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Distributions of Exponential Growth with
Support in a Proper Convex Cone

By

Masanori Suwa*

Abstract

In this paper we will characterize the spaces of distributions of exponential
growth with support in a proper convex cone by the heat kernel method. As ap-
plication we can obtain the Paley-Wiener theorem for distributions of exponential
growth supported by a proper convex cone and Edge-of-the-Wedge theorem for the
space of the image by the Fourier-Laplace transform of them.

8§1. Introduction

In this paper we shall study the space H'(R", K) of distributions of ex-
ponential growth. The spaces of distributions of exponential growth for the
1-dimensional case, direct product case or global case were investigated by
many authors ([5], [7], [11], [15], [16], [18], [21], [24]). In [5] M. Hasumi studied
the space H(R™,R™) and the dual space H'(R™,R™) (see Definition 3.2 and
Definition 3.7). In [15] M. Morimoto studied the space H(R"™, K) and the dual
space H'(R™, K) (see Definition 3.2 and Definition 3.7). The purpose of this
paper is to treat the space of distributions of exponential growth supported by
a proper conver cone I C R™, (denote by HL(R™, K)).

In §3 we introduce the base space H(R"™, K) and its dual space H'(R", K).
The main purpose in this section is to obtain the structure theorem for
H’Z(R”,K ), the space of distributions of exponential growth supported by a
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set A C R" (Theorem 3.10). Therefore as corollary we obtain the structure
theorem for HL(R", K), where T C R” is a proper convex cone, (Corollary
3.12), and the result which G. Lysik obtained for the case of direct product
support of half lines ([11]). Furthermore we have the decomposition theorem
for distributions of exponential growth with support in I'y UT_, (Corollary
3.14).

In §4 we shall characterize the space H'(R™, K) by the heat kernel method,
which T. Matsuzawa introduced for the spaces of distributions, ultradistribu-
tions and hyperfunctions [4], [12], [13], [14]. The main purpose in this section
is to show that the convolution of the heat kernel and a distribution of expo-
nential growth is a smooth solution of the heat equation with some exponential
growth condition and conversely such a smooth solution can be represented
by the convolution of the heat kernel and a distribution of exponential growth
(Theorem 4.4).

In §5 we shall characterize the space H’F(R”, K) by the heat kernel method
(Theorem 5.1).

In §6 we shall study the Paley-Wiener theorem for H’F(R”, K) by using
the structure theorem given in §3 and the heat kernel method given in §4,
§5. Then we shall show that the Fourier-Laplace transform of T € H’f(R”, K)
is a holomorphic function constructed by a finite sum of functions which are
holomorphic on the domains whose imaginary parts are proper convex cones
with vertex at the elements of K and with some polynomial growth conditions
and conversely such a holomorphic function can be represented by the Fourier-
Laplace transform of a distribution of exponential growth 7' € HL(R", K).
Then we can see that T is constructed by a finite sum of distributions of ex-
ponential growth supported by a proper convex cone I' (Theorem 6.9). As
corollary we have the result which M. Morimoto showed for the 1-dimensional
case [15].

In §7 we shall study the space of the image by the Fourier-Laplace trans-
form of T' € H’F(R", K). Then by using the Paley-Wiener theorem given in §6,
we can obtain the Edge-of-the-Wedge theorem for this space (Theorem 7.11).
These results are generalizations of the work which M. Morimoto showed for
the case of direct product ([16], Theorem 2).

§2. Preliminaries
Definition 2.1. We define some notations:

2 _ 2 2
r=(x1,...,2,) ER", 2° =27 + -+ 2.
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(x, &) :ijfj for z,&£ € R™.
Jj=1

z2=(21,...,2,) €C", zj=z;4+w;, j=1,...,n.

C:(Cl,...,cn)e(cn, Cj:£j+Z77ja jzl,,n
B(z,6) ={z € R"; |z — 29| <, § > 0}.

a=(al,...,a,) ENG, o] =a;+- -+ ap.
al=a!. . a,l
aal 80zn n 62
D= —— - —, A:Z .
8$1 oxn" ox?
7j=1 J

E(x,t) = (47t)” Zexp(—2?/4t), t> 0.

FOI' C S Cna C = (417' .. 7CTL)’ we put |C‘ = \/|C1|2 + -+ |Cn|2

Definition 2.2. Let K be a convex compact set in R™. Then we define
supporting function of K by hg(x) = sup(z, §).
{eK

Definition 2.3.  Let © be an open set in C”. We denote by H(2) the
space of holomorphic functions on Q and by C() the space of continuous
functions on €.

Definition 2.4. D(R") is the space of C* functions with compact sup-
port. S(R™) is the space of rapidly decreasing C*° functions and S’'(R™) is the
space of tempered distributions.

Definition 2.5. For a function ¢(¢) € S(R"), the Fourier transform
F(p)(zx) is defined by

Fle)e) = g [ olOewde

(2r)’

and the Fourier inverse transform F~1()(¢) is defined by

FNE) = g [ ola)e .

Definition 2.6. For p(z) € S(R") and ¢(z) € S(R™), the convolution
of p(z) and ¢(x) is defined by

(e ro)a)= [ ole—pot)dy.
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Definition 2.7.  For a function ¢(z) on R", if p(z)e*® € L1(R?), then
LF(p)(C) is defined by

1

LF)Q) = gy [ pla)ein, cecn

Definition 2.8. Let A be a set in R™. Then we denote by A° the
interior of A, A the closure of A, for ¢ > 0, A. = {z € R";dis(z, 4) < ¢} and
by ch(A) convex hull of A.

Definition 2.9. Let I" be a cone with vertex at 0. If ch' contains no
straight line, then we call I' proper cone.

Definition 2.10 ([6], [22]). Let I" be a cone. We put
I'":={¢eR"(y,&) >0 forallyeTl}.
Then we call IV dual cone of T.

Definition 2.11. Let I be a cone. Then we denote by prI' the inter-
section of I and the unit sphere. The cone I';y is said to be a compact cone in
the cone Ty if prI'y C prI's and we write I'; € T's.

Proposition 2.12 ([22], [23]).  Following conditions are equivalent:

1. T is proper cone.
2. (T)° # 0.

3. For any C € (I)°, there exists a number o = o(C) > 0 such that (¢, x) >
oléllz|, € € C, x € chl.

Proposition 2.13 ([22]). (I’) = chT and (T1 NTy)" = ch(I’; UT’y).
Furthermore for a convex cone I', we have I'=I" +T.

Definition 2.14. Let I'y be a cone with vertex at 0. Then we put
F_ == —F+.

Definition 2.15.  Let A be a set in R". We put &% := {T' € S'(R");
supp T' C A}.

For the structure of S/F’ the following proposition is known:

Proposition 2.16 (Bros-Epstein-Glaser [1], [17]). Let T' be a proper
open convexr cone in R™ and let T € S/F' Then there ezists a polynomially
bounded continuous function G with support in I' and a partial differential
operator with finite order P(D) so that T = P(D)G.
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Proposition 2.17 ([17]). Let 'y € R™ be a proper open convexr cone
and S € Sg T_ = —Ty. Then there exist Sy € S’F+ and S— € St such
that

+UF7’
S=5,+5_.

§3. Distributions of Exponential Growth

In this section, we shall introduce H'(R"™, K'), the space of distributions of
exponential growth, and give the structure theorem of H’;(R", K).

Definition 3.1. Let K be a convex compact set in R” and € > 0. Then
we define H,(R™, K.) as follows:

Hy(R", K.) :={p € C*(R"); sup |DPp(z)e<@FI7l| < 400, for ¥p € N"}.
reR™

Definition 3.2.  We define the spaces H(R",R") and H(R", K) as fol-
lows:

H(R",R") := lim H,(R", K.),
e>0

H(R",K) :=lim Hy(R", K.),
e>0

where lim means projective limit and lim means inductive limit.
e>0 e>0

Remark 3.3.  Now we give the relations of H(R™, K) and the other func-
tion spaces:

(i) D c HR", K).
(i) If {0} C K, then H(R", K) C S.

(iii) Let » > 0, s > 0, SZ(R™) be Gel'fand-Shilov space and S,.(R") =
lim S7(R™). Then it is known that

§— 00

Si(R™) = {f € C®(R"); 30 > 0 Yo sup |D2f(z)]e?*! < o0},
reR"

(for details we refer the reader [18]). Therefore
(a) If K = {0}, then H(R", K) = §;(R"™).
(b) If {0} C K, then H(R™, K) C S;(R").
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(iv) The space H(R™, K) is slightly different from 3 in [3]. In fact

o(z) e HR", K) & 3 > 0Vp € N s.t. sup |DPp(z)elx@+elel| < o0
z€eR™

¢(z) € 3p < Vp e N" Ik > 0 s.t. sup [DPp(z)|eflo! < co.
IGR’H

Therefore if {0} C K, then H(R", K) C 5.

Remark 3.4. L. Hérmander treated the base space Sy so that D C Sy C
H(R", K) and the Fourier-Laplace transform of Sy. For the details we refer
the reader to [7].

For (i) of Remark 3.3, the following theorem is known:
Theorem 3.5 ([15]). D(R") is dense in H(R™, K).
Corollary 3.6. If {0} C K, then H(R"™, K) is dense in S.

Definition 3.7.  We denote by H'(R™,R™) the dual space of H(R™,R™)
and by H'(R™, K) the dual space of H(R™, K). The elements of H'(R™,R™)
and H'(R™, K) are called distributions of exponential growth.

By Remark 3.3 and Theorem 3.5, we have H'(R", K) C D’.

For the space H'(R™, K), the following proposition is known:

Proposition 3.8 ([15]). A distribution T belongs to H'(R", K) if and
only if for any € > 0 there exist a partial differential operator P-(D) and a
bounded continuous function F.(x) such that

T = P.(D){e"<®Flel F (2)}.
Definition 3.9.  We put H4(R", K) := {T' € H'(R", K);supp T' C A}.

Now we have the structure theorem for distributions of exponential growth
with support A C R™:

Theorem 3.10.  Let A be a set in R™ and T' € H(R", K). Then for
every € > 0 there exist S(z) € SIZ’ ng € Nandt; € K, j=1,2,..., ng such
that

T = S(z)esVIte Z eli®,

1<j<no



DISTRIBUTIONS OF EXPONENTIAL GROWTH 571

Proof. Let ¢ > 0. By K C UB(t,%) and K is a compact set, there

teK
exists ng € N such that K C U B(tn, 5), th € K.
1<n<ng
Let 2y € R™. Then there exists t’(xo) € K and nq, 1 < ny < ng such that

hi(xo) = (t',x0) and t' € B(t,,, 5). Furthermore
5 5
hi (zo) + 5 lzol < bz, 5) (o) + 5ol

g
<tn,zo + hp(o,5)(To0) + §|$0\

=tn, To + €|xo]
<tp,mo+ey/1+ 3.
Therefore, for any x € R”,

ehr (x)+5x| < ehretev 1+22 4. 4 etnorteV 1+22 _ (etwf NI etnox)eevl-i-aﬁ.

Now we put

1
Fo(z) = (eN® 4 - -« + etno®)esVITa? ’
1
Fl(x) = ohe IR €t"0m,
etm
Fy(z,t):= te K.

el + - 1 elno®”

Then Fy(x), Fi(x), Fa(z,t) € C>°(R™) and we have the following lemma:
Lemma 3.11.  Let a € Njj. Then

(1) D%F1(z) = Py(Fo(z,t1), ... , Fa(z, ty,)) Fi(x),

where Py (X1, ..., Xpn,) 18 a polynomial.

Proof of Lemma. We use mathematical induction.
(i) Case of || = 0. Then we obtain P, = 1.

(ii) Assume that when |a| =k, (1) is true. Let |a| =k + 1. Then
e 9 B
DOR() = D Fi(x) (8] =#)
Ly
0

= a—Pﬁ(FQ(LE, tl), v ,FQ(.T,tnO))Fl(iE)
€4 9
+ Pﬁ(FQ(a?,tl), R ,Fg(x, tno))a—Fl(x)
Zj

no 8
= {Z %Pg(ul, . ,uno) X (tijFQ(x, ti) — tlng(.T, ti)FQ(l‘,tl)
i=1 "
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= g o, 13) P, tuy)) }Fa ()
— Pa(u1, ... ung ){tijFa(x, t1) + - -+ tng Fo (2, tny ) J 1 (2)
(u1 = Fa(x,t1), .« stng = Fa(x,t,,))
= Po(Fy(2,t1), . .. Fa(, tng ) Fi(2).

Since 0 < Fy(z,t;) <1, sup |P,| < co. Therefore, for any € > 0 there exists
IGR’H
o € Nj such that

[(Fo(2)T, ¢(x))|
< sup |D°‘(<p(gj)FO(x))ehK($)+%Ix\|

wERTL
[m|
= ( ) Do) (T)D’”‘lFl<x>D1<e-Wl+w2)ehK<w>+%I'
wER”
l1=0
|m|
« g
= suﬂg <m> < >Da M o(2)|| Py | F1 (2)]| Qe =5V IHE ehic @)+ 5]
Ie n

[t]=0

(Sup |Qi(x)] < OO)
IGR”
o

|m|
<swp Y (2)2 (T)IDQ%(z>||Pm_l||Ql||Fo<x>ehK<E>+5'x|

TE€R™ | =0 |1=0

||

<Cap Y (;)li (7)o

T€R™ | =0 |1|=0

This means that for T € H'(R",K), Fo(z)T € S and if supp T C A, then
supp Fy(x)T C A. For ¢(x) € HR", K), we have

2) Th=(Flo)T x s9)
_ <S(x)ﬁ,@> .

T=5(x)eViHe Y~ eli", SeS

1<j<no

So we obtain

For HL(R", K), we have the following corollary:
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Corollary 3.12.  Let I be a proper open convex cone in R™ and let
T € H’F(R"7 K). Then for anye > 0 there exist m. € N and bounded continuous
functions F. o(z), |a| < me, supp(F: o(z)) C T such that

- Y (é%)a (Px@elEp (),

loe|<me
Proof. By Lemma 2.16 and (2), for ¢(z) € H(R", K),

(T.0) = ( Folo)T, 3 50(0) )
~(PDIG() 741 )

Therefore, for any € > 0 there exist a partial differential operator P(D) and a
polynomially bounded continuous functions G(x) with support in I' such that

(3) T=P(D)G(z)x F*(), F*(x):%:esm Z e

Let &, > 0. For (z) € H(R", K),

(T, ¢)
= (G(x), P(=D)(F*(x)p(z)))
= (G(x)ehx@talel g=hrl@) ==zl p(_ D) (F*(z)p(x)))

|ma|
— hik(z)+ei|z| —hi(x)—e1|z| my D= () DO
<e Gl)e > > () @D(x) ).

[ma|<m [a]=0
Now we put

F3(5,51,m1,a) (l‘) — G(x)e—hx(x)—a\xIDm1—aF* (.%‘)
= Gz)e x@==ilzlg (41,0 g, @, 6) F*(2).

Then F3(x) € C(R"), supp F3(x) C T and
|F3(2)] S C(1+ |a)Me @bl g, (. g, 2, €)[|FF ()]

sup [Apm, o, (t1, .. tng, z,€)| < 00,
CE€RN
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Now we choose ¢ in (3) such that 0 < € < e1. Then

sup (14 |a)M e~ =erlel B ()

z€R™
< sup (1 + ‘xl)Me—hK(m)—sﬂz\(ehk(m) NI ehK(m))es(l—o—pc\)
xERn
< ¢ sup (14 Ja) e~ 19l
Q:GR"
< o0.

This means that sup |F5(z)| < co. Furthermore
TER™

(T, ¥)
\m1|

- > X (n;l><eh“““1'm,Fs<w>D“w<x>>

m1|<m |a|=0

[ma|
—< > ¥ (”Zf)(1>'°*'Da<ehf<<z>+€lZ'F3<w>>,so<x>>

|ma|<m |a]=0

:< > (%)a@wmlwFgl,a<x>>,so<x>>-

lo| <me

Since €1 > 0 is arbitrary, the proof is complete. O
By (3), we have the following corollary:

Corollary 3.13.  LetT be a proper open convex cone in R™ and let T €
H%(RTZK). Then for any € > 0 there exist ng, a partial differential operator
with finite order P.(D) and a polynomially bounded continuous function G.(x),
supp(Ge(z)) C T such that

T =P.(D)G.(x) x F*(x), F*(z) = efVIite® Z et

1<n<ng
where t, € K, (n=1,... ,ng).
Using Proposition 2.17, we have the following corollary:

Corollary 3.14. Let T € H/F+uf, (R™, K). Then there exist Ty €
HL (R™, K) and T_ € H; (R, K) such that
+ -

T=T, +T-.
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Proof. By Theorem 3.10, we have
1<j<no
By Proposition 2.17, we have
T = Z S+ (x)etjm+a\/l+z2 + Z S (x)et]w+5\/l+m2

1<j<no 1<j<no
ET++T_.

Since S, € S'FJr and S_ € S T4 € H’f+(R”,K) and T_ € H; (R", K). O
Remark 3.15. M. Morimoto obtained this result for the 1-dimensional

case in [15].

Example 3.16 (Example for Corollary 3.12). Let n =2, K = B(0,1)
and ' := {z = (z1,22) € R% 2} — 23 > 0,21 > 0}. We define T(x) by

Va2 —z2ell, 2?2 — 22 >0, 21 >0,
T(l‘)Z{ 1 0 2 1 2

otherwise.

Then hg(z) = |z|, T(z) € H’f(RQ,K) and for € > 0,

T(x) = /22 — a2el® = | [2? — gZe=clFleoleslal — p (g)ehn(@)telal

where

2 _ 2 — 2,2
Fs(x):{\/xl_%e ezl 22 — 22 >0, 21 >0,

0, otherwise.

Then F.(x) is a bounded continuous function and supp(F.) C T.

84. A Characterization for Distributions of Exponential Growth
by the Heat Kernel Method

In this section, we shall characterize H'(R"™, K), the space of distributions
of exponential growth, by the heat kernel method introduced by T. Matsuzawa
in [12]. We notice that many authors make use of his idea ([2], [3], [9], [10],
[20]).

Definition 4.1.  For p(z) € H(R", K), we put ¢.(z) by

pi(z)= [ E(x—y,t)p(y)dy, t>0.
R’n
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We show the following lemma:
Lemma 4.2.
(i) E(z,t) € HR" K),
(ii) ¢i(z) € H(R™, K),
(iil) i(x) — (x) in HR™ K), as t— 04.

Proof. (i) Let e >0 and K C [-R, R]", R > 0. Then

sup |D*E(x, t)ehx(x)+a|x\ | < sup |[D“E(x, t)e(R+a)|x\ .
zeR™ zERN
For the heat kernel we have the following estimate [14]:

lo]

ol en \ 2 _ a2
4 DB(z,t)| < . —%
@) DB Ol < s (2t|a|) ‘

So we have

sup |DaE(x,t)ehK(‘”)+E|w‘| < Csup e‘%'F(R-*-E)Iw\
zeR™ zERP
< Q.

This means that E(z,t) € HR", K).

(ii) Let o € Nj. For ¢(z) € H(R"™, K), we have by (4),

(@—y)?

(5) |DEE(x — y,t)p(y)| < Ce™ st e hxW—elyl

7(3‘/—9)2 h —y)—h | —
< Ce— S5 ohxc(@—y)—hic () +elo—y| —<|z]

z— 2
< Ce~hic(@)=clol = 5=+ Rla—yl+elo—y|

r—y 2
where K C [~R, R]", R > 0. Since e~ "5t +Elo=yl+elo—y| ¢ L'(Ry),

D 3 E(z —y, t)p(y)dy = 5 D3 E(x —y,t)p(y)dy.

Since E(x,t) € C*°(R") and « € Nf is arbitrary, ¢;(x) € C*>°(R™). Furthermore
by (5),

D%y ()l @Helel| < hac @) el / DBz — y, t)o(y)|dy

n

(z—1)?

SCehK(JC)‘FEW/ ¢~ (@)=elel = 2 4 Rla—yl+elo—l gy
RTL
< 0.
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Therefore, ¢ (z) € HR", K).

(iii) We notice that for |y| <1,

(6) |D2p(z — 1) — DEp(a)| = / DD p(u(e — y) + (1 — w)a)du

:/DF Ydu| ,

(v=u(x—y)+ (1 —u)x, F)=D%))
:/ZDU]F avjd

et lo(u(x — —u)z)||y;|du
g/o Zm el —y) + (1~ u))]ly;ld
<cf Ze—hm =<l |y

n
< Chem M@=y Ty ).

j=1
Let 0 < d < 1. Then

D%(pe(x) — ¢())

=D| E(w,t)p(x —w)dw — E(w,t)D%p(x)dw

Rn Rn

_ / E(w,t)(D%(z — w) — Dp(x))dw
B /I <5 E(w,t)(D%(x — w) — D%p(x))dw
+/|w>5 E(w 1) D% — w)do /ww B(w, £) Do (x)dw
=h+ 12+ Is.
By (6),

Bl < [ B D%t )~ D)l ey
ly|<o
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|13|ehx(m)+a|w\ </ dy % |Da ( )|6hK (z)+e|z|
<Ce

_2 _ ¥
8t

|Ig|ehx(w)+a\z| g/ E(y,t)|D%p(z — y)|dy x ehx (x)+elz|
ly|=d

<C E(y,t)e —hk(z—y)—clz— y‘dyx ehi (@) +elz|
ly|>d

<C E(y’t)ehK(y)—hK(r)+sly\—slx\dy « ehx(@)+elz|
ly|>d

<C E(y,t)eRlyHE‘yldy
ly|=6

< Cem si/ L S -l g,
n (47t)%

_e2 2
=(C"e st 0 ast— 0.

Since 0 < § < 1 is arbitrary, this means that ¢;(z) — ¢(z) in H(R", K), as

t — 0+. D
Lemma 4.3.  Let f(x) be a measurable function satisfying the following
condition:

Ye>0 3C >0 suchthat |f(z)| < Cehx@Felel

Then f(x) belongs to H'(R™, K) in the following sense:

(Ty0)= | f@e)dr, o) € HR"K).

Proof. We only prove the continuity. Let ¢’ > 0, ¢(z) € Hp(R™, K./)

and 0 < ¢ < €. Since there exists a constant C7; > 0 such that |f(x)] <
Olehk(z)+s\z|,

Ty, 0)| < / |f(@)[|p(x) el @+l | =hu @) =< lz] gy
]R'n,

< Ci sup |p(z)ehx@+elel| [ le=eDlal gy
zeR™ R™

< Csup |p(x)el s el
zER™

Since &' > 0 is arbitrary, the continuity is proved. O
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Theorem 4.4. Let T € H'(R",K) and U(z,t) = (T,,E(x — y,t)).
Then U(x,t) € C°(R™ x (0,00)) satisfying the following conditions:

) (5-2)vwn=o

(8) Ula,t) > T, (t—04), in H' (R, K),

(9) Ve>03N.>03C.>0
st |U(x,t)| < Cat™Neehx@+elzl g <t <1, z e R™

Conversely, for a function U(z,t) € C*(R™ x (0,00)) satisfying (7) and (9),
there exists a unique T € H'(R"™, K) such that (T, E(x —y,t)) = U(z,t).

Proof. By Proposition 3.8, we have
(10)  (Ty, E(z —y,t)) = (e hK(’"‘”E'y‘F( ), P(=D)E(z —y,1))

= Z / WP (y) D E(x — y, t)dy.

|a|=0

By sup |F(y)| < oo and (4), for A,
ye]Rn

@ B(y) A{DE(z — y,1)}] < Cem " he@el
< Cem S o hi(@)—<lal thxc (a—y)+ela—y]

_ _ _ (== y)
< Ce—hr(@)—clal - Rlz—yl+elz—yl

{lzj—y | —4(R+e)t}?
:0132”(R+5)2te_ ;121 %

9

o Alzj—yjl—4(B+e)t}?

where K C [-R, R]", R > 0. Since e~ %=1 8t e L'(Ry),
AT, Bz — =A Z / Wtelvl () DY E(x — y, t)dy
\04\ 0

_ Z / Wl P\ D AE(z — y, t) }dy.

la|=0
Let 0 < ag <t < aj. Since

) (4ﬂa1)%% +2mn(4ra)s 7t _wop?

—F — )] < daq
ot (.’£ Y, )'_ (47_(_(10)" e
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0
hxW+elyl ZB(e — 4.t
‘ ot (@=y1)

2 (z—y)? 21
- (4may)2 4a0(2 + 2)7rn(47ra1) 2 o Gp? o—hic(@)—elo|+huc (z—y)-+ela—y]
- drag)™

— )2
< Ce= ST Rle—yltele—yl

{lzj—y | —4(R+e)t}2
:0132”(R+5)2te_ ;121 %

9

n Alej—yjl—4(R+e)t}?

where K C [-R,R]", R > 0. Since e~ %=1 8t e L'(R}) and
ag > 0, a; > 0 are arbitrary, for ¢t > 0

0 0 & clyl o
(T E@ =y, 0)= 2>~ / MDY B (x — y, t)dy
loo|=0 7 K"

= Z / ehxWtelyl po {%E(m — y,t)} dy.

ee|=0

Since (% — A) E(z,t) =0, we have

(5 - 2) @Bl
= Zm: /R el W)telyl pe { (% - A) E(z— y,t)} dy = 0.

|| =0

Let p(z) € HR™, K), p(x) € Hy(R™, K,,) and 0 < € < g;. By Proposition 3.8,
(4) and (10),

| 10tz

<30 [ [ e R ) DB g, gt dyda

la]=0

§C/ / ehx(y)-i-f\yle—%e—hx(w)—al\wldydx
< C/ / ehK(y_1)+hK(1)+E‘y_w‘+e‘w|e_%e_hK(w)_El‘wldydl’

< Ce2n(R+e)’t / / e X1 3l =z~ 4R+ p(e=en)lal gy gy

< 00
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By Fubini’s theorem,

U t)pl@) = [ (T B~y ) pla)do

- / I F()P(-D) [ E(x -y, t)p(x)drdy
n RTL
= (Ty, pe(y))-

By Lemma 4.2 (iii),

(U(z,1),¢(x)) = (Ty, e (y))
—(Ty,¢(y)), ast— 0.

This means that U(z,t) — T in H'(R", K).

Let 0 < ¢t < 1. By Proposition 3.8, (4) and (10),

(T, B(x =y, 1))
ol % 2
<c ehi (W) +ely] B -5y
lazo/ (4nt)% \2tla]) © Y

n

§C2t*NehK(m)+5|x‘/ e~ i=1 e (i —2;)? +(R+5)‘?h_zj|dy

< Cyt—N 2n(R4e)*t e (w) <] / o= i e llus =y —a(Re0} g

n

<Ot Nehx@telzl gt <1, zeR™

Now we shall prove the converse. For positive integer m, we put

1
(m—1)!

tm= (t > 0)
fm(t) =
0 (t <0).

Let u(t) be a C* function such that
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and we set v,,(t) = fin(H)u(t). Then

and

(11) (%) U (1) = 0(t) + w(t),

t1 t

where w(t) € C*(R™) and §(t) is Dirac’s delta function, supp w C [%, %].

Now we put m = N + 2, vy42(t) = v(t) and

Uz, t)= /000 U(z,t+ s)v(s)ds.

t
By supp v(s) C [O, —1] ,

t

(12) |U(x,t)|§/02 U (2.t + 9)|[v(s)|ds

4 N+1

2 S
<C hK(x)+5\3:|/ d
= e s N+ DI(t+rsN?®

< Cehx (@) telz]

Since
Uz, t+ s)v(s), (s >0)
Uz, t+ s)v(s) =
0, (s =0),
tlir(r)l Uz, t+ s)v(s) =: Uz, s)v(s) exists in s > 0. Therefore, by Lebesgue’s
—U+

dominated convergence theorem,

lim U(x,t):/ lim U(z,t+ s)v(s)ds
0

t—04 t—04
:/ Ul(x, s)v(s)ds.
0

This means that U(z,t) is a continuous function in t > 0. Now we put g(z) =

U(x,0). By (12),

(13) lg(x)| < Celx@relel g e R
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Furthermore since U(z,t) € C*(R™ x (0,00)), for any compact sets K; C R™
and Ky C (0,00), there exist constants M, My > 0 such that

AU (z,t + $)o(s)] < M s,

‘QU(x,t—l— s)v(s)| < Mals|.

ot

Since K7, K, are arbitrary,

o
oS

AU (z,t) = / AU (z,t + s)v(s)ds,
0

o - %9

gU(a;, t)= /0 aU(m, t+ s)v(s)ds,

in R™ x (0,00). Since

in R™ x (0,00), we have

(14) <% - A) Ulx,t) = /OOO (% — A) U(x,t+ s)v(s)ds =0

in R™ x (0, 00).
By (11) and (14), for ¢t > 0



584 MASANORI SUWA

We put H(z,t) = _/OOO U(z,t+ s)w(s)ds. Then by supp w(s) C [%, %],
H(z,t) is C*°-function in ¢ > 0. Now we put h(z) = H(x,0). Then
(16) |h(z)| < Cehx@)Felel,
We put T, = (=A)N*2g(z) + h(x). By Lemma 4.3, (13) and (16), we have
T € H'(R", K). Then
a7 (T, E(x—y,t))

=((= Ay)N+2 (v) + h(y), E(x =y, 1))

/ 9(y) x (D) TPE(x — y, t)dy + / h(y)E(z —y,t)dy
RTL

Rn
=02 [ B -y 0ty + [ Pl .0b)dy
( )N+2G0((E t) -I—Ho({L‘ t)

For Gy(z,t), we have

9
(18) (E - A) Golz,t) =0
and
(19) |G L - phicwytely]
oz, t)| <C (47Tt)ne t dy
<7 C;)Eehmwm/ o~ UG i (y—a)ely—al g,
) 2 n
<G Ot) _ h (@)l gn(R o) / o= Sl —a | -2(R4)Y g
T n

< Cyets@relel g < < T,

where K C [-R, R]", R > 0.
Similarly, for Hy(x,t) we have

(20) (% — A) Hy(z,t)=0
and
(21) |Ho(z,t)] < Crelx@Fel=l 0 <t < T
Furthermore
Gol@t) —g(@) = | Blu,t){gl@—u) —g(z)}du

5 [ oo~ V) - g(o)ds.
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Since
g2
e {g(x — Vits) — g()}]
< 06—52 (e—hK(m—\/Hs)—a\z—\/ﬂ.ﬂ + e—hK(w)—aL'v\)
< 06—32 (e—hK(m)—s\:c|+hK(\/Bs)+\/ﬂs\s| + e—hK(z)—s|x\)
< 06—52_hK(w)—5|:p\(e\/E(R-&-E)Is\ + 1)

and e~% (eVA(R+e)lsl 4 1) € L1(R"), by Lebesgue’s dominated convergence
theorem,

t—>+ t—>+

lim Go(x,t) —g(z)= wi%/n e 2{ 11%1 g(x — V4ts) g(m)}ds =0,

because g(x) is a continuous function. Therefore,

(22) Jim Go(, 1) = g(a)

Similarly,

(23) lim Ho(z,t) = h(z).
t—>0+

By (12), (14), (18), (19), (22) and uniqueness theorem of the heat equation [8],
we have

(24) Golz,t) =U(x,1t).
Similarly,
(25) Hy(x,t) = H(x,t).

v (15), (17), (24) and (25), we have

(Ty, E(x — y,1)) AN (w, ) + Ho(x,t)
ANF2 () + H(z,t)

(=
=(=
Ul t).

O

Remark 4.5. C. Dong and T. Matsuzawa characterized Gel’fand-Shilov
space §¢ by the heat kernel method in [4]. But our result for the growth of ¢
is better than their result. That is, they showed that the convolution of the
heat kernel and a generalized function was C*°-function with some ezponential
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growth for t and conversely such a smooth solution could be represented by
the convolution of the heat kernel and a generalized function u given by the
following formula:

u=P(=A)go(x) — ho(x),

where P(—A) was the infinite order differential operator. In Theorem 4.4 we
showed that the convolution was C*°-function with some polynomial growth for
t and conversely such a smooth solution could be represented by the convolution
of the heat kernel and a generalized function T' given by the following formula:

T= (~2)N*2g(a) + h(z),

of course, (—A)N*2 is a finite order differential operator. So we obtained the

sharper result than them for the case of H'(R™, K). For the details we refer
the reader to [4].

85. Distributions of Exponential Growth Supported by
a Proper Convex Cone

In this section, we shall characterize H’f(R", K), the space of distributions
of exponential growth supported by a proper open convex cone I' C R™.

Theorem 5.1.  Let I' C R™ be a proper open convexr cone, T € H’F(R”7
K) and U(z,t) = (T, E(x —y,t)). Then U(x,t) € C*(R™ x (0,00)) satisfying
the following conditions:

(26) <% - A) Ula,t) =0,
(27)  Ula,t) > T, (t —04), in H'(R", K),

(28)  Ve>03N.>03C.>0

clis(m,ﬁ)2

st |U(z,t)] < Cot™Nee™ ™ 16t ehx@+elzl g <t <1, 2 e R,

Conversely, for a function U(z,t) € C*(R"™ x (0,00)) satisfying (26) and (28),
there ezists a unique T' € HL(R™, K) such that (T, E(x — y,t)) = U(x,1).

Proof. By Theorem 4.4, (26) and (27) are obvious.
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Let 0 < ¢t < 1. By Corollary 3.12 and (4),

|U(, )]
m
<> [ rROrEE, () ID B . Dy
la]=07T
_ _ _ _ly==l2 _Jy—=z|?
<Cit Ni [ phr(y=2)+hx (2)+ely—altele| .~ Far— o= “Tor dy
T
< Oyt~ Niem R phac(a)elal / e =a)rely=ol =5t g
T
dis(z,T)?2

<Ot Ne™ ™ dor ehr(@telel,

Therefore, we have (28).

Now we shall prove the converse. By (28),

dis(z,T)2

|U(x,t)| < Ct Ne= 1ot i (@)telz|
< Ct—NehK(z)+s\:c|, 0<t<l.

By Theorem 4.4, there exists T € H'(R™, K) such that (T,, E(x — y,t)) =
U(z,t). Let p(z) € D, supp(p) C R™\T, K’ = supp(yp), § = dis(K’,T) > 0.
Then by Theorem 4.4,

(T, ) = lim Uz, t)p(z)de.

t—04 K’
Therefore,
N _dis@D? ()t
[T, )| < CtEI(I)l+ t e e |o(2)|dx
<Clim t~Ne 1o ehx@)+elel| () |dx
T t—04 K’ v
2
< Cy lim tNe Tt = 0.
t—04
This means that supp 7 C T. O

For (28) in Theorem 5.1, we have the following lemma:

Lemma 5.2.  Let U(z,t) € C®(R" x (0,00)) and satisfies (2 — 1)

U(z,t) =0. Then (28) in Theorem 5.1 is equivalent to the following conditions:

(29) Ve > 03N 3C >0 s.t. |U(z,t)| < Ct—Nehx@+elel g <t <1, 2 e R",
and U(z,t) — 0, (t — 04), uniformly for all compact sets in R™\T.
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Proof. (28) = (29) is obvious. Now we suppose (29). By the estimate
n (29) and Theorem 4.4, there exists T € H'(R™, K) such that U(z,t) =
(T,, E(x—y,t)). Let ¢(x) € D(R"), supp(¢) C R™\I'. Then by (8) in Theorem
4.4 and the assumption in (29), we have

(T,p) = lim U(z,t)p(z)de = 0.

t_’0+ R"
It means that 7' € H(R", K). By Theorem 5.1, we have (28). O
By Lemma 5.2, we have the following corollary:

Corollary 5.3.  Let T' € HL(R",K) and U(z,t) = (Iy, E(x — y,1)).
Then U(x,t) € C®(R™ x (0,00)) satisfies the following conditions:

)
30 — —A)U(z,t)=0
(30) (5:-2)vn=o
(31) U(z,t) — T, (t —0,), in HR" K),
(32) Ve >0 3N 3C >0 s.t. |U(x,t)| < Ct—Nehx@+elzl

0<t<l, zeR"and U(z,t) — 0,(t — 04),
uniformly for all compact sets in R™\T.

Conversely, for a function U(z,t) € C*(R™ x (0,00)) satisfying (30) and (32),
there exists a unique T € HL(R"™, K) such that (T, E(z — y,t)) = U(x,1).

86. Paley-Wiener Theorem for Distributions of Exponential
Growth Supported by a Proper Convex Cone

In this section, we shall give the Paley-Wiener theorem for H’F(R",K ),
the space of distributions of exponential growth supported by a proper open
convex cone I' C R™. For the 1-dimensional case, it is given in [15].

Definition 6.1. Let I' be a proper open convex cone, K be a compact
set and ¢’ > 0. Then we denote L and L_.: by

L= { M {u} + <f’>°>}
ueK
L_o=R™"\ (R"\L)_, .
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Proposition 6.2.  For L and L_./, we have the following properties:
(i) L # 0.
(i) Lo CcC L.

Proof. (i) : Let ui, us € K C B(0,1R), R>0,y e (T')°, |y =1. By

Proposition 2.12, there exists § > 0 such that B(y, d) C (f/)‘”7 and B(ui+y,d) C
(w1} + (T')°, Blus +9,6) C {uz} + (T')°. Let = € B(£y, R). Since

<9,

<R®‘y—%x

Ry s
5y

=/ =

we have 2z € (f/)o. Therefore, z € (I')°. This means that B(Zy, R) C (T')°.
Since

B (uZ + ?y,R) C{u;} + (f/)o, 1=1,2,

’({ul}Jr ??J) - ({uQ}+ ?y)‘ = |uy —uy| < R

and u1, ug € K are arbitrary, we have ﬂ ({u}Jr(F/)o) # (. Let a €
ueK
ﬂ ({u} + (f/)o). By Proposition 2.13,
ueK
seat (@) =ae () ({u}+(@)°)+(T)
ueK

sSreut (f/)O + (f/)o, for any u € K

=/

Therefore, a + (f/)o C ﬂ ({u} + (f/)o). By Proposition 2.12, a + (I" )° is an
ueK
open set and not empty. Therefore, we have the condition (i). (ii) is obvious.

Definition 6.3 ([15], [22]).  For T € HL(R", K), we define the Fourier-
Laplace transform LF(T) of T by

LF(T)(§ +wm) == F(em™T)(€)

= (e™"%T,, e'®)

= <Tx7 BZCI>'
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The last part means
(T, €7) = (T, x(2)€"7),
where x(z) € C>°(R™) which satisfies
1, zel.
x(@) = {0, r¢ Ty, €>0.

Definition 6.4. Let I' be a proper open convex cone and K be a com-
pact set. For e >0 and u; € K, j =1,..., jo, we set the following notations:

T = ({u;} +T)°,
T =R™\(R"\({u;} +T)°)..
Lemma 6.5. Let I', I'c be proper open conver cones such that Tc e

(F/)O and n € [fc]j_zs. Then for every s € B(uj,e), n —s € (I'¢)° and
In— s > ge.

Proof.  Let 1 € [fc}j,%, namely n € R™\(R"\({u;} + T¢)®)2.. By n ¢
(R™\({u;} +Tc)%)2e,

3 = 3
n+ B(O, 56) C {u;}+Te)en—u;+ B(O, 55) c (Te)°
_ 1 _
&n—u; +B(0,¢) + B(O, 55) c (Te)
. 1 -
<n— B(u;,¢€) + B<O, 55) c (Te)°.
For every s € B(uj, ), since n — s+ B(0, 1¢) C (T¢)° and {0} € 9T ¢, we have

n—se (Te)° and | —s| > e. O

Proposition 6.6.  Let I' be a proper open convex cone, K be a convex
compact set, T € HL(R", K) and f(¢) = LF(T)(§ +wm). Then for every e >0
there exist jo € N, Ic > 0 and the families {uj}ﬁ:‘jzl C K, {f; (C)}g‘;l satisfying
the conditions (33), (34), (35):

—1.J
(33) fi(€) € H(R™ +[I']").
VT € (T')° 3M_ 5, > 0 such that

(34) 5O MA+[C), ¢ eR"+a[Te] ..
(35) fO=Y" £

1<5<jo
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In particular, f(¢) € H(R™ 4 L).

Proof. By Corollary 3.13,

F(C) = (T, %)

||

_ Z 3 ( ) )9 / G(z) D P F* (2)" dx

la|=0[B3|=0
la ]

— 5 S (D)0 E [ estun o e,

la|=0B3|=0 1<ji<jo
where sup |Aq g(ut,... ,uj,x,€)| < oo. Now we put

TER™

(37) 9j,0,8(C / G(z)Aap(ui,. .., uj,z, £)euit T3V a1l g
Then
(39) 930501 < Co [ (14 fa e 5T

SC’1/ euirtelelg=ne gy,
T

Letn € [Fc]j_%. By Lemma 6.5 and Proposition 2.12, there exists 0 = o(T'¢) >
0 such that
(n—s)z>oln—sllz

. -
—oelz|, 776[1"0] o, TET, s € B(uj,e).

2
Therefore
(39) 50501 <1 [ T
I
< Cl/Fe”_”"”dx, 5(x) € B(uj,¢),
<Cl/ —oln—sllzl gy
N T
< C / —%aa\ﬂdm
T
< 0.
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Ifn e [fc]j_zs, then by the calculation from (38) to (39), we have
0501 < [ 3 laa,

and e~29¢'l7l ¢ L1(R™). For (; € R™ + Z[fc]j_28 by (36) and Lebesgue’s domi-
nated convergence theorem, we have

. . . = 2
chr? 9j.ap(C) = chr? G(x)Aap(ui,. .. uj,x, g)etittav a® gz gy,
—<o —¢% T
nelfel’ ,, nelal? 5,

= /_G(z)Aaﬂ(ul, . ,ujo,x,a)e“jm+%melcomdz,
T
= 9j,0,8(0)-

Since & > 0 and T € (I')° are arbitrary, gj.,5(C) is a continuous function in

R™ + [T .

Let n € [To]j_% and v be a Jordan curve in {R™ + Z[Fc]j_k}m which is
mth component of R + z[fC]J_QE. By (39),

[ 195000 < .
8
By Fubini’s theorem,
/gj,a,ﬂ(C)de:/_G(I)Aa,@(tl,... ,tjo,%s)e“j“%“”z/eZCzdcmdz
ol T ’Y
=0.

By Morera’s theorem, g; ,5(¢) is a holomorphic function of (,,. By Hartogs’
theorem, g;a.5(C) € H(R™ +1[Tc)’,.). Since ¢ > 0 and T¢ € (T')° are
arbitrary, we have g; o 3(¢) € H(R"™ + z[f/]J). Now we put

a |O‘|
HO=YY (g) (1€)° gj.0,5(0).

|ee|=08|=0

Then we have f(O= Z i (),

1<5<do

FQeH®  +TT), j=1,...,jo,
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3. > 0T € (I')° M, £, > 0 such that
FOISMA+C), CeR"+Tel,., i=1,...,jo
O

Proposition 6.7.  Assume that f(¢) € H(R™ + L) and satisfies the
conditions (33), (34) and (35). Then there ezists a unique T € HL(R™, K)
such that f(¢) = — (T, e¥%7).

(2m

Proof. Lete>0,0<t<land(=¢+wm nele, Io e (f/)O and
|n| = . Now we put

1
U(z,t)= - E / fj(<‘+Zuj)e—t(<+luj)2e—z(C—Huj)Idg’
(2m)= 1<j<jo” R"
>~J=>Jo
—1 - wy)? — W )T
Uyl )= (g [ (G mg)em CrmemeCrmzag,

We notice that Uj(z,t) is independent of ) € T by Cauchy’s integral theorem
and satisfies

(2-8) o

Furthermore
|Uj (z,2)] S/}R 15 (C + )|~ 1€ HOMu)? olntu)a g
<SM{(+|m 4wy |)- - (14 |nn + ujn|)}let<n+uj)2+(n+uj)x
[ Al DY e = ),
<Mt N+ |y 4wy ]) - (1 [ +uy, ) etOrte) Ot
Then since |n| = ¢,

2
|Uj (2, 8)] < Mot ™™ (1 + & + uy|)me2tm+tuitnatusz
< M3t7N626|uj|+|uj‘2+5‘I|+U]’LL‘
< M’t_Neujx+6\x|’ 0<t<1, z€R"

By Theorem 4.4, there exists T; € H'(R", {u;}) such that (T} , E(z — y,t)) =
Uj (.%', t)
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Let 29 ¢ T. Then there exists 7y € (F/)O7 [no] = 1 such that noxg
< 0. Then we have

sup Mo =1%o+ 06 sup Moy
z€B(x0,0) y€B(0,1)

<—=20+6
= —4.

Let ' = %, o(z) € D, supp(p)C B(xp,0d). Then we have

|<Uj (.%', t)? (,0(33))|

/B( 5 Jr F5(C e ) e ()2 g o 1) dy
Zo, "

< M{(1+ |y +ujr]) - (1 +|n, + an|)}l6t(n/+uj)2
X/ |<p(z)|e(n'+uj)zdx/ {A+&])--- 1+ ‘§n|)}l€_t52df
B(z0,9) Rn

1 M0y2 n ‘
< Mlt_Net(“J""\/Z) / |¢($>|€ﬂnoz+u7md1‘
B(z0,6)
< Mgt_Net“?+2\/f770uj+\7lo\2/ |§0(x)|€ujx€_\%dx
B(z0,9)

_ 5
< Myt Ne Vi

—0, t—04.
Therefore, by Theorem 4.4, we have

<Tj <P> = lim <Uj($,t>,§0($)>

t—04

=0.
Since xq ¢ T is arbitrary, this means that supp 7} C T.
Now for every ¢ € D(R"), let
Va(e,t) = e 71 (B(a, t) » pl(~x))
= e*”’%”z/ E(xz—y,t)p(-y)dy, 0<t<]l1.
Then we have the following lemma:

Lemma 6.8 ([20]). V,(z,t) — ¢(—x)e™™ in S(R™), ast — 0.

= -2
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For the details of the proof, we refer the reader to [20]. Now we resume
the proof of Proposition 6.7.

Let p(x) € D. Then

/ Fi(C 4wy )eHCHm) e m e e o)
R’VL

= <fj(C + zuj)e_t@““jf,/ @(m)e‘z(<+2“j)xdx>

(¢ + ), e HEH)" LF(p(—)e ™) ()
(¢4 uy), LF(E(x, t)e™ ") () x LF(p(—x)e"")(C))
(€ + ), LF(e7 " (E(z, t) * p(—2)))(C))
fi(C+uy)), e T (E (7, ) * o(—2))).

—_~ o~~~

By Theorem 4.4 and Lemma 6.8, we have

<Tj7 (»0)
= lim "DV NF(f(C + ), e AN T (B, ) x o))

t—04
= (F(f5(C +wy)), p(—z)e™"71%)
= (£i(C + wuy), F~H (p(@)e=17))
& (T, p(x)e 7 "77) = (f5(C +wy), F
& (e, p(a) = (i (¢ + ), F-
& (F(emTy), (x)) = (f3(C 4wy ), o(2)).

Therefore,

Fem " T5)(€) = f3(C + wuy)

1
& GyE i €8 = (¢ )
1 z{z _ .
& Gnz T e =0

Now we put

T= Z .

1<5<jo
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Since T; € H(R",{u;}), u; € K, we have T' € HL(R", K) and

1 1
3 <Tza ezCaﬁ> = 3 Z <T] 761<x>
(2m) @m= 5
= > i
1<5<j0
= f(Q)
Now we shall prove injective. Let T, T> € HL(R", K) and assume that
1 1
n Tx7 wry = n Tz7 we
(27T)5< s €77 (27r)5< 2 €
= Q).
For fixed ng € L_., we have
1 1
—nox w8y —nox (23
(271_)% <€ le7 € > - (271_)% <€ T2wa € >
= f(&+un).

By (34) and Fourier transform in &’ yields
eI = e ™MTT, . in S’
Let p(x) € D. Then ¢(x)e"* € D. Therefore,

(Tha, () = (7" 1y, p(x)e™?)
= (€7 Ty, p()e™)
= (Taa, ().

By Theorem 3.5, Ty, = Ty, in H'(R", K).

By Proposition 6.6 and Proposition 6.7, we have the following theorem:

O

Theorem 6.9. Let I' be a proper open convex cone, K be a convex
compact set, T € HL(R", K) and f(¢) = LF(T)(§ + ). Then for every e >0
there exist jo € N, o > 0 and the families {u; ;:0:1 C K, {f;({) o satisfying

Jj=1

the conditions (40), (41), (42):

(40) £5(C) € H(R™ +4[T'7).

VT e (T')° IM. 5, > 0 such that

(41) 15O < MA+[C)Y, ¢ eR™ +4To) ..
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(42) FO=3 £
1<5<jo
In particular, f(¢) € H(R™ +1L).

Conversely if f(¢) € H(R™+:L) satisfies the conditions (40), (41) and (42),

then there exists a unique T' € HL(R", K) such that f(() = @ 1)% (T,,e*®).

Furthermore T is given by the following formula:

(43) T= Y T, T;eHNR"{u}),
Jlgjo N
(44) fj(C):W@jzvec )-

Corollary 6.10.  Let T be a proper open convex cone, T € H’F(R"7 {0})
and f(¢) = LF(T)(& 4+ ). Then for e > 0 there exists l. > 0 satisfying the
conditions (45), (46):

(45) f(C) € H(R™ +1L).
Ve e (f/)o M. 5, > 0 such that
(46) FOI<SMA+[C), ¢ R +1fTc] 2.

Conversely if f(¢) € H(R™ 4+ L) satisfies the conditions (45) and (46), then

there exists a unique T' € HL(R™,{0}) such that f(¢) = 7 1)% (T, e*").

Remark 6.11 (Remark for Corollary 6.10). Now we consider more
general Fourier-Laplace transforms. That is, if T € D’ and e "T € &', then
we can define the Fourier-Laplace transform £F(T)(¢) of T. Furthermore it is
known that we can obtain the Paley-Wiener theorem for T' € D’ if ', is not
empty where I'r := {n € R% e~ "T € S’} (see Theorem 7.4.2 in [6]).

So we can assert that for the Paley-Wiener theorem for T € D’ (that is,
for Theorem 7.4.2 in [6]) we can take the element of the space HL(R", {0}) as
T € D' if and only if the conditions of Corollary 6.10 are satisfied.

Example 6.12 (Example for Theorem 6.9). Let n = 2,
[-1,1] and T := {2 = (z1,72) € R%2? — 23 > 0, z; > 0}(=
define T'(z) by

K = {0} x
(T)°). We
T(x) = e"”z‘,x% — 3> 0,' z; > 0,

0, otherwise.
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We can see T € HL(R?, K) and we have

(Tz,el@}:ﬁelwzlelcwdxldxg
T

— /Z /oo er(zCl COS9+(142+1)SiH9)rde9
0 0

0 0o
+ / / er(zQ cos 0+(2¢2—1) sin Q)Td’l"de.
—= Jo

just
4

If 5 € L= {n = (n,72): {(1,0)} + (T')°}, then

<Tx7 6lcz>

(7 do 0 do

_/0 (2¢1 cos 0 + (162 + 1) sin 6)2 +/_% (2¢1 cos 0 + (12 — 1) sin §)?
1 1

TG0+l + 1) (16— G+ 1)

= f1(¢) + f2(¢).

Then we can see f1(¢) € H(R? +2Ly) and f2(¢) € H(R? + 1Ly), where
Ly = {n=(m.m): {(0.D} + @)}, Lz = {n = (n,m); {(0. ~1)} + (T')°},

and L = L1 N Ly. Now we define

€2, x1 > Ty, w9 >0,
T = .
0, otherwise,

e "2 x1 > —x9, 12 <0,
T = .
0, otherwise.

Then we have T} € H’F(R2, {(0,1)}), T € H’F(RQ, {(0,-1)}) and

(Ty,,e" ") = f1(¢),
(Ty,, ") = f2(Q),
T=T,+T5.

87. Edge-of-the-Wedge Theorem

In this section we give Edge-of-the-Wedge theorem for the space of the
image by the Fourier-Laplace transform of T' € HL(R", K). First we introduce
some spaces of holomorphic functions. For details we refer the reader to [15],
[16].
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Definition 7.1.  For a subset A of R™, we define a set T (A) by 7(A) =
R™ x 1A.

Definition 7.2.  For a convex compact set K of R"™ and € > 0,

(T (Ke))
={p(¢) € H(T(K2)) NC(T(K:)); sup [¢@(¢)] < oo for Vo € Ny},
CeT(Ke)
QT (K)) := lim Qy(T (K<)).
e>0

Definition 7.3.  The dual space Q' (7 (K)) of Q(7T(K)) is called tem-
pered ultrahyperfunctions.

Remark 7.4.
(i) A. U. Schmidt apply Q(7 (K)) to study asymptotic expansions [18].

(ii) Q(T(K)) is called tempered ultradistributions by S. e. Silva [19] and
M. Hasumi [5], and called tempered ultrahyperfunctions by M. Morimoto
[15], [16].

We have the following theorem for the spaces H(R", K) and Q(7 (K)):

Theorem 7.5 ([15]).  Let p(x) € H(R™, K). The Fourier inverse trans-
form

— 1 -1z
FUN) = g [ pla)e oo
(2m)2 Jgn
establishes a topological isomorphism of H(R™, K) onto Q(T (K)). The inverse
mapping F is given by

) = 1 n)etEtme
(47) F0)(@) = g [ (e me€rua,

ne ng 1/] € Qb(T(KE))

Remark 7.6.  In (47), we notice that F(¢)(z) is independent of n € K?
by Cauchy’s integral theorem.

Definition 7.7 ([15]). For T € H'(R™, K), we define the dual Fourier
transform F(7T') as a continuous linear functional on Q(7 (K)) by the formula

(48) (F(T),4) = (T, F(4)), for ¢ € QT(K)).
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As a consequence of Theorem 7.5, we have the following theorem:

Theorem 7.8 ([15]).  The dual Fourier transform (48) gives topological
isomorphisms

F:H'R",K) — Q(T(K)).

Definition 7.9. Let K = {u}, ¢ € Qy(7 (K,,)) and assume that f({) €
H(R™ 4 1L) satisfies

Ve> 03l >0VTc e (T)° IM, 5 >0 s.t.
FOI<MA+[C]), CeR" +alc] .

Then we define (f(¢),4(¢)) by

(F(Q), Q) 1= (€ + o), (€ + omo)
= [ e+ moy(e - mde,

where 70 € ({u} + (T')°) N (K., °).

Definition 7.10.  Let K = {u}, T € H(R",K) and ¢ € Q(7T(K)),
Y € Qp(T(K.,)). By Theorem 6.9 and Definition 7.9, we define (LF(T)((),
¥(¢)) by

(49) (LF(T)(C), $(Q)) = (LF(T)(E + o), (& + o)),
where 19 € ({u} + (T')°) N (K, ).

Now we can show Edge-of-the-Wedge theorem. For the direct product
case, it is given in [16].

Theorem 7.11 (Edge-of-the-Wedge Theorem).  Let T'y, Ty be proper
open convex cones in R™,

Ly = {um} + T,,)°, m=1,2
Assume that F1(¢) € H(R™ 4+ 1L1) and F5(¢) € H(R™ +1Ls) satisfy

(50) Ve >0 3y, >0V, € (T,)° IM, 5, >0 st
Fn(Ql < M5, (L4 ¢, ¢eR™+4[Te,] 5, m=12,

where [Tc,,]_. = R"\(R"\({um} + Tc,,)°)e-
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Let K be a convex compact set which contains the segment with {u1} and
{us} as extremal point. Assume that

(51) (F1(0),»(Q)) = (F2(€), 9(C))  V(C) € QT (K)).

Then there exists F(¢) € H(R™ + (L} U LY)) such that

F(O)l®nyor,) = F1(C),
F(O)l®n+rs) = F2(¢),

where L} = {u1} + (fll U f;)o and Ly = {us} + (fll U f;)o. Furthermore
(i) if T1 NTy = {0}, then F(C) is polynomial,

(i) of {u1} = {us}(=: {u}), then we have
(52) F(¢) € HR™ +1({u} + (T'1 UT 5)°))

and

(53)  Ve>03.>0Vlce (T UT)° IM, 5, >0
IF(OI<M(1+[c])!, ¢eR™+1[lc],

where [Tc]_c = R"\(R™"\({u} +T¢)°)..

Proof. By (50) and Theorem 6.9, there exist 77 € H%l (R™, {u1}) and
Ty € H’F2 (R™, {us}) such that

Let p(x) € H(R™, K). By Theorem 7.5, F~1(¢)(¢) € Q(T(K)). By Definition
7.9, 7.10 and assumption (51), we have
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Therefore, T} = Ty =: T in H'(R", K) and supp 7 C (I'; NT). Now we put
F(¢) = (2;)% (Ty,e**). Then by the definition of T, F(C)|gn+.r,) = F1(C),
F(CQ)|(rr4L,) = F2(¢) and by Proposition 6.2 we have F(¢) € H(R" 4 (L} U
Ly)).

If we have the assumption (i), then T is a distribution supported by {0}. By the
structure theorem for distributions, T' = Z caD%. So F({) = LF(T)(C) is

|a|]<m
polynomial.
If we have the assumption (ii), then by Proposition 2.13 and Theorem 6.9, we
have (52) and (53). O
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