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Let X be a proper scheme over a field K. There are two ways of organizing
the points of X into equivalence classes using rational curves. One is the notion
of R-equivalence introduced by [Manin72]. Two points x1, x2 ∈ X(K) are called
directly R-equivalent if there is a morphism p : P1 → X with p(0:1) = x1 and
p(1:0) = x2. This generates an equivalence relation called R-equivalence. The
set of R-equivalence classes X(K)/R forms a set.

Closely related to it is rational equivalence. Here we allow pairs of mor-
phisms h : C → P1 and p : C → X and declare p∗(h−1(0:1)) and p∗(h−1(1:0))
to be rationally equivalent. Rational equivalence is sometimes hard to see
geometrically. The set of rational equivalence classes forms a group CH0(X).

Let S be the spectrum of a local Dedekind ring with residue field k and
quotient field K. Let XS → SpecS be a proper morphism, xK a closed point
of XK and xS its closure in XS . Then xS ∩ Xk is a zero cycle on Xk. This
defines a specialization map on zero cycles. It is easy to prove (see, for instance,
[Fulton84, 2.3]), that this descends to specialization maps

CH0(XK) → CH0(Xk) and XK(K)/R → Xk(k)/R.

In general there is very little that one can say about these maps.
If XS → SpecS is a family of curves, then the specialization maps are

neither surjective nor injective.
The only reasonable case when surjectivity holds is when XS is smooth

over S and S is Henselian. If this is assumed then injectivity holds only if
XS

∼= P1
S .
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690 János Kollár

The aim of this paper is to study higher dimensional cases where the spe-
cialization map is an isomorphism. The correct higher dimensional analogs of
rational curves are the separably rationally connected or SRC varieties. See
[Kollár01] for an introduction to their theory and [Kollár96, IV.3] for a more
detailed treatment. There are many equivalent conditions defining this notion.
The definition given below essentially says that two general points can be con-
nected by a rational curve. In positive characteristic we also have to be mindful
of some inseparability problems.

Definition 1. A smooth, proper variety X is called separably rationally
connected or SRC, if there is a variety U and a morphism F : U ×P1 → X such
that the induced map

F ( , (0:1)) × F ( , (1:0)) : U → X × X

is dominant and separable.

The main result is the following:

Theorem 2. Let S be the spectrum of a local, Henselian, Dedekind ring
with residue field k and quotient field K. Let XS → Spec S be a smooth proper
morphism. Assume that Xk is SRC. Then

(1) The specialization map on R-equivalence

XK(K)/R → Xk(k)/R is an isomorphism of sets.

(2) If k is perfect, the specialization map on the Chow group of zero cycles

CH0(XK) → CH0(Xk) is an isomorphism of groups.

If k is not perfect, we will get that CH0(XK) → CH0(Xk) is an isomor-
phism modulo p-torsion where p = char k. I do not know any example where
we do not have an isomorphism.

The second part of (2) has been known in case k is finite. The surface
case is in [Colliot-Thélène83]. For cubic hypersurfaces it is done in [Madore03],
the general case is treated in [Kollár-Szabó03]. When k is finite, both sides
are trivial. The first part has been known in case k is finite and sufficiently
large (depending on the dimension and degree of X under some projective
embedding), see [Kollár-Szabó03]. In all of these cases the idea is to prove that
the triviality of the Chow group or of R-equivalence over a finite field is shown
by some “nice” maps p : P1

k → Xk, and these can be lifted to XK .
In general, we have to deal with the lifting of arbitrary maps P1

k → Xk.
This is accomplished using an observation of [Gr-Ha-St03, 2.4].
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Specialization of Zero Cycles 691

A theory for lifting of families of torsors over finite group schemes was
developed in the papers [Moret-Bailly01, Moret-Bailly03]. Roughly speaking,
his method implies (2.1) for varieties of the form An/G, without assuming the
existence of a smooth compactification.

As an application of the method of the proof of (2) we obtain two further
results. The first is an upper semi continuity statement for the number of
R-equivalence classes in families of varieties over local fields (20):

Theorem 3. Let K be a local field and f : X → Y a smooth, projective
K-morphism whose fibers are SRC. Then

Y (K) � y �→ |Xy(K)/R| is upper semi continuous

in the p-adic topology (20).

Remark 4. It is quite likely that y �→ |Xy(K)/R| is actually a continuous
function (that is, locally constant). All varieties with a given reduction form
an open set, thus the continuity follows from (2) if every fiber Xy has a smooth
SRC reduction.

It is also likely that the analogously defined function y �→ |CH0
0(Xy)| is

also continuous.

The second application asserts that R-equivalence and direct R-equivalence
coincide over large fields (22). The precise assertion (23) is actually much
stronger.

The third part of the paper uses specialization to singular varieties to get
two types of examples of quartic hypersurfaces:

Example 5. For every n ≥ 5 there is a smooth quartic hypersurface
Hn ⊂ Pn+1 over Q(t) such that Hn is unirational (over Q(t)) and it has in-
finitely many R-equivalence classes.

The same example also has infinitely many R-equivalence classes over the
Laurent series field Q((t)) and even over its real closure.

By a theorem of Springer, if a smooth quadric hypersurface defined over
K has a point in an odd degree extension of K, then it has a point in K itself.
Similarly, it was conjectured by Cassels and Swinnerton-Dyer that if a smooth
cubic hypersurface of dimension ≥ 2 over K has a point in an extension of K

whose degree is not divisible by 3, then it has a point in K itself. Many cases
of this have been proved in [Coray76].

The next example shows that no similar result holds for quartics.
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692 János Kollár

Example 6. For every odd d and n 	 1 there is a smooth quartic
Hn

d ⊂ Pn+1 over K = Q(t) such that Hn
d has a point in a field extension of

degree d but it does not have a point in any field extension of smaller odd
degree.

§1. Deformations of Combs

Let XS → Spec S be a smooth morphism as in (2) and xK , yK ∈ XK(K)
points with specializations xk, yk ∈ Xk(k). Let Ck ⊂ Xk be a rational curve
showing that xk, yk are R-equivalent. (2.1) follows if every such Ck can be
lifted to a rational curve CS ⊂ XS passing through xK , yK . This is a defor-
mation theory problem with known obstructions in the first cohomology of the
normal bundle of Ck twisted by OCk

(−xk − yk) (if Ck is smooth). We run into
difficulties if this first cohomology group is not zero.

Following the method of [Ko-Mi-Mo92], we try to deal with this problem
by attaching auxiliary curves Ai to Ck and deform the resulting reducible curve
C∗

k := Ck ∪ A1 ∪ · · · ∪ Am.
It was observed in [Ko-Mi-Mo92] that for suitable Ai and large m the

deformation theory of C∗
k ⊂ X is better behaved than the deformation theory

of Ck itself. [Ko-Mi-Mo92] concentrated on the deformations of the morphism
C∗

k → X, in which case the obstructions never vanish.
Recently, [Gr-Ha-St03] proved that if we look at a suitable Hilbert scheme

instead, then obstructions vanish for general choices of the Ai. For arithmetic
applications this is a crucial improvement.

Definition 7. Let C be a geometrically reduced projective curve over a
field k. A comb over C with n-teeth is a reduced projective curve C ∪ A1 ∪· · ·∪
An having n more irreducible components over k̄. C is called the handle. The
other n components, A1, . . . , An are smooth rational curves, disjoint from each
other and intersect C transversally in n distinct smooth points. The curves
A1, . . . , An may not be individually defined over k. A comb can be pictured as
below:

A1 A2 An−1 An

C

· · · · · ·

Comb with n-teeth
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Specialization of Zero Cycles 693

8 (Construction of combs). Let X be a smooth projective variety over
an algebraically closed field k̄. Let C ⊂ X be a reduced local complete intersec-
tion curve with ideal sheaf IC . (In our applications, C will have only nodes.)
Let NC := Hom(IC/I2

C ,OC) denote the normal bundle.
The tangent space of the Hilbert scheme of X at [C] is H0(C, NC) and the

obstructions lie in H1(C, NC). Our aim is to create a comb C∗ with handle C

such that H1(C∗, NC∗).
To do this, assume that we have a collection of smooth rational curves

{Aw : w ∈ W} such that the following 3 conditions are satisfied:

(1) The normal bundle NAw
is semi positive for every w. (That is, it is a direct

sum of line bundles of nonnegative degrees.)

(2) Every Aw intersects C in a single point, and the intersection is transverse.
Let this point be p = pw, Lp,w ⊂ Tp,X the tangent line of Aw at p and L̄p,w

its image in the fiber Np,C of NC over p.

(3) There is a dense set of smooth points p ∈ C such that the lines

L̄p,w : p ∈ Aw span Np,C (as a vector space).

Remark 9. For an algebraically closed field, the collection of smooth
rational curves {Aw : w ∈ W} can be chosen to be an algebraic family. In the
applications to nonclosed fields, however, the collection {Aw : w ∈ W} will not
be an algebraic family, rather a subset of an algebraic family determined by
certain arithmetic conditions, see (13).

In practice, the first condition is usually easy to satisfy. If F : W ×P1 → X

is a dominant and separable morphism then F ∗TX is semi positive on the
general P1

w and so is the relative normal sheaf F ∗TX/TP1 . If F is an embedding
on the general P1

w, we can pass to an open set W 0 ⊂ W to ensure that (8.1)
holds.

(8.2) is also easy to achieve if dim X ≥ 3, see [Kollár96, II.3.]. We need
rational curves through a point with ample normal bundle. These exist an any
SRC variety.

The key condition is (8.3). This can be satisfied in two important cases.
First, if X is SRC. Indeed, in this case for every p ∈ X and every tangent

direction v ∈ TpX there is a rational curve f : P1 → X such that f(0:1) = p

and it has tangent direction v there (cf. [Kollár98, 5.2]).
Second, assume that there is a morphism h : X → B to a smooth curve B

whose general fibers are SRC. Let C ⊂ X be a curve such that h : C → B is
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694 János Kollár

separable. At a general point p ∈ C the fiber of the normal bundle Np,C can
be identified with TpXp where Xp denotes the fiber through p. The SRC case
now gives enough rational curves in Xp to satisfy (3). This is the case used in
[Gr-Ha-St03].

Assume now that we have X, C and the curves {Aw : w ∈ W} as in
(8.1–3). Pick wi ∈ W, i = 1, . . . , m such that the Awi

intersect C in distinct
smooth points. Then the union

C∗ = C(w1, . . . , wm) := C ∪ Aw1 ∪ · · · ∪ Awm

is a reduced curve which is a local complete intersection along C.

Lemma 10 [Gr-Ha-St03]. Let X be a smooth projective variety, C ⊂
X a geometrically reduced local complete intersection curve and {Aw : w ∈ W}
a collection of curves satisfying the conditions (8.1–3). Let M be any line bundle
on C.

Then there are w1, . . . , wm ∈ W such that the resulting curve C∗ =
C(w1, . . . , wm) satisfies the following three conditions:

(1) NC∗ |C is generated by global sections.

(2) H1(C, M ⊗ NC∗ |C) = 0.

(3) The above two conditions hold for any other C(w1, . . . , wm, . . . , wm+n) ob-
tained by adding more curves to C∗.

Proof. By Serre duality,

H1(C, M ⊗ NC∗ |C) is dual to Hom(M ⊗ ω−1
C , IC∗/I2

C∗ |C).

The key point is to understand how IC∗/I2
C∗ |C changes if we add a new curve

Awm+1 with intersection point p = pm+1. Set C∗(wm+1) = C(w1, . . . , wm+1).
Let L(p) ⊂ Np,C be the tangent line of Awm+1 with dual map qp : N∗

p,C → L(p)∗.
Let further rp : IC∗/I2

C∗ |C → N∗
p,C denote the restriction. We have an exact

sequence

0 → IC∗(wm+1)/I2
C∗(wm+1)

|C
rp→ IC∗/I2

C∗ |C
qp◦rp−→ L(p)∗ → 0.

Pick any
φ ∈ Hom(M ⊗ ω−1

C , IC∗/I2
C∗ |C).

There is an open set of points p ∈ C such that φ has rank one at p. Thus the
composition

rp ◦ φ : M ⊗ ω−1
C ⊗ k(p) → N∗

p,C
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Specialization of Zero Cycles 695

is an injection. By assumption (8.3), there is a curve Awm+1 such that the
induced map

qp ◦ rp ◦ φ : M ⊗ ω−1
C ⊗ k(p) → N∗

p,C → L(p)∗

is nonzero. Thus

φ /∈ Hom(M ⊗ ω−1
C , IC∗(wm+1)/I2

C∗(wm+1)
|C).

Hence by adding suitable curves Aws
we eventually achieve (10.2) and the

vanishing still holds by adding more points.
Global generation of NC∗ |C can be guaranteed by the vanishing of H1(C,

OC(−P ) ⊗ NC∗ |C) for all P , which in turn follows from the vanishing of the
single cohomology group H1(C, L−1 ⊗ NC∗ |C) where L is any line bundle of
degree ≥ 2g(C).

11 (Dealing with extra intersections). In all of our cases one can ar-
range that the Awi

are disjoint from each other. Then C∗ is a comb in X and
this is what we want.

In general we may have two curves, say Ai and Aj , intersecting at a point
x ∈ X\C. One can get around such extra intersections with one of the following
tricks.

First, we can replace X with a smooth but nonseparated scheme X ′ where
the point x is replaced by 2 points xi and xj . We can lift Ai to A′

i going
through xi and Aj to A′

j going through xj . This way we remove an intersection
point. The local deformation theory of the Hilbert scheme is the same on
nonseparated schemes by [Artin69], and this is all we need. The global theory
is more problematic but we do not use it.

Second, we can replace X with X ′ = X × P1. We then replace the curves
Aw by graphs of suitable isomorphisms in Aw × P1. We also have to add the
trivial rational curve {p} × P1 to our collection {Aw}.

If X itself is of the form Y × Pn for some n ≥ 1 then we can move curves
in X itself, so a further product with P1 is not needed.

Both of these methods are suitable for our current purposes.

Proposition 12 [Gr-Ha-St03]. Let X be a smooth projective variety,
C ⊂ X a geometrically reduced local complete intersection curve and {Aw : w ∈
W} a collection of curves satisfying the conditions (8.1–3). Let M be any line
bundle on C.

Then there are w1, . . . , wm ∈ W such that (after possibly passing to a
scheme X ′ as in (11)) the resulting comb C∗ = C(w1, . . . , wm) satisfies the
following three conditions:
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(1) NC∗ is generated by global sections.

(2) H1(C∗, M∗ ⊗ NC∗) = 0, where M∗ is the unique extension of M to C∗

which has degree 0 on the other components.

(3) The above two conditions hold for any other C(w1, . . . , wm, . . . , wm+n) ob-
tained by adding more curves to C∗.

Proof. Everything follows from (10) and the exact sequences

0 →
∑

i

NC∗ |Awi
⊗O(−pi) → NC∗ → NC∗ |C → 0

and
0 → NAwi

→ NC∗ |Awi
→ k → 0.

13 (Nonclosed fields). In our applications we work over a field k which
is not algebraically closed and we want to obtain a curve C∗ which is defined
over k. Assume that we have a solution C∗ = C(w1, . . . , wm) of (10) over k̄.
Let Aw1 , . . . , Aws

denote all the conjugates of the curves Aw1 , . . . , Awm
. Then

C∗∗ := C(w1, . . . , ws) is defined over k. Moreover, (10) applies if the curves
Aw1 , . . . , Aws

intersect C in distinct points.
This is a somewhat troublesome condition which is arithmetic in nature.

The problem is essentially the following:

Given C ⊂ X, find points p ∈ C and rational curves p ∈ A ⊂ X defined
over k(p). We also want k(p)/k to be separable.

It is clearly enough to consider this problem for irreducible curves.

Let C be an irreducible curve, Cgen ∈ C the generic point and v1, . . . , vn a
basis of the fiber of NC over Cgen. Let H(Cgen, vi) be an irreducible component
of the Hilbert scheme of smooth rational curves in X with ample normal bundle
intersecting C only at Cgen with tangent direction vi. Each H(Cgen, vi) is a
smooth variety over k(Cgen) = k(C) which can be extended to a k-variety

τi : H(C, vi) → C

which parametrizes smooth rational curves in X with ample normal bundle
intersecting C in a single point and whose tangent vector at that point is the
corresponding specialization of vi.
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We need to find points pj ∈ C such that each τ−1
i (pj) has a k(pj)-point.

Since τi is generically smooth, we can take curve sections Bi ⊂ H(C, vi)
such that τi : Bi → C is dominant and separable. Let

B ⊂ B1 ×C · · · ×C Bn

be an irreducible component with projection τ : B → C.

Lemma 14. Let k be a field and f : B → C a dominant morphism of
smooth curves over k. Then there is a dense set of points qi ∈ B such that
k(qi) = k(f(qi)) and k(qi)/k is separable.

Proof. Pick a point c ∈ C such that f is finite over c. Let h : f−1(c) → A1

be an embedding and extend it to a separable rational function h which is not
constant on any geometric irreducible component of B. (f, h) gives a morphism
C → C ′ ⊂ B × P1 which is birational onto its image.

Let u ∈ P1 be any point such that the second projection π2 : C ′ → P1 is
smooth over u. Then any q ∈ π−1

2 (u) has the required property.

Putting everything together, we obtain the following results about the
existence of “good” combs over arbitrary fields.

Theorem 15. Let X be a smooth, proper, SRC variety over a field k.
Let C be a geometrically reduced local complete intersection curve, S ⊂ C a
finite set of smooth points. Let g : C → X be a morphism and G : C ↪→ X ×Pn

an embedding lifting g.
Then there is a comb C∗ ⊂ X × Pn defined over k with handle G(C) such

that

(1) NC∗ is generated by global sections.

(2) H1(C∗,OC∗(−G(S)) ⊗ NC∗) = 0.

(3) C∗ is smooth at G(S).

Theorem 16. Let X be a smooth, proper, variety over a field k and
f : X → B a morphism to a smooth curve whose general fibers are SRC. Let
C be a geometrically reduced local complete intersection curve, S ⊂ C a finite
set of smooth points. Let g : C → X be a morphism such that f ◦ g : C → B is
separable and G : C ↪→ X × Pn an embedding lifting g.

Then there is a comb C∗ ⊂ X×Pn defined over k with handle G(C) whose
teeth are contained in fibers of f such that
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(1) NC∗ is generated by global sections.

(2) H1(C∗,OC∗(−G(S)) ⊗ NC∗) = 0.

(3) C∗ is smooth at G(S).

§2. Proof of the Main Theorem

The specialization map on zero cycles is surjective since every point in Xk

has a lifting to XK by the Hensel property. Thus it is enough to prove the
following 2 assertions:

(1) If the specializations of 2 points are directly R-equivalent, then the 2 points
are also R-equivalent, and

(2) If the specializations of 2 zero cycles are rationally equivalent, then the 2
zero cycles are also rationally equivalent.

17 (Proof of (2.1)). Let uK , vK ∈ XK(K) be 2 points with specializa-
tions uk, vk. If uk, vk are directly R-equivalent, then there is a morphism
f : P1

k → Xk such that f(0:1) = uk and f(1:0) = vk. (If uk = vk then we
choose the constant map.)

Consider the diagonal map

F : P1 → X × P1, p �→ (f(p), p).

Its image is a smooth rational curve C ⊂ X × P1 connecting u′
k := (uk, (0:1))

and v′k := (vk, (1:0)).
By (15) there is a comb C∗ defined over k such that C∗ is smooth at u′

k, v′k
and H1(C∗,OC∗(−u′

k − v′k) ⊗ NC∗) = 0.
Mostly for ease of reference, we replace X × P1 by its blow up ZS :=

B(XS × P1) along the 2 sections (uS , (0:1)) and (vS , (1:0)). Let Eu, Ev ⊂ Z

denote the exceptional divisors. Let HS → SpecS denote the relative Hilbert
scheme of one dimensional subschemes of ZS .

Let [C∗] ∈ HS be the point corresponding to (the birational transform of)
C∗. By the theory of Hilbert schemes (cf. [Kollár96, I.2.15]) H1(C∗,OC∗(−uk−
vk) ⊗ NC∗) = 0 implies that HS → SpecS is smooth at [C∗]. By the Hensel
property, there is a morphism σ : SpecS → HS such that σ(Spec k) = [C∗].
Thus σ(SpecK) corresponds to a reduced genus zero curve CK , defined over K

which has intersection number 1 with Eu and Ev. This implies that CK ∩ Eu

and CK ∩Ev are K-points of CK . The projection of CK to XK therefore shows
that uK and vK are directly R-equivalent.
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18 (Proof of (2.2)). This is done in 2 steps.

(1) First we prove that if 2 zero cycles Z1
K , Z2

K ∈ XK have the same special-
izations, then they are rationally equivalent.

(2) Then we prove that if a zero cycle Zk ∈ Xk is rationally equivalent to 0,
then it has a lifting ZK which is also rationally equivalent to 0.

In order to see (18.1), write

ZK := Z1
K − Z2

K =
∑

j

mj [Pj ]

as a sum of irreducible zero cycles. For a point p ∈ Xk let

ZK(p) =
(p)∑

j

mj [Pj ]

be the sum of those points whose specialization is p. It is enough to prove that
ZK(p) is rationally equivalent to 0 for every p.

The next argument follows a suggestion of Colliot-Thélène.
The specialization of ZK(p) is 0, thus

∑(p)
j mj deg[Pj ] = 0. Let P ∈ XK

be a lifting of p. It is then sufficient to prove that

[Pj ] −
deg[Pj ]
deg[P ]

[P ]

is rationally equivalent to 0 for every Pj specializing to p.
Take a base field extension from K to K(Pj). From (19) we see that

K(P ) ⊂ K(Pj) thus both Pj and P become K(Pj)-points which special-
ize to the same point of Xk(p). By (2.1) these two points are R-equivalent,
thus [Pj ] − [P ] ∈ CH0(XK(Pj)) is zero. Its push forward to XK is [Pj ] −
(deg[Pj ]/ deg[P ])[P ], which is thus also zero in CH0(XK).

The proof of (18.2) uses (16).
By assumption, there is a smooth curve and morphisms f : C → P1 and

g : C → Xk such that Zk = g∗(f−1(0:1)) − g∗(f−1(1:0)).
If f is not separable, then we can factor it as a separable map f1 : C → P1

composed with a purely inseparable map φ : P1 → P1 (this is always possible
for curves over a perfect field). This shows that

Zk = deg φ · [g∗(f−1
1 (0:1)) − g∗(f−1

1 (1:0))],

thus it is sufficient to consider the case when f is separable.
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Choose an embedding j : C ↪→ Pm and apply (16) to the morphism

X × Pm × P1 → P1 with C ′ := im(g × j × f).

There is a comb C∗ with handle C ′ such that C∗ has no teeth above the points
(1:0), (0:1) ∈ P1 and C∗ is unobstructed in the Hilbert scheme as in (17).
This gives a curve C∗

K ⊂ XK × Pm × P1 with projections F : C∗
K → P1

K and
G : C∗

K → XK . By our construction the degree of F : C∗ → P1 is the same as
the degree of f : C → P1, thus

ZK := G∗(F−1(0:1)) − G∗(F−1(1:0))

is a zero cycle on XK which is rationally equivalent to zero and whose special-
ization is Zk.

Lemma 19. Let (R, m) be a Henselian local ring.

(1) There is a one–to–one correspondence between finite étale R-algebras and
finite separable R/m-algebras.

(2) Let S be a finite, flat R-algebra such that S/
√

mS is separable over R/m.
Then there is a finite étale R-algebra S′ ⊂ S such that S/

√
mS ∼= S′/

√
mS′.

Proof. If (R, m) is complete, this is essentially the theory of Witt rings
as explained in [Serre62, Chap.II].

In the general case, for the first part see [Milne80, I.4.4]. To see the second
part, let S′ be the finite étale R-algebra corresponding to S/

√
mS. Consider

S′ ⊗R S. This is a finite, étale S-algebra and S is also Henselian by [Milne80,
I.4.3]. S/

√
mS is a direct summand of S/

√
mS⊗R/mS/

√
mS, thus by applying

the first part to S′⊗RS over S we obtain that S is a direct summand of S′⊗RS.
This gives the required embedding S′ ↪→ S.

§3. R-equivalence in Families

Definition 20. A local field K is the quotient field of a complete local
Dedekind ring with finite residue field. These are the finite extensions of the
p-adic fields Qp and the Laurent series fields Fq((t)) over finite fields Fq.

The valuation determined by the unique maximal ideal gives a locally
compact metric on Kn. We call this the p-adic metric (though for Fq((t)) the
t-adic metric would be a more appropriate name). If Z is a variety over K, its
K-points inherit a well defined topology from its affine pieces, called the p-adic
topology. Z(K) is locally compact and if Z is projective then Z(K) is compact.
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21 (Proof of (3)). The assertion is local on Y (K), so we may fix a point
0 ∈ Y (K) and prove upper semi continuity there. In the process we are allowed
to replace Y with any other (0 ∈ Y ′) → (0 ∈ Y ) which is étale at 0. (This can
be done since Y ′(K) → Y (K) is a local homeomorphism in the p-adic topology
by the inverse function theorem.)

The proof proceeds in 2 steps. First we find finitely many easy to han-
dle open subsets Wi ⊂ X0(K) such that each Wi is contained in a single
R-equivalence class and the Wi lift to nearby fibers Xy. We are done if the Wi

are precisely the R-equivalence classes.
If not, then there are finitely many other direct R-equivalences

Wi � ui ∼ uj ∈ Wj

between points of different open sets which generate the full R-equivalence
relation. We prove that each of these lifts to every fiber over a suitable p-adic
neighborhood of 0 ∈ Uij ⊂ Y (K). Thus over any point of the intersection ∩Uij

the number of R-equivalence classes is at most as big as over 0.
By [Kollár99], for any point x ∈ X0(K) there is a morphism gx : P1 → X0

over K such that

(1) gx(0:1) = x,

(2) gx(1:0) =: x′ �= x, and

(3) g∗xTX0(−2) is ample.

Consider the space of morphisms with universal map

u : Hom(P1, X0, (1:0) �→ x′) × P1 → X0.

By [Kollár96, II.3.5], there is a neighborhood

[gx] ∈ Vx,0 ⊂ Hom(P1, X0, (1:0) �→ x′)

such that the evaluation map

u(0:1) : Vx,0 → X0, given by v �→ u(v, (0:1))

is smooth. Smooth maps are open in the p-adic topology, hence

Wx,0 := u(0:1)(Vx,0(K)) ⊂ X0(K)

is p-adic open for every x. Since X0(K) is compact, finitely many of these cover
X0(K). Let these correspond to the points x1, . . . , xd and x′

1, . . . , x
′
d. Note that
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every point in Wxi,0 is directly R-equivalent to x′
i, thus in fact any two points

in Wxi,0 are R-equivalent.
After an étale base change we can assume that there are sections si : Y →

X such that si(0) = x′
i.

Look at the relative space of morphisms with universal map

u : HomY (P1, X, (1:0) × Y �→ si(Y )) × P1 → X.

As before, for every i there are neighborhoods

[gxi
] ∈ Vxi

⊂ HomY (P1, X, (1:0) × Y �→ si(Y ))

such that the evaluation map

u : Vxi
→ X, given by v �→ u(v, (0:1))

is smooth in every fiber and Vxi
∩ HomY (P1, X, (1:0) × Y �→ x′

i) = Vxi,0.
Set Wxi

:= u(Vxi
(K)) ⊂ X(K). For every y, the intersection Wxi

∩Xy(K)
is a p-adic open set and every point of it is directly equivalent to si(y). Thus
Wxi

∩ Xy(K) is contained in a single R-equivalence class. By construction
∪iWxi

⊃ X0(K), hence there is a p-adic neighborhood 0 ∈ U1 ⊂ Y (K) such
that

∪iWxi
⊃ Xy(K) for every y ∈ U1.

This accomplishes the first part of the proof.
Let now h : P1 → X0 be any morphism and set u := h(0:1) and v := h(1:0).

After an étale base change we can assume that there are sections σu, σv : Y → X

such that σu(0) = u and σv(0) = v.
Let Zu,v,n denote the blow up of X × Pn along

σu(Y ) × (0: · · · :0:1) ∪ σv(Y ) × (1:0: · · · :0),

and Eu, Ev ⊂ Zu,v,n the exceptional divisors. As in (17) there is an n ≥ 1
and a genus 0 comb C∗ ⊂ Zu,v,n such that C∗ intersects the central fibers
of Eu, Ev in a single point transversally and that [C∗] is a smooth point of
the relative Hilbert scheme Hilb(Zu,v,n/Y ). As before, this implies that the
points σu(y), σv(y) ∈ Xy(K) are R-equivalent for every y in a suitable p-adic
neighborhood of 0.

This proves the second part and thereby also (3).
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§4. R-equivalence over Large Fields

The difference between R-equivalence and direct R-equivalence is a fre-
quent source of technical problems. The aim of this section is to prove that
these two notions coincide over large fields. A similar result for torsors over
finite group schemes is proved in [Moret-Bailly03].

Definition 22. A field K is called large if every K-variety with a smooth
K-point has a dense set of K-points.

The best known examples are local fields and infinite algebraic extensions
of finite fields.

Theorem 23. Let K be a large field and X a smooth, projective, SRC
variety over K with dimX ≥ 3. For any set of points x1, . . . , xn ∈ X(K) the
following two assertions are equivalent:

(1) There is a smooth rational curve C ⊂ X containing all the points xi such
that TX ⊗OC(−n) is ample.

(2) Any two of the points are R-equivalent.

Proof. It is clear that (23.1) implies (23.2), the interesting part is the
converse.

Let us first study the situation for two directly R-equivalent points x, y ∈
X(K). The direct R-equivalence is given by some morphism f : P1 → X

with f(0:1) = x, f(1:0) = y. Consider the comb C∗ ⊂ X × Pn constructed in
(15). As in (17) we blow up the points corresponding to x, y and look at the
irreducible component H(C∗) of the Hilbert scheme of Bxy(X×Pn) containing
the birational transform of C∗. By general results on the Hilbert scheme (see,
for instance, [Araujo-Kollár03, 37]) [C∗] is a smooth K-point of H(C∗) and a
general point of H(C∗) corresponds to a smooth rational curve with nef normal
bundle. Since K is a large field, K-points are dense in H(C∗), hence there is
a smooth rational curve A ⊂ Bxy(X × Pn) defined over K with nef normal
bundle. A intersects each exceptional divisor in a single point, so A ∼= P1. Let
g : P1 ∼= A → X be the projection. Undoing the 2 blow ups twists the normal
bundle by O(2), thus, after suitable reparametrization, g(0:1) = x, g(1:0) = y

and g∗TX is ample.
This seems a relatively small advance, but the deformation theory of g is

much better than for f .
Assume now that we have 3 points x, y, z and x, y and y, z are directly

R-equivalent. By the above arguments, these R-equivalences can be realized by
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morphisms g, h : P1 → X such that g(0:1) = x, g(1:0) = y, h(0:1) = y, h(1:0) =
z and g∗TX , h∗TX are ample. The gluing technique (cf. [Kollár96, II.7] or
[Araujo-Kollár03, 17]) now implies that there is a K-morphism fxz : P1 → X

such that fxz(0:1) = x, fxz(1:0) = y and f∗
xzTX is ample. By iterating this

procedure we obtain that if two points x, y ∈ X(K) are R-equivalent then
there is a K-morphism fxy : P1 → X such that fxy(0:1) = x, fxy(1:0) = y and
f∗

xyTX is ample.
Given our points x1, . . . , xn ∈ X(K) choose another point y which is R-

equivalent to them. (We have at least one rational curve in X through any
point, so there are infinitely many points in every R-equivalence class.) There
are K-morphisms fi : P1 → X such that fi(0:1) = xi, fi(1:0) = y and f∗

i TX is
ample.

We can now proceed as in [Araujo-Kollár03, 43]. Out of the morphisms fi

we assemble a comb C = C0∪· · ·∪Cn with Ci
∼= P1 and a morphism F : C → X

such that F maps C0 to y and F |Ci
= fi. In [Araujo-Kollár03, 43] we only

assumed that the bundles f∗
i TX are nef, and here they are even ample. By

[Araujo-Kollár03, 42] this implies that deformations of (C, F ) give morphisms
f : P1 → X passing through all the points xi and such that f∗TX(−n) is ample.

If dimX ≥ 3 then we can even find such an f which is an embedding by
[Kollár96, II.3.14].

§5. R-equivalence on Quartics

It is conjectured that if K is finitely generated over Q and X is a K-variety
then CH0(X) is finitely generated. This would imply that if X is also SRC then
CH0(X) is Z + (finite group). (See [Colliot-Thélène95] for an overview of the
various conjectures and results along these lines.)

This suggests that under similar conditions, X(K)/R might be finite. The
aim of the next example is to prove that this is not so, at least over fields of
transcendence degree at least 1. It is still possible that if K is a number field
and X is rationally connected then X(K)/R is finite. This is open even for
surfaces.

Example 24. Let Y/Q be any smooth variety. By an observation of
[Mumford70], there is an embedding Y ⊂ Pn such that Y is defined by quadratic
equations

Y := (q1 = · · · = qm = 0)

and Y is contained in a smooth quartic hypersurface (g = 0). Consider the
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hypersurface

XQ[t] := (q2
1 + · · · + q2

m + tg = 0) ⊂ Pn
Spec Q[t].

XQ[t] is a quartic hypersurface. The generic fiber XQ(t) is smooth and the
special fiber is a singular quartic

XQ = (q2
1 + · · · + q2

m = 0).

By our construction, the real points of XQ coincide with the real points of Y ,
thus the same holds for Q-points:

XQ(Q) = Y (Q).

Claim 25. There is a surjective specialization map

XQ(t)(Q(t))/R � Y (Q)/R.

Proof. The specialization of a Q(t)-point of XQ(t) is a Q-point of XQ, but
these are all in Y (Q). Conversely, if (a0 : · · · : an) is a Q-point of Y (Q) then
this also gives a point of XQ[t] since both g and the qi vanish on Y . Thus we
have a surjective specialization map

XQ(t)(Q(t))/R � XQ(Q)/R.

The injection Y ↪→ XQ gives a map

Y (Q)/R → XQ(Q)/R

which is surjective. In order to establish our claim, we still need to establish
that two Q-points of Y are R-equivalent in XQ iff they are R-equivalent in Y .

To see this, let h : P1 → XQ be any morphism. Q-points of P1 are Zariski
dense, thus h(P1) is contained in the Zariski closure of XQ(Q). This is, however,
contained in Y . Thus any chain of rational curves in XQ is entirely inside Y .

26 (Proof of (5)). With the above notation, let us consider the case
when Y = E ∪ Z is the disjoint union of an elliptic curve over Q and an-
other variety Z. There are no non-constant maps P1 → E, thus the above
construction gives a quartic hypersurface H := XQ(t) with a surjection

XQ(t)(Q(t))/R � E(Q) + Z(Q)/R.

If we choose E to have infinitely many Q-points then XQ(t) has infinitely many
R-equivalence classes.
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In order to get a unirational example, choose any elliptic curve over Q with
infinitely many Q-points. We embed E ↪→ Pm by any complete linear system
of degree m + 1 ≥ 4. Then E is an intersection of quadrics. (For m = 3 it is a
complete intersection of 2 quadrics, this case is enough for us.) Let x0, . . . , xm

be coordinates on Pm and qr = 0 the equations of E.
Consider now Pm+s+1 with coordinates x0, . . . , xm, y0, . . . , ys and the equa-

tions qr(x0, . . . , xm) and xiyj = 0 for every i, j. These equations define a scheme
Y with 2 irreducible components. One is E embedded in the linear space (y0 =
· · · = ys = 0) and the other is the linear space L = (x0 = · · · = xm = 0) ∼= Ps.
Y = E∪L is an intersection of quadrics and it is contained in a smooth quartic
if s ≤ m.

We can construct XQ(t) ⊂ Pm+s+1 as above. XQ(t) has infinitely many
R-equivalence classes and it contains a linear space of dimension s.

Any smooth quartic of dimension at least 3 is Fano and rationally con-
nected. Unirationality of quartics containing a 2-plane is outlined in [Kollár96,
V.5.18]. This gives a degree 6 map Pm+s ��� XQ(t).

Thus for every n ≥ 5 we obtain a unirational quartic of dimension n with
infinitely many R-equivalence classes.

The Chow group of this example does not seem to be very interesting.
Every degree zero 0-cycle is 6-torsion and we only get a surjection from CH0

0(H)
to a torsion quotient of E(Q) and the latter is finite. The relevant quotient is
probably E(Q)/2E(Q).

Remark 27. One can get similar examples where X is a complete inter-
section of 3 quadrics. Indeed, start with 2 quadrics in 4 variables q1(x0, . . . , x4),
q2(x0, . . . , x4) whose intersection is a smooth elliptic curve E ⊂ P3

Q. Let Qi for
i = 1, 2, 3 be quadrics in the variables x0, . . . , xn such that Q1 = Q2 = Q3 is
smooth and contains E. Consider

XQ[t] := (q1 + tQ1 = q2 + tQ2 = x2
5 + · · ·x2

n + tQ3 = 0) ⊂ Pn
Q[t].

As before we obtain that there are infinitely many R-equivalence classes on
XQ(t) if E has infinitely many Q-points.

28 (Proof of (6)). Let k/Q be a field extension of degree d. Construct
a quartic Xd over Q(t) using Y = Spec k as in (24). Xd has a point over k(t)
and deg k(t)/Q(t) = d.

Assume that Xd has a point P over a field extension L′/Q(t) of odd degree
d′. Specialize this point to a zero cycle

∑
mi[pi] of degree d′ on Yd. One of the
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pi, say p1, has odd degree. p1 �∈ XQ \ YQ since otherwise we would obtain a
point of the quadric u2

1 + · · · + u2
m = 0 over an odd degree extension. Thus p1

is contained in Y = Spec k, hence its degree is divisible by d. Thus d′ ≥ d.
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