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Relations for Multiple Zeta Values and
Mellin Transforms of Multiple Polylogarithms

By

Jun-ichi OKUDA* and Kimio UENO**

Abstract

In this paper a relationship between the Ohno relation for multiple zeta values
and multiple polylogarithms are discussed. First we introduce generating functions
for the Ohno relation, and investigate their properties. We show that there exists a
subfamily of the Ohno relation which recovers algebraically its totality. This is proved
through analysis of Mellin transform of multiple polylogarithms. Furthermore, this
subfamily is shown to be converted to the Landen connection formula for multiple
polylogarithms by inverse Mellin transform.

81. Introduction
81.1. Definitions and examples

In this paper, we will consider the relationship between the Ohno relation
for multiple zeta values (MZVs, for short) and the Landen connection formula
for multiple polylogarithms (MPLs, for short) via Mellin transform and inverse
Mellin transform.

Definition 1.  For positive integers ki,...,k, and |z2| < 1, MPLs are
defined by

ma

. z
(1.1) Lig, ks, k, (2) 1= > TR

ma>ma > >my >0 101 ™ Mns
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and for the null sequence @, Lig (z) := 1. If k; > 2, MPLs also converge at
z =1 and define MZVs

1
(1.2) Clhiska,onka) = D e

my>ma > >m, >0 my ma™ My

and similarly ¢()) := 1. The weight and the depth of {(k1,...,k,) are defined
to be k1 + - - - + k,, and n, respectively.

Through consideration on the dilogarithm Lis (z) as an example, we ex-
plain an essential aspect of the relationship that will be considered in our
papers.

The sum formula [G] for MZVs of depth 2

(B+D= > C(@2+al+c) (1€Zsx)

c1+ceo=l
c1,c2>0

is equivalent to the generating functional expression

oo

DUBHDAN =0 > @2+ l+e) A
=0

=0 c1+co=l
c1,c220

Noting that, for a positive integer n,

1 A
/\:Z for |A <1,

n— nitl
1=0

we see that the both sides in the above are meromorphic functions in A,

o0

1 1
Zn2(n—)\)7 Z ni(ny —A)(ng — )’

n=1 ni1>ng >0

Applying “inverse Mellin transform”
1
M [f(A = — Nzt dA 0<z<1
FOIE) = g [ 102D <2<y

to the left hand side (for details see Section 4), we have

oo n

ZZ—Q:LiQ(z).

n=1
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Note that

1
Z ny (711 — A)(’I”LQ — )\)

n1>n2>0

1 1
- Z n + Z ni(ng —ny)(ng — A)’

ny —n no —
n1>n2>0 1( L 2) 2 n1>n2>0

Applying inverse Mellin transform to each term, we have

> i - (1)

ni{ny —n
ni>ng >0 1( 1 2
A . z
E ﬁ = —L111 1/
ni(ng —n z —
n1>n2>0 12 1

Consequently we obtain the next functional equation for the dilogarithm:

(1.3) Lis (2) = —Lis <Z - 1) ~ Lin <Z%1) :

which is known as the Landen connection formula for the dilogarithm [L]. This

can be viewed as the connection formula for the dilogarithm between 1 and oc.

§1.2. Main results and organization

Now we explain the Ohno relation [O], which is a generalization of the sum
formula.
Any index k = (ky,...,k,) € 2%y, k1 > 2 can be written uniquely as

(1.4) k=(a1+1,1,...,1,. . as+1,1,...,1),
—— ——
by—1 be—1
with s € Z>1 and a;,b; € Z>1 (i =1,...,s). The dual index k' = (k},..., k)
of k is defined by

(1.5) K = (bs+1,1,....1,....b; +1,1,...,1),
——— ——
as—1 a;—1
and the dual of () is itself.

Ohno relation. Let k = (k1,...,ky,) be any index and k' be its dual.
For alll € Z>¢, we have the following homogeneous (w.r.t. weight) relation,

(1.6) S Cliten o katen) = > CK A K+ ).

cit-tep=l e+l , =l
€20 ¢ >0
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In particular, this contains such relations as the Hoffman relation [H1] (I = 1),
the duality formula [Z] (I = 0) and the sum formula (n = 1).

We introduce the generating functions of the both sides of the Ohno rela-
tion as follows:

(1.7) fl(aisbi)i1;A) =

WK

Z C(kl +Clv"',kn+cn) )\la

c1t-tep=l
¢; =0

)
=

M8

(1.8)  g((ai, bi)i_y; A) = S Ky ) p AL

=0 | ci+Acl, =l
¢;>0
The Ohno relation reads
(1.9) (@i, bi)i—1;A) = g((ai, bi)izq1; M)

We can show that f’s and g¢’s satisfy the same difference relations which play
a fundamental role in our theory (Proposition 1, Section 2). Now we define the

functions F'(k; A) and G(k; \) by
F(kA) = 3 (=" 70 (e, 1) U (i = 05, 1)05 V),

§;=0,1
G A) = Y (=N Plg((kr, 1) U (ks = 6, 1)7g; A).
§;=0,1

Under the Ohno relation, we have
(1.10) F(k; M) = G(k; M),

which we call the reduced Ohno relation. We can easily see that

Fly= Y . . -

1 —_— kz ..
ma>ma>e>m, >0 1 (ml )\)7712 Mn

so that inverse Mellin transform of F'(k; A) is the multiple polylogarithm Lig, (2).
This fact gives us strong motivation to introduce these functions. The main
theorem of this paper (Theorem 1) says that the generating functions f’s and
g’s are represented as MZVs-linear combinations of F'’s and G'’s, respectively.
In other words, the reduced Ohno relation (1.10) recovers the totality of the
Ohno relation (1.9) (Section 3). This theorem is proved by virtue of the dif-
ferential equations satisfied by MPLs and Mellin transform (Section 4 and 5).
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Furthermore via inverse Mellin transform the reduced Ohno relation is converted
to the Landen connection formula for MPLs:

(1.11) Likyok, (2) = (-1)" Y Lic,.ce, (Z:)

(RPN

lej|=k;

where ¢; runs all compositions of k; and the product of c;’s is given by con-
catenation. This can be viewed as the connection formula between 1 and oo for

MPLs (Section 6). In Section 7 we give the proof of Proposition 1 and another
proof of the Ohno relation.

82. The Generating Functions and Their Properties
§2.1. Compositions

By a composition of a positive integer n, we mean an ordered sequence
c = (c1,...,q) of positive integers of which the sum is equal to n, and the
composition of 0 is defined to be . The “weight” |c| and the “length” len(c)
of ¢ are, by definition, n and [ respectively. We allow 0’s to appear in the
middle elements of ¢ and identify such compositions and normal compositions
by removing 0’s successively, i.e. we regard (..., ¢;—1,0,¢41, ... ) to be the same
composition as (...,¢;—1 + ¢i41,...). For example,

(3 2,0,4) = (5,0,4) =(9), or (3,0,2,0,4) =(3,0,6) = (9),

We remark that the resulting composition dose not depend on the procedure of
the identification. For compositions ¢ and ¢’ we define the partial order ¢ > ¢’ if

¢’ is obtained by decreasing some elements of ¢. For example, (5,1,4) > (4,1, 3)
and (5,1,4) > (9) = (5,0,4). Between compositions of even length and compo-
sitions whose first element is greater than 1, we define the 1-1 correspondence
k as follows:

(2.1) k((ai, b)i—1) = (a1 +1,1,...,1,...,as + 1,1,...,1).
—— ——
bi—1 bo—1
§2.2. Generating functions for the Ohno relation

Definition 2.  For any composition (a;, b;)i_; = k= (k1,. .., kn), we set
the generating functions of MZVs as



542 JuN-1cHI OKUDA AND KiMmio UENO

M8

(22)  fllai,bi)i; A) = Sl ten,. ko) p N,

14 ten=l
CjZ

Il
=)

M8

(23) g((ahbi)f:l;)‘) = Z C(ki +C€L7" -?k;z’ +C{n') /\l

et =l
¢;>0

= f((birai)ig; A),

where (k,...,k.,) is the dual of (ky,...,ky). For convenience f((a;,b;)7_1;A)

== 01if a; or by = 0. We set the weight of f((ai,b;)i_1; ) and g((ai, bi)i_1; N)
to be |(as, b:)5_4].

l

I
o

This power series absolutely converges for |A| < 1. The Ohno relation
reads

(2.4) f(aiybi)iz1; A) = g((ai, bi)i_q; A),

for any compositions (a;, b;)i_;.
Noting that for a positive integer n,

1 — X
n_)\:ZnH'l for |A <1,
1=0

one can easily see that

(2.5)
s . _ § |SI 1
f((aia bi)i:h )‘) - m& . (mBi — )\) )

mi>>mp >0 i=1 B;_1+1 (mBz‘—1+1 - )\)
b

where By =0 and B; =by +---+ b; for i > 1.

§2.3. Properties of the generating functions
The generating functions satisfy the following difference equations:

Proposition 1.  We set N := A —1 and I := {(0,0),(1,0),(0,1)}, then
for any composition (a;,b;)i_, the generating function f satisfies the following
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relations.

(2.6) > (=N P (@i = 65, = €)imi V)
= 3N (a8 by = )i V)

Here the sum Y is taken over {8;,€;} € I, the sum Y.’ taken over &}, €., ., €
{0,1} and {8,€}y € I fori =2,...,m, and |6)| (resp. |€")|) is the sum of
all (55 (resp. ez(- )). The generating function g also satisfies the same relations.
We define the weight of X and X to be —1 and this relation is homogeneous of
weight |(ai, bi)i_q| — s

The proposition will play a crucial role in our theory. The proof is so long
that it will be postponed until Section 7.

The generating functions are analytically continued to meromorphic func-
tions with simple poles at positive integers.

Proposition 2.  The generating function f((a;,b;)5_1; \) can be expand-
ed to a partial fraction

3 (.

oo By
@7 fllanb)isN=>_{>. >, o z%

p=1 | j=1 m1>:->m;_1>p
p>mj41>->mpBg

where

mi...m 1 1
(28) Cm} Be = a1 a

az s . AN
MG, 1M (m; —m;)

Proof. The generating function f can be written as follows:

B le‘..mBS
my

flawb)iid = >0 3

m1>-->mp, >0 j=1

For the proof, we have to show that it is possible to change the order of the
summations. So it is sufficient to prove that for any j

> Cpme:
m; — A
mi>->mi_1>m; J

Mi>Mjp1 > >Mpg

converges absolutely. Put d; = m; —m;4; fori=1,...,Bs—1and dg, = mp,.
Making use of the inequality

di +de+---+dp, > Bs %/dids - - dp,
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we have
miyi...MmM
‘ij Bs ’ 1 1 1
Ppp— = al .o .. as — . . —
mj — A mi B, 1 i (m; —my) | my — A

Bs—1
1 1 1
< IT 5
(di+da+---+dp,)™ <i1 di) |dj +---+dp, — Al

1 Pt 1
S al H 5
(Bs Bi/d1d2'”dBS) i d; |dj—|—..._|_st_)\|
Let A be in a compact set which does not involve positive integers. Then there
exists a positive constant A such that

1 < A
dj +---+dp, — A ~ dp,~

Hence

le mpBg o 1 Bg 1

Z m; 3 <A Z - @ ( T

mi>->mp, >0 mj — dy,...,dp, =1 (Bs Y dy... st) i=1

<+
O
83. Algebraic Reduction of the Ohno Relation

Definition 3.  For any index k = (ky,...,k,) we set the homogeneous

functions of weight |k| + 1 as
(31)  FkA) = Y (=" PRk 1) U (ks = 6, 1) ),
§;=0,1
(3:2) Gl A) = Y (=N Plg((ky, 1) U (ks — 63, 1)705 A).
§;=0,1
Tt is easy to calculate F'(k; \); we have

33 Fn= Y .

i
my>mo>->my, >0 my (ml A)m2 Mp

On the other hand, it is difficult to write down the explicit form of G(k; ).
These functions satisfy difference equations of the simple form:

Proposition 3.  For any index k = (ki,...,kyn), we have the relations
homogeneous of weight |k| :
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(i) ifky > 2

k' to be the dual index of k defined by (1.5). Then
(34) )\F(kl,kg,,kn,)\)—f—C(k‘l,,k ) :F(k‘l —1 k‘g,...,kﬁn;)\),
(3.5)  AG(k1, oy v ki N) + C(KL oK) = Gk — 1, Koy e Fons ).

(i) if by = 1
(kb + 1, ks, ..., kl.) to be the dual index of (ko +1,ks,...,ky,). Then

(3.6)  AF(L ko, ... ki A\) + Clka + 1, ks, ... kn)

= NF(L k.. ks N) + NF(ka + 1, ks V),
(3.7)  AG(L, k... kpi N+ C(Ky + 1, KL, ..., K.)
= NG k.. ks N) + NGlha + 1, ks N).

Proof. Induction on compositions. Apply Proposition 1 to (k;, 1), and
gather f’s or g’s whether ¢; = 0 or not, then there are many cancel outs because
of the identification (..., k; — 1,0, k;11,...) = (..., k;,0,k;31 — 1,...) and the
induction hypothesis. O

It is easy to see that the inverse Mellin transform of F'(k; \) is the MPL
Lik(z). This is a motivation to introduce these functions. It is known that the
Ohno relation is the largest systematic relation for MZVs, however there are
many linear dependency among them. Actually we can prove

Theorem 1.  For any composition (a;,b;)i_,, we have
(3.8) F(as bi)i—is A Zaw D¢k F (e N),
(3.9) 9((asbi)i-i A Za<a~“< k)G e ),

where the summation runs over some finite number of compositions c, a(a“b )
Q, k=1 (K P)) < (ag,b:)3_y, and k') is the dual index for k(ca“b i, More—
over the duality formula C(k(‘“’b")) = C(k’(ai’bi)) comes from f(0) = g(0) for

compositions less than (a;,b;)5_;. So the Ohno relation is reduced to
(3.10) F(k;\) = G(k; N
as an algebraic relation.

We call (3.10) the reduced Ohno relation. For the proof of the theorem,
we have to consider inverse Mellin transform of f’s and g¢’s.
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84. Inverse Mellin Transform of the Generating Functions
84.1. Integral transform of the generating functions

For any composition (a;, b;)i_; and any integer [ we consider the integral
transform

@1) MM b V] (2) = ﬁ/cyf((ai,bi);:l;x)zx d),

where 0 < z < 1 and the contour C for any o > 0 is as follows:

V=la |77 /

—VTa

Proposition 4.  The integral transform (4.1) absolutely converges and

o0

(42) M V(@b V] (2) = 30 ResA' (@ bi)iyi ) 27,

Proof. Since

m2a? m2a?

2
|m; — (tﬁa)f = (t* +a?) (1 myt > + =2 >

C2+a? 2+a? = 2+ a?’

we have
(4.3) / ‘(j:\/—la )L (s, by £V T+ t)zi\/__lo“"t‘ dt
0

g/ (t2+a2)% | f((ai, bi)j—y; £V -T1a +t)| 2" dt
0

12 4 a2)(Be+D)/2

abBs

SC(klak27---7kn)/ Zt( dt,
0

where (k1,...,k,) = k((ai,b;);_,) and By = by + --- + bs. Thus the integral
absolutely converges.
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Next, consider the integral

(4.4)
1
2ryv—1 CnN+N

where the contour is

N
N (@i, bi)izs N2 dh = = 3 Res X (s, bi)ig; \) 2"
p=1

0 Q 2 N N+1
,\/,_101 .................

and yy passes through N + % We must prove that the integral on vy tends
to 0 as N — oo. Because of the inequality

1
mj — (N + 5 +v—1t)

the integral on ~y is evaluated as

1 _ 2N+

mj—(N+3)| = my

)

=]
(4.5)
« 1 l 1 .
|/ (N +5t \/—115) F(a,b)izs N + 5 + V1t) N TRV gy

a v
SZN+%(2(N+1))Bsg(k1,...,kn)/ <t2+<N+1>2> dt.

e 2

Since 0 < z < 1, the right hand side converges to 0. O

We set

(4.6) (@i, bi)izq;2) == M [f((ai, bi)i_1; N)] (2),

D((ai, bi)imys 2) = M [g((as, bi)i—1: V)] (2).
Proposition 5.

(1) The functions ¢((ai,b;)i_1;2) and ¥((a;,bi)i_q;2) are holomorphic for
|z| < 1.
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(ii) We have

(4.8) M f((ai,bi)i—y; M](2) = 9™ (((ai,bi)i=y3 2)),
(4.9)  M[A—1)"f((ai,b)i; A = D)](2) =2 9" (p((ai, bi)i_y; 2)),
and

1

(4.10) M {mf((aiabi)le; A= 1)] (2)

*dz s
=+ (et b+ [ Fl(antiain).
0 Z
where ¥ = zd/dz is the Euler derivation.

Proof.
(i) From Proposition 4 we obtain

oo

(411)  e((ai,bi)i—1;2) = Z?jﬁf((ai,bi)le;/\) 2P

B, J

:i Z Z C;nl--.;;...mBs 2P,

p=1 | j=1 m1>-->m;_1>p
P>Mjp1>->mpg

m H.EH.m . . ol .
where Cp, P is the same as in Proposition 2. The series

J

%) B Z p
le.,.p.,.mBS z
D I
p=1

j=1 mi1>--->mji_1>p b
p>mip1>->mpg

is convergent at z = 1 because of Proposition 2, so the radius of convergence
of (4.11) is at least 1.

(ii) The first equation can be shown by exchanging the derivation and the
integration. For the second equation we shift the integral variable A to
A+ 1 in the left hand side. For the last equation, we have

71 ,

7 [ b= ) @)
__Z 1
C2myV=1 Jpcipecy A

F((as,bi)i_q; A) 2 dA
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=2 (—C(k:l, ko, ... kn) + #/ lf((ai,bi)le; A) z*dA>

—Z<§(k1,k2,...,kn)+/0 {QW\/—/f (@, bi)izi; M) Adk} dzz)

In the last line above we have exchanged the order of the integrals.

U
Let us introduce the “inverse transform” of M by
1
(4.12) M) = [ oo d
0
Proposition 6.
(4.13) Mlp((ai, bi)i=1; 2)I(A) = f((ai, bi)iz1; A).
Proof. For0<r<land A<0
/ {ZResf aw 7, 1 ) p}Z_A_l dz_f((a“b)z lv)‘)
o0 p_>\ o0 . 1
ZE{eSf ai, bi)ias ) — *I;Eifgf((ambi)i:ﬁ)\)m
> 1
< — @ =
<3 s bt 0 25 007
—0 (r—1)
by virtue of Abel’s Theorem. O

84.2. The differential-integral relations satisfied by ¢’s and ’s

Proposition 7.  The functions ¢’s as well as 1’s satisfy the following
relations:

(4.14) Z(*ﬁ)s_‘él_ldsﬁ((ai —0i,bi — €)7—1;2)
= ZZ/(—ﬁ)S_Ié‘_‘el@((ai =0, b — €i41)715 ).

Here 32, 3, 16U, [€")] is the same for Proposition 1 and 9~ is the integral

operator

19_1‘9((@171))1 157 ):_C(kl,'-'akn)+/z %@((al’b)z 157 )7
(4.15) 0

971 (a5, i)y 2)= —C(K, . K) + / © b (i, bi)irs 2)
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where (k1,...,kn) = &((a;, b;)i_q) and (ky,...,k!,) is its dual. We define the

s !

weight of 9 to be —1 and this relation is homogeneous of weight |(a;,b;)i_{|—s.

Proof. This is a direct consequence from Proposition 1 and Proposition 5.
O

Furthermore we set (see Definition 3 and Proposition 5)

(4.16)  ®(k;2) = M[F(k; 2)](2)

= (_19)”—1—\5|<p((k171) U (ki _51"1)?:232)’
§;,=0,1

(4.17) U(k; z) := M|G(k; 2)](z)

= (=)™ (R, 1) U (ki = 63, 1)fg; 2).
§,=0,1

s

-

From (3.3) and (4.2) it follows that

zm

(4.18) O(k;z)= Y - — = Lik (2).

my>->my My M

Corollary 1.  The differential relations satisfied by ®(k;z) and ¥(k; z)
are the same as the differential relations for Lig (z)

1_. .
d =Lk, 1k, ke (2)  if k1 > 2,
(4.19) d_Likl,...,kn (2)=4¢%1 '
z T lekQ"”’k" (2) ifk1 =1
Proof. This is clear from Proposition 3 and Proposition 5. O

84.3. Mellin transform and inverse Mellin transform

We call the integral transforms M and M Mellin transform and inverse
Mellin transform respectively. In fact, for suitable compositions, M is actually
inverse Mellin transform.

Proposition 8.  For any composition (a;,b;)i_, with a;, > 2 for some
igand 0 <c<1

c++/—1oo

1
- b ) N2 dA.
271—\/__1 A—V—loo f((a ) =1 )Z

7

(4.20) M [f((asbi)i—i; V)] (2)
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Proof. Consider the following contour

Because the integrand has singular points only at positive integers the
integral on this contour is 0. We check that the integrals on 'yf » V1 s 7; and
v5 — 0if N, L — oo. First let N to oo, then we can show that the integral on
vf tends to 0 in the same manner as in (4.5). Similarly the integral on y; — 0.

Next let L to co. Assume that ig = 1. Noting that
1 1

<
|m{t — (t+v=1L)| ~ m{*L
we can show that in the same manner as in (4.3) the integral on 5 is

[ bt VT ) dt\
0

_ o] 2 2 Bs—1
<Gk —Lka . k) [, (P4 L dt
= L 0 L?

—0 (L — 0).

The other cases of 7y # 1 and that the integral on -, tends to 0 can be verified
in the same way. [l

85. Proof and Examples of Theorem 1
§5.1. Proof of Theorem 1

From the equation (4.14) in Proposition 7 we obtain

(=2 >+ > (=0 PIlg((a; — 6, b — €)iy; 2)
€0j+1=0  €jd;j41=1

Vi 35

/
=z Y (=) PIllg((a; — 65, b — €141)im152).
djej1=1
3j
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Here we note that ¢((a;, b;)i_;; z) appears only in the first summation (it cor-

responds to the term with all §; = ¢; = 0). Dividing by 11~ and applying [, %

s times we have
(=) ¢((ai, bi)izy; 2)

- > (_/oz%y_él_lew((ai—@:bi—ei)f1?2)

€jdj+1=0
vj
1<[6]+]e|<s

Z ds s—1 4y
&~ _9\y5—18]—1el s p e
p> (/0 z> /01—2’( v) o((a; — i, b; — €)i_13 2)

! 2dz\*"" (7 dz D .

5j5j+.1:1
J

From the induction hypothesis ¢’s of less compositions than (a;, b;)5_; can be

written by MZVs-linear combination of ®’s. Using Corollary 1 the second and
third terms in the left hand side are expressed as MZVs-linear combination of
d’s. So we have

p((ai,bi)izy) = > el PI((k)) D (c; 2)
c

2dz\"t 7 dz
(ai,bq) (ai,bi) S—Me .
Ec B¢k ) (/0 . ) /0 11—, Z19 (®(c; 2)),

where 2 < m. < s+ 1 and oz(cai’bi)7 éai’bi) € Q. For the proof we must

verify that the last term above is written in MZV-linear combination of ®’s. If
me = 8, from Corollary 1

([2) [Ermwen=([2) [ e

is @ of the greater composition. If me = s+1, one can show by virtue of (4.15),

([9) [ e

is written in MZV-linear combination of ®’s. For the ¥’s case the corresponding
coefficients are MZVs of the dual indices. If 2 < m, < s — 1, 957 e (<I>(c; z))
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can be expressed as linear combination of the following

Zl

(5.1) DT (B(es2)) = Y oz(ai’b")q)(c',z)m,

c\lm
where ¢ is less than ¢, | < m < s — m. and alaibi) € 7, Next, we repeat the
iterated integrals using the expansions

l n

2 n\ (—1)"7 11 1
<1—z>mz<j)<1—z>m—n+j’ (ST Dy e

Jj=0 Jj=1

Making once the iterated integral of the right hand side of (5.1) we have the
following:

/0 ) e _dj)m}(k; )

m—1 | (1—-z)m1
m—1 2z dz
(I)(l?kl ) ,kn,Z) ; /0 (172)1 (kl ) 7k Z)}

Hence after making the iterated integral s — 1 times we finally reach to the

integral
* dz
= ®(1;2).
/0 1—2z (1:2)
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Thus ¢((as, b;)_1) can be written by MZVs-linear combination of ®’s. The
application of Mellin transform

1
M) = [ el
gives us the theorem. O

§5.2. Examples of Theorem 1

We list examples of (3.8) up to weight 6. For simplicity we drop the
variable .

weight 2:
(5.2) f(1,1)=F(1).
weight 3:
(5.3) f(2,1) = f(1,2) = F(2).
weight 4:
(5'4) f(?’ﬂ 1) = f(173) = F(3)7
f(2,2) =2F@3) + F(1,2) - C2)F (1),
f(1,1,1,1) = F(3) — F(2,1).
weight 5:
(5 8) ( 2) = F( ) F(1,3) + F(2,2) = ((3)F(1) = C(2)F(2),
(5.9) f(2,3) =3F(4) + F(1,3) + F(2,2) — (2, 1) F(1) = ¢(2)F(2),
(5.10) £(2,1,1,1) = f(1,1,1,2) = 2F(4) — F(3,1) + F(2,2) — ((2)F(2),
(5.11) f(1,2,1,1) = f(1,1,2,1) = F(4) — F(3,1) — F(2,2).
weight 6:
5.12) £(5,1) = £(1,5) = F(5),
5.13) f(4,2)=4F(5)+ F(3,2) + F(2,3)+ F(1,4)
—C4FQ1) = CB)F(2) = C(2)F(3),
(5.14) f(2,4)=4F(5 3,2)+ F(2,3)+ F(1,4)
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(5.15) £(3,3) =6F(5) + 2F(3,2) + 2F(2,3) + 2F(1,4) + F(1,2,2)
—¢B.FA) - CB)F(2) = ¢(2,H)F(2)
—20(2)F(3) — ¢(2)F(1,2),

(5.16) £(3,1,1,1) =3F(5) — F(4,1) + F(2,3) + F(3,2)
= ((3)F(2) = C(2)F(3),

(5.17) F(1,1,1,3) =3F(5) — F(4,1) + F(2,3) + F(3,2)
= (¢(2,1)F(2) = ¢(2)F(3),

(5.18) £(2,2,1,1) =3F(5) — 2F(4,1) — F(2,2,1) — F(2,1,2)
—C(2)F(3) +C(2)F(2,1) — ¢(2,1)F(2),

(5.19) £(1,1,2,2) =3F(5) — 2F(4,1) — F(2,2,1) — F(2,1,2)
—C(2)F(3) +¢(2)F(2,1) = C(3)F(2),

(5.20) £(2,1,2,1) = £(1,2,1,2) = 2F(5) — F(4,1) — ((2)F(3),

(5.21) £(2,1,1,2) =5F(5) — F(4,1) + 3F(

= 3C(2)F(3) — C(2)F(
(5.22) F(1,3,1,1)=f(1,1,3,1) = F(5) — F(4,1) — F(3,2) — F(2,3),
(5.23) £(1,2,2,1) = F(5) — F(4,1) — 2F(3,2) — F(2,3) + F(2,2,1),
(5.24) f(1,1,1,1,1,1) =2F(5) — 2F(4,1) + F(3,1,1) — C(2)F(3).

86. Landen Formula and the Ohno Relation

The Landen connection formula for the dilogarithm (1.3) generalizes to
the MPLs case. This formula is interpreted as the connection formula of MPLs
between 1 and oco.

Proposition 9.

(6.1) Lix () = (1" Y Lic,c, (Zf 1>7

Cl;.-ey Cn

where ¢; Tuns all compositions of k;.

Proof. For k= (1)

Li; (2) = —log(1 — z) = log <1 Zfl) = Li (zf1>
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We assume that the proposition holds for k = (kq, k2, ..., k). Then using
the differential relation

(6.2)
a,. ( . > (% + %) Lik, 1o ko (Z - 1) if ky > 2,
2 _
Zo bk, | - L “Likk, <Z - 1) if by = 1
we have

, dz .
Liky 41,k2,0.0 k0 (2) = / ~ Lk ok (2)
0
z dz dz dz
= = dz — —1)n
[((F5)e5) o

? dz
L
/O T ks (2)

3" Licoe, <Z - 1) ,

15--+5Cn

and

Lit k... ke, (2)

/Ozld_zzu)” Y Licee, (zf1>

C1,--+,Cn

O

One can obtain further information of the right hand side of (6.1) in the
case of k = k, a positive integer.

Lemma 1.  For any positive integers j and k with j < k, we have

my

(©6.3) 2 mi Hi;«éj(@—mj) B VR (Zi1> .

my>-->my |C|‘ik

len(e)=k—j+1

Proof. We show by induction for k. For the case k =1

£ ()
— m z—1

is obvious. We suppose that the proposition is correct for £ — 1. Calculating

the derivative of the series and applying the induction hypothesis we have
d Z™mi

ma [z (mi —my)

my>->myg
mj—l

1 z
T 2(1-2) 2 ma [ (mi —mj—1)

my>e>me_1
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1 A
T X

mi>->me—1 m Hi#j (mi N mj)

-y X ou() () Xouw()

(&)

le|=k—1 le|=k—1
len(e)=k—j+1 len(c)=k—j
Due to the differential relation (6.2) the lemma is proved for k. O

For any positive integer k, we have

(6.4) Gy = Y !

mi1>->my ml(ml N )\) o (mk o /\)7

hence

k
(6.5) U(k;z)= Y Zm

m1>-->my j=1

Z™Mi

1 H#]‘(mi —mj)

By virtue of Lemma 1 we have
Proposition 10.

(6.6) \I!(k;z)—zk:l 3 Lic<zi1>.

c
lel=k
len(e)=k—j+1

Moreover using the differential relation for Li’s and ¥’s and the equation above,
we can see that

n 1 o
(6.7) U(ky, ..., kn;2) = (-1) ) Zc Lig,..c, (Z — 1) .

Thus the relation ® = W can be interpreted as the Landen connection
formula. We can think that the reduced Ohno relation is converted, via inverse
Mellin transform, to the connection formula of MPLs between 1 and co.
Discussions. Proposition 9 says that the reduced Ohno relation is con-
verted to the Landen connection formula for MPLs by inverse Mellin trans-
form. In particular, since the explicit forms (6.4), (6.5) of G(k; \) and ¥(k; z)
are revealed, the Landen connection formula for the polylogarithm Liy (2)
for any positive integer k is, via Mellin transform, converted to the relation
F(k;A\) = G(k; \). This is nothing but the sum formula of depth k. Thus the
sum formulas for MZVs are equivalent to the Landen connection formulas for
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polylogarithms. However, such equivalency is not achieved yet for the reduced
Ohno relation of indices k of depth greater than 1. This is an important issue
to be settled in future.

We have another important issue: In Theorem 1, which is the main theorem

a;,b;)

in this paper, the indices k:(a“b) and the rational numbers ae’ are not

specified. They must be determined. Moreover, we conjecture that

(6.8) F((@i,bi)3q; A Zaw)c (BLP)) 5 F(e; V),
(6.9) 9((as, bi)i—y: A Za“’““c KL)% Ges N),

where * is the harmonic product introduced in [H2].

87. Proofs of the Difference Relations and the Ohno Relation
§7.1. Proof of Proposition 1
To prove Proposition 1, we need the following.

Lemma 2.  For any composition (a;, b;)i_,, we set
(7.1) [(ai,di), bi}izys Al
- ¥ I : ,
(mp d;)® = A)--(mp, = A)

m1>--->mp,>0i=1 i—1+1 (th—l“’l

bi

where we interpret special cases with a; =0 or b; =0 for some i as follows:
(7.2) [{ .. 0i—1,(0,d;), bsy ... BN =[{- -+ s bic1 + by 1 A
(7.3) [{...,(ai=1,d),0,(a; ),...};)\] =[{... (a1 +ai,d),... 1AL
Then we have the following difference relations:
(i) (a) Ifay > 2,
(7.4) A{(a1,0),b1,...}; A

—[{(a1 —1,0),b1,... }; A\ = [{(a1,0),b1 — 1,... }; A

=X [{(a1,1),b1,... ;s\l = [{(a1 — 1,1),b1,... }; A

(b) Ifa1 = 1,
(7.5) AH(L,0), 61, A = [{(1,0),b1 — 1,... 1\
=XN[{(1,1),b1,... 1 A
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(ii) Ifi#1 andi# s, ori=s and bs # 1,
(76) A[{,(a“O),b“},)\]
@ = 1,0 b 1A = [ (@, 00,5 — 1
:>\/ [{...,bi_l,(ai,l),...};)\]
—[{...7bi,1,(ai—1,1),...};)\]—[{...,bi,1—1,((11',1),...};)\}.

(i) (a) If b > 2,
(7.7) {(a1,1),b1, (az,1),ba, ..., (as,1),bs}; Al
= [{(a1,0),b1,...,(as,0),bs}; N]
(@10, b1, (s, 0), by — 13X

{(a17 1)7 blu (O'Qu 1)7 b27 ey (CLS,h 1)a b8717 (a870)u 1}7 )\}
{(al 1)7b 7(a271)ab27"'a(as—1a1)7bs—17(as_17O)a1};)‘]
)‘/ 7b17(a270)ab27"'7(a870)a1};)‘/]

_[{(ala 0)7 bla (a2a 0)7 b27 ceey (as - 1)v 1}7 )‘/}
_[{(ah 0)7 blu (O'Qu 0)7 b27 ey bsfl - 17 (asu 0)7 1}7 )\/]
Proof. We use the partial-fractions expansion:
A 1

(7.9) ma(m—X)  ms(m—\)

by 1 1 1
T Dem—N  m— D m—n) ((m e W) ’

A ! 1 1
(10) =N ~ m—Dm—n T (m—l - E)'
(i) (a) We set B by

H maB"jilJrl (mp,_ 41— A)---(mx, —X) =m7" (m1 — A) B.

j=1

bj
Then using (7.9) we have
AM{(a1,0),01,... 1A — [{(a1 — 1,0),b1, ... }; A]
A 1 1
> {mi“(ml =N m T (my - ) } B

my>->mp, >0
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N 1
N 2 { (m1—1)"(m1—A)  (mq —1)a—1(my —

mi>->mpy >0

+(ﬁ‘m%>}%

A/
o Z { (ml — 1)0‘1 (ml — )\)

mi>-->mp >0

(ml—lal 1m1

95
D N (e

m
ma>-->mp, >0 mi=ma+1 1

=X [{(a1,1),b1,... ;s\ — [{(a1 — 1,1),b1,... }; ]
+[{(a1,0),b1 —1,... }; AL

(b) Using (7.10), it can be proved in the same manner as (ia).

(ii) We set A and B by

b
i—1 ;

A= H m(lli’jj_l—s-l (mBj_l-o-l —A)--- (mBj -\,
=1

b;

Hj’:ifl m(gj,l-&-l (mBj—l"l‘l - )‘) e (mBj - )‘)

B = ,
m%i71+1(m3i71+1 - )\)

Then
A[{ ) bi—la (aia 0)7 bi7 R }7 A} - [{ ) bi—la (ai - 170)3 bia s }5 >\]
-y 1 A
A m(gi,1+1(m3i71+1 - )‘)

my1>-->mp, >0

1 1
maBi;1+1(mBi71+1 - )‘) B

- ¥ 1 N
A (mBi—lJl‘l - 1)(111 (mBi—l"Fl - )‘)

my>-->mp, >0
1

(mBi—1+1 - 1)ai_1(mBif1+1 - )‘)

A)
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1 1 1
(mBi—l'f’l - 1)(“ m%ii,1+l B

= N[ b1, (a, 1), by 5N = [0 bis1, (@i — 1,1),biy. .5 A
Z 1 1 1 1

+ A - p——
A ((mBi1+2)a'i (mBi71 — 1)ai> B

mi1>->mp;
mp,_,—1>mp, ,42>->mp;>0

We divide the range of sum of the third term into two parts as

my>->mp, ny>-->mp, >0 m1>->mp,

my,_—1>mp, 42> >mp,>0 mp;_j+2=mp; ;-1
mp,_;+2>->mp,>0

The later sum is equal to zero because of mp, ,12 =mp, , —1. Thus we

have
)\[{ . ~abi717 (ai,O),bi, N }7)\] — [{ . ~abi717 (CLZ' — 1,0),()7;7 PN }; )\}
= A/[{ . -abi—17 (ai, 1),bi, e },)\] - [{ . 'abi—h (ai - 1, 1),()1'7 e }, A}
1 1 1 1
* Z Z {(mBilJrQ)ai - (mBi—l - 1)(“ } E

my>->mp, >0
= Al[{ . '7bi—17 (aia 1)7bi7 s }7>\] - [{ . '7bi—17 (ai - 17 1)abi7 cee }7 A}
—[{ . .,bi,1 — 1, (ai, 1),()7;, R }; )\] + [{ . .7bi,1, (ai,O),bi — 1, P },)\]

(iii) (b) Repeating shift of m; — m; + 1, we have

A [{(al, ].), bl, ey (as_l, 1), bs—la (as, 0), 1}, )\]
-2 [{(al, 1), bl, ceey (as_l, 1), b5—17 (as — 1,0), 1}; )\}
1
-2 (my— 1) - (mp,—1 — A)mi,

m1>-->mp, >0
1

R R ey I

mi>-->mp, >0

> 1
= ay / as
mit---(mp._1 —N)m
mi>->mp,_1>mp,>0 L ( Bs—1 ) B
(by shift mp, +1+— mp,_)
mp, — N
- z : ay / Qs /
mit---(mp._1 — N)m% (mp. — A\
mi>-->mp >0 1 ( Ba—1 ) Bs( Bs )
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1
- Z mit - omy _(mp—1 —N)

my>>mp, 130

=X [{(a1,0),b1,...,bs—1 — 1,(as,0),1}; \]
—[{(a1,0),b1,...,bs-1,(as — 1,0),1}; X']
—[{(a1,0),b1,...,bs-1 — 1,(as,0), 1}; X].

(a) Similarly as in the previous cases,

[{(ai, 1), bi}i_i; Al
1

- Z (my — 1) (my —A)...(mp,—1 —N)(mp, — )

my>-->mp, >0

1
B Z mit(my —N)...(mp,—1 — N)(mp, —N)

mi>->mMmpByg ZO
= (mp, > 0 part) + (b, = 0 part)

= [{(alﬁo)vbi}f:l; )‘l] - %[{(al’o)’bl}fz_ll U {(as,O),bS - 1};)‘/}'
O

Proof of Proposition 1. Using [{(as, d;),b;}7_,], the generating functions
f and g are expressed as follows:

{ f((ai7 bi)f:l; )‘) = [{(aiv 0)7 bi}f:l; )\],
9((ai bi)i_is A) = [{(bs, 0), ai}i—g; Al.

If a1,bs > 2, applying Lemma 2 successively

(LHS)
= > (TP (@i = 65,0),b — €351 Al

{(8iei)}i_ €1°
- Z Z (=A)s I l0=lel (N 1= 1]
{(6i,e0)Yi_pel°71 61€{0,1}
x[{(a1 — 61,1),b1, (ag — 62,0),ba — €2,...,(as — 05,0),bs — €5}; A]
(by Lemma 2 (ia))
= Z Z (=A==l
87€{0,1} {(8],¢})}5,€1°7 1
x[{(a1 —&7,1),b1 — €5, (ag — 05, 1),ba — 0%, ..., (as — 0%, 1), bs}; A]
(by Lemma 2 (ii) s — 1 times)
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= Z Z (= N1 1=l
5 €401} {(8)¢)) }i_pel*—
x[{(a1 — 67,0),b1 — €5, (ag — 04,0), by — 85,
oy (as —05,0),bs — e 1 N
(by Lemma 2 (iiia))
= (RHS).

Remaining relations and the relations of ¢g’s can be proved quite similarly. [

8§7.2. Alternative proof of the Ohno relation

From the properties of the generating functions clarified in Section 2, we
give an alternative proof for the Ohno relation

f(aisbi)i—; A) = g((ai, bi)i—q; A)

by induction on compositions.

If the composition is minimum i.e. (a;,b;)i_; = (1,1), it is obvious.

If the theorem is correct for compositions less than (a;,b;)i_;, applying
Proposition 1 to (a;, b;)i_; for f and g, we obtain two relations for f’s and g’s.
Subtracting these two equations, we have

SN L f (s = 8ibi = €)1 N) — (@ = disbi — €)1y V) |
= S NN (0 = 87,61 = i V) = g((a = 07, bi = )i V) -

But the terms whose compositions are less than (a;, b;)!", are canceled out by
the induction hypothesis. The remaining is

N £ b V) — gl(ais b V) )
= Xs{f((ai, bi)i—1; N') — g((ai, bi)iy; /\/)}-

Hence A f((as,b:)i_1; ) — A¥g((as,b:)i_1;A) is a periodic function in A with

K3
period 1. Furthermore by Proposition 2 it is a meromorphic function such as

¥y
p=1

Because of the periodicity, all C’s must be zero. Thus we complete the proof.

Ck
p—A



564 JuN-1cHI OKUDA AND KiMmio UENO

Acknowledgements

The authors express their deep gratitude to Professor Masanobu Kaneko
and Professor Shigeki Akiyama for their valuable suggestions.

The second author is partially supported by Grant-in-Aid Scientific Re-
search from the Ministry of Education, Culture, Sports, Science and Technol-
ogy of Japan (12640046) and by Waseda University Grant for Special Research
Project (2000A-124, 2001A-088 and 2002A-067).

References

[G] Granville, A., A decomposition of Riemann’s zeta-function, London Math. Soc. Lecture
Note Ser., 247 Cambridge, (1997), 95-101.
[H1] Hoffman, M. E., Multiple harmonic series, Pacific J. Math., 152 (1992), 275-290.
[H2] , The algebra of multiple harmonic series, J. Algebra, 194 (1997), 477-495.
[L] Lewin, L., editor. Structural properties of polylogarithms, Math. Surveys Monogr. 37,
American Mathematical Society, Providence, RI, 1991.
[O] Ohno, Y., A generalization of the duality and sum formulas on the multiple zeta values,
J. Number Th., 74 (1999), 39-43.
[Z] Zagier, D., Values of zeta functions and their applications, in ECM volume, Progr.
Math., 120 (1994), 497-512.




