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I know [ . . . ] how to construct an infinite
number of bridges [ . . . ]

Leonardo, Letter to Ludovico il Moro.

Abstract

Some properties of the Gamma bridges (obtained by conditioning the Gamma
subordinator to take a given value at a given time) are investigated; similarities with
the Brownian bridges are emphasized.

§1. Introduction and Overview

(1.1) Among the family of one-dimensional Lévy processes, the Brown-
ian motion and the Poisson process are often compared, or discussed in close
connection, for they are the only Lévy processes to share the predictable rep-
resentation property, i.e.:

if (Bt; t ≥ 0) denotes a Brownian motion and {Bt} its natural filtration,
then every {Bt}-martingale (Mt; t ≥ 0) may be represented as

Mt = c +
∫ t

0

ms dBs , t ≥ 0,
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670 Michel Émery and Marc Yor

where c ∈ R, and (ms) is a predictable process; and the same property holds
for the Poisson process (Nt) with intensity λ, the representation of the generic
{Nt}-martingale being

Mt = c +
∫ t

0

ms d(Ns−λs) , t ≥ 0.

(1.2) However, the Brownian motion (Bt; t ≥ 0) and the (standard)
Gamma process (γt; t ≥ 0), i.e., the subordinator with gamma laws

P[γt ∈ dx] =
xt−1 e−x dx

Γ(t)
,

share in fact more common properties. One of these common properties is
quasi-invariance: for suitable functions h, the law of the process Bt +

∫ t

0
h(s) ds

(resp.
∫ t

0
h(s) dγs) is equivalent to the law of B (resp. γ); on the quasi-invariance

of Gamma, see Tsilevich-Vershik [15], Tsilevich-Vershik-Yor [16], and Vershik-
Yor [17].

The properties we shall be interested in concern the bridges associated to
these processes. Properties relative to B (resp. γ) will be denoted by (1B),
(2B), etc. (resp. (1γ), (2γ), etc.). The natural filtration of B (resp. γ) will be
called B (resp. G).

The filtration of Brownian bridges is defined for t ≥ 0 by

B∗
t = σ

{Bu

u
− Bv

v
; u, v ∈ (0, t]

}
= σ

{
Bu − u

t
Bt ; u ∈ [0, t]

}
;

and the filtration of Gamma bridges by

G∗
t = σ

{γu

γv
; u, v ∈ (0, t]

}
= σ

{γu

γt
; u ∈ [0, t]

}
.

These names, ‘filtrations of bridges’, are justified by property (3) below.

Quite fundamental is the independence property :

for every t ≥ 0,B∗
t is independent of B+

t ≡ σ
{
Bu ; u ∈ [t,∞)

}
;(1B)

for every t ≥ 0,G∗
t is independent of G+

t ≡ σ
{
γu ; u ∈ [t,∞)

}
.(1γ)

In particular, Bt (resp. γt) is independent from B∗
t (resp. G∗

t ), and for t > 0
the inclusions B∗

t ⊂ Bt and G∗
t ⊂ Gt are strict. But this no longer holds in the

large time limit:

B∗
∞ = B∞ ;(2B)

G∗
∞ = G∞ .(2γ)
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From the independence property (1), it follows immediately that one may
realize both the Brownian and Gamma bridges, on the time-interval [0, t], start-
ing at 0, ending at a, as:(

Bu − u

t
Bt +

u

t
a ; u ∈ [0, t]

)
;(3B) (

a
γu

γt
; u ∈ [0, t]

)
.(3γ)

The harness property was introduced by J. Hammersley [7], and has been
discussed in particular by D. Williams [18]. In our opinion, it deserves to be
better known; for a number of results and references, including some papers
of P. Lévy, see Exercise 6.19 in Chaumont-Yor [4]. Examples of harnesses are
all Lévy processes X such that E[|Xt|] < ∞, and all subordinators, whether
integrable or not. A process (Xt; t ≥ 0) is called a harness if, for all intervals
[a, b] and [c, d] such that [c, d] ⊂ [a, b], one has

E

[Xd −Xc

d− c

∣∣∣ Xa,b

]
=

Xb −Xa

b− a
,(4)

where Xa,b = σ
{
Xu; u ∈ [0, a] ∪ [b,∞)

}
. The observation that every inte-

grable Lévy process verifies (4) is due to J. Jacod and P. Protter [9] (they do
not use the term ‘harness’); they furthermore deduce from (4) a property due
to T. Kurtz: each integrable Lévy process X satisfies, on the interval [0, T ],

Xu = M (T )
u +

∫ u

0

XT −Xs

T − s
ds,(5)

where (M (T )
u ; u ∈ [0, T ]) is a martingale for the filtration X (T )

u = σ
{
Xs;

s ∈ [0, u] ∪ {T}
}
.

In the case when the Lévy process is a Brownian motion or a Gamma
process, the harness property can be understood as a consequence of a stronger
property (where we still assume [c, d] ⊂ [a, b]):

Bd −Bc

d− c
− Bb −Ba

b− a
is independent from Ba,b ;(6B)

γd − γc

γb − γa
is independent from Ga,b .(6γ)

(1.3) It has been remarked in Jeulin-Yor [10] that

the filtration {B∗
t } is generated by the Brownian motion(7B)

B∗
t = Bt −

∫ t

0

du

u
Bu .
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The corresponding property for the Gamma process is one of the main results
of the present article:

the filtration {G∗
t } is generated by the Gamma process(7γ)

γ∗
t =

∑
s∈(0,t]

us

(∆γs

γs−

)
,

where us(x) is the function implicitly defined, for x ≥ 0 and s > 0, by∫ ∞

us(x)

e−z

z
dz =

∫ ∞

x

dy

y(1+y)s .

Finally, there is the property of time inversion for both Brownian motion
and the Gamma process:

the process
(
tB 1

t
; t > 0

)
is a Brownian motion;(8B)

the process
(
ln γ 1

t
; t > 0

)
, or, for that matter,

(
ln(t γ 1

t
); t > 0

)
, has(8γ)

independent, although non homogeneous, increments.

(1.4) The rest of this article is organized as follows:
- Section 2 gives references or proofs for properties (1) to (8).
- Section 3 investigates some properties of the Dirichlet processes

D
(T )
t =

γt

γT

, t ∈ [0, T ] ,

and argues in particular that from the observation of these processes it is pos-
sible to infer some properties of the Gamma process, thus going back and forth
between the Gamma and Dirichlet processes.

- Section 4 raises related questions, among which the following: For which
subordinators (St; t ≥ 0) is the filtration

S∗
t = σ

{Su

St
; u ∈ [0, t]

}
equal to St? different from St?

If S is a stable subordinator, it was shown in [14] that S∗ = S; this will
be proved again in Proposition 6.
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§2. Properties (1) to (8)

For Brownian motion, properties (1B) to (8B) are known. Property (8B)
is obtained by a simple correlation computation; (1B) to (7B) belong to the
theory of Brownian bridges; for a general discussion of this topic, see chap. 1
of [19]. Concerning the harness property, besides the references given in the
introduction, an unpublished manuscript by D. Williams conversely shows that,
essentially, every continuous harness is a Brownian motion.

Property (6γ) is a particular instance of a more general statement:
the process(9) (γa+u − γa

γb − γa
; u ∈ [0, b−a]

)
is a Dirichlet process D(b−a), with parameter b − a, independent of Ga,b.

This has been known for a long time; for a general approach, with a mea-
sure space replacing the time-axis, see Ferguson [6]. The proof is quite elemen-
tary: it suffices to verify that, for 0 = t0 < t1 < · · · < tn, the vector(γt1 − γt0

γtn

, . . . ,
γtn

− γtn−1

γtn

)
is independent from γtn

, with density

Γ(tn)
n∏

i=1

Γ(ti−ti−1)

n∏
i=1

x
ti−ti−1−1
i(10)

with respect to the Lebesgue measure dx1 . . . dxn−1 (or, as well, dx2 . . . dxn)
on the simplex

{(x1, . . ., xn) : xi ≥ 0, x1 + · · · + xn = 1} ;

and this is directly derived from the joint density of (γt1 , . . ., γtn
). A (much

less elementary) converse is also known: Lukacs has proved in [13] that given
two independent, strictly positive, nondegenerate random variables X and Y ,
if X + Y and X/(X+Y ) are independent, then (X, Y ) law=

(
kγu, k(γu+v − γu)

)
for three parameters k, u and v.

A large amount of literature is devoted to Dirichlet-type distributions, es-
pecially in view of Bayesian statistics; see for instance Diaconis-Kemperman [5].

As explained in the introduction, (4γ) and (5γ) stem from (6γ). Also, (1γ)
is obtained from (9) by specializing a = 0, and (3γ) follows from (1γ).

To establish (2γ), it suffices to observe that γn/n → 1 a.s. when n → ∞
by the law of large numbers; hence γt = lim

n→∞
(nγt/γn) is G∗

∞-measurable.
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674 Michel Émery and Marc Yor

The rest of this section consists in establishing properties (7γ) and (8γ).
Both are easy consequences of the next proposition.

Proposition 1. The point process{(
s,

∆γs

γs−

)
; s > 0

}
describing the “normalized” jumps of the Gamma process is an inhomogeneous

Poisson point process, with intensity ds
dy

y (1 + y)s, which generates the filtration

{G∗
s ; s > 0}.

Equivalently, the point process{(
s,

∆γs

γs

)
; s > 0

}

is an inhomogeneous Poisson point process, with intensity ds
du

u (1−u)1−s , gen-

erating G∗.

Proof. Recall that the Lévy measure of the Gamma process is ν(dx) =
e−x

x
dx; and its Lévy exponent is ln(1 +λ), because E[e−λγs ] =

1
(1 +λ)s =

exp
(
−s ln(1 +λ)

)
.

Since the process Js = ∆γs/γs− is G∗-optional, to show the first claim it
suffices to verify that, for every G∗-predictable H ≥ 0 and every Borel f ≥ 0
null at 0, one has

E

[ ∑
s>0

Hs f(Js)

]
=

∫∫
ds

dy

y (1 + y)s E[Hs] f(y) .(11)

The left-hand side LHS (11) has the form E

[∑
s

K(s, ω, ∆γs)
]
, where

K(s, ω, x) = Hs(ω) f
( x

γs−(ω)

)
is G-predictable in (s, ω) and null for x = 0. So LHS (11) can be computed
with the Lévy system of γ, and one has

LHS(11) =
∫

ds

∫
ν(dx) E[K(s, ω, x)] =

∫
ds

∫
ν(dx) E

[
Hs f

( x

γs−

)]
.
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Inside the right-hand side expectation, we may replace γs− by γs (for each s,
they are a.s. equal). Using now the independence of Hs and γs (because Hs

is G∗
s -measurable and (1γ) holds), the expectation becomes E[Hs] E[f(x/γs)];

and to obtain (11), it suffices to write∫
ν(dx) E

[
f
( x

γs

)]
= E

[ ∫ ∞

0

f
( x

γs

) e−x

x
dx

]
= E

[ ∫ ∞

0

f(y)
e−γsy

y
dy

]
=

∫ ∞

0

f(y)
E[e−yγs ]

y
dy =

∫ ∞

0

f(y)
dy

y(1 + y)s .

The filtration G∗ is generated by this Poisson point process because, for
0 < s ≤ t,

γt

γs
=

∏
r∈(s,t]

γr

γr−
=

∏
r∈(s,t]

(
1 +

∆γr

γr−

)
.

The last statement of Proposition 1 stems from the identity

∆γs

γs
=

1

1 + 1
/(∆γs

γs−

)
and from the change of variable u =

1
1 + 1/y

in the intensity of
∆γs

γs−
.

Proposition 2 (property (7γ)). For each s > 0, the formula∫ ∞

us(x)

e−z

z
dz =

∫ ∞

x

dy

y (1 + y)s ≤ +∞(12)

defines a bijection us : R+ → R+. The sum

γ∗
t =

∑
s∈(0,t]

us

(∆γs

γs−

)
(13)

is a.s. convergent and defines a Gamma process γ∗, which generates the filtra-
tion G∗.

Proof. In view of Proposition 1, the sum (13) is convergent and defines
a Gamma process if and only if (s, x) 	→ us(x) is measurable and, for almost
all s, the image by us of the measure

ρs(dy) =
dy

y (1 + y)s(14)
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is equal to the Lévy measure ν of the Gamma process. Remark that both
measures ρs and ν are infinite on the half-line (0,∞), but finite on every interval
[ε,∞), and have strictly positive density on (0,∞); consequently, the function
us defined by (12), that is, by

ν
(
[us(x),∞)

)
= ρs

(
[x,∞)

)
,

is an increasing bijection of R+ onto itself, satisfying the above conditions. So
γ∗ is a Gamma process for the filtration G∗.

To see that γ∗ generates the filtration G∗, call vs the reciprocal (us)−1

of the bijection us; vs is characterized by ρs

(
[vs(x),∞)

)
= ν

(
[x,∞)

)
. As

∆γs/γs− = vs(∆γ∗
s ) is adapted to the filtration of γ∗ and generates G∗ (by

Proposition 1), γ∗ generates G∗.

Remark 1. Formula (13) giving γ∗
t from γ is not very pleasant: it cannot

be transformed into a stochastic integral
∫ t

0
Hs dγs, with a G-predictable H,

because ut(x) is non linear in x. Does there exist another Gamma process γ̂,
also generating G∗, and such that γ̂t is a stochastic integral of some predictable
process with respect to γ?

The answer is negative: in some sense, γ∗ is the simplest among all Gamma
processes generating G∗. More rigorously, if γ̂ is a Gamma process generat-
ing G∗ and if, for every jump time t of γ (which is also a jump time of γ̂), the
correspondence between ∆γt and ∆γ̂t is monotone, then γ̂ = γ∗.

To see this, observe that γ̂ and γ∗ are two Gamma processes generating
the same filtration G∗. Consequently (see Jacod [8], page 411), there exists a
process b(t, ω, x), G∗-predictable in (t, ω), null for x = 0, such that for almost
all (t, ω), the map x 	→ b(t, ω, x) is a ν-preserving bijection of R+ onto itself,
that verifies

∆γ̂t(ω) = b
(
t, ω, ∆γ∗

t (ω)
)

.

If furthermore ∆γ̂t is a monotone function of ∆γt, it is also a monotone function
of ∆γ∗

t (because x 	→ ut(x/γt−) is strictly increasing), so, for almost all (t, ω),
the bijection x 	→ b(t, ω, x) is monotone. But there is only one monotone, ν-
preserving bijection, namely the identity map (because ν is infinite near 0 and
finite at infinity). Hence ∆γ̂t(ω) = ∆γ∗

t (ω), and γ̂ = γ∗.

Remark 2. Given d ≥ 1 and any diffuse and unbounded Lévy measure
� on R

d, there also exists a Lévy process L, with � as Lévy measure and no
Gaussian component, that generates the filtration G∗. It suffices to construct
L such that ∆Lt = b(∆γ∗

t ), where b : (0,∞) → R
d \ {0} satisfies ν ◦ b−1 = �.
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If furthermore � is the Lévy measure of a subordinator, L can be chosen as a
subordinator, simply by setting Lt =

∑
s∈(0,t]

b(∆γ∗
s ). Equivalently, this amounts

to defining L by

Lt =
∑

s∈(0,t]

ws

(∆γs

γs−

)
,

with ws such that ρs ◦ w−1
s = �, given for instance by �

(
[ws(x),∞)

)
=

ρs

(
[x,∞)

)
, where ρs is defined by (14).

As for an example, if one wishes L to be an α-stable subordinator, with
0 < α < 1 and �(dz) = c z−1−αdz, it suffices to take

ws(x) =
[ α

c

∫ ∞

x

dy

y(1 + y)s

]− 1
α

.

Another example is the case of the measure ρs itself. For each fixed s > 0,
ρs is a Lévy measure; so there exists a subordinator (Y (s)

t ; t ≥ 0) with this
Lévy measure. It is possible to realize Y (s) in the filtration G∗ by

Y
(s)
t =

∑
r∈(0,t]

vs(∆γ∗
r ) =

∑
r∈(0,t]

vs◦ur

(∆γr

γr−

)
,

where vs (the reciprocal of us introduced at the end of the proof of Propo-
sition 2) transforms ν (the Lévy measure of γ and γ∗) into ρs. This gives a
“diagonal” expression of γ∗:

γ∗
t =

∑
s∈(0,t]

us(∆Y (s)
s ) ,

which is made possible by the joint choice of the family (Y (s); s > 0) such that
all the Y (s) have the same jump times.

Remark 3. Another class of processes generating G∗ consists of the pro-
cesses of the form

Rt =
∑

s∈(0,t]

h(s) g
(∆γs

γs−

)
,

where h > 0 on (0,∞), and g is strictly increasing and null at 0. As soon as R

is finitely valued, it has independent increments and generates G∗ because of
Proposition 1.

One can verify that

E[e−λRt ] = exp
[
−

∫ t

0

ds

∫ ∞

0

1 − e−λh(s)g(y)

y(1 + y)s dy
]

,
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678 Michel Émery and Marc Yor

and derive therefrom that Rt is a.s. finite if and only if∫ t

0

ds

∫ ∞

0

1 ∧ h(s) g(y)
y(1 + y)s dy < ∞ ;

a sufficient condition is the finiteness of

E[Rt] =
∫ t

0

ds

∫ ∞

0

h(s)g(y)
y(1 + y)s dy .(15)

A particular case is g(y) = y, corresponding to

Rt =
∫ t

0

h(s)
dγs

γs−
;

in that case, one has the formula

E[Rt] =
∫ t

0

h(s) E

[ 1
γs

]
ds =

∫ t

0

h(s)
[
∞1{s≤1} +

1
s−1

1{s>1}

]
ds ,

which is useless when h > 0.

Another particular case is g(y) = ln(1 + y), corresponding to

Rt =
∫ t

0

h(s) d(ln γs) ;

in that case, E[Rt] is more simply computed directly than via (15). One has
E[Rt] =

∫ t

0
h(s) dE[ln γs], and it suffices to compute E[ln γs]: it is equal to

1
Γ(s)

∫ ∞

0

xs−1 e−x ln x dx =
1

Γ(s)
d
ds

∫ ∞

0

xs−1 e−x dx =
Γ′(s)
Γ(s)

= Ψ(s) ,

the logarithmic derivative of the gamma function; so

E[Rt] =
∫ t

0

h(s) Ψ′(s) ds .

Taking the second derivative of ln Γ(s+1) = ln s + ln Γ(s) yields Ψ′(s+1) =
− 1

s2 + Ψ′(s). So Ψ′(s) ∼ s−2 when s → 0, and E[Rt] is finite if and only if∫ t

0
h(s) s−2 ds < ∞.

Proposition 3 (property (8γ)). The (increasing and left-continu-
ous) process (Lt; t > 0) defined by Lt = − ln γ 1

t
has independent increments.

More precisely, it has no continuous part, its jump process
{
(s, ∆Ls); s > 0

}
is an inhomogeneous Poisson point process with intensity

ds

s2

e−�/s d�

(1− e−�)
,
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and its initial behavior at t = 0 is given by

Lt − ln t = − ln (tγ 1
t
) → 0 a.s. when t → 0.

Proof. It suffices to observe that, for 0 < s < t,

Lt − Ls =
∑

r∈( 1
t , 1

s ]

ln
(
1 +

∆γr

γr−

)

is measurable for G∗
1/s, and therefore independent of G+

1/s by property (1γ). The
structure of the jumps of L is immediately obtained from the Poisson point

process
{(

s,
∆γs

γs−

)}
with intensity ds

dy

y (1 + y)s (Proposition 1) by the change

of variable (s, y) 	→
(

1
s , ln (1 + y)

)
. The initial condition means that γs

s → 1 a.s.
when s → ∞; it comes from lim

n→∞
( 1

nγn) = 1 (law of large numbers) and from
the trivial inequality

γn

n+1
≤ γs

s
≤ γn+1

n
for n ≤ s ≤ n+ 1.

Remark 4. A similar change of variable shows that the filtration of the
process (γ 1

t
; t > 0) (or, equivalently, of L) is also generated by the Gamma

process
γinv

t =
∑
s≥t

f(s, γ 1
s
− γ 1

s−) ,

where f is defined by

ν

(
[f(s, x),∞)

)
=

1
s2

ν
(
[x,∞)

)

and ν denotes the Lévy measure of γ.

§3. Back and Forth between Gamma and Dirichlet Processes

Fix a deterministic time T > 0. Starting with the Gamma process γ and
its natural filtration G, enlarge G by the knowledge of γT at time zero:

G(T )
t = σ

{
γs; s ∈ [0, t] ∪ {T}

}
.
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680 Michel Émery and Marc Yor

By property (9) with a = 0 and b = T , on the interval [0, T ] the process
D

(T )
t = γt/γT is a Dirichlet process with parameter T and law given by (10)

with T = tn; and G(T ) is the independent initial enlargement of its natural
filtration D(T ) with the r.v. γT .

The Lévy system of the process D(T ) on the interval [0, T ] can easily be
derived from these properties. We denote by P(G(T )) the predictable σ-field
for the filtration G(T ).

Proposition 4. Fix T > 0. Let H : [0, T ]×Ω×R+ → R+ be measur-
able for the product σ-field P(G(T )) × B(R+), and such that H(t, ω, 0) ≡ 0.
The G(T )-predictable compensator of the increasing process

∑
s∈(0,t]

H
(
s, ω,

∆D
(T )
s (ω)

)
is equal to

∫ t

0

ds

∫ 1

0

(1−x)T−s−1 H
(
s, ω, (1−D

(T )
s− )x

) dx

x
.

Proof. As H may be multiplied by an arbitrary G(T )-predictable process,
it suffices to check that both r.v.

∑
t∈(0,T ]

H
(
t, ω, ∆D

(T )
t (ω)

)
and

∫ T

0

dt

∫ 1

0

(1−x)T−t−1
H

(
t, ω, (1−D

(T )
t− )x

)dx

x

have the same expectation. Since, on the interval [0, T ], the filtration G(T ) is
obtained from D(T ) by an independent enlargement (with γT ), we may suppose
that H is D(T )-predictable. We may also restrict ourselves to the case when
H(t, ω, x) = K(t, ω) f(x), where both K and f are regular enough, K vanishes
on some interval [T−ε, T ] and f on some interval [0, δ]. For typographical
simplicity we drop the superscript (T ). From the law of D(T ), we know that,
for s < t,

(16)

E[f(Dt−Ds) | Ds] =
Γ(T−s)

Γ(T−t)Γ(t−s)

∫ 1

0

f
(
(1−Ds)x

)
(Dsx)t−s (1−x)T−t−1 dx

x

=
Γ(T−s) (t−s)

Γ(T−t)Γ(1+t−s)

∫ 1

δ

f
(
(1−Ds−)x

)
(Ds−x)t−s (1−x)T−t−1 dx

x
.

Consider now the n-th dyadic subdivision (tnk ) of [0, T−ε]; notice that there are
at most 1/δ values of t (resp. k) such that f(∆Dt) =0 (resp. f(Dtn

k+1
−Dtn

k
) =0).
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This implies

E

[∑
t

Kt f(∆Dt)
]

= E

[
lim
n

∑
k

Ktn
k

f(Dtn
k+1

−Dtn
k
)
]

= lim
n

E

[∑
k

Ktn
k

f(Dtn
k+1

−Dtn
k
)
]

.

We may replace f(Dtn
k+1

−Dtn
k
) by its conditional expectation on Dtn

k
, namely

Γ(T−tnk )(tnk+1−tnk )
Γ(T−tnk+1)Γ(1+tnk+1−tnk )

×
∫ 1

δ

f
(
(1−Dtn

k−)x
)
(Dtn

k−x)tn
k+1−tn

k (1−x)T−tn
k+1−1 dx

x
.

The ratio Γ(T−tnk )/Γ(T−tnk+1)Γ(1+tnk+1−tnk ) is bounded above by the constant

Γ(T ) ∨ Γ(ε)
inf
v>0

Γ(v)2

and tends to 1, so in the limit, by dominated convergence,

E

[∑
t

Kt f(∆Dt)
]

= E

[∫ T

0

∫ 1

0

Kt f
(
(1−Dt−)x

)
(1−x)T−t−1 dx

x
dt

]
.

Observe that letting t tend to s in (16) gives the infinitesimal generator of
D(T ): for f regular enough and null near 0,

d
dt |t=s

E[f(D(T )
t −D(T )

s ) | Ds] =
∫ 1

0

f
(
(1−D

(T )
s− )x

)
(1−x)T−s−1 dx

x
.

This vanishing assumption is easily removed; but instead of repeating twice
the same argument, it is more natural to directly derive the generator from
Proposition 4, in the same spirit as in the next corollary.

Corollary 1. For any function f on R+, with bounded variation on
compacts, the process

f(γt) −
∫ t

0

ds

∫ 1

0

dx

x
(1−x)T−s−1[

f
(
γs + (γT−γs)x

)
− f(γs)

]
is a G(T )-local martingale on the interval [0, T ].
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Proof. We may suppose f to be increasing. Writing

f(γt) − f(0) =
∑

s∈(0,t]

(
f(γs)−f(γs−)

)
=

∑
s∈(0,t]

(
f(γs−+∆γs)−f(γs−)

)
,

it suffices to apply Proposition 4 to H(s, ω, x) = f(γs−+x) − f(γs−) and to
notice that γs− = γs for all but countably many s ∈ (0, t].

For instance, taking f(y) = y gives (5γ):

γt −
∫ t

0

γT − γs

T − s
ds is a G(T )-martingale on [0, T ].

More generally, T. Kurtz has obtained this formula for any integrable Lévy
process; see Jacod and Protter [9].

As another example of application of Proposition 4, one also sees that, on
the interval [0, T ), the increasing process∫ t

0

dD
(T )
s

1−D
(T )
s−

=
∑

s∈(0,t]

∆D
(T )
s

1−D
(T )
s−

(17)

has independent increments; more precisely, its jumps
∆D

(T )
s

1−D
(T )
s−

form a Poisson

process on [0, T ) × (0, 1], with intensity ds (1−x)T−s−1dx/x.

Recall the notation introduced at the end of the proof of Proposition 2:
for s > 0, vs denotes the bijection u−1

s from R+ to itself.

Proposition 5. Fix T > 0. On the interval [0, T ] the process

D(T )
t = 1 −

∏
s∈(0,t]

1
1 + vT−s(∆γs)

is a Dirichlet process with parameter T , generating on [0, T ] the same filtration
as γ. More precisely, γ can be recovered from D(T ) via the formula

γt =
∑

s∈(0,t]

uT−s

(
∆D(T )

s

1−D(T )
s

)
.

Proof. By Proposition 2, we know that γ∗
t =

∑
s∈(0,t]

us

(∆γs

γs−

)
is a

Gamma process. As

1 + vs(∆γ∗
s ) = 1 +

∆γs

γs−
=

γs

γs−
,
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one has
D

(T )
t =

γt

γT

=
∏

s∈(t,T ]

γs−
γs

=
∏

s∈(t,T ]

(
1 + vs(∆γ∗

s )
)−1

.

By isomorphism, the process

D
(T )

t =
∏

s∈(t,T ]

(
1 + vs(∆γs)

)−1

is also a Dirichlet process with parameter T , on the interval [0, T ]; notice that
it depends on the jumps of γ after t. Now reverse time on [0, T ]:

←−γ (T )
t =

∑
s∈[T−t,T ]

∆γs = γT − γ(T−t)−

is another Gamma process on [0, T ], such that ∆←−γ (T )
t = ∆γT−t. And

←−
D

(T )
t =

∑
s∈[T−t,T ]

∆D
(T )

s = 1 − D
(T )

(T−t)−

is also a Dirichlet process on [0, T ], expressed in terms of the jumps of ←−γ (T )

before t:

←−
D

(T )
t = 1 −

∏
s∈[T−t,T ]

(
1 + vs(∆γs)

)−1

= 1 −
∏

s∈[0,t]

(
1 + vT−s(∆γT−s)

)−1 = 1 −
∏

s∈(0,t]

(
1 + vT−s(∆

←−γ (T )
s )

)−1
.

By isomorphism again, the process

D(T )
t = 1 −

∏
s∈(0,t]

(
1 + vT−s(∆γs)

)−1

is also a Dirichlet process with parameter T , clearly adapted to the filtration
G generated by γ.

It remains to see that D(T ) generates G. Call Qs the random variable(
1 + vT−s(∆γs)

)−1, and write

∆D(T )
t =

∏
s∈[0,t)

Qs −
∏

s∈[0,t]

Qs = (1−Qt)
∏

s∈[0,t)

Qs = (1−Qt) (1−D(T )
t− ) :

equivalently,
∆D(T )

t

1−D(T )
t−

= 1 − 1
1 + vT−t(∆γt)

.
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(By isomorphism, this gives another proof of the independence of the increments
of (17).) When solving this for vT−t(∆γt), the left-limit D(T )

t− disappears and
there only remains

vT−t(∆γt) =
∆D(T )

t

1−D(T )
t

,

or

∆γt = uT−t

(
∆D(T )

t

1−D(T )
t

)
,

and finally

γt =
∑

s∈(0,t]

uT−s

(
∆D(T )

s

1−D(T )
s

)
on [0, T ].

§4. Related Questions

(4.1) A general time-reversal property? In the preceding proof, a time-
reversal of the interval [0, T ] plays a central rôle; on the other hand, in [10],
formula (7B) yielding the Brownian motion B∗ is established by letting a time-
reversal of [0, T ] act on the bridge associated to B. Are these two particular
instances of a more general pattern? Is there something similar for other Lévy
processes?

(4.2) Can a subordinator be recovered from its ratios? Let (St; t ≥ 0) be
some subordinator, with natural filtration S. In view of the preceding study,
it is natural to ask when the filtration

S∗
t = σ

{Su

St
; u ∈ [0, t]

}
is strictly included in St. Notice that S∗ is no longer independent from St, for,
according to Lukacs [13], this independence essentially characterizes Gamma
subordinators.

The next proposition shows that S∗ = S when S is close enough to a stable
subordinator.

Proposition 6. Let S be a subordinator whose Lévy exponent ψ(λ)
verifies

ψ(λ) ∼ c λα when λ → ∞

for two constants c > 0 and α > 0 (necessarily, α ≤ 1).
The filtrations S and S∗ associated to S are equal.
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This applies for instance to a sum of independent stable subordinators, or
to the sum of a stable subordinator and an independent Gamma process.

Proof. It suffices to show that S is adapted to S∗; so, fixing t > 0, we
shall establish that St is S∗

t -measurable. To this end, consider the random
variables

Xi
n =

1
n

1
α

1
S i

n t −S i−1
n t

.

For fixed n, the sequence (X1
n, . . . , Xn

n ) is i.i.d., with moments

M (1)
n = E[Xi

n] = E

[∫ ∞

0

e−λ/Xi
n dλ

]

=
∫ ∞

0

E

[
e
−λn

1
α S t

n

]
dλ =

∫ ∞

0

exp

[
− t

n
ψ(n

1
α λ)

]
dλ ;

M (2)
n = E

[
(Xi

n)
2
]

= E

[∫ ∞

0

e−λ/Xi
n λ dλ

]
=

∫ ∞

0

exp

[
− t

n
ψ(n

1
α λ)

]
λ dλ .

Now the hypothesis on ψ entails

lim
n→∞

t

n
ψ(n

1
α λ) = t c λα ,(18)

and also ψ(λ) ≥ c

2
λα 1[λ0,∞)(λ) for some finite λ0, whence, for all n ≥ 1,

t

n
ψ(n

1
α λ) ≥ t

n

c

2
nλα 1

[n− 1
α λ0,∞)

(λ) ≥ t
c

2
λα 1[λ0,∞)(λ) .(19)

The estimate (19) gives an upper bound M
(2)
n ≤ a < ∞ uniform in n; and, by

dominated convergence, (18) and (19) imply that M
(1)
n → b =

∫ ∞
0

exp(−c t λα)

dλ = (ct)−
1
α Γ

(
1
α+1

)
when n tends to infinity.

Introduce the average

Yn =
1
n

n∑
i=1

Xi
n .

One has E[Yn] = E[Xi
n] = M

(1)
n → b and Var Yn = 1

n Var Xi
n ≤ 1

n M
(2)
n ≤

1
n a → 0; consequently, Yn converges in L2 to the constant b. And, since b = 0,
StYn/b converges in probability to St. But

StYn

b
=

1
b n

1
α +1

n∑
i=1

St

S i
n t −S i−1

n t
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is a function of the ratios S i
n t/St, hence it is S∗

t -measurable; and so is also its
limit St.

(4.3) An ergodic transformation? Another question arising naturally from
the present work is to study the transformation τ : γ 	→ γ∗ defined by (7γ);
τ can be considered on the canonical path space associated to the Gamma
process. More precisely, how does the loss of information expressed by the
strict inclusion S∗

t ⊆� St carry over to the iterates τn of τ? What do the
corresponding σ-fields S∗∗

t , S∗∗∗
t , . . . look like?

In [10], Jeulin and Yor establish that the transformation B 	→ B∗ from
(7B) is ergodic (and, in fact, Bernoulli). Is there something similar for γ?

The non-linearity of τ seems to make difficult a direct approach to these
questions.

(4.4) Explicit bridge formulae? Besides the Brownian motions and the
Gamma processes, are there other Lévy processes X, with bridge Y on [0, T ]
given by some explicit affine formula of the form

Yu = a(u, T, XT )Xu + b(u, T, XT ) ?

(4.5) The Gamma process: a Krĕın functional of Brownian motion? As
a (partial) consequence of the scaling property of Brownian motion, the stable
subordinators can be realized from Brownian motion as

∫ τt

0
f
(
|Bs|

)
ds, where

τt is the inverse Brownian local time, and f a suitable power; more precisely,
it is shown pp. 24–25 of [3] that, for any ν ∈ (0, 1), one has:

E

[
exp

(
−λ

2

∫ τt

0

ds |Bs|
1
ν −2

)]
= exp

(
−t cνλν

)
,

where

cν =
π

ν sin (πν)

( νν

Γ(ν)

)2
.

Using Krĕın’s theory of strings, J. Bertoin ([1], [2]), F. Knight [11], and
S. Kotani and S. Watanabe [12] have shown that many other subordinators
admit similar representations. Is it possible to express the Gamma process as
an additive functional of reflecting Brownian motion, considered at the inverse
Brownian local time?

Professor S. Watanabe kindly informs us that he has shown that the
Gamma process is the inverse local time at 0 of a reflecting gap diffusion on
[0,∞) corresponding to some string (in the sense of M.G. Krĕın); but it is not
known if this string is strictly positive, so that the gap diffusion really is a
diffusion. It would be very interesting to know how this string looks like!
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