1 = L · Ln and
Ln+1 = Ln · L, we see that

p0(n + 1) = E1/2p−1(n) +
∞∑

k=0

E−k/2
(
ak+1 pk(n)

)
,

p0(n + 1) = E−1/2p−1(n) +
∞∑

k=0

Ek/2
(
ak+1 pk(n)

)
.

Taking E1/2 times the second of these equations minus E−1/2 times the first,
we see that

∇p0(n + 1) = ∇
n∑

k=0

[k + 1]
(
ak+1 pk(n)

)
,

and hence, that

p0(n + 1) =
n∑

k=0

[k + 1]
(
ak+1 pk(n)

)
+ α(p0(n + 1)).

This proves the lemma, since α(p0(n + 1)) = 0.

Corollary 8.1.

hn =
n∑

k=0

k + 1
n + 1

∫ (
ak+1 pk(n)

)
dx.

For example, using the formulas (16) and (17) for a2 and a3, we see that

h0 =
∫
v dx,

h1 =
∫
( 1
2v2 + a2)dx =

∫
( 1
2v2 + q + νv + z1)dx,

h2 =
∫
( 1
3vp0(2) + 2

3 (a2p1(2)) + a3)dx

=
∫
( 1
3v3 + v[2]q + ν

(
1
2v2 + q + 1

2v[2]Pv
)

+ ν2v + z1v + 1
2z2)dx.

Proposition 8.1. We have Res(Ln dK) = dHn, where

Hn = hn − νhn−1 +
n−1∑
k=1

zkhn−k−1.

Proof. From (31), (29) and (30), we see that

dK = dL + νd� −
∞∑

j=1

zj

j
dL−j

= dL +
∞∑

k=0

(k + 1)−1 ad(L)k

((
−ν +

∞∑
j=1

(
j+k

k

)
zjL

−j

)
L−k−1dL

)
.
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Multiplying by Ln and applying Res, all of the terms with k > 0 drop out, and
we obtain

Res(Ln dK) = Res
((

L − ν +
∞∑

j=1

zjL
−j

)
Ln−1dL

)
,

which equals dHn.

Let δv and δu be the variational derivatives with respect to v and u =
log(q).

Corollary 8.2. We have δvHn = p0(n), δuHn = qp1(n), δvH̄n = p̄0(n)
and δuH̄n = qp̄1(n) − νPp̄0(n).

Proof. The formulas for δvHn and δuHn follow since dK = dv+q du Λ−1.
The formulas for δvH̄n and δuH̄n now follow by taking conjugates, bearing in
mind that v̄ = v − νPu.

For example, we have H0 = h0 =
∫

v dx,

H1 = h1 − νh0 =
∫
( 1
2v2 + q + z1)dx, and

H2 = h2 − νh1 + z1h0 =
∫

( 1
3v3 + v[2]q + 1

2νv[2]Pv + 2z1v − νz1 + 1
2z2)dx.

It is now easy to show that the equivariant Toda lattice is Hamiltonian.
Applying res to the equation [K, Ln] = ν∂Ln, we see that

∇p−1(n) = ∇(qp1(n)) + ν∂p0(n).

It follows that δnv = ∇p−1(n) = ∇(qp1(n))+ν∂p0(n). In conjunction with the
formula δnu = ∇p0(n), we conclude that δn

[
v
u

]
= H

[
δvHn

δuHn

]
, where H is the

Hamiltonian operator

H =

[
ν∂ ∇
∇ 0

]
.

Since δ̄nv = ∇(qp̄1(n)) and δ̄nu = ∇p̄0(n), we also conclude that δ̄n

[
v
u

]
=

H
[

δvH̄n

δuH̄n

]
. In other words, the equivariant Toda lattice is Hamiltonian with

respect to the Hamiltonian structure

{v(x), v(y)} = ν∂δ(x − y), {v(x), u(y)} = ∇xδ(x − y), {u(x), u(y)} = 0.

It was proved by Getzler [5] and Zhang [14] that the flows ∂k,P in the Toda
conjecture of Eguchi and Yang are Hamiltonian. Taking the limit ν → 0, we
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obtain the explicit formulas for these Hamiltonians due to Carlet, Dubrovin
and Zhang [1]. By (6), the descendent flow ∂k,P has Hamiltonian

lim
ν→0

(
Hk+1 − H̄k+1

ν(k + 1)!
− ck(Hk + H̄k)

k!

)
.

Let �0 equal the limit as ν → 0 of �. Since L = K − ν� = K − ν�0 +O(ν2) and

L̄ = K̄ + ν�̄ = K + ν(�0 − Pu) + O(ν2),

we have
ν−1

(
Hk+1 − H̄k+1

)
= ν−1 1

k+2 Res(Lk+2 − L̄k+2) − 1
k+1 Res(Lk+1 − L̄k+1)

= Res(Kk+1(Pu − 2�0)).

It follows that ∂k,P has Hamiltonian 1
(k+1)! Res(Kk+1(Pu − 2�0 − 2ck)).

Appendix. Another Formulation of the Equivariant Toda
Conjecture

In this appendix, we prove that (5a) is equivalent to

δn = n

n∑
k=1

νk−1

[
n

k

]
∂n−k.

For example, 1
2δ2 = ∂1+ν∂0 and 1

6δ3 = ∂2+3ν∂1+2ν2∂0. A similar proof,
which we omit, shows that (5b) is equivalent to

δ̄n = n
n∑

k=1

(−ν)k−1

[
n

k

]
∂̄n−k.

Equation (5a) may be restated as saying that

∂k =
k+1∑
n=1

(−ν)k−n+1hk−n+1

(
1, 1

2 , . . . , 1
n

)δn

n!
,

where h� is the complete symmetric polynomial of degree �. We wish to prove
that

δn

n!
=

n−1∑
�=0

νn−�−1en−�−1

(
1, 1

2 , . . . , 1
n−1

)
∂�,

where e� is the elementary symmetric polynomial of degree �. In other words,
we wish to prove that

n−1∑
�=0

νn−�−1(−ν)�−m+1en−�−1

(
1, 1

2 , . . . , 1
n−1

)
h�−m+1

(
1, 1

2 , . . . , 1
m

)
= δn,m.
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This is clearly true if n ≤ m; thus, we have only to prove that the left-hand
side vanishes when n > m. In this case, it equals νn−m times the coefficient of
νn−m in the generating function

n−1∏
j=1

(1 + jν) ·
m∏

j=1

(1 + jν)−1 =
n−1∏

j=m+1

(1 + jν),

which is a polynomial of degree n − m − 1; hence, the coefficient in question
vanishes.
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