Distributions of Exponential Growth with Support in a Proper Convex Cone

By

Masanori Suwa*

Abstract

In this paper we will characterize the spaces of distributions of exponential growth with support in a proper convex cone by the heat kernel method. As application we can obtain the Paley-Wiener theorem for distributions of exponential growth supported by a proper convex cone and Edge-of-the-Wedge theorem for the space of the image by the Fourier-Laplace transform of them.

§1. Introduction

In this paper we shall study the space $H'(\mathbb{R}^n, K)$ of distributions of exponential growth. The spaces of distributions of exponential growth for the 1-dimensional case, direct product case or global case were investigated by many authors ([5], [7], [11], [15], [16], [18], [21], [24]). In [5] M. Hasumi studied the space $H(\mathbb{R}^n, \mathbb{R}^n)$ and the dual space $H'(\mathbb{R}^n, \mathbb{R}^n)$ (see Definition 3.2 and Definition 3.7). In [15] M. Morimoto studied the space $H(\mathbb{R}^n, K)$ and the dual space $H'(\mathbb{R}^n, K)$ and the dual space $H'(\mathbb{R}^n, K)$ and the dual space $H'(\mathbb{R}^n, K)$ (see Definition 3.2 and Definition 3.7). In [15] M. Morimoto studied the space $H(\mathbb{R}^n, K)$ and the dual space $H'(\mathbb{R}^n, K)$ (see Definition 3.2 and Definition 3.7). The purpose of this paper is to treat the space of distributions of exponential growth supported by a proper convex cone $\overline{\Gamma} \subset \mathbb{R}^n$, (denote by $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$).

In §3 we introduce the base space $H(\mathbb{R}^n, K)$ and its dual space $H'(\mathbb{R}^n, K)$. The main purpose in this section is to obtain the structure theorem for $H'_{\overline{A}}(\mathbb{R}^n, K)$, the space of distributions of exponential growth supported by a

Communicated by T. Kawai. Received June 30, 2003.

²⁰⁰⁰ Mathematics Subject Classification(s): Primary 46F15; Secondary 46F20, 44A10.

Key words and phrases: Distributions of exponential growth, Paley-Wiener theorem, Laplace transform.

^{*}Department of Mathematics, Sophia University, 7-1 Kioichô, Chiyodaku, Tokyo, Japan. e-mail: m-suwa@mm.sophia.ac.jp

Masanori Suwa

set $\overline{A} \subset \mathbb{R}^n$ (Theorem 3.10). Therefore as corollary we obtain the structure theorem for $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$, where $\overline{\Gamma} \subset \mathbb{R}^n$ is a proper convex cone, (Corollary 3.12), and the result which G. Lysik obtained for the case of direct product support of half lines ([11]). Furthermore we have the decomposition theorem for distributions of exponential growth with support in $\overline{\Gamma}_+ \cup \overline{\Gamma}_-$, (Corollary 3.14).

In §4 we shall characterize the space $H'(\mathbb{R}^n, K)$ by the heat kernel method, which T. Matsuzawa introduced for the spaces of distributions, ultradistributions and hyperfunctions [4], [12], [13], [14]. The main purpose in this section is to show that the convolution of the heat kernel and a distribution of exponential growth is a smooth solution of the heat equation with some exponential growth condition and conversely such a smooth solution can be represented by the convolution of the heat kernel and a distribution of exponential growth (Theorem 4.4).

In §5 we shall characterize the space $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ by the heat kernel method (Theorem 5.1).

In §6 we shall study the Paley-Wiener theorem for $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ by using the structure theorem given in §3 and the heat kernel method given in §4, §5. Then we shall show that the Fourier-Laplace transform of $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ is a holomorphic function constructed by a finite sum of functions which are holomorphic on the domains whose imaginary parts are proper convex cones with vertex at the elements of K and with some polynomial growth conditions and conversely such a holomorphic function can be represented by the Fourier-Laplace transform of a distribution of exponential growth $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. Then we can see that T is constructed by a finite sum of distributions of exponential growth supported by a proper convex cone $\overline{\Gamma}$ (Theorem 6.9). As corollary we have the result which M. Morimoto showed for the 1-dimensional case [15].

In §7 we shall study the space of the image by the Fourier-Laplace transform of $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. Then by using the Paley-Wiener theorem given in §6, we can obtain the Edge-of-the-Wedge theorem for this space (Theorem 7.11). These results are generalizations of the work which M. Morimoto showed for the case of direct product ([16], Theorem 2).

§2. Preliminaries

Definition 2.1. We define some notations:

$$x = (x_1, \dots, x_n) \in \mathbb{R}^n, \ x^2 = x_1^2 + \dots + x_n^2.$$

DISTRIBUTIONS OF EXPONENTIAL GROWTH

$$\begin{split} \langle x,\xi\rangle &= \sum_{j=1}^n x_j\xi_j \quad \text{for } x,\xi\in\mathbb{R}^n.\\ z &= (z_1,\ldots,z_n)\in\mathbb{C}^n, \quad z_j = x_j + \imath y_j, \quad j=1,\ldots,n.\\ \zeta &= (\zeta_1,\ldots,\zeta_n)\in\mathbb{C}^n, \quad \zeta_j = \xi_j + \imath \eta_j, \quad j=1,\ldots,n.\\ B(x_0,\delta) &= \{x\in\mathbb{R}^n; |x-x_0|<\delta,\ \delta>0\}.\\ \alpha &= (\alpha_1,\ldots,\alpha_n)\in\mathbb{N}_0^n, \quad |\alpha| = \alpha_1+\cdots+\alpha_n.\\ \alpha! &= \alpha_1!\ldots\alpha_n!.\\ D^\alpha &= \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}}\cdots\frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}}, \quad \Delta &= \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}.\\ E(x,t) &= (4\pi t)^{-\frac{n}{2}}\exp(-x^2/4t), \quad t>0. \end{split}$$

For $\zeta \in \mathbb{C}^n$, $\zeta = (\zeta_1, \dots, \zeta_n)$, we put $|\zeta| = \sqrt{|\zeta_1|^2 + \dots + |\zeta_n|^2}$.

Definition 2.2. Let K be a convex compact set in \mathbb{R}^n . Then we define supporting function of K by $h_K(x) = \sup_{\xi \in K} \langle x, \xi \rangle$.

Definition 2.3. Let Ω be an open set in \mathbb{C}^n . We denote by $\mathcal{H}(\Omega)$ the space of holomorphic functions on Ω and by $\mathcal{C}(\Omega)$ the space of continuous functions on Ω .

Definition 2.4. $\mathcal{D}(\mathbb{R}^n)$ is the space of \mathcal{C}^{∞} functions with compact support. $\mathcal{S}(\mathbb{R}^n)$ is the space of rapidly decreasing \mathcal{C}^{∞} functions and $\mathcal{S}'(\mathbb{R}^n)$ is the space of tempered distributions.

Definition 2.5. For a function $\varphi(\xi) \in \mathcal{S}(\mathbb{R}^n)$, the Fourier transform $\mathcal{F}(\varphi)(x)$ is defined by

$$\mathcal{F}(\varphi)(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \varphi(\xi) e^{i\xi x} d\xi$$

and the Fourier inverse transform $\mathcal{F}^{-1}(\varphi)(\xi)$ is defined by

$$\mathcal{F}^{-1}(\varphi)(\xi) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \varphi(x) e^{-\imath \xi x} dx$$

Definition 2.6. For $\varphi(x) \in \mathcal{S}(\mathbb{R}^n)$ and $\phi(x) \in \mathcal{S}(\mathbb{R}^n)$, the convolution of $\varphi(x)$ and $\phi(x)$ is defined by

$$(\varphi * \phi)(x) = \int_{\mathbb{R}^n} \varphi(x-y)\phi(y)dy.$$

Definition 2.7. For a function $\varphi(x)$ on \mathbb{R}^n , if $\varphi(x)e^{i\zeta x} \in L^1(\mathbb{R}^n_x)$, then $\mathcal{LF}(\varphi)(\zeta)$ is defined by

$$\mathcal{LF}(\varphi)(\zeta) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \varphi(x) e^{i\zeta x} dx, \quad \zeta \in \mathbb{C}^n.$$

Definition 2.8. Let A be a set in \mathbb{R}^n . Then we denote by A° the interior of A, \overline{A} the closure of A, for $\varepsilon > 0$, $A_{\varepsilon} = \{x \in \mathbb{R}^n; \operatorname{dis}(x, A) \leq \varepsilon\}$ and by $\operatorname{ch}(A)$ convex hull of A.

Definition 2.9. Let Γ be a cone with vertex at 0. If $\overline{ch\Gamma}$ contains no straight line, then we call Γ proper cone.

Definition 2.10 ([6], [22]). Let Γ be a cone. We put

 $\Gamma' := \{ \xi \in \mathbb{R}^n; \langle y, \xi \rangle \ge 0 \quad \text{for all } y \in \Gamma \}.$

Then we call Γ' dual cone of Γ .

Definition 2.11. Let Γ be a cone. Then we denote by $p\Gamma\Gamma$ the intersection of Γ and the unit sphere. The cone Γ_1 is said to be a compact cone in the cone Γ_2 if $pr\overline{\Gamma}_1 \subset pr\Gamma_2$ and we write $\Gamma_1 \Subset \Gamma_2$.

Proposition 2.12 ([22], [23]). Following conditions are equivalent:

- 1. Γ is proper cone.
- 2. $(\Gamma')^{\circ} \neq \emptyset$.
- 3. For any $C \subseteq (\Gamma')^{\circ}$, there exists a number $\sigma = \sigma(C) > 0$ such that $\langle \xi, x \rangle \geq \sigma |\xi| |x|, \xi \in C, x \in ch\overline{\Gamma}$.

Proposition 2.13 ([22]). $(\Gamma')' = \overline{ch\Gamma} \text{ and } (\Gamma_1 \cap \Gamma_2)' = ch(\Gamma'_1 \cup \Gamma'_2).$ Furthermore for a convex cone Γ , we have $\Gamma = \Gamma + \Gamma$.

Definition 2.14. Let Γ_+ be a cone with vertex at 0. Then we put $\Gamma_- = -\Gamma_+$.

Definition 2.15. Let A be a set in \mathbb{R}^n . We put $\mathcal{S}'_{\overline{A}} := \{T \in \mathcal{S}'(\mathbb{R}^n); \text{ supp } T \subset \overline{A}\}.$

For the structure of $\mathcal{S}'_{\overline{\Gamma}}$, the following proposition is known:

Proposition 2.16 (Bros-Epstein-Glaser [1], [17]). Let Γ be a proper open convex cone in \mathbb{R}^n and let $T \in S'_{\overline{\Gamma}}$. Then there exists a polynomially bounded continuous function G with support in $\overline{\Gamma}$ and a partial differential operator with finite order P(D) so that T = P(D)G.

Proposition 2.17 ([17]). Let $\Gamma_+ \in \mathbb{R}^n$ be a proper open convex cone and $S \in \mathcal{S}'_{\overline{\Gamma}_+ \cup \overline{\Gamma}_-}$, $\overline{\Gamma}_- = -\overline{\Gamma}_+$. Then there exist $S_+ \in \mathcal{S}'_{\overline{\Gamma}_+}$ and $S_- \in \mathcal{S}'_{\overline{\Gamma}_-}$ such that

$$S = S_+ + S_-.$$

§3. Distributions of Exponential Growth

In this section, we shall introduce $H'(\mathbb{R}^n, K)$, the space of distributions of exponential growth, and give the structure theorem of $H'_{\bar{A}}(\mathbb{R}^n, K)$.

Definition 3.1. Let K be a convex compact set in \mathbb{R}^n and $\varepsilon > 0$. Then we define $H_b(\mathbb{R}^n, K_{\varepsilon})$ as follows:

$$H_b(\mathbb{R}^n, K_{\varepsilon}) := \{ \varphi \in C^{\infty}(\mathbb{R}^n); \sup_{x \in \mathbb{R}^n} |D^p \varphi(x) e^{h_K(x) + \varepsilon |x|} | < +\infty, \text{ for } \forall p \in \mathbb{N}^n \}.$$

Definition 3.2. We define the spaces $H(\mathbb{R}^n, \mathbb{R}^n)$ and $H(\mathbb{R}^n, K)$ as follows:

$$H(\mathbb{R}^n, \mathbb{R}^n) := \varprojlim_{\varepsilon > 0} H_b(\mathbb{R}^n, K_{\varepsilon}),$$
$$H(\mathbb{R}^n, K) := \varinjlim_{\varepsilon > 0} H_b(\mathbb{R}^n, K_{\varepsilon}),$$

where $\varprojlim_{\varepsilon>0}$ means projective limit and $\varinjlim_{\varepsilon>0}$ means inductive limit.

Remark 3.3. Now we give the relations of $H(\mathbb{R}^n, K)$ and the other function spaces:

- (i) $\mathcal{D} \subset H(\mathbb{R}^n, K)$.
- (ii) If $\{0\} \subset K$, then $H(\mathbb{R}^n, K) \subset S$.
- (iii) Let $r \ge 0$, $s \ge 0$, $S_r^s(\mathbb{R}^n)$ be Gel'fand-Shilov space and $S_r(\mathbb{R}^n) = \lim_{s \to \infty} S_r^s(\mathbb{R}^n)$. Then it is known that

$$\mathcal{S}_1(\mathbb{R}^n) = \{ f \in \mathcal{C}^\infty(\mathbb{R}^n); \exists \delta > 0 \ \forall \alpha \ \sup_{x \in \mathbb{R}^n} |D_x^\alpha f(x)| e^{\delta |x|} < \infty \},\$$

(for details we refer the reader [18]). Therefore

- (a) If $K = \{0\}$, then $H(\mathbb{R}^n, K) = \mathcal{S}_1(\mathbb{R}^n)$.
- (b) If $\{0\} \subset K$, then $H(\mathbb{R}^n, K) \subset \mathcal{S}_1(\mathbb{R}^n)$.

MASANORI SUWA

(iv) The space $H(\mathbb{R}^n, K)$ is slightly different from \mathfrak{A}_E in [3]. In fact

$$\begin{split} \varphi(x) &\in H(\mathbb{R}^n, K) \Leftrightarrow \exists \varepsilon > 0 \ \forall p \in \mathbb{N}^n \ s.t. \ \sup_{x \in \mathbb{R}^n} |D^p \varphi(x) e^{h_K(x) + \varepsilon |x|}| < \infty. \\ \varphi(x) &\in \mathfrak{A}_E \Leftrightarrow \forall p \in \mathbb{N}^n \ \exists k > 0 \ s.t. \ \sup_{x \in \mathbb{R}^n} |D^p \varphi(x)| e^{k|x|} < \infty. \end{split}$$

Therefore if $\{0\} \subset K$, then $H(\mathbb{R}^n, K) \subset \mathfrak{Z}_E$.

Remark 3.4. L. Hörmander treated the base space S_f so that $\mathcal{D} \subset S_f \subset H(\mathbb{R}^n, K)$ and the Fourier-Laplace transform of S_f . For the details we refer the reader to [7].

For (i) of Remark 3.3, the following theorem is known:

Theorem 3.5 ([15]). $\mathcal{D}(\mathbb{R}^n)$ is dense in $H(\mathbb{R}^n, K)$. **Corollary 3.6.** If $\{0\} \subset K$, then $H(\mathbb{R}^n, K)$ is dense in S.

Definition 3.7. We denote by $H'(\mathbb{R}^n, \mathbb{R}^n)$ the dual space of $H(\mathbb{R}^n, \mathbb{R}^n)$ and by $H'(\mathbb{R}^n, K)$ the dual space of $H(\mathbb{R}^n, K)$. The elements of $H'(\mathbb{R}^n, \mathbb{R}^n)$ and $H'(\mathbb{R}^n, K)$ are called distributions of exponential growth.

By Remark 3.3 and Theorem 3.5, we have $H'(\mathbb{R}^n, K) \subset \mathcal{D}'$.

For the space $H'(\mathbb{R}^n, K)$, the following proposition is known:

Proposition 3.8 ([15]). A distribution T belongs to $H'(\mathbb{R}^n, K)$ if and only if for any $\varepsilon > 0$ there exist a partial differential operator $P_{\varepsilon}(D)$ and a bounded continuous function $F_{\varepsilon}(x)$ such that

$$T = P_{\varepsilon}(D) \{ e^{h_K(x) + \varepsilon |x|} F_{\varepsilon}(x) \}.$$

Definition 3.9. We put $H'_{\overline{A}}(\mathbb{R}^n, K) := \{T \in H'(\mathbb{R}^n, K); \text{supp } T \subset \overline{A}\}.$

Now we have the structure theorem for distributions of exponential growth with support $\overline{A} \subset \mathbb{R}^n$:

Theorem 3.10. Let A be a set in \mathbb{R}^n and $T \in H'_{\overline{A}}(\mathbb{R}^n, K)$. Then for every $\varepsilon > 0$ there exist $S(x) \in \mathcal{S}'_{\overline{A}}$, $n_0 \in \mathbb{N}$ and $t_j \in K$, $j = 1, 2, ..., n_0$ such that

$$T = S(x)e^{\varepsilon\sqrt{1+x^2}} \sum_{1 \le j \le n_0} e^{t_j x}.$$

Proof. Let $\varepsilon > 0$. By $K \subset \bigcup_{t \in K} B(t, \frac{\varepsilon}{2})$ and K is a compact set, there exists $n_0 \in \mathbb{N}$ such that $K \subset \bigcup_{1 \leq n \leq n_0} B(t_n, \frac{\varepsilon}{2}), t_n \in K$. Let $x_0 \in \mathbb{R}^n$. Then there exists $t'_{(x_0)} \in K$ and $n_1, 1 \leq n_1 \leq n_0$ such that $h_K(x_0) = \langle t', x_0 \rangle$ and $t' \in B(t_{n_1}, \frac{\varepsilon}{2})$. Furthermore

$$\begin{aligned} h_K(x_0) &+ \frac{\varepsilon}{2} |x_0| \le h_{B(t_{n_1}, \frac{\varepsilon}{2})}(x_0) + \frac{\varepsilon}{2} |x_0| \\ &\le t_{n_1} x_0 + h_{B(0, \frac{\varepsilon}{2})}(x_0) + \frac{\varepsilon}{2} |x_0| \\ &= t_{n_1} x_0 + \varepsilon |x_0| \\ &\le t_{n_1} x_0 + \varepsilon \sqrt{1 + x_0^2}. \end{aligned}$$

Therefore, for any $x \in \mathbb{R}^n$,

 $e^{h_K(x) + \frac{\varepsilon}{2}|x|} \le e^{t_1 x + \varepsilon \sqrt{1 + x^2}} + \dots + e^{t_{n_0} x + \varepsilon \sqrt{1 + x^2}} = (e^{t_1 x} + \dots + e^{t_{n_0} x}) e^{\varepsilon \sqrt{1 + x^2}}.$

Now we put

$$F_0(x) := \frac{1}{(e^{t_1 x} + \dots + e^{t_{n_0} x})e^{\varepsilon \sqrt{1+x^2}}},$$

$$F_1(x) := \frac{1}{e^{t_1 x} + \dots + e^{t_{n_0} x}},$$

$$F_2(x,t) := \frac{e^{tx}}{e^{t_1 x} + \dots + e^{t_{n_0} x}}, \quad t \in K.$$

Then $F_0(x)$, $F_1(x)$, $F_2(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ and we have the following lemma:

Lemma 3.11. Let $\alpha \in \mathbb{N}_0^n$. Then

(1)
$$D^{\alpha}F_1(x) = P_{\alpha}(F_2(x,t_1),\ldots,F_2(x,t_{n_0}))F_1(x),$$

where $P_{\alpha}(X_1, \ldots, X_{n_0})$ is a polynomial.

Proof of Lemma. We use mathematical induction.

- (i) Case of $|\alpha| = 0$. Then we obtain $P_{\alpha} = 1$.
- (ii) Assume that when $|\alpha| = k$, (1) is true. Let $|\alpha| = k + 1$. Then

$$D^{\alpha}F_{1}(x) = \frac{\partial}{\partial x_{j}}D^{\beta}F_{1}(x) \quad (|\beta| = k)$$

$$= \frac{\partial}{\partial x_{j}}P_{\beta}(F_{2}(x, t_{1}), \dots, F_{2}(x, t_{n_{0}}))F_{1}(x)$$

$$+ P_{\beta}(F_{2}(x, t_{1}), \dots, F_{2}(x, t_{n_{0}}))\frac{\partial}{\partial x_{j}}F_{1}(x)$$

$$= \left\{\sum_{i=1}^{n_{0}}\frac{\partial}{\partial u_{i}}P_{\beta}(u_{1}, \dots, u_{n_{0}}) \times (t_{ij}F_{2}(x, t_{i}) - t_{1j}F_{2}(x, t_{i})F_{2}(x, t_{1}))\right\}$$

Masanori Suwa

$$-\dots - t_{n_0j}F_2(x,t_i)F_2(x,t_{n_0})\Big\}F_1(x)$$

$$-P_\beta(u_1,\dots,u_{n_0})\{t_{1j}F_2(x,t_1)+\dots+t_{n_0j}F_2(x,t_{n_0})\}F_1(x)$$

$$(u_1 = F_2(x,t_1),\dots,u_{n_0} = F_2(x,t_{n_0}))$$

$$= P_\alpha(F_2(x,t_1),\dots,F_2(x,t_{n_0}))F_1(x).$$

Since $0 < F_2(x,t_i) \leq 1$, $\sup_{x \in \mathbb{R}^n} |P_{\alpha}| < \infty$. Therefore, for any $\varepsilon > 0$ there exists $\alpha \in \mathbb{N}_0^n$ such that

This means that for $T \in H'(\mathbb{R}^n, K)$, $F_0(x)T \in \mathcal{S}'$ and if supp $T \subset \overline{A}$, then supp $F_0(x)T \subset \overline{A}$. For $\varphi(x) \in H(\mathbb{R}^n, K)$, we have

(2)
$$\langle T, \varphi \rangle = \left\langle F_0(x)T \times \frac{1}{F_0(x)}, \varphi \right\rangle$$
$$= \left\langle S(x)\frac{1}{F_0(x)}, \varphi \right\rangle.$$

So we obtain

$$T = S(x)e^{\varepsilon\sqrt{1+x^2}}\sum_{1 \le j \le n_0} e^{t_j x}, \quad S \in \mathcal{S}'_A.$$

For $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$, we have the following corollary:

Corollary 3.12. Let Γ be a proper open convex cone in \mathbb{R}^n and let $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. Then for any $\varepsilon > 0$ there exist $m_{\varepsilon} \in \mathbb{N}$ and bounded continuous functions $F_{\varepsilon,\alpha}(x), |\alpha| \leq m_{\varepsilon}, \operatorname{supp}(F_{\varepsilon,\alpha}(x)) \subset \overline{\Gamma}$ such that

$$T = \sum_{|\alpha| \le m_{\varepsilon}} \left(\frac{\partial}{\partial x}\right)^{\alpha} \{ e^{h_{K}(x) + \varepsilon |x|} F_{\varepsilon,\alpha}(x) \}.$$

Proof. By Lemma 2.16 and (2), for $\varphi(x) \in H(\mathbb{R}^n, K)$,

$$\langle T, \varphi \rangle = \left\langle F_0(x)T, \frac{1}{F_0(x)}\varphi(x) \right\rangle$$
$$= \left\langle P(D)G(x)\frac{1}{F_0(x)}, \varphi(x) \right\rangle.$$

Therefore, for any $\varepsilon > 0$ there exist a partial differential operator P(D) and a polynomially bounded continuous functions G(x) with support in $\overline{\Gamma}$ such that

(3)
$$T = P(D)G(x) \times F^*(x), \quad F^*(x) = \frac{1}{F_0(x)} = e^{\varepsilon \sqrt{1+x^2}} \sum_{1 \le j \le n_0} e^{t_j x}.$$

Let $\varepsilon_1 > 0$. For $\varphi(x) \in H(\mathbb{R}^n, K)$,

$$\begin{split} \langle T, \varphi \rangle \\ &= \langle G(x), P(-D)(F^*(x)\varphi(x)) \rangle \\ &= \langle G(x)e^{h_K(x) + \varepsilon_1 |x|}, e^{-h_K(x) - \varepsilon_1 |x|}P(-D)(F^*(x)\varphi(x)) \rangle \\ &= \left\langle e^{h_K(x) + \varepsilon_1 |x|}, G(x)e^{-h_K(x) - \varepsilon_1 |x|} \sum_{|m_1| \le m} \sum_{|\alpha|=0}^{|m_1|} \binom{m_1}{\alpha} D^{m_1 - \alpha} F^*(x) D^{\alpha}\varphi(x) \right\rangle. \end{split}$$

Now we put

$$F_{3(\varepsilon,\varepsilon_1,m_1,\alpha)}(x) := G(x)e^{-h_K(x)-\varepsilon_1|x|}D^{m_1-\alpha}F^*(x)$$

= $G(x)e^{-h_K(x)-\varepsilon_1|x|}A_{m_1,\alpha}(t_1,\ldots,t_{n_0},x,\varepsilon)F^*(x).$

Then $F_3(x) \in \mathcal{C}(\mathbb{R}^n)$, supp $F_3(x) \subset \overline{\Gamma}$ and

$$|F_{3}(x)| \leq C(1+|x|)^{M} e^{-h_{K}(x)-\varepsilon_{1}|x|} |A_{m_{1},\alpha}(t_{1},\ldots,t_{n_{0}},x,\varepsilon)||F^{*}(x)|,$$

$$\sup_{x\in\mathbb{R}^{n}} |A_{m_{1},\alpha},(t_{1},\ldots,t_{n_{0}},x,\varepsilon)| < \infty.$$

Now we choose ε in (3) such that $0 < \varepsilon < \varepsilon_1$. Then

$$\begin{split} \sup_{x\in\mathbb{R}^n} (1+|x|)^M e^{-h_K(x)-\varepsilon_1|x|} |F^*(x)| \\ &\leq \sup_{x\in\mathbb{R}^n} (1+|x|)^M e^{-h_K(x)-\varepsilon_1|x|} (e^{h_K(x)}+\dots+e^{h_K(x)}) e^{\varepsilon(1+|x|)} \\ &\leq e^{\varepsilon} \sup_{x\in\mathbb{R}^n} (1+|x|)^M e^{-(\varepsilon_1-\varepsilon)|x|} \\ &< \infty. \end{split}$$

This means that $\sup_{x \in \mathbb{R}^n} |F_3(x)| < \infty$. Furthermore

$$\begin{split} \langle T, \varphi \rangle \\ &= \sum_{|m_1| \le m} \sum_{|\alpha|=0}^{|m_1|} \binom{m_1}{\alpha} \langle e^{h_K(x) + \varepsilon_1 |x|}, F_3(x) D^{\alpha} \varphi(x) \rangle \\ &= \left\langle \sum_{|m_1| \le m} \sum_{|\alpha|=0}^{|m_1|} \binom{m_1}{\alpha} (-1)^{|\alpha|} D^{\alpha} (e^{h_K(x) + \varepsilon_1 |x|} F_3(x)), \varphi(x) \right\rangle \\ &= \left\langle \sum_{|\alpha| \le m_{\varepsilon}} \left(\frac{\partial}{\partial x} \right)^{\alpha} (e^{h_K(x) + \varepsilon_1 |x|} F_{\varepsilon_1, \alpha}(x)), \varphi(x) \right\rangle. \end{split}$$

Since $\varepsilon_1 > 0$ is arbitrary, the proof is complete.

By (3), we have the following corollary:

Corollary 3.13. Let Γ be a proper open convex cone in \mathbb{R}^n and let $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. Then for any $\varepsilon > 0$ there exist n_0 , a partial differential operator with finite order $P_{\varepsilon}(D)$ and a polynomially bounded continuous function $G_{\varepsilon}(x)$, $\operatorname{supp}(G_{\varepsilon}(x)) \subset \overline{\Gamma}$ such that

$$T = P_{\varepsilon}(D)G_{\varepsilon}(x) \times F^{*}(x), \qquad F^{*}(x) = e^{\varepsilon\sqrt{1+x^{2}}} \sum_{1 \le n \le n_{0}} e^{t_{n}x},$$

where $t_n \in K$, $(n = 1, ..., n_0)$.

Using Proposition 2.17, we have the following corollary:

Corollary 3.14. Let $T \in H'_{\overline{\Gamma}_+ \cup \overline{\Gamma}_-}(\mathbb{R}^n, K)$. Then there exist $T_+ \in H'_{\overline{\Gamma}_+}(\mathbb{R}^n, K)$ and $T_- \in H'_{\overline{\Gamma}_-}(\mathbb{R}^n, K)$ such that

$$T = T_+ + T_-.$$

Proof. By Theorem 3.10, we have

$$T = \sum_{1 \leq j \leq n_0} S(x) e^{t_j x + \varepsilon \sqrt{1 + x^2}}, \quad S \in \mathcal{S}'_{\overline{\Gamma}_+ \cup \overline{\Gamma}_-}$$

By Proposition 2.17, we have

$$\begin{split} T &= \sum_{1 \leq j \leq n_0} S_+(x) e^{t_j x + \varepsilon \sqrt{1 + x^2}} + \sum_{1 \leq j \leq n_0} S_-(x) e^{t_j x + \varepsilon \sqrt{1 + x^2}} \\ &\equiv T_+ + T_-. \end{split}$$

Since $S_+ \in \mathcal{S}'_{\overline{\Gamma}_+}$ and $S_- \in \mathcal{S}'_{\overline{\Gamma}_-}$, $T_+ \in H'_{\overline{\Gamma}_+}(\mathbb{R}^n, K)$ and $T_- \in H'_{\overline{\Gamma}_-}(\mathbb{R}^n, K)$. \Box

Remark 3.15. M. Morimoto obtained this result for the 1-dimensional case in [15].

Example 3.16 (Example for Corollary 3.12). Let $n = 2, K = \overline{B(0,1)}$ and $\Gamma := \{x = (x_1, x_2) \in \mathbb{R}^2; x_1^2 - x_2^2 > 0, x_1 > 0\}$. We define T(x) by

$$T(x) = \begin{cases} \sqrt{x_1^2 - x_2^2} e^{|x|}, & x_1^2 - x_2^2 > 0, \ x_1 > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Then $h_K(x) = |x|, T(x) \in H'_{\overline{\Gamma}}(\mathbb{R}^2, K)$ and for $\varepsilon > 0$,

$$T(x) = \sqrt{x_1^2 - x_2^2} e^{|x|} = \sqrt{x_1^2 - x_2^2} e^{-\varepsilon |x|} e^{|x|} e^{\varepsilon |x|} = F_{\varepsilon}(x) e^{h_K(x) + \varepsilon |x|},$$

where

$$F_{\varepsilon}(x) = \begin{cases} \sqrt{x_1^2 - x_2^2} \ e^{-\varepsilon |x|}, & x_1^2 - x_2^2 > 0, \ x_1 > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Then $F_{\varepsilon}(x)$ is a bounded continuous function and $\operatorname{supp}(F_{\varepsilon}) \subset \overline{\Gamma}$.

§4. A Characterization for Distributions of Exponential Growth by the Heat Kernel Method

In this section, we shall characterize $H'(\mathbb{R}^n, K)$, the space of distributions of exponential growth, by the heat kernel method introduced by T. Matsuzawa in [12]. We notice that many authors make use of his idea ([2], [3], [9], [10], [20]).

Definition 4.1. For $\varphi(x) \in H(\mathbb{R}^n, K)$, we put $\varphi_t(x)$ by

$$\varphi_t(x) = \int_{\mathbb{R}^n} E(x-y,t)\varphi(y)dy, \quad t>0.$$

We show the following lemma:

Lemma 4.2.

- (i) $E(x,t) \in H(\mathbb{R}^n, K)$,
- (ii) $\varphi_t(x) \in H(\mathbb{R}^n, K),$
- (iii) $\varphi_t(x) \to \varphi(x)$ in $H(\mathbb{R}^n, K)$, as $t \to 0_+$.

 $\begin{array}{l} \textit{Proof.} \quad (\mathrm{i}) \ \mathrm{Let} \ \varepsilon > 0 \ \mathrm{and} \ K \subset [-R,R]^n, \ R > 0. \ \mathrm{Then} \\ & \sup_{x \in \mathbb{R}^n} |D^{\alpha} E(x,t) e^{h_K(x) + \varepsilon |x|}| \leq \sup_{x \in \mathbb{R}^n} |D^{\alpha} E(x,t) e^{(R+\varepsilon)|x|}|. \end{array}$

For the heat kernel we have the following estimate [14]:

(4)
$$|D^{\alpha}E(x,t)| \leq \frac{\alpha!}{(4\pi t)^{\frac{n}{2}}} \left(\frac{en}{2t|\alpha|}\right)^{\frac{|\alpha|}{2}} e^{-\frac{x^2}{8t}}.$$

So we have

$$\sup_{x \in \mathbb{R}^n} |D^{\alpha} E(x,t) e^{h_K(x) + \varepsilon |x|}| \le C \sup_{x \in \mathbb{R}^n} e^{-\frac{x^2}{8t} + (R+\varepsilon)|x|} < \infty.$$

This means that $E(x,t) \in H(\mathbb{R}^n, K)$.

(ii) Let $\alpha \in \mathbb{N}_0^n$. For $\varphi(x) \in H(\mathbb{R}^n, K)$, we have by (4),

(5)
$$|D_x^{\alpha} E(x-y,t)\varphi(y)| \le Ce^{-\frac{(x-y)^2}{8t}}e^{-h_K(y)-\varepsilon|y|}$$
$$\le Ce^{-\frac{(x-y)^2}{8t}}e^{h_K(x-y)-h_K(x)+\varepsilon|x-y|-\varepsilon|x|}$$
$$\le Ce^{-h_K(x)-\varepsilon|x|}e^{-\frac{(x-y)^2}{8t}+R|x-y|+\varepsilon|x-y|}$$

where $K \subset [-R, R]^n$, R > 0. Since $e^{-\frac{(x-y)^2}{8t} + R|x-y| + \varepsilon |x-y|} \in L^1(\mathbb{R}^n_y)$,

$$D_x^{\alpha} \int_{\mathbb{R}^n} E(x-y,t)\varphi(y)dy = \int_{\mathbb{R}^n} D_x^{\alpha} E(x-y,t)\varphi(y)dy.$$

Since $E(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ and $\alpha \in \mathbb{N}_0^n$ is arbitrary, $\varphi_t(x) \in \mathcal{C}^{\infty}(\mathbb{R}^n)$. Furthermore by (5),

$$\begin{split} |D^{\alpha}\varphi_{t}(x)e^{h_{K}(x)+\varepsilon|x|}| &\leq e^{h_{K}(x)+\varepsilon|x|} \int_{\mathbb{R}^{n}} |D^{\alpha}E(x-y,t)\varphi(y)|dy\\ &\leq Ce^{h_{K}(x)+\varepsilon|x|} \int_{\mathbb{R}^{n}} e^{-h_{K}(x)-\varepsilon|x|} e^{-\frac{(x-y)^{2}}{8t}+R|x-y|+\varepsilon|x-y|}dy\\ &<\infty. \end{split}$$

Therefore, $\varphi_t(x) \in H(\mathbb{R}^n, K)$.

(iii) We notice that for $|y| \leq 1$,

$$(6) |D_{x}^{\alpha}\varphi(x-y) - D_{x}^{\alpha}\varphi(x)| = \left| \int_{0}^{1} D_{u}D_{x}^{\alpha}\varphi(u(x-y) + (1-u)x)du \right| \\= \left| \int_{0}^{1} D_{u}F(v)du \right|, \\ (v = u(x-y) + (1-u)x, \quad F(v) = D^{\alpha}\varphi(v)) \\= \left| \int_{0}^{1} \sum_{j=1}^{n} D_{v_{j}}F(v)\frac{\partial v_{j}}{\partial u}du \right| \\\leq \int_{0}^{1} \sum_{j=1}^{n} |D^{\alpha+1}\varphi(u(x-y) + (1-u)x)||y_{j}|du \\\leq C \int_{0}^{1} \sum_{j=1}^{n} e^{-h_{K}(x-uy)-\varepsilon|x-uy|}|y_{j}|du \\\leq C_{1}e^{-h_{K}(x)-\varepsilon|x|}\sum_{j=1}^{n} |y_{j}|.$$

Let $0 < \delta < 1$. Then

$$\begin{aligned} D^{\alpha}(\varphi_{t}(x) - \varphi(x)) \\ &= D^{\alpha} \int_{\mathbb{R}^{n}} E(w, t)\varphi(x - w)dw - \int_{\mathbb{R}^{n}} E(w, t)D^{\alpha}\varphi(x)dw \\ &= \int_{\mathbb{R}^{n}} E(w, t)(D^{\alpha}\varphi(x - w) - D^{\alpha}\varphi(x))dw \\ &= \int_{|w| \le \delta} E(w, t)(D^{\alpha}\varphi(x - w) - D^{\alpha}\varphi(x))dw \\ &+ \int_{|w| \ge \delta} E(w, t)D^{\alpha}\varphi(x - w)dw - \int_{|w| \ge \delta} E(w, t)D^{\alpha}\varphi(x)dw \\ &= I_{1} + I_{2} + I_{3}. \end{aligned}$$

By (6),

$$\begin{split} |I_1|e^{h_K(x)+\varepsilon|x|} &\leq \int_{|y|\leq\delta} E(y,t)|D^{\alpha}\varphi(x-y) - D^{\alpha}\varphi(x)|e^{h_K(x)+\varepsilon|x|}dy\\ &\leq C_3\delta \int_{|y|\leq\delta} E(y,t)dy\\ &\leq C_3\delta. \end{split}$$

MASANORI SUWA

$$\begin{split} |I_3|e^{h_K(x)+\varepsilon|x|} &\leq \int_{|y|\geq\delta} E(y,t)dy \times |D^{\alpha}\varphi(x)|e^{h_K(x)+\varepsilon|x|} \\ &\leq C'e^{-\frac{\delta^2}{8t}}\int_{|y|\geq\delta} \frac{1}{(4\pi t)^{\frac{n}{2}}}e^{-\frac{y^2}{8t}}dy \\ &\leq C''e^{-\frac{\delta^2}{8t}} \to 0 \quad \text{as} \quad t\to 0_+. \end{split}$$

$$\begin{split} |I_2|e^{h_K(x)+\varepsilon|x|} &\leq \int_{|y|\geq\delta} E(y,t)|D^{\alpha}\varphi(x-y)|dy \times e^{h_K(x)+\varepsilon|x|} \\ &\leq C\int_{|y|\geq\delta} E(y,t)e^{-h_K(x-y)-\varepsilon|x-y|}dy \times e^{h_K(x)+\varepsilon|x|} \\ &\leq C\int_{|y|\geq\delta} E(y,t)e^{h_K(y)-h_K(x)+\varepsilon|y|-\varepsilon|x|}dy \times e^{h_K(x)+\varepsilon|x|} \\ &\leq C\int_{|y|\geq\delta} E(y,t)e^{R|y|+\varepsilon|y|}dy \\ &\leq Ce^{-\frac{\delta^2}{8t}}\int_{\mathbb{R}^n} \frac{1}{(4\pi t)^{\frac{n}{2}}}e^{-\sum_{j=1}^n\{\frac{1}{8t}y_j^2-(R+\varepsilon)|y_j|\}}dy \\ &= C''e^{-\frac{\delta^2}{8t}}e^{2n(R+\varepsilon)^2t}\to 0, \quad \text{as} \ t\to 0_+. \end{split}$$

Since $0 < \delta < 1$ is arbitrary, this means that $\varphi_t(x) \to \varphi(x)$ in $H(\mathbb{R}^n, K)$, as $t \to 0_+$.

Lemma 4.3. Let f(x) be a measurable function satisfying the following condition:

 $\forall \varepsilon > 0 \quad \exists C \ge 0 \quad such \ that \quad |f(x)| \le C e^{h_K(x) + \varepsilon |x|}.$

Then f(x) belongs to $H'(\mathbb{R}^n, K)$ in the following sense:

$$\langle T_f, \varphi \rangle = \int_{\mathbb{R}^n} f(x)\varphi(x)dx, \quad \varphi(x) \in H(\mathbb{R}^n, K).$$

Proof. We only prove the continuity. Let $\varepsilon' > 0$, $\varphi(x) \in H_b(\mathbb{R}^n, K_{\varepsilon'})$ and $0 < \varepsilon < \varepsilon'$. Since there exists a constant $C_1 \ge 0$ such that $|f(x)| \le C_1 e^{h_K(x)+\varepsilon|x|}$,

$$\begin{aligned} |\langle T_f, \varphi \rangle| &\leq \int_{\mathbb{R}^n} |f(x)| |\varphi(x) e^{h_K(x) + \varepsilon' |x|} |e^{-h_K(x) - \varepsilon' |x|} dx \\ &\leq C_1 \sup_{x \in \mathbb{R}^n} |\varphi(x) e^{h_K(x) + \varepsilon' |x|} |\int_{\mathbb{R}^n} e^{(\varepsilon - \varepsilon') |x|} dx \\ &\leq C \sup_{x \in \mathbb{R}^n} |\varphi(x) e^{h_K(x) + \varepsilon' |x|} |. \end{aligned}$$

Since $\varepsilon' > 0$ is arbitrary, the continuity is proved.

578

Theorem 4.4. Let $T \in H'(\mathbb{R}^n, K)$ and $U(x,t) = \langle T_y, E(x-y,t) \rangle$. Then $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,\infty))$ satisfying the following conditions:

(7)
$$\left(\frac{\partial}{\partial t} - \Delta\right) U(x,t) = 0,$$

(8)
$$U(x,t) \to T, \ (t \to 0_+), \ in \ H'(\mathbb{R}^n, K),$$

(9)
$$\forall \varepsilon > 0 \; \exists N_{\varepsilon} \ge 0 \; \exists C_{\varepsilon} \ge 0$$

 $s.t. \; |U(x,t)| \le C_{\varepsilon} t^{-N_{\varepsilon}} e^{h_K(x) + \varepsilon |x|}, \; 0 < t < 1, \; x \in \mathbb{R}^n.$

Conversely, for a function $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,\infty))$ satisfying (7) and (9), there exists a unique $T \in H'(\mathbb{R}^n, K)$ such that $\langle T_y, E(x-y,t) \rangle = U(x,t)$.

Proof. By Proposition 3.8, we have

(10)
$$\langle T_y, E(x-y,t) \rangle = \langle e^{h_K(y) + \varepsilon |y|} F(y), P(-D)E(x-y,t) \rangle$$
$$= \sum_{|\alpha|=0}^m \int_{\mathbb{R}^n} e^{h_K(y) + \varepsilon |y|} F(y) D^{\alpha} E(x-y,t) dy.$$

By $\sup_{y \in \mathbb{R}^n} |F(y)| < \infty$ and (4), for \triangle ,

$$\begin{split} |e^{h_{K}(y)+\varepsilon|y|}F(y) \triangle \{D^{\alpha}E(x-y,t)\}| &\leq Ce^{-\frac{(x-y)^{2}}{8t}}e^{h_{K}(y)+\varepsilon|y|} \\ &\leq Ce^{-\frac{(x-y)^{2}}{8t}}e^{-h_{K}(x)-\varepsilon|x|+h_{K}(x-y)+\varepsilon|x-y|} \\ &\leq Ce^{-h_{K}(x)-\varepsilon|x|}e^{-\frac{(x-y)^{2}}{8t}}e^{R|x-y|+\varepsilon|x-y|} \\ &= C_{1}e^{2n(R+\varepsilon)^{2}t}e^{-\sum_{j=1}^{n}\frac{\{|x_{j}-y_{j}|-4(R+\varepsilon)t\}^{2}}{8t}}, \end{split}$$

where $K \subset [-R, R]^n$, R > 0. Since $e^{-\sum_{j=1}^n \frac{\{|x_j - y_j| - 4(R+\varepsilon)t\}^2}{8t}} \in L^1(\mathbb{R}^n_y)$,

$$\begin{split} \triangle \langle T_y, E(x-y,t) \rangle &= \triangle \sum_{|\alpha|=0}^m \int_{\mathbb{R}^n} e^{h_K(y) + \varepsilon |y|} F(y) D^{\alpha} E(x-y,t) dy \\ &= \sum_{|\alpha|=0}^m \int_{\mathbb{R}^n} e^{h_K(y) + \varepsilon |y|} F(y) D^{\alpha} \{ \triangle E(x-y,t) \} dy. \end{split}$$

Let $0 < a_0 < t < a_1$. Since

$$\left|\frac{\partial}{\partial t}E(x-y,t)\right| \le \frac{(4\pi a_1)^{\frac{n}{2}}\frac{(x-y)^2}{4a_0^2} + 2\pi n(4\pi a_1)^{\frac{n}{2}-1}}{(4\pi a_0)^n}e^{-\frac{(x-y)^2}{4a_1}},$$

Masanori Suwa

$$\begin{split} \left| e^{h_{K}(y)+\varepsilon|y|} \frac{\partial}{\partial t} E(x-y,t) \right| \\ &\leq \frac{(4\pi a_{1})^{\frac{n}{2}} \frac{(x-y)^{2}}{4a_{0}^{2}} + 2\pi n (4\pi a_{1})^{\frac{n}{2}-1}}{(4\pi a_{0})^{n}} e^{-\frac{(x-y)^{2}}{4a_{1}}} e^{-h_{K}(x)-\varepsilon|x|+h_{K}(x-y)+\varepsilon|x-y|} \\ &\leq C e^{-\frac{(x-y)^{2}}{8t}} e^{R|x-y|+\varepsilon|x-y|} \\ &= C_{1} e^{2n(R+\varepsilon)^{2}t} e^{-\sum_{j=1}^{n} \frac{\{|x_{j}-y_{j}|-4(R+\varepsilon)t\}^{2}}{8t}}, \end{split}$$

where $K \subset [-R, R]^n$, R > 0. Since $e^{-\sum_{j=1}^n \frac{\{|x_j - y_j| - 4(R+\varepsilon)t\}^2}{8t}} \in L^1(\mathbb{R}^n_y)$ and $a_0 > 0, a_1 > 0$ are arbitrary, for t > 0

$$\begin{split} \frac{\partial}{\partial t} \langle T_y, E(x-y,t) \rangle &= \frac{\partial}{\partial t} \sum_{|\alpha|=0}^m \int_{\mathbb{R}^n} e^{h_K(y) + \varepsilon |y|} D^{\alpha} E(x-y,t) dy \\ &= \sum_{|\alpha|=0}^m \int_{\mathbb{R}^n} e^{h_K(y) + \varepsilon |y|} D^{\alpha} \left\{ \frac{\partial}{\partial t} E(x-y,t) \right\} dy. \end{split}$$

Since $\left(\frac{\partial}{\partial t} - \Delta\right) E(x, t) = 0$, we have

$$\begin{pmatrix} \frac{\partial}{\partial t} - \Delta \end{pmatrix} \langle T_y, E(x - y, t) \rangle$$

$$= \sum_{|\alpha|=0}^m \int_{\mathbb{R}^n} e^{h_K(y) + \varepsilon |y|} D^\alpha \left\{ \left(\frac{\partial}{\partial t} - \Delta \right) E(x - y, t) \right\} dy = 0.$$

Let $\varphi(x) \in H(\mathbb{R}^n, K)$, $\varphi(x) \in H_b(\mathbb{R}^n, K_{\varepsilon_1})$ and $0 < \varepsilon < \varepsilon_1$. By Proposition 3.8, (4) and (10),

$$\begin{split} &\int_{\mathbb{R}^n} |U(x,t)\varphi(x)|dx\\ &\leq \sum_{|\alpha|=0}^m \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |e^{h_K(y)+\varepsilon|y|} F(y) D^{\alpha} E(x-y,t)\varphi(x)|dydx\\ &\leq C \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{h_K(y)+\varepsilon|y|} e^{-\frac{(x-y)^2}{8t}} e^{-h_K(x)-\varepsilon_1|x|} dydx\\ &\leq C \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{h_K(y-x)+h_K(x)+\varepsilon|y-x|+\varepsilon|x|} e^{-\frac{(y-x)^2}{8t}} e^{-h_K(x)-\varepsilon_1|x|} dydx\\ &\leq C e^{2n(R+\varepsilon)^2 t} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{-\sum_{j=1}^n \frac{1}{8t} \{(y_j-x_j)-4(R+\varepsilon)t\}^2} e^{(\varepsilon-\varepsilon_1)|x|} dydx\\ &<\infty. \end{split}$$

By Fubini's theorem,

$$\begin{split} \langle U(x,t),\varphi(x)\rangle &= \int_{\mathbb{R}^n} \langle T_y, E(x-y,t)\rangle\varphi(x)dx \\ &= \int_{\mathbb{R}^n} e^{h_K(y)+\varepsilon|y|} F(y)P(-D) \int_{\mathbb{R}^n} E(x-y,t)\varphi(x)dxdy \\ &= \langle T_y,\varphi_t(y)\rangle. \end{split}$$

By Lemma 4.2 (iii),

$$\begin{split} \langle U(x,t),\varphi(x)\rangle &= \langle T_y,\varphi_t(y)\rangle \\ &\to \langle T_y,\varphi(y)\rangle, \quad \text{as } t\to 0_+. \end{split}$$

This means that $U(x,t) \to T$ in $H'(\mathbb{R}^n, K)$.

Let 0 < t < 1. By Proposition 3.8, (4) and (10),

$$\begin{split} |\langle T_{y}, E(x-y,t)\rangle| \\ &\leq C_{1} \sum_{|\alpha|=0}^{m} \int_{\mathbb{R}^{n}} e^{h_{K}(y)+\varepsilon|y|} \frac{\alpha!}{(4\pi t)^{\frac{n}{2}}} \left(\frac{en}{2t|\alpha|}\right)^{\frac{|\alpha|}{2}} e^{-\frac{(x-y)^{2}}{8t}} dy \\ &\leq C_{2} t^{-N} e^{h_{K}(x)+\varepsilon|x|} \int_{\mathbb{R}^{n}} e^{-\sum_{j=1}^{n} \frac{1}{8t}(y_{j}-x_{j})^{2} + (R+\varepsilon)|y_{j}-x_{j}|} dy \\ &\leq C_{2} t^{-N} e^{2n(R+\varepsilon)^{2}t} e^{h_{K}(x)+\varepsilon|x|} \int_{\mathbb{R}^{n}} e^{-\sum_{j=1}^{n} \frac{1}{8t}\{|y_{j}-x_{j}|-4(R+\varepsilon)t\}^{2}} dy \\ &\leq C t^{-N} e^{h_{K}(x)+\varepsilon|x|}, \quad 0 < t < 1, \quad x \in \mathbb{R}^{n}. \end{split}$$

Now we shall prove the converse. For positive integer m, we put

$$f_m(t) = \begin{cases} \frac{1}{(m-1)!} t^{m-1} & (t \ge 0) \\ 0 & (t < 0). \end{cases}$$

Let u(t) be a \mathcal{C}^{∞} function such that

$$u(t) = \begin{cases} 1\left(t \le \frac{t_1}{4}\right) \\\\ 0\left(t \ge \frac{t_1}{2}\right), \quad t_1 > 0, \end{cases}$$

and we set $v_m(t) = f_m(t)u(t)$. Then

$$v_m(t) = \begin{cases} f_m(t) \left(t \le \frac{t_1}{4} \right) \\ 0 \quad \left(t \ge \frac{t_1}{2} \right) \end{cases}$$

and

(11)
$$\left(\frac{d}{dt}\right)^m v_m(t) = \delta(t) + w(t),$$

where $w(t) \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ and $\delta(t)$ is Dirac's delta function, supp $w \subset \left[\frac{t_1}{4}, \frac{t_1}{2}\right]$. Now we put m = N + 2, $v_{N+2}(t) = v(t)$ and

$$\tilde{U}(x,t) = \int_0^\infty U(x,t+s)v(s)ds.$$

By supp $v(s) \subset \left[0, \frac{t_1}{2}\right]$,

(12)
$$\begin{split} |\tilde{U}(x,t)| &\leq \int_{0}^{\frac{t_{1}}{2}} |U(x,t+s)| |v(s)| ds \\ &\leq C_{1} e^{h_{K}(x) + \varepsilon |x|} \int_{0}^{\frac{t_{1}}{2}} \frac{s^{N+1}}{(N+1)!(t+s)^{N}} ds \\ &\leq C e^{h_{K}(x) + \varepsilon |x|}. \end{split}$$

Since

$$U(x,t+s)v(s) = \begin{cases} U(x,t+s)v(s), (s>0) \\ 0, \qquad (s=0), \end{cases}$$

 $\lim_{t\to 0_+} U(x,t+s)v(s) =: U(x,s)v(s) \text{ exists in } s \ge 0.$ Therefore, by Lebesgue's dominated convergence theorem,

$$\begin{split} \lim_{t\to 0_+} \tilde{U}(x,t) &= \int_0^\infty \lim_{t\to 0_+} U(x,t+s)v(s)ds\\ &= \int_0^\infty U(x,s)v(s)ds. \end{split}$$

This means that $\tilde{U}(x,t)$ is a continuous function in $t \ge 0$. Now we put $g(x) = \tilde{U}(x,0)$. By (12),

(13)
$$|g(x)| \le Ce^{h_K(x) + \varepsilon |x|}, \quad x \in \mathbb{R}^n.$$

Furthermore since $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,\infty))$, for any compact sets $K_1 \subset \mathbb{R}^n$ and $K_2 \subset (0,\infty)$, there exist constants $M_1, M_2 \geq 0$ such that

$$\left| \triangle U(x, t+s)v(s) \right| \le M_1 |s|,$$
$$\left| \frac{\partial}{\partial t} U(x, t+s)v(s) \right| \le M_2 |s|.$$

Since K_1 , K_2 are arbitrary,

$$\Delta \tilde{U}(x,t) = \int_0^{\frac{t_1}{2}} \Delta U(x,t+s)v(s)ds,$$
$$\frac{\partial}{\partial t}\tilde{U}(x,t) = \int_0^{\frac{t_1}{2}} \frac{\partial}{\partial t}U(x,t+s)v(s)ds,$$

in $\mathbb{R}^n \times (0, \infty)$. Since

$$\left(\frac{\partial}{\partial t} - \Delta\right) U(x, t) = 0$$

in $\mathbb{R}^n \times (0, \infty)$, we have

(14)
$$\left(\frac{\partial}{\partial t} - \Delta\right) \tilde{U}(x,t) = \int_0^\infty \left(\frac{\partial}{\partial t} - \Delta\right) U(x,t+s)v(s)ds = 0$$

in $\mathbb{R}^n \times (0, \infty)$.

By (11) and (14), for t > 0

$$(-\Delta)^{N+2}\tilde{U}(x,t) = \left(-\frac{\partial}{\partial t}\right)^{N+2}\tilde{U}(x,t)$$
$$= \int_0^\infty \left(-\frac{\partial}{\partial t}\right)^{N+2} U(x,t+s)v(s)ds$$
$$= \left\langle U(x,t+s), \left(\frac{\partial}{\partial s}\right)^{N+2}v(s)\right\rangle$$
$$= \left\langle U(x,t+s), \delta(s) + w(s)\right\rangle$$
$$= U(x,t) + \int_0^\infty U(x,t+s)w(s)ds.$$

Therefore, we have

(15)
$$U(x,t) = (-\Delta)^{N+2} \tilde{U}(x,t) - \int_0^\infty U(x,t+s) w(s) ds.$$

Masanori Suwa

We put $H(x,t) = -\int_0^\infty U(x,t+s)w(s)ds$. Then by supp $w(s) \subset \left[\frac{t_1}{4},\frac{t_1}{2}\right]$, H(x,t) is \mathcal{C}^∞ -function in $t \ge 0$. Now we put h(x) = H(x,0). Then

(16)
$$|h(x)| \le Ce^{h_K(x) + \varepsilon|x|}$$

We put $T_x = (-\triangle)^{N+2}g(x) + h(x)$. By Lemma 4.3, (13) and (16), we have $T \in H'(\mathbb{R}^n, K)$. Then

$$(17) \qquad \langle T_y, E(x-y,t) \rangle = \langle (-\Delta_y)^{N+2} g(y) + h(y), E(x-y,t) \rangle = \int_{\mathbb{R}^n} g(y) \times (\Delta_y)^{N+2} E(x-y,t) dy + \int_{\mathbb{R}^n} h(y) E(x-y,t) dy = (-\Delta_x)^{N+2} \int_{\mathbb{R}^n} E(x-y,t) g(y) dy + \int_{\mathbb{R}^n} E(x-y,t) h(y) dy = (-\Delta)^{N+2} G_0(x,t) + H_0(x,t).$$

For $G_0(x,t)$, we have

(18)
$$\left(\frac{\partial}{\partial t} - \Delta\right) G_0(x, t) = 0$$

and

$$(19) |G_{0}(x,t)| \leq C \int_{\mathbb{R}^{n}} \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{(x-y)^{2}}{4t} + h_{K}(y) + \varepsilon |y|} dy$$

$$\leq \frac{C}{(4\pi t)^{\frac{n}{2}}} e^{h_{K}(x) + \varepsilon |x|} \int_{\mathbb{R}^{n}} e^{-\frac{(y-x)^{2}}{4t} + h_{K}(y-x) + \varepsilon |y-x|} dy$$

$$\leq \frac{C}{(4\pi t)^{\frac{n}{2}}} e^{h_{K}(x) + \varepsilon |x|} e^{n(R+\varepsilon)^{2}t} \int_{\mathbb{R}^{n}} e^{-\frac{1}{4t} \sum_{j=1}^{n} \{|y_{j}-x_{j}| - 2(R+\varepsilon)t\}^{2}} dy$$

$$\leq C_{1} e^{h_{K}(x) + \varepsilon |x|}, \quad 0 < t < T,$$

where $K \subset [-R, R]^n$, R > 0. Similarly, for $H_0(x, t)$ we have

(20)
$$\left(\frac{\partial}{\partial t} - \Delta\right) H_0(x, t) = 0$$

and

(21)
$$|H_0(x,t)| \le C_1 e^{h_K(x) + \varepsilon |x|}, \quad 0 < t < T.$$

Furthermore

$$G_0(x,t) - g(x) = \int_{\mathbb{R}^n} E(u,t) \{g(x-u) - g(x)\} du$$
$$= \frac{1}{\pi^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-s^2} \{g(x - \sqrt{4ts}) - g(x)\} ds$$

Since

$$\begin{aligned} &|e^{-s^2} \{g(x - \sqrt{4ts}) - g(x)\}| \\ &\leq Ce^{-s^2} (e^{-h_K(x - \sqrt{4ts}) - \varepsilon |x - \sqrt{4ts}|} + e^{-h_K(x) - \varepsilon |x|}) \\ &\leq Ce^{-s^2} (e^{-h_K(x) - \varepsilon |x| + h_K(\sqrt{4ts}) + \sqrt{4t\varepsilon}|s|} + e^{-h_K(x) - \varepsilon |x|}) \\ &\leq Ce^{-s^2 - h_K(x) - \varepsilon |x|} (e^{\sqrt{4t}(R + \varepsilon)|s|} + 1) \end{aligned}$$

and $e^{-s^2}(e^{\sqrt{4t}(R+\varepsilon)|s|}+1) \in L^1(\mathbb{R}^n_s)$, by Lebesgue's dominated convergence theorem,

$$\lim_{t \to 0_+} G_0(x,t) - g(x) = \frac{1}{\pi^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-s^2} \left\{ \lim_{t \to 0_+} g(x - \sqrt{4ts}) - g(x) \right\} ds = 0,$$

because g(x) is a continuous function. Therefore,

(22)
$$\lim_{t \to 0_+} G_0(x,t) = g(x)$$

Similarly,

(23)
$$\lim_{t \to 0_+} H_0(x,t) = h(x).$$

By (12), (14), (18), (19), (22) and uniqueness theorem of the heat equation [8], we have

$$(24) G_0(x,t) = U(x,t).$$

Similarly,

(25)
$$H_0(x,t) = H(x,t).$$

By (15), (17), (24) and (25), we have

$$\langle T_y, E(x-y,t) \rangle = (-\triangle)^{N+2} G_0(x,t) + H_0(x,t)$$
$$= (-\triangle)^{N+2} \tilde{U}(x,t) + H(x,t)$$
$$= U(x,t).$$

Remark 4.5. C. Dong and T. Matsuzawa characterized Gel'fand-Shilov space S_r^s by the heat kernel method in [4]. But our result for the growth of tis better than their result. That is, they showed that the convolution of the heat kernel and a generalized function was \mathcal{C}^{∞} -function with some *exponential* MASANORI SUWA

growth for t and conversely such a smooth solution could be represented by the convolution of the heat kernel and a generalized function u given by the following formula:

$$u = P(-\triangle)g_0(x) - h_0(x),$$

where $P(-\Delta)$ was the *infinite order* differential operator. In Theorem 4.4 we showed that the convolution was \mathcal{C}^{∞} -function with some *polynomial growth for* t and conversely such a smooth solution could be represented by the convolution of the heat kernel and a generalized function T given by the following formula:

$$T = (-\triangle)^{N+2}g(x) + h(x),$$

of course, $(-\Delta)^{N+2}$ is a *finite order* differential operator. So we obtained the sharper result than them for the case of $H'(\mathbb{R}^n, K)$. For the details we refer the reader to [4].

§5. Distributions of Exponential Growth Supported by a Proper Convex Cone

In this section, we shall characterize $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$, the space of distributions of exponential growth supported by a proper open convex cone $\Gamma \subset \mathbb{R}^n$.

Theorem 5.1. Let $\Gamma \subset \mathbb{R}^n$ be a proper open convex cone, $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ and $U(x,t) = \langle T_y, E(x-y,t) \rangle$. Then $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,\infty))$ satisfying the following conditions:

(26)
$$\left(\frac{\partial}{\partial t} - \Delta\right) U(x,t) = 0,$$

(27)
$$U(x,t) \to T, \ (t \to 0_+), \ in \ H'(\mathbb{R}^n, K),$$

$$\begin{aligned} (28) \qquad \forall \varepsilon > 0 \ \exists N_{\varepsilon} \ge 0 \ \exists C_{\varepsilon} \ge 0 \\ s.t. \ |U(x,t)| \le C_{\varepsilon} t^{-N_{\varepsilon}} e^{-\frac{\operatorname{dis}(x,\overline{\Gamma})^2}{16t}} e^{h_{K}(x) + \varepsilon |x|}, \ 0 < t < 1, \ x \in \mathbb{R}^{n} \end{aligned}$$

Conversely, for a function $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,\infty))$ satisfying (26) and (28), there exists a unique $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ such that $\langle T_y, E(x-y,t) \rangle = U(x,t)$.

Proof. By Theorem 4.4, (26) and (27) are obvious.

Let 0 < t < 1. By Corollary 3.12 and (4),

$$\begin{split} |U(x,t)| \\ &\leq \sum_{|\alpha|=0}^{m} \int_{\overline{\Gamma}} e^{h_{K}(y)+\varepsilon|y|} |F_{\varepsilon,\alpha}(y)| |D^{\alpha}E(x-y,t)| dy \\ &\leq C_{1}t^{-N_{1}} \int_{\overline{\Gamma}} e^{h_{K}(y-x)+h_{K}(x)+\varepsilon|y-x|+\varepsilon|x|} e^{-\frac{|y-x|^{2}}{16t}} e^{-\frac{|y-x|^{2}}{16t}} dy \\ &\leq C_{1}t^{-N_{1}} e^{-\frac{\operatorname{dis}(x,\overline{\Gamma})^{2}}{16t}} e^{h_{K}(x)+\varepsilon|x|} \int_{\overline{\Gamma}} e^{h_{K}(y-x)+\varepsilon|y-x|} e^{-\frac{|y-x|^{2}}{16t}} dy \\ &\leq Ct^{-N} e^{-\frac{\operatorname{dis}(x,\overline{\Gamma})^{2}}{16t}} e^{h_{K}(x)+\varepsilon|x|}. \end{split}$$

Therefore, we have (28).

Now we shall prove the converse. By (28),

$$\begin{aligned} |U(x,t)| &\leq Ct^{-N} e^{-\frac{\operatorname{dis}(x,\overline{\Gamma})^2}{16t}} e^{h_K(x) + \varepsilon |x|} \\ &\leq Ct^{-N} e^{h_K(x) + \varepsilon |x|}, \quad 0 < t < 1 \end{aligned}$$

By Theorem 4.4, there exists $T \in H'(\mathbb{R}^n, K)$ such that $\langle T_y, E(x - y, t) \rangle = U(x, t)$. Let $\varphi(x) \in \mathcal{D}$, $\operatorname{supp}(\varphi) \subset \mathbb{R}^n \setminus \overline{\Gamma}$, $K' = \operatorname{supp}(\varphi)$, $\delta = \operatorname{dis}(K', \overline{\Gamma}) > 0$. Then by Theorem 4.4,

$$\langle T, \varphi \rangle = \lim_{t \to 0_+} \int_{K'} U(x, t) \varphi(x) dx.$$

Therefore,

$$\begin{split} |\langle T, \varphi \rangle| &\leq C \lim_{t \to 0_+} t^{-N} \int_{K'} e^{-\frac{\operatorname{dis}(x, \overline{\Gamma})^2}{16t}} e^{h_K(x) + \varepsilon |x|} |\varphi(x)| dx \\ &\leq C \lim_{t \to 0_+} t^{-N} e^{-\frac{\delta^2}{16t}} \int_{K'} e^{h_K(x) + \varepsilon |x|} |\varphi(x)| dx \\ &\leq C_2 \lim_{t \to 0_+} t^{-N} e^{-\frac{\delta^2}{16t}} = 0. \end{split}$$

This means that supp $T \subset \overline{\Gamma}$.

For (28) in Theorem 5.1, we have the following lemma:

Lemma 5.2. Let $U(x,t) \in C^{\infty}(\mathbb{R}^n \times (0,\infty))$ and satisfies $(\frac{\partial}{\partial t} - \Delta)$ U(x,t) = 0. Then (28) in Theorem 5.1 is equivalent to the following conditions:

(29) $\forall \varepsilon > 0 \ \exists N \ \exists C \ge 0 \ s.t. \ |U(x,t)| \le Ct^{-N}e^{h_K(x)+\varepsilon|x|}, \ 0 < t < 1, \ x \in \mathbb{R}^n,$ and $U(x,t) \to 0, (t \to 0_+)$, uniformly for all compact sets in $\mathbb{R}^n \setminus \overline{\Gamma}$.

Masanori Suwa

Proof. (28) \Rightarrow (29) is obvious. Now we suppose (29). By the estimate in (29) and Theorem 4.4, there exists $T \in H'(\mathbb{R}^n, K)$ such that $U(x,t) = \langle T_y, E(x-y,t) \rangle$. Let $\varphi(x) \in \mathcal{D}(\mathbb{R}^n)$, $\operatorname{supp}(\varphi) \subset \mathbb{R}^n \setminus \overline{\Gamma}$. Then by (8) in Theorem 4.4 and the assumption in (29), we have

$$\langle T, \varphi \rangle = \lim_{t \to 0_+} \int_{\mathbb{R}^n} U(x, t)\varphi(x)dx = 0.$$

It means that $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. By Theorem 5.1, we have (28).

By Lemma 5.2, we have the following corollary:

Corollary 5.3. Let $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ and $U(x,t) = \langle T_y, E(x-y,t) \rangle$. Then $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,\infty))$ satisfies the following conditions:

(30)
$$\left(\frac{\partial}{\partial t} - \Delta\right) U(x,t) = 0,$$

(31) $U(x,t) \longrightarrow T, \ (t \to 0_+), \ in \ H'(\mathbb{R}^n, K),$

(32)
$$\forall \varepsilon > 0 \; \exists N \; \exists C \ge 0 \; s.t. \; |U(x,t)| \le Ct^{-N} e^{h_K(x) + \varepsilon |x|}, \\ 0 < t < 1, \; x \in \mathbb{R}^n \; and \; U(x,t) \to 0, (t \to 0_+), \\ uniformly \; for \; all \; compact \; sets \; in \; \mathbb{R}^n \setminus \overline{\Gamma}.$$

Conversely, for a function $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,\infty))$ satisfying (30) and (32), there exists a unique $T \in H_{\overline{\Gamma}}(\mathbb{R}^n, K)$ such that $\langle T_y, E(x-y,t) \rangle = U(x,t)$.

§6. Paley-Wiener Theorem for Distributions of Exponential Growth Supported by a Proper Convex Cone

In this section, we shall give the Paley-Wiener theorem for $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$, the space of distributions of exponential growth supported by a proper open convex cone $\Gamma \subset \mathbb{R}^n$. For the 1-dimensional case, it is given in [15].

Definition 6.1. Let Γ be a proper open convex cone, K be a compact set and $\varepsilon' > 0$. Then we denote L and $L_{-\varepsilon'}$ by

$$L = \left\{ \bigcap_{u \in K} (\{u\} + (\overline{\Gamma}')^{\circ}) \right\}^{\circ}$$
$$L_{-\varepsilon'} = \mathbb{R}^n \setminus (\mathbb{R}^n \setminus L)_{\varepsilon'}.$$

Proposition 6.2. For L and L_{-ε'}, we have the following properties:
(i) L ≠ Ø.
(ii) L_{-ε'} ⊂⊂ L.

Proof. (i) : Let $u_1, u_2 \in K \subset B(0, \frac{1}{2}R), R > 0, y \in (\overline{\Gamma}')^{\circ}, |y| = 1$. By Proposition 2.12, there exists $\delta > 0$ such that $B(y, \delta) \subset (\overline{\Gamma}')^{\circ}$, and $B(u_1+y, \delta) \subset \{u_1\} + (\overline{\Gamma}')^{\circ}, B(u_2+y, \delta) \subset \{u_2\} + (\overline{\Gamma}')^{\circ}$. Let $x \in B(\frac{R}{\delta}y, R)$. Since

$$\left|\frac{R}{\delta}y - x\right| < R \Leftrightarrow \left|y - \frac{\delta}{R}x\right| < \delta,$$

we have $\frac{\delta}{R}x \in (\overline{\Gamma}')^{\circ}$. Therefore, $x \in (\overline{\Gamma}')^{\circ}$. This means that $B(\frac{R}{\delta}y, R) \subset (\overline{\Gamma}')^{\circ}$. Since

$$B\left(u_i + \frac{R}{\delta}y, R\right) \subset \{u_i\} + (\overline{\Gamma}')^\circ, \quad i = 1, 2,$$
$$\left|\left(\{u_1\} + \frac{R}{\delta}y\right) - \left(\{u_2\} + \frac{R}{\delta}y\right)\right| = |u_1 - u_2| < R$$

and $u_1, u_2 \in K$ are arbitrary, we have $\bigcap_{u \in K} (\{u\} + (\overline{\Gamma}')^\circ) \neq \emptyset$. Let $a \in \bigcap_{u \in K} (\{u\} + (\overline{\Gamma}')^\circ)$. By Proposition 2.13,

 $x \in a + (\overline{\Gamma}')^{\circ} \Rightarrow x \in \bigcap_{u \in K} (\{u\} + (\overline{\Gamma}')^{\circ}) + (\overline{\Gamma}')^{\circ}$ $\Leftrightarrow x \in u + (\overline{\Gamma}')^{\circ} + (\overline{\Gamma}')^{\circ}, \quad \text{for any } u \in K$

$$\Leftrightarrow x \in u + (\overline{\Gamma}')^{\circ}$$
$$\Leftrightarrow x \in \bigcap_{u \in K} (\{u\} + (\overline{\Gamma}')^{\circ}).$$

Therefore, $a + (\overline{\Gamma}')^{\circ} \subset \bigcap_{u \in K} (\{u\} + (\overline{\Gamma}')^{\circ})$. By Proposition 2.12, $a + (\overline{\Gamma}')^{\circ}$ is an open set and not empty. Therefore, we have the condition (i). (ii) is obvious.

Definition 6.3 ([15], [22]). For $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$, we define the Fourier-Laplace transform $\mathcal{LF}(T)$ of T by

$$\mathcal{LF}(T)(\xi + \imath\eta) := \mathcal{F}(e^{-\eta x}T)(\xi)$$
$$= \frac{1}{(2\pi)^{\frac{n}{2}}} \langle e^{-\eta x}T_x, e^{\imath\xi x} \rangle$$
$$= \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_x, e^{\imath\zeta x} \rangle.$$

The last part means

$$\langle T_x, e^{i\zeta x} \rangle = \langle T_x, \chi(x) e^{i\zeta x} \rangle,$$

where $\chi(x) \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ which satisfies

$$\chi(x) = \begin{cases} 1, & x \in \overline{\Gamma}_{\varepsilon} \\ 0, & x \notin \overline{\Gamma}_{2\varepsilon}, & \varepsilon > 0. \end{cases}$$

Definition 6.4. Let Γ be a proper open convex cone and K be a compact set. For $\varepsilon > 0$ and $u_j \in K$, $j = 1, \ldots, j_0$, we set the following notations:

$$[\overline{\Gamma}]^{j} = (\{u_{j}\} + \overline{\Gamma})^{\circ}, [\overline{\Gamma}]^{j}_{-\varepsilon} = \mathbb{R}^{n} \setminus (\mathbb{R}^{n} \setminus (\{u_{j}\} + \overline{\Gamma})^{\circ})_{\varepsilon}$$

Lemma 6.5. Let Γ , Γ_C be proper open convex cones such that $\overline{\Gamma}_C \Subset (\overline{\Gamma}')^{\circ}$ and $\eta \in [\overline{\Gamma}_C]_{-2\varepsilon}^{j}$. Then for every $s \in \overline{B(u_j,\varepsilon)}, \eta - s \in (\overline{\Gamma}_C)^{\circ}$ and $|\eta - s| \geq \frac{1}{2}\varepsilon$.

Proof. Let $\eta \in [\overline{\Gamma}_C]_{-2\varepsilon}^j$, namely $\eta \in \mathbb{R}^n \setminus (\mathbb{R}^n \setminus (\{u_j\} + \overline{\Gamma}_C)^\circ)_{2\varepsilon}$. By $\eta \notin (\mathbb{R}^n \setminus (\{u_j\} + \overline{\Gamma}_C)^\circ)_{2\varepsilon}$,

$$\eta + \overline{B\left(0, \frac{3}{2}\varepsilon\right)} \subset \left(\left\{u_{j}\right\} + \overline{\Gamma}_{C}\right)^{\circ} \Leftrightarrow \eta - u_{j} + \overline{B\left(0, \frac{3}{2}\varepsilon\right)} \subset (\overline{\Gamma}_{C})^{\circ}$$
$$\Leftrightarrow \eta - u_{j} + \overline{B(0, \varepsilon)} + \overline{B\left(0, \frac{1}{2}\varepsilon\right)} \subset (\overline{\Gamma}_{C})^{\circ}$$
$$\Leftrightarrow \eta - \overline{B(u_{j}, \varepsilon)} + \overline{B\left(0, \frac{1}{2}\varepsilon\right)} \subset (\overline{\Gamma}_{C})^{\circ}.$$

For every $s \in \overline{B(u_j,\varepsilon)}$, since $\eta - s + \overline{B(0,\frac{1}{2}\varepsilon)} \subset (\overline{\Gamma}_C)^\circ$ and $\{0\} \in \partial \overline{\Gamma}_C$, we have $\eta - s \in (\overline{\Gamma}_C)^\circ$ and $|\eta - s| \ge \frac{1}{2}\varepsilon$.

Proposition 6.6. Let Γ be a proper open convex cone, K be a convex compact set, $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ and $f(\zeta) = \mathcal{LF}(T)(\xi + i\eta)$. Then for every $\varepsilon > 0$ there exist $j_0 \in \mathbb{N}$, $l_{\varepsilon} \geq 0$ and the families $\{u_j\}_{j=1}^{j_0} \subset K$, $\{f_j(\zeta)\}_{j=1}^{j_0}$ satisfying the conditions (33), (34), (35):

(33)
$$f_j(\zeta) \in \mathcal{H}(\mathbb{R}^n + \imath [\overline{\Gamma}']^J).$$

 $\forall \overline{\Gamma}_C \Subset (\overline{\Gamma}')^\circ \; \exists M_{\varepsilon,\overline{\Gamma}_C} \geq 0 \; such \; that$

(34)
$$|f_j(\zeta)| \le M(1+|\zeta|)^l, \quad \zeta \in \mathbb{R}^n + i[\overline{\Gamma}_C]_{-2\varepsilon}^j.$$

(35)
$$f(\zeta) = \sum_{1 \le j \le j_0} f_j(\zeta).$$

In particular, $f(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL)$.

Proof. By Corollary 3.13,

$$(36)$$

$$f(\zeta) = \langle T_x, e^{i\zeta x} \rangle$$

$$= \sum_{|\alpha|=0}^{a} \sum_{|\beta|=0}^{|\alpha|} {\alpha \choose \beta} (i\zeta)^{\beta} \int_{\overline{\Gamma}} G(x) D^{\alpha-\beta} F^*(x) e^{i\zeta x} dx$$

$$= \sum_{|\alpha|=0}^{a} \sum_{|\beta|=0}^{|\alpha|} {\alpha \choose \beta} (i\zeta)^{\beta} \sum_{1 \le j \le j_0} \int_{\overline{\Gamma}} G(x) A_{\alpha,\beta}(u_1, \dots, u_{j_0}, x, \varepsilon) e^{u_j x + \frac{\varepsilon}{2}\sqrt{1+x^2}} e^{i\zeta x} dx,$$

where $\sup_{x \in \mathbb{R}^n} |A_{\alpha,\beta}(u_1, \ldots, u_{j_0}, x, \varepsilon)| < \infty$. Now we put

(37)
$$g_{j,\alpha,\beta}(\zeta) = \int_{\overline{\Gamma}} G(x) A_{\alpha,\beta}(u_1,\ldots,u_{j_0},x,\varepsilon) e^{u_j x + \frac{\varepsilon}{2}\sqrt{1+x^2} + i\zeta x} dx.$$

Then

(38)
$$|g_{j,\alpha,\beta}(\zeta)| \leq C_0 \int_{\overline{\Gamma}} (1+|x|)^M e^{u_j x + \frac{\varepsilon}{2}\sqrt{1+x^2}} e^{-\eta x} dx$$
$$\leq C_1 \int_{\overline{\Gamma}} e^{u_j x + \varepsilon |x|} e^{-\eta x} dx.$$

Let $\eta \in [\overline{\Gamma}_C]_{-2\varepsilon}^j$. By Lemma 6.5 and Proposition 2.12, there exists $\sigma = \sigma(\overline{\Gamma}_C) > 0$ such that

$$\begin{aligned} (\eta - s)x &\geq \sigma |\eta - s| |x| \\ &\geq \frac{1}{2} \sigma \varepsilon |x|, \quad \eta \in \left[\overline{\Gamma}_C\right]_{-2\varepsilon}^j, \ x \in \overline{\Gamma}, \ s \in \overline{B(u_j, \varepsilon)}. \end{aligned}$$

Therefore

(39)
$$|g_{j,\alpha,\beta}(\zeta)| \leq C_1 \int_{\overline{\Gamma}} e^{h_{\overline{B(u_j,\varepsilon)}}(x) - \eta x} dx$$
$$\leq C_1 \int_{\overline{\Gamma}} e^{sx - \eta x} dx, \quad s_{(x)} \in \overline{B(u_j,\varepsilon)},$$
$$\leq C_1 \int_{\overline{\Gamma}} e^{-\sigma |\eta - s| |x|} dx$$
$$\leq C_1 \int_{\overline{\Gamma}} e^{-\frac{1}{2}\varepsilon\sigma |x|} dx$$
$$< \infty.$$

Masanori Suwa

If $\eta \in [\overline{\Gamma}_C]_{-2\varepsilon}^j$, then by the calculation from (38) to (39), we have

$$|g_{j,\alpha,\beta}(\zeta)| \leq \int_{\overline{\Gamma}} e^{-\frac{1}{2}\sigma\varepsilon|x|} dx,$$

and $e^{-\frac{1}{2}\sigma\varepsilon'|x|} \in L^1(\mathbb{R}^n_x)$. For $\zeta_0 \in \mathbb{R}^n + \imath[\overline{\Gamma}_C]^j_{-2\varepsilon}$ by (36) and Lebesgue's dominated convergence theorem, we have

$$\lim_{\substack{\zeta \to \zeta_0 \\ \eta \in [\overline{\Gamma}_C]_{-2\varepsilon}^j}} g_{j,\alpha,\beta}(\zeta) = \lim_{\substack{\zeta \to \zeta_0 \\ \eta \in [\overline{\Gamma}_C]_{-2\varepsilon}^j}} \int_{\overline{\Gamma}} G(x) A_{\alpha,\beta}(u_1,\ldots,u_{j_0},x,\varepsilon) e^{u_j x + \frac{\varepsilon}{2}\sqrt{1+x^2}} e^{i\zeta x} dx,$$
$$= \int_{\overline{\Gamma}} G(x) A_{\alpha,\beta}(u_1,\ldots,u_{j_0},x,\varepsilon) e^{u_j x + \frac{\varepsilon}{2}\sqrt{1+x^2}} e^{i\zeta_0 x} dx,$$
$$= g_{j,\alpha,\beta}(\zeta_0).$$

Since $\varepsilon > 0$ and $\overline{\Gamma}_C \Subset (\overline{\Gamma}')^\circ$ are arbitrary, $g_{j,\alpha,\beta}(\zeta)$ is a continuous function in $\mathbb{R}^n + \imath[\overline{\Gamma}]^j$.

Let $\eta \in [\overline{\Gamma}_C]_{-2\varepsilon}^j$ and γ be a Jordan curve in $\{\mathbb{R}^n + \imath [\overline{\Gamma}_C]_{-2\varepsilon}^j\}_m$ which is *m*th component of $\mathbb{R}^n + \imath [\overline{\Gamma}_C]_{-2\varepsilon}^j$. By (39),

$$\int_{\gamma} |g_{j,\alpha,\beta}(\zeta)| |d\zeta_m| < \infty$$

By Fubini's theorem,

$$\int_{\gamma} g_{j,\alpha,\beta}(\zeta) d\zeta_m = \int_{\overline{\Gamma}} G(x) A_{\alpha,\beta}(t_1,\ldots,t_{j_0},x,\varepsilon) e^{u_j x + \frac{\varepsilon}{2}\sqrt{1+x^2}} \int_{\gamma} e^{i\zeta x} d\zeta_m dx$$
$$= 0.$$

By Morera's theorem, $g_{j,\alpha,\beta}(\zeta)$ is a holomorphic function of ζ_m . By Hartogs' theorem, $g_{j,\alpha,\beta}(\zeta) \in \mathcal{H}(\mathbb{R}^n + i[\overline{\Gamma}_C]_{-2\varepsilon}^j)$. Since $\varepsilon > 0$ and $\overline{\Gamma}_C \Subset (\overline{\Gamma}')^\circ$ are arbitrary, we have $g_{j,\alpha,\beta}(\zeta) \in \mathcal{H}(\mathbb{R}^n + i[\overline{\Gamma}']^j)$. Now we put

$$f_j(\zeta) = \sum_{|\alpha|=0}^{a} \sum_{|\beta|=0}^{|\alpha|} \binom{\alpha}{\beta} (i\zeta)^{\beta} g_{j,\alpha,\beta}(\zeta).$$

Then we have

$$f(\zeta) = \sum_{1 \le j \le j_0} f_j(\zeta),$$

$$f_j(\zeta) \in \mathcal{H}(\mathbb{R}^n + i[\overline{\Gamma}']^j), \quad j = 1, \dots, j_0,$$

$$\exists l_{\varepsilon} \geq 0 \ \forall \overline{\Gamma}_{C} \Subset (\overline{\Gamma}')^{\circ} \ \exists M_{\varepsilon,\overline{\Gamma}_{C}} \geq 0 \text{ such that} \\ |f_{j}(\zeta)| \leq M(1+|\zeta|)^{l}, \quad \zeta \in \mathbb{R}^{n} + i[\overline{\Gamma}_{C}]_{-2\varepsilon}^{j}, \quad j = 1, \dots, j_{0}.$$

Proposition 6.7. Assume that $f(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL)$ and satisfies the conditions (33), (34) and (35). Then there exists a unique $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ such that $f(\zeta) = \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_x, e^{i\zeta x} \rangle$.

Proof. Let $\varepsilon > 0$, 0 < t < 1 and $\zeta = \xi + i\eta$, $\eta \in \overline{\Gamma}_C$, $\overline{\Gamma}_C \in (\overline{\Gamma}')^{\circ}$ and $|\eta| = \varepsilon$. Now we put

$$U(x,t) = \frac{1}{(2\pi)^{\frac{n}{2}}} \sum_{1 \le j \le j_0} \int_{\mathbb{R}^n} f_j(\zeta + iu_j) e^{-t(\zeta + iu_j)^2} e^{-i(\zeta + iu_j)x} d\xi,$$
$$U_j(x,t) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f_j(\zeta + iu_j) e^{-t(\zeta + iu_j)^2} e^{-i(\zeta + iu_j)x} d\xi.$$

We notice that $U_j(x,t)$ is independent of $\eta \in \overline{\Gamma}_C$ by Cauchy's integral theorem and satisfies

$$\left(\frac{\partial}{\partial t} - \Delta\right) U_j(x, t) = 0.$$

Furthermore

$$\begin{split} |U_{j}(x,t)| &\leq \int_{\mathbb{R}^{n}} |f_{j}(\zeta + \imath u_{j})| e^{-t\xi^{2} + t(\eta + u_{j})^{2}} e^{(\eta + u_{j})x} d\xi \\ &\leq M\{(1 + |\eta_{1} + u_{j_{1}}|) \cdots (1 + |\eta_{n} + u_{j_{n}}|)\}^{l} e^{t(\eta + u_{j})^{2} + (\eta + u_{j})x} \\ &\qquad \times \int_{\mathbb{R}^{n}} \{(1 + |\xi_{1}|) \cdots (1 + |\xi_{n}|)\}^{l} e^{-t\xi^{2}} d\xi, \quad (u_{j} = (u_{j_{1}}, \dots, u_{j_{n}})), \\ &\leq M_{1}t^{-N}\{(1 + |\eta_{1} + u_{j_{1}}|) \cdots (1 + |\eta_{n} + u_{j_{n}}|)\}^{l} e^{t(\eta + u_{j})^{2} + (\eta + u_{j})x}. \end{split}$$

Then since $|\eta| = \varepsilon$,

$$\begin{aligned} |U_j(x,t)| &\leq M_2 t^{-N} (1+\varepsilon+|u_j|)^{ln} e^{2t\eta u_j+tu_j^2+\eta x+u_j x} \\ &\leq M_3 t^{-N} e^{2\varepsilon|u_j|+|u_j|^2+\varepsilon|x|+u_j x} \\ &\leq M' t^{-N} e^{u_j x+\varepsilon|x|}, \quad 0 < t < 1, \quad x \in \mathbb{R}^n. \end{aligned}$$

By Theorem 4.4, there exists $T_j \in H'(\mathbb{R}^n, \{u_j\})$ such that $\langle T_{jy}, E(x-y,t) \rangle = U_j(x,t)$.

Let $x_0 \notin \overline{\Gamma}$. Then there exists $\eta_0 \in (\overline{\Gamma}')^\circ$, $|\eta_0| = 1$ such that $\eta_0 x_0 = -2\delta$ < 0. Then we have

$$\sup_{x \in B(x_0,\delta)} \eta_0 x = \eta_0 x_0 + \delta \sup_{y \in B(0,1)} \eta_0 y$$
$$< -2\delta + \delta$$
$$= -\delta$$

Let $\eta' = \frac{\eta_0}{\sqrt{t}}, \, \varphi(x) \in \mathcal{D}, \, \operatorname{supp}(\varphi) \subset B(x_0, \delta)$. Then we have

$$\begin{split} |\langle U_{j}(x,t),\varphi(x)\rangle| \\ &= \left| \int_{B(x_{0},\delta)} \int_{\mathbb{R}^{n}} f_{j}(\zeta + iu_{j})e^{-t(\zeta + iu_{j})^{2}}e^{-i(\zeta + iu_{j})x}d\xi\varphi(x)dx \right| \\ &\leq M\{(1 + |\eta_{1}' + u_{j1}|)\cdots(1 + |\eta_{n}' + u_{jn}|)\}^{l}e^{t(\eta' + u_{j})^{2}} \\ &\times \int_{B(x_{0},\delta)} |\varphi(x)|e^{(\eta' + u_{j})x}dx \int_{\mathbb{R}^{n}}\{(1 + |\xi_{1}|)\cdots(1 + |\xi_{n}|)\}^{l}e^{-t\xi^{2}}d\xi \\ &\leq M_{1}t^{-N}e^{t(u_{j} + \frac{\eta_{0}}{\sqrt{t}})^{2}} \int_{B(x_{0},\delta)} |\varphi(x)|e^{\frac{1}{\sqrt{t}}\eta_{0}x + u_{j}x}dx \\ &\leq M_{3}t^{-N}e^{tu_{j}^{2} + 2\sqrt{t}\eta_{0}u_{j} + |\eta_{0}|^{2}} \int_{B(x_{0},\delta)} |\varphi(x)|e^{u_{j}x}e^{-\frac{\delta}{\sqrt{t}}}dx \\ &\leq M_{4}t^{-N}e^{-\frac{\delta}{\sqrt{t}}} \\ &\to 0, \quad t \to 0_{+}. \end{split}$$

Therefore, by Theorem 4.4, we have

$$\langle T_j, \varphi \rangle = \lim_{t \to 0_+} \langle U_j(x, t), \varphi(x) \rangle$$

= 0.

Since $x_0 \notin \overline{\Gamma}$ is arbitrary, this means that supp $T_j \subset \overline{\Gamma}$.

Now for every $\varphi \in \mathcal{D}(\mathbb{R}^n)$, let

$$\begin{aligned} V_{\eta}(x,t) &= e^{-t\eta^2 - \eta x} (E(x,t) * \varphi(-x)) \\ &= e^{-t\eta^2 - \eta x} \int_{\mathbb{R}^n} E(x-y,t) \varphi(-y) dy, \quad 0 < t < 1. \end{aligned}$$

Then we have the following lemma:

Lemma 6.8 ([20]). $V_{\eta}(x,t) \rightarrow \varphi(-x)e^{-\eta x}$ in $\mathcal{S}(\mathbb{R}^n)$, as $t \rightarrow 0_+$.

For the details of the proof, we refer the reader to [20]. Now we resume the proof of Proposition 6.7.

Let
$$\varphi(x) \in \mathcal{D}$$
. Then

$$\begin{aligned} \langle U_j(x,t),\varphi(x) \rangle \\ &= \left\langle \int_{\mathbb{R}^n} f_j(\zeta + iu_j) e^{-t(\zeta + iu_j)^2} e^{-i(\zeta + iu_j)x} d\xi, \varphi(x) \right\rangle \\ &= \left\langle f_j(\zeta + iu_j) e^{-t(\zeta + iu_j)^2}, \int_{\mathbb{R}^n} \varphi(x) e^{-i(\zeta + iu_j)x} dx \right\rangle \\ &= \langle f_j(\zeta + iu_j), e^{-t(\zeta + iu_j)^2} \mathcal{LF}(\varphi(-x) e^{-u_jx})(\zeta) \rangle \\ &= \langle f_j(\zeta + iu_j), \mathcal{LF}(E(x,t) e^{-u_jx})(\zeta) \times \mathcal{LF}(\varphi(-x) e^{-u_jx})(\zeta) \rangle \\ &= \langle f_j(\zeta + iu_j), \mathcal{LF}(e^{-u_jx}(E(x,t) * \varphi(-x)))(\zeta) \rangle \\ &= \langle \mathcal{F}(f_j(\zeta + iu_j)), e^{-u_jx - \eta x}(E(x,t) * \varphi(-x)) \rangle. \end{aligned}$$

By Theorem 4.4 and Lemma 6.8, we have

$$\begin{split} \langle T_j, \varphi \rangle \\ &= \lim_{t \to 0_+} e^{t(u_j + \eta)^2} \langle \mathcal{F}(f_j(\zeta + iu_j)), e^{-t(u_j + \eta)^2} e^{-u_j x - \eta x} (E(x, t) * \varphi(-x)) \rangle \\ &= \langle \mathcal{F}(f_j(\zeta + iu_j)), \varphi(-x) e^{-u_j x - \eta x} \rangle \\ &= \langle f_j(\zeta + iu_j), \mathcal{F}^{-1}(\varphi(x) e^{u_j x + \eta x}) \rangle \\ &\Leftrightarrow \langle T_j, \varphi(x) e^{-u_j x - \eta x} \rangle = \langle f_j(\zeta + iu_j), \mathcal{F}^{-1}(\varphi(x)) \rangle \\ &\Leftrightarrow \langle e^{-u_j x - \eta x} T_j, \varphi(x) \rangle = \langle f_j(\zeta + iu_j), \mathcal{F}^{-1}(\varphi(x)) \rangle \\ &\Leftrightarrow \langle \mathcal{F}(e^{-u_j x - \eta x} T_j), \varphi(x) \rangle = \langle f_j(\zeta + iu_j), \varphi(x) \rangle. \end{split}$$

Therefore,

$$\begin{split} \mathcal{F}(e^{-u_j x - \eta x} T_j)(\xi) &= f_j(\zeta + \imath u_j) \\ \Leftrightarrow \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_{j_x}, e^{\imath (\zeta + \imath u_j) x} \rangle &= f_j(\zeta + \imath u_j) \\ \Leftrightarrow \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_{j_x}, e^{\imath \zeta x} \rangle &= f_j(\zeta). \end{split}$$

Now we put

$$T = \sum_{1 \le j \le j_0} T_j.$$

Since $T_j \in H'_{\overline{\Gamma}}(\mathbb{R}^n, \{u_j\}), u_j \in K$, we have $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ and

$$\frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_x, e^{i\zeta x} \rangle = \frac{1}{(2\pi)^{\frac{n}{2}}} \sum_{1 \le j \le j_0} \langle T_{j_x}, e^{i\zeta x} \rangle$$
$$= \sum_{1 \le j \le j_0} f_j(\zeta)$$
$$= f(\zeta).$$

Now we shall prove injective. Let $T_1, T_2 \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ and assume that

$$\frac{1}{(2\pi)^{\frac{n}{2}}}\langle T_{1x}, e^{i\zeta x}\rangle = \frac{1}{(2\pi)^{\frac{n}{2}}}\langle T_{2x}, e^{i\zeta x}\rangle$$
$$= f(\zeta).$$

For fixed $\eta_0 \in L_{-\varepsilon}$, we have

$$\frac{1}{(2\pi)^{\frac{n}{2}}} \langle e^{-\eta_0 x} T_{1x}, e^{i\xi x} \rangle = \frac{1}{(2\pi)^{\frac{n}{2}}} \langle e^{-\eta_0 x} T_{2x}, e^{i\xi x} \rangle$$
$$= f(\xi + i\eta_0).$$

By (34) and Fourier transform in \mathcal{S}' yields

$$e^{-\eta_0 x} T_1 = e^{-\eta_0 x} T_2, \quad \text{in } \mathcal{S}'.$$

Let $\varphi(x) \in \mathcal{D}$. Then $\varphi(x)e^{\eta_0 x} \in \mathcal{D}$. Therefore,

$$\begin{split} \langle T_{1x},\varphi(x)\rangle &= \langle e^{-\eta_0 x} T_{1x},\varphi(x) e^{\eta_0 x} \rangle \\ &= \langle e^{-\eta_0 x} T_{2x},\varphi(x) e^{\eta_0 x} \rangle \\ &= \langle T_{2x},\varphi(x) \rangle. \end{split}$$

By Theorem 3.5, $T_{1x} = T_{2x}$ in $H'(\mathbb{R}^n, K)$.

By Proposition 6.6 and Proposition 6.7, we have the following theorem:

Theorem 6.9. Let Γ be a proper open convex cone, K be a convex compact set, $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ and $f(\zeta) = \mathcal{LF}(T)(\xi + i\eta)$. Then for every $\varepsilon > 0$ there exist $j_0 \in \mathbb{N}$, $l_{\varepsilon} \geq 0$ and the families $\{u_j\}_{j=1}^{j_0} \subset K$, $\{f_j(\zeta)\}_{j=1}^{j_0}$ satisfying the conditions (40), (41), (42):

(40)
$$f_j(\zeta) \in \mathcal{H}(\mathbb{R}^n + \imath [\overline{\Gamma}']^{\mathcal{I}}).$$

 $\forall \ \overline{\Gamma}_C \Subset (\overline{\Gamma}')^\circ \ \exists M_{\varepsilon,\overline{\Gamma}_C} \geq 0 \ such \ that$

(41)
$$|f_j(\zeta)| \le M(1+|\zeta|)^l, \quad \zeta \in \mathbb{R}^n + i[\overline{\Gamma}_C]_{-2\varepsilon}^j.$$

(42)
$$f(\zeta) = \sum_{1 \le j \le j_0} f_j(\zeta)$$

In particular, $f(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL)$.

Conversely if $f(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL)$ satisfies the conditions (40), (41) and (42), then there exists a unique $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ such that $f(\zeta) = \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_x, e^{i\zeta x} \rangle$. Furthermore T is given by the following formula:

(43)
$$T = \sum_{1 \le j \le j_0} T_j, \quad T_j \in H'_{\overline{\Gamma}}(\mathbb{R}^n, \{u_j\}),$$

(44)
$$f_j(\zeta) = \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_{j_x}, e^{i\zeta x} \rangle$$

Corollary 6.10. Let Γ be a proper open convex cone, $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, \{0\})$ and $f(\zeta) = \mathcal{LF}(T)(\xi + i\eta)$. Then for $\varepsilon > 0$ there exists $l_{\varepsilon} \ge 0$ satisfying the conditions (45), (46):

(45)
$$f(\zeta) \in \mathcal{H}(\mathbb{R}^n + \imath L).$$

 $\forall \overline{\Gamma}_C \Subset (\overline{\Gamma}')^\circ \exists M_{\varepsilon,\overline{\Gamma}_C} \geq 0 \text{ such that}$

(46)
$$|f(\zeta)| \le M(1+|\zeta|)^l, \quad \zeta \in \mathbb{R}^n + i[\overline{\Gamma}_C]_{-2\varepsilon}.$$

Conversely if $f(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL)$ satisfies the conditions (45) and (46), then there exists a unique $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, \{0\})$ such that $f(\zeta) = \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_x, e^{i\zeta x} \rangle$.

Remark 6.11 (Remark for Corollary 6.10). Now we consider more general Fourier-Laplace transforms. That is, if $T \in \mathcal{D}'$ and $e^{-\eta x}T \in \mathcal{S}'$, then we can define the Fourier-Laplace transform $\mathcal{LF}(T)(\zeta)$ of T. Furthermore it is known that we can obtain the Paley-Wiener theorem for $T \in \mathcal{D}'$ if Γ_T° is not empty where $\Gamma_T := \{\eta \in \mathbb{R}^n; e^{-\langle \cdot, \eta \rangle}T \in \mathcal{S}'\}$ (see Theorem 7.4.2 in [6]).

So we can assert that for the Paley-Wiener theorem for $T \in \mathcal{D}'$ (that is, for Theorem 7.4.2 in [6]) we can take the element of the space $H'_{\overline{\Gamma}}(\mathbb{R}^n, \{0\})$ as $T \in \mathcal{D}'$ if and only if the conditions of Corollary 6.10 are satisfied.

Example 6.12 (Example for Theorem 6.9). Let $n = 2, K = \{0\} \times [-1,1]$ and $\Gamma := \{x = (x_1, x_2) \in \mathbb{R}^2; x_1^2 - x_2^2 > 0, x_1 > 0\} (= (\overline{\Gamma}')^\circ)$. We define T(x) by

$$T(x) = \begin{cases} e^{|x_2|}, x_1^2 - x_2^2 > 0, \ x_1 > 0, \\ 0, & \text{otherwise.} \end{cases}$$

We can see $T \in H'_{\overline{\Gamma}}(\mathbb{R}^2, K)$ and we have

$$\langle T_x, e^{\imath \zeta x} \rangle = \int_{\overline{\Gamma}} e^{|x_2|} e^{\imath \zeta x} dx_1 dx_2 = \int_0^{\frac{\pi}{4}} \int_0^{\infty} e^{r(\imath \zeta_1 \cos \theta + (\imath \zeta_2 + 1) \sin \theta)} r dr d\theta + \int_{-\frac{\pi}{4}}^0 \int_0^{\infty} e^{r(\imath \zeta_1 \cos \theta + (\imath \zeta_2 - 1) \sin \theta)} r dr d\theta.$$

If $\eta \in L := \{\eta = (\eta_1, \eta_2); \{(1, 0)\} + (\overline{\Gamma}')^{\circ}\}$, then

$$\begin{aligned} \langle T_x, e^{i\zeta x} \rangle \\ &= \int_0^{\frac{\pi}{4}} \frac{d\theta}{(i\zeta_1 \cos \theta + (i\zeta_2 + 1)\sin \theta)^2} + \int_{-\frac{\pi}{4}}^0 \frac{d\theta}{(i\zeta_1 \cos \theta + (i\zeta_2 - 1)\sin \theta)^2} \\ &= \frac{1}{i\zeta_1(i\zeta_1 + i\zeta_2 + 1)} - \frac{1}{i\zeta_1(i\zeta_1 - i\zeta_2 + 1)} \\ &= f_1(\zeta) + f_2(\zeta). \end{aligned}$$

Then we can see $f_1(\zeta) \in \mathcal{H}(\mathbb{R}^2 + iL_1)$ and $f_2(\zeta) \in \mathcal{H}(\mathbb{R}^2 + iL_2)$, where

$$L_1 := \{\eta = (\eta_1, \eta_2); \{(0, 1)\} + (\overline{\Gamma}')^\circ\}, \quad L_2 := \{\eta = (\eta_1, \eta_2); \{(0, -1)\} + (\overline{\Gamma}')^\circ\},$$

and $L = L_1 \cap L_2$. Now we define

$$T_{1} = \begin{cases} e^{x_{2}}, & x_{1} > x_{2}, & x_{2} > 0, \\ 0, & \text{otherwise}, \end{cases}$$
$$T_{2} = \begin{cases} e^{-x_{2}}, & x_{1} > -x_{2}, & x_{2} < 0, \\ 0, & \text{otherwise}. \end{cases}$$

Then we have $T_1 \in H'_{\overline{\Gamma}}(\mathbb{R}^2, \{(0,1)\}), T_2 \in H'_{\overline{\Gamma}}(\mathbb{R}^2, \{(0,-1)\})$ and

§7. Edge-of-the-Wedge Theorem

In this section we give Edge-of-the-Wedge theorem for the space of the image by the Fourier-Laplace transform of $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. First we introduce some spaces of holomorphic functions. For details we refer the reader to [15], [16].

Definition 7.1. For a subset A of \mathbb{R}^n , we define a set $\mathcal{T}(A)$ by $\mathcal{T}(A) = \mathbb{R}^n \times iA$.

Definition 7.2. For a convex compact set K of \mathbb{R}^n and $\varepsilon > 0$,

$$\mathcal{Q}_b(\mathcal{T}(K_{\varepsilon})) := \{\varphi(\zeta) \in \mathcal{H}(\mathcal{T}(K_{\varepsilon})) \cap \mathcal{C}(\mathcal{T}(K_{\varepsilon})); \sup_{\zeta \in \mathcal{T}(K_{\varepsilon})} |\zeta^{\alpha} \varphi(\zeta)| < \infty \text{ for } \forall \alpha \in \mathbb{N}_0^n \},\$$

$$\mathcal{Q}(\mathcal{T}(K)) := \varinjlim_{\varepsilon > 0} \mathcal{Q}_b(\mathcal{T}(K_{\varepsilon})).$$

Definition 7.3. The dual space Q'(T(K)) of Q(T(K)) is called tempered ultrahyperfunctions.

Remark 7.4.

- (i) A. U. Schmidt apply $\mathcal{Q}(\mathcal{T}(K))$ to study asymptotic expansions [18].
- (ii) Q'(T(K)) is called tempered ultradistributions by S. e. Silva [19] and M. Hasumi [5], and called tempered ultrahyperfunctions by M. Morimoto [15], [16].

We have the following theorem for the spaces $H(\mathbb{R}^n, K)$ and $\mathcal{Q}(\mathcal{T}(K))$:

Theorem 7.5 ([15]). Let $\varphi(x) \in H(\mathbb{R}^n, K)$. The Fourier inverse transform

$$\mathcal{F}^{-1}(\varphi)(\zeta) := \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \varphi(x) e^{-i\zeta x} dx$$

establishes a topological isomorphism of $H(\mathbb{R}^n, K)$ onto $\mathcal{Q}(\mathcal{T}(K))$. The inverse mapping \mathcal{F} is given by

(47)
$$\mathcal{F}(\psi)(x) := \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \psi(\xi + \imath\eta) e^{\imath(\xi + \imath\eta)x} d\xi,$$
$$\eta \in K_{\varepsilon}^{\varepsilon}, \quad \psi \in \mathcal{Q}_b(\mathcal{T}(K_{\varepsilon})).$$

Remark 7.6. In (47), we notice that $\mathcal{F}(\psi)(x)$ is independent of $\eta \in K^{\circ}_{\varepsilon}$ by Cauchy's integral theorem.

Definition 7.7 ([15]). For $T \in H'(\mathbb{R}^n, K)$, we define the dual Fourier transform $\mathcal{F}(T)$ as a continuous linear functional on $\mathcal{Q}(\mathcal{T}(K))$ by the formula

(48)
$$\langle \mathcal{F}(T), \psi \rangle = \langle T, \mathcal{F}(\psi) \rangle, \text{ for } \psi \in \mathcal{Q}(\mathcal{T}(K)).$$

As a consequence of Theorem 7.5, we have the following theorem:

Theorem 7.8 ([15]). The dual Fourier transform (48) gives topological isomorphisms

$$\mathcal{F}: H'(\mathbb{R}^n, K) \to \mathcal{Q}'(\mathcal{T}(K)).$$

Definition 7.9. Let $K = \{u\}, \psi \in \mathcal{Q}_b(\mathcal{T}(K_{\varepsilon_1}))$ and assume that $f(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL)$ satisfies

$$\begin{split} \forall \varepsilon > 0 \ \exists l_{\varepsilon} \geq 0 \ \forall \overline{\Gamma}_C \Subset (\overline{\Gamma}')^{\circ} \ \exists M_{\varepsilon, \overline{\Gamma}_C} \geq 0 \ s.t. \\ |f(\zeta)| \leq M(1 + |\zeta|)^l, \quad \zeta \in \mathbb{R}^n + \imath [\overline{\Gamma}_C]_{-\varepsilon}. \end{split}$$

Then we define $\langle f(\zeta), \psi(\zeta) \rangle$ by

$$\begin{split} \langle f(\zeta), \psi(\zeta) \rangle &:= \langle f(\xi + \imath \eta_0), \psi(\xi + \imath \eta_0) \rangle \\ &= \int_{\mathbb{R}^n} f(\xi + \imath \eta_0) \psi(\xi + \imath \eta_0) d\xi \end{split}$$

where $\eta_0 \in (\{u\} + (\overline{\Gamma}')^\circ) \cap (K_{\varepsilon_1}^\circ)$.

Definition 7.10. Let $K = \{u\}, T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ and $\psi \in \mathcal{Q}(\mathcal{T}(K))$, $\psi \in \mathcal{Q}_b(\mathcal{T}(K_{\varepsilon_1}))$. By Theorem 6.9 and Definition 7.9, we define $\langle \mathcal{LF}(T)(\zeta), \psi(\zeta) \rangle$ by

(49)
$$\langle \mathcal{LF}(T)(\zeta), \psi(\zeta) \rangle := \langle \mathcal{LF}(T)(\xi + i\eta_0), \psi(\xi + i\eta_0) \rangle,$$

where $\eta_0 \in (\{u\} + (\overline{\Gamma}')^\circ) \cap (K_{\varepsilon_1}^\circ).$

Now we can show Edge-of-the-Wedge theorem. For the direct product case, it is given in [16].

Theorem 7.11 (Edge-of-the-Wedge Theorem). Let Γ_1 , Γ_2 be proper open convex cones in \mathbb{R}^n ,

$$L_m = \{u_m\} + (\overline{\Gamma}'_m)^{\circ}, \quad m = 1, 2.$$

Assume that $F_1(\zeta) \in \mathcal{H}(\mathbb{R}^n + \imath L_1)$ and $F_2(\zeta) \in \mathcal{H}(\mathbb{R}^n + \imath L_2)$ satisfy

(50)
$$\forall \varepsilon > 0 \ \exists l_{m_{\varepsilon}} \ge 0 \ \forall \overline{\Gamma}_{C_m} \Subset (\overline{\Gamma}'_m)^{\circ} \ \exists M_{\varepsilon, \overline{\Gamma}_{C_m}} \ge 0 \ s.t.$$
$$|F_m(\zeta)| \le M_{\varepsilon, \overline{\Gamma}_{C_m}} (1 + |\zeta|)^{l_{m_{\varepsilon}}}, \quad \zeta \in \mathbb{R}^n + i [\overline{\Gamma}_{C_m}]_{-2\varepsilon}, \quad m = 1, 2,$$

where $[\overline{\Gamma}_{C_m}]_{-\varepsilon} = \mathbb{R}^n \backslash (\mathbb{R}^n \backslash (\{u_m\} + \overline{\Gamma}_{C_m})^\circ)_{\varepsilon}.$

Let K be a convex compact set which contains the segment with $\{u_1\}$ and $\{u_2\}$ as extremal point. Assume that

(51)
$$\langle F_1(\zeta), \psi(\zeta) \rangle = \langle F_2(\zeta), \psi(\zeta) \rangle \quad \forall \psi(\zeta) \in \mathcal{Q}(\mathcal{T}(K)).$$

Then there exists $F(\zeta) \in \mathcal{H}(\mathbb{R}^n + i(L'_1 \cup L'_2))$ such that

$$F(\zeta)|_{(\mathbb{R}^n + iL_1)} = F_1(\zeta),$$

$$F(\zeta)|_{(\mathbb{R}^n + iL_2)} = F_2(\zeta),$$

where $L'_1 = \{u_1\} + (\overline{\Gamma}'_1 \cup \overline{\Gamma}'_2)^\circ$ and $L'_2 = \{u_2\} + (\overline{\Gamma}'_1 \cup \overline{\Gamma}'_2)^\circ$. Furthermore (i) if $\overline{\Gamma}_1 \cap \overline{\Gamma}_2 = \{0\}$, then $F(\zeta)$ is polynomial,

- (ii) if $\{u_1\} = \{u_2\} (=: \{u\})$, then we have

(52)
$$F(\zeta) \in \mathcal{H}(\mathbb{R}^n + i(\{u\} + (\overline{\Gamma}'_1 \cup \overline{\Gamma}'_2)^\circ))$$

and

$$\begin{aligned} (53) \qquad \forall \varepsilon > 0 \ \exists l_{\varepsilon} \geq 0 \ \forall \overline{\Gamma}_{C} \Subset (\overline{\Gamma}'_{1} \cup \overline{\Gamma}'_{2})^{\circ} \ \exists M_{\varepsilon, \overline{\Gamma}_{C}} \geq 0 \\ |F(\zeta)| \leq M(1+|\zeta|)^{l}, \quad \zeta \in \mathbb{R}^{n} + \imath [\overline{\Gamma}_{C}]_{-\varepsilon}, \end{aligned}$$
$$where \ [\overline{\Gamma}_{C}]_{-\varepsilon} = \mathbb{R}^{n} \backslash (\mathbb{R}^{n} \backslash (\{u\} + \overline{\Gamma}_{C})^{\circ})_{\varepsilon}. \end{aligned}$$

Proof. By (50) and Theorem 6.9, there exist $T_1 \in H'_{\overline{\Gamma}_1}(\mathbb{R}^n, \{u_1\})$ and $T_2 \in H'_{\overline{\Gamma}_2}(\mathbb{R}^n, \{u_2\})$ such that

$$\frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_{1x}, e^{i\zeta x} \rangle = F_1(\zeta)$$
$$\frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_{2x}, e^{i\zeta x} \rangle = F_2(\zeta).$$

Let $\varphi(x) \in H(\mathbb{R}^n, K)$. By Theorem 7.5, $\mathcal{F}^{-1}(\varphi)(\zeta) \in \mathcal{Q}(\mathcal{T}(K))$. By Definition 7.9, 7.10 and assumption (51), we have

$$\begin{aligned} \langle T_{1x},\varphi(x)\rangle &= \langle \mathcal{LF}(T_1)(\zeta), \mathcal{F}^{-1}(\varphi)(\zeta)\rangle \\ &= \langle F_1(\zeta), \mathcal{F}^{-1}(\varphi)(\zeta)\rangle \\ &= \langle F_2(\zeta), \mathcal{F}^{-1}(\varphi)(\zeta)\rangle \\ &= \langle \mathcal{LF}(T_2)(\zeta), \mathcal{F}^{-1}(\varphi)(\zeta)\rangle \\ &= \langle T_{2x},\varphi(x)\rangle. \end{aligned}$$

Therefore, $T_1 = T_2 =: T$ in $H'(\mathbb{R}^n, K)$ and supp $T \subset (\overline{\Gamma}_1 \cap \overline{\Gamma}_2)$. Now we put $F(\zeta) = \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_x, e^{i\zeta x} \rangle$. Then by the definition of T, $F(\zeta)|_{(\mathbb{R}^n + iL_1)} = F_1(\zeta)$, $F(\zeta)|_{(\mathbb{R}^n + iL_2)} = F_2(\zeta)$ and by Proposition 6.2 we have $F(\zeta) \in \mathcal{H}(\mathbb{R}^n + i(L'_1 \cup L'_2))$.

If we have the assumption (i), then T is a distribution supported by $\{0\}$. By the structure theorem for distributions, $T = \sum_{|\alpha| \le m} c_{\alpha} D^{\alpha} \delta$. So $F(\zeta) = \mathcal{LF}(T)(\zeta)$ is

polynomial.

If we have the assumption (ii), then by Proposition 2.13 and Theorem 6.9, we have (52) and (53).

Acknowledgement

The author expresses his thanks to Professor K. Yoshino and the referee for many valuable suggestions.

References

- Bros, J., Epstein, H. and Glaser, V., On the connection between analyticity and Lorentz covariance of Wightman functions, *Comm. Math. Phys.*, 6 (1967), 77-100.
- [2] Budinčević, M., Lozanov-Crvenković, Z. and Perošić, D., Representation theorems for tempered ultradistributions, Publ. Inst. Math., (N.S.), 65 (1999), 142-160.
- [3] Chung, S.-Y. and Kim, D., Distributions with exponential growth and Bochner-Schwartz theorem for Fourier hyperfunctions, *Publ. RIMS, Kyoto Univ.*, **31** (1995), 829-845.
- [4] Dong, C. and Matsuzawa, T., S-spaces of Gel'fand-Shilov and differential equations, Japan. J. Math., 19 (1994).
- [5] Hasumi, M., Note on the n-dimensional ultradistributions, Tôhoku Math. J., 13 (1961), 94-104.
- [6] Hörmander, L., The Analysis of Linear Partial Differential Operators I, Springer-Verlag, 1983.
- [7] _____, Notions of Convexity, Birkhäuser, 1994.
- [8] John, F., Partial differential equations, Springer-Verlag, 1982.
- [9] Kim, K. W., Chung, S.-Y. and Kim, D., Fourier hyperfunctions as the boundary values of smooth solutions of heat equations, *Publ. RIMS, Kyoto Univ.*, **29** (1993), 289-300.
- [10] Lee, S. and Chung, S.-Y., The Paley-Wiener theorem by the heat kernel method, Bull. Korean Math. Soc., 35 (1998), 441-453.
- [11] Lysik, G., On the structure of Mellin distributions, Ann. Polon. Math., 51 (1990), 219-228.
- [12] Matsuzawa, T., A calculus approach to the hyperfunctions I, Nagoya Math. J., 108 (1987), 53-66.
- [13] _____, A calculus approach to the hyperfunctions II, Trans. Amer. Math. Soc., 313 (1989), 619-654.
- [14] _____, An introduction to the theory of partial differential equations, *JSPS-DOST Lecture Notes in Math.*, 4 (1997).
- [15] Morimoto, M., Theory of tempered ultrahyperfunctions I, II, Proc. Japan Acad., 51 (1975), 87-91, 213-218.
- [16] _____, Convolutors for ultrahyperfunctions, Lecture Notes in Phys., 39, Springer-Verlag, (1975).

- [17] Reed, M. and Simon, B., Method of Modern Mathematical Physics II (Fourier Analysis, Self-Adjointness), Academic Press, 1975.
- [18] Schmidt, A. U., Asymptotische Hyperfunktionen, temperierte Hyperfunktionen und asymptotische Entwicklungen, Logos Verlag Berlin, 1999.
- [19] Silva, S.e., Les fonctions analytiques commes ultra-distributions dans le calcul opérationnel, Math. Ann., 136 (1958), 58-96.
- [20] Suwa, M. and Yoshino, K., A characterization of tempered distributions with support in a proper convex cone by the heat kernel method and its applications, submitted to *J. Math. Sci. Univ. Tokyo.*
- [21] Szmydt, S. and Ziemian, B., Laplace distributions and hyperfunctions on Rⁿ₊, J. Math. Sci. Univ. Tokyo, 5 (1998), 41-74.
- [22] Vladimirov, V. S., Generalized Functions in Mathematical Physics, Nauka Moscow, 1976.
- [23] _____, Les Fonctions de Plusieurs Variables Complexes et Leur Application à la Théorie Quantique des Champs, Dunod Paris, 1967.
- [24] Zieleźny, Z., On the space of convolution operators in \mathcal{K}'_1 , Studia Math., **31** (1968), 111-124.