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— The Case of Noumi-Yamada Systems† —

By
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Abstract

As the first step toward the exact WKB analysis for higher-order Painlevé equa-
tions, we study the Stokes geometry of the Noumi-Yamada system. It is shown that
there are intriguing relations, similar to those for traditional Painlevé equations, be-
tween the Stokes geometry of the Noumi-Yamada system and that of its underlying
Lax pair.

§1. Introduction

In a series of papers [KT1], [AKT], [KT2] (cf. [T1] also) we develop the
exact WKB analysis for Painlevé equations with a large parameter. Among the
results obtained in this series of papers the most important one is the follow-
ing: There exist intriguing relations between the Stokes geometry of Painlevé
equations and that of the underlying linear equations and, making full use of
these geometric relations, one can prove that each two parameter solution of
the J-th Painlevé equation (PJ) (J = I, II, . . . , VI) can be locally transformed
to a solution of the first Painlevé equation (PI) near its simple turning point.
In this paper and series of our forthcoming articles we want to discuss the
generalization of the exact WKB analysis to higher-order Painlevé equations.
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710 Yoshitsugu Takei

Let us first explain the general formulation of the problem. Although
single differential equations were used as underlying linear equations in [KT1]
etc., we use matrix form of equations here. We thus start with the following
N × N system of (formal) linear ordinary differential equations with a large
parameter η:

∂

∂x
ψ = ηAψ, A = A(x, t, u; η) =

∞∑
k=0

η−kAk(x, t, u),

∂

∂t
ψ = ηBψ, B = B(x, t, u; η) =

∞∑
k=0

η−kBk(x, t, u),
(1.1)

where x denotes an independent variable, t a deformation parameter, ψ a
vector-valued unknown function, and u = {uj}j∈J a tuple of parameters with
the index set J . That is, we consider a system of first-order linear ordinary
differential equations in the x variable (i.e., the first equation of (1.1)) whose
deformation in the t direction is governed also by a system of first-order dif-
ferential equations (the second equation of (1.1)) of the same kind. We now
assume that the compatibility condition

∂A

∂t
− ∂B

∂x
+ η(AB − BA) = 0(1.2)

of (1.1) is satisfied so that (1.1) may describe an isomonodromic deformation of
its first member (i.e., the equation in the x variable). In particular, what we are
interested in is the case where the compatibility condition (1.2) is equivalent to
(a system of) nonlinear differential equations for the parameters u = {uj}j∈J

containing the large parameter η:

Fl(t, uj , . . . , dmuj/dtm; η) = 0 (l ∈ L).(1.3)

As is shown in [JMU], all traditional Painlevé equations appear in this context
and hence we call (1.3) a (higher-order) Painlevé equation (or, Painlevé type
equation) and (1.1) its underlying Lax pair. The “exact WKB analysis for
higher-order Painlevé equations” aims at analyzing the (global) behavior of
solutions of a Painlevé type equation (1.3) with the help of the exact WKB
analysis for its underlying Lax pair (1.1).

In this paper, as the first step of the research in this direction, we study the
Stokes geometry of an example of higher-order Painlevé equations proposed by
Noumi and Yamada ([NY1], [NY2]). The Noumi-Yamada systems, denoted by
(NY )l (l = 2, 3, 4, . . . ) in what follows, are discovered by Noumi and Yamada
through the study of the symmetry of Painlevé equations and possess the affine
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Weyl group symmetry of type A
(1)
l . Their explicit form is given as follows: In

the case of type A
(1)
2m (i.e., when l = 2m),

duj

dt
= η

[
uj(uj+1 − uj+2 + · · · − uj+2m) + αj

]
(NY )2m

(j = 0, 1, . . . , 2m) where αj are complex parameters satisfying

α0 + · · · + α2m = η−1(1.4)

and the independent variable t and the unknown functions uj are normalized
so that

u0 + · · · + u2m = t(1.5)

may be satisfied. On the other hand, in the case of type A
(1)
2m+1 (i.e., when

l = 2m + 1),

t

2
duj

dt
= η

[
uj

( ∑
1≤r≤s≤m

uj−1+2ruj+2s −
∑

1≤r≤s≤m

uj+2ruj+1+2s

)
+

t

2
αj

](NY )2m+1

(j = 0, 1, . . . , 2m+1) where, instead of (1.4) and (1.5), we assume the following
in this case:

α0 + α2 + · · · + α2m = α1 + α3 + · · · + α2m+1 = η−1/2,(1.6)

u0 + u2 + · · · + u2m = u1 + u3 + · · · + u2m+1 = t/2.(1.7)

(In both cases we also assume that αj and uj are cyclic with respect to the index
j with the cycle N = l + 1.) These systems (NY )l describe the compatibility
condition of the following Lax pair of the size N × N (N = l + 1):

∂

∂x
ψ = η Aψ,(1.8)

∂

∂t
ψ = η B ψ,(1.9)

where

A = − 1
x


ε1 u1 1

. . . . . . . . .
εN−2 uN−2 1

x εN−1 uN−1

xu0 x εN

(1.10)
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and

B =


q1 −1

q2 −1
. . . . . .

qN−1 −1
−x qN

 .(1.11)

Here εj are parameters determined by the relations αj = εj − εj+1 + η−1δj,0

and ε1 + · · · + εN = 0 (δj,k denotes Kronecker’s symbol), and qj = qj(t) are
functions of t satisfying qj+2 − qj = uj − uj+1 and q1 + · · ·+ qN = −t/2. More
explicitly, we take qj as

qj = uj+1 + uj+3 + · · · + uj+2m−1 −
t

2
(1.12)

=−1
2
(uj − uj+1 + uj+2 − · · · + uj+2m)

in the case of l = 2m, and as

qj =
2
t

∑
1≤r≤s≤m

uj−1+2ruj+2s −
t

4
(1.13)

=−1
t

 ∑
r=0 or 0≤s<r≤m

uj−1+2ruj+2s −
∑

1≤r≤s≤m

uj−1+2ruj+2s


in the case of l = 2m + 1. Note that a large parameter η has been already
introduced into our nonlinear equation (NY )l together with its underlying Lax
pair (1.8) and (1.9) so that we may develop the WKB analysis for them. (If we
put η = 1, the original Noumi-Yamada system and its underlying Lax pair are
obtained. We have introduced a large parameter into them by an appropriate
scaling of the variables.) It is well-known that the first member (NL)2 and
the second member (NL)3 of (NY )l are equivalent to the traditional Painlevé
equations (PIV) and (PV) respectively. In this sense the Noumi-Yamada sys-
tems can be regarded as higher-order analogue of the fourth and fifth Painlevé
equations.

The purpose of this paper is to show that the relations of the Stokes ge-
ometries similar to those for traditional Painlevé equations also hold for the
Noumi-Yamada system (NY )l and its underlying Lax pair (1.8) and (1.9).
The same problem for other examples of higher-order Painlevé equations ((PI)
and (PII) hierarchies) will be discussed in [KKNT].
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Now the plan of this paper is as follows: We give the precise formulation
of our main theorems (i.e., the relations of the Stokes geometries) in Section
2. The proof of the main theorems will be done in the subsequent two sections
(Sections 3 and 4). Finally in Section 5 we make concluding remarks on some
open problems of the exact WKB analysis for higher-order Painlevé equations.

§2. Main Results

Our equation (NY )l contains the large parameter η. Using this structure,
we first construct a formal solution of (NY )l in the following manner: We
substitute the formal power series expansion (in η−1) uj = uj,0(t)+η−1uj,1(t)+
· · · (0 ≤ j ≤ l) of unknown functions into the equation and compare like powers
of η. Then we obtain

Vj(u0,0, u1,0, . . . , ul,0) = 0 (j = 0, . . . , l)(2.1)

and

∂(V0, . . . , Vl)
∂(u0, . . . , ul)

∣∣∣∣∣
uj=uj,0

Uk = Fk (k = 1, 2, . . . ).(2.2)

Here Uk denotes t(u0,k, u1,k, . . . , ul,k), Fk is an (l + 1)-vector whose entry is a
(recursively determined) differential polynomial of {uj,0, uj,1, . . . , uj,k−1}0≤j≤l,
and Vj denotes a polynomial of (u0, . . . , ul) defined by

Vj = uj(uj+1 − uj+2 + · · · − uj+2m) + αj(2.3)

in the case of l = 2m and by

Vj = uj

( ∑
1≤r≤s≤m

uj−1+2ruj+2s −
∑

1≤r≤s≤m

uj+2ruj+1+2s

)
+

t

2
αj(2.4)

in the case of l = 2m+1 respectively. Thus for each solution (û0,0, û1,0, . . . , ûl,0)
of the algebraic equation (2.1) we can obtain a (multi-valued) formal solution

ûj = ûj(t, η) = ûj,0(t) + η−1ûj,1(t) + · · ·(2.5)

of (NY )l outside the set{
t ∈ C ; ∂(V0, . . . , Vl)/∂(u0, . . . , ul)

∣∣∣∣
uj=ûj,0(t)

= 0

}
.(2.6)

The formal solution û = {ûj} is often called a “0-parameter solution”.
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Remark. The system of algebraic equations (2.1) is expected to be ‘reg-
ular’, that is, (2.1) is expected to have (a finite number of) solutions for a
generically given t. We have confirmed this for l = 2, 3, 4, 5 by eliminating
variables and computing the resultant of (2.1) explicitly. It is, however, still
an open problem to prove it for any l. In what follows we use the 0-parameter
solution û to define the Stokes geometry of (NY )l and its underlying Lax pair,
assuming the existence of û, i.e., the ‘regularity’ of (2.1).

Here let us recall the definition of the Stokes geometry of a system of
first-order linear ordinary differential equations.

Definition 2.1. (i) For a system of linear differential equations

d

dx
ψ = ηAψ, A = A(x, η) = A0(x) + η−1A1(x) + · · · ,(2.7)

we call a zero of the discriminant of the characteristic equation of A0(x) a
turning point of (2.7). That is, x = x0 is a turning point if and only if there
exist two eigenvalues λn(x) and λn′(x) of A0(x) which merge at x = x0. In
particular, a simple (resp. double) zero of the discriminant is called a simple
(resp. double) turning point.
(ii) We call a (real one-dimensional) curve defined by the following relation
(2.8) a Stokes curve of (2.7):

Im
∫ x

x0

(λn(x) − λn′(x))dx = 0,(2.8)

where λn(x) and λn′(x) are two eigenvalues of A0(x) which merge at a turning
point x = x0.

We then define the Stokes geometry of the Noumi-Yamada system (NY )l by
using the 0-parameter solution as follows:

Definition 2.2. A turning point (resp. Stokes curve) of (NY )l is, by
definition, a turning point (resp. Stokes curve) of the linearized equation (i.e.,
the first variational equation) of (NY )l at a 0-parameter solution û = {ûj}.

Note that the linearized equation of (NY )l at û can be obtained by setting
uj = ûj + ∆uj in (NY )l and by taking its linear part in {∆uj}. Since the
equation thus obtained is a system of first-order linear differential equations (in
the variable t) with the unknown function ∆u = t(∆u0, . . . , ∆ul), its Stokes
geometry is defined by Definition 2.1 (with replacing the variable x there by t).
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Substituting the 0-parameter solution (2.5) into the coefficients of the un-
derlying Lax pair (1.8) and (1.9), we obtain the Lax pair

∂

∂x
ψ = ηAψ, A = A(x, t; η) = A0(x, t) + η−1A1(x, t) + · · · ,(2.9)

∂

∂t
ψ = ηBψ, B = B(x, t; η) = B0(x, t) + η−1B1(x, t) + · · · ,(2.10)

the compatibility condition of which is satisfied as a formal power series of η−1.
On the other hand, let

∂

∂t
∆u = ηC∆u, C = C(t; η) = C0(t) + η−1C1(t) + · · ·(2.11)

be the linearized equation of (NY )l at û. Our problem is now to study the
relations between the Stokes geometry of (2.11) (that is, the Stokes geometry
of the Noumi-Yamada system (NY )l) and that of the underlying Lax pair
(2.9) and (2.10) (especially, that of the first equation (2.9) with viewing t as a
deformation parameter).

We first observe the following intriguing relations concerning the top order
part A0, B0 and C0.

Proposition 2.1. Let DA0(x, t) and DB0(x, t) denote the discriminant
of the characteristic equations det(λ − A0(x, t)) = 0 and det(µ − B0(x, t)) = 0
respectively. We also let D(x, t) denote

D(x, t) =
∏

1≤n<n′≤N

(µn + µn′),(2.12)

where µn are eigenvalues of B0. Then D(x, t) is a polynomial of degree at most
m in x (whose coefficients are analytic functions of t) and the following relation
holds:

DA0(x, t) = x−N(N−1)D(x, t)2DB0(x, t).(2.13)

Thus, zeroes of D(x, t) provide (generically) double turning points of the sys-
tem (2.9) and zeroes of DB0(x, t) (i.e., turning points of (2.10)) provide its
(generically) simple turning points.

Remark. The discriminant DB0(x, t) is a polynomial of degree l = N −1
in x, and hence there are l simple turning points. We can also verify that the
degree of D(x, t) is exactly equal to m in the case of l = 2m.
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Proposition 2.2. Letting λn(x, t) and µn(x, t) (1 ≤ n ≤ N) respec-
tively denote eigenvalues of A0 and B0, we find

∂

∂t
λn(x, t) =

∂

∂x
µn(x, t) (n = 1, . . . , N).(2.14)

Proposition 2.3. We decompose the characteristic equation of B0 into
the sum of its odd-degree part and even-degree part (with respect to µ):

det(µ − B0(x, t)) = (µ − q1,0) · · · (µ − qN,0) + (−1)N−1x(2.15)

= godd(µ, t) + geven(µ, x, t).

(Here qj,0 denotes the top order part of qj. Note that godd(µ, t) does not de-
pend on x in view of (2.15).) Then the following relation holds between the
characteristic equation of C0 and godd(µ, t):

det(ν − C0(t)) =


2Ngodd(µ, t)

∣∣∣∣
µ=ν/2

(when l = 2m),

2N (µg̃odd(µ, t))
∣∣∣∣
µ=ν/2

(when l = 2m + 1),
(2.16)

where N = l + 1 and g̃odd(µ, t) denotes the monic polynomial of µ obtained by
dividing godd(µ, t) by the coefficient of its top degree part. (Hence g̃odd = godd

holds in the case of l = 2m.)

The proof of Proposition 2.1 and that of Proposition 2.3 are respectively given
in Sections 3 and 4 below, while Proposition 2.2 is proved in [T2] in a more
general context by employing the method of diagonalization for the Lax pair
(2.9) and (2.10).

It follows from Proposition 2.3 that the characteristic equation det(ν −
C0(t)) = 0 of C0 has the form νf(ν2, t) (when l = 2m) or ν2f(ν2, t) (when
l = 2m + 1) with some polynomial f of degree m. Therefore there are two
kinds of turning points for the Noumi-Yamada system (NY )l: A turning point
where the degree 0 part of f vanishes (“a turning point of the first kind”), and
a turning point where the discriminant of f vanishes (“a turning point of the
second kind”). In what follows we impose the following genericity condition:

At every zero of DB0(x, t) just two of the eigenvalues of B0(x, t)
merge and the other eigenvalues are mutually distinct.

(2.17)

Note that the assumption (2.17) guarantees that all turning points of B0 are
simple as ∂(det(µ−B0))/∂x never vanishes. Then, under the assumption (2.17),
by using the above three propositions we can prove the following main theorems
for each kind of turning points.



�

�

�

�

�

�

�

�

WKB Analysis for Noumi-Yamada Systems 717

Theorem 2.1. Let t = t0 be a turning point of the first kind of the
Noumi-Yamada system (NY )l. Then the following holds.
(i) At t = t0 a double turning point (denoted by x2(t)) of (2.9) (i.e., a zero
of D(x, t) in (2.13)) merges with a simple turning point (denoted by x1(t)) of
(2.9) (i.e., a zero of DB0(x, t) in (2.13)). Furthermore, a pair of the eigenvalues
of A0(x, t) merging at x = x1(t) also merges at x = x2(t).
(ii) Let λ+ and λ− be the two eigenvalues of A0(x, t) merging at x = x1(t)
and x = x2(t), and let ν+ and ν− be the two eigenvalues of C0(t) satisfying
ν+(t0) = ν−(t0) = 0 at t = t0 and also ν− = −ν+. Then we find

1
2

∫ t

t0

(ν+ − ν−)dt =
∫ x2(t)

x1(t)

(λ+ − λ−)dx.(2.18)

In particular, if t lies on a Stokes curve of (NY )l emanating from t = t0,
a double turning point x = x2(t) and a simple turning point x = x1(t) are
connected by a Stokes curve of (2.9).

Theorem 2.2. Let t = t0 be a turning point of the second kind of the
Noumi-Yamada system (NY )l. Then the following holds.
(i) At t = t0 a double turning point (denoted by x1(t)) of (2.9) merges with
another double turning point (denoted by x2(t)) of (2.9). Furthermore, a pair
of the eigenvalues of A0(x, t) merges both at x = x1(t) and at x = x2(t).
(ii) Let λ+ and λ− be the two eigenvalues of A0(x, t) merging at x = x1(t) and
x = x2(t), and let ν±

k and ν±
k′ be the eigenvalues of C0(t) satisfying ν+

k (t0) =
ν+

k′(t0) at t = t0 together with ν−
k = −ν+

k . Then we find∫ t

t0

(ν+
k − ν+

k′)dt = −
∫ t

t0

(ν−
k − ν−

k′)dt =
∫ x2(t)

x1(t)

(λ+ − λ−)dx.(2.19)

In particular, if t lies on a Stokes curve of (NY )l emanating from t = t0, two
double turning points x = x1(t) and x = x2(t) are connected by a Stokes curve
of (2.9).

Theorems 2.1 and 2.2 describe the relations between the Stokes geometry of
the Noumi-Yamada system (NY )l and that of (the first member (2.9) of) its
underlying Lax pair. The relation described in Theorem 2.1 is completely
the same as that for the traditional Painlevé equations, while the relation in
Theorem 2.2 is new: A turning point of the second kind is a new kind of turning
points peculiar to higher-order nonlinear equations. The proof of Theorems 2.1
and 2.2 will be given in Section 3.
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§3. Proof of the Main Results

In this section we prove Proposition 2.1, Theorem 2.1 and Theorem 2.2.
The proof of Proposition 2.3 will be done in the subsequent section (Section
4) as it is lengthy. In Sections 3 and 4, to denote the top order part uj,0, qj,0,
etc., we use the abbreviated notation uj , qj , . . . as there will be no fear of
confusions.

§3.1. Proof of Proposition 2.1

Take a generic point (x, t) so that DB0(x, t) never vanishes in a neighbor-
hood of it, and let µn and Φn be an eigenvalue and a corresponding eigenvector
of B0 there respectively. In view of the explicit form (1.11) of B0, we may
assume Φn is of the form

Φn = t(1, (q1 − µn), (q1 − µn)(q2 − µn), . . . ).(3.1)

Now, since the Lax pair (2.9) and (2.10) in question satisfies the compatibility
condition (1.2), its top order parts A0 and B0 do commute. This implies that
Φn is simultaneously an eigenvector of A0, that is, A0Φn = λnΦn holds for some
eigenvalue λn of A0. In particular, looking at the first entry of the equation
A0Φn = λnΦn, we find

λn =− 1
x

[ε1 + u1(q1 − µn) + (q1 − µn)(q2 − µn)]

=− 1
x

[µ2
n − (q1 + q2 + u1)µn + q1q2 + u1q1 + ε1]

=− 1
x

[(
µn − q1 + q2 + u1

2

)2

− 1
4
(q1 + q2 + u1)2 + q1q2 + u1q1 + ε1

]
.

(3.2)

Here let us note the following

Lemma 3.1. Let wj denote qj + qj+1 + uj. Then wj = 0 for any j.

Proof. It follows from the relation qj+2 − qj = uj − uj+1 that wj = wj+1

holds. Hence wj is independent of j and consequently we have

Nwj = 2(q1 + · · · + qN ) + (u0 + · · · + uN−1) = 2(−t/2) + t = 0.(3.3)

That is, wj = 0.
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Lemma 3.1 entails

λn = − 1
x

(µ2
n + q1q2 + u1q1 + ε1).(3.4)

Since DA0 is, by the definition, the square of the difference product of the
eigenvalues of A0, (3.4) leads to

DA0(x, t) =
∏

1≤n<n′≤N

(λn − λn′)2(3.5)

= x−N(N−1)
∏

1≤n<n′≤N

(µn + µn′)2
∏

1≤n<n′≤N

(µn − µn′)2

= x−N(N−1)D(x, t)2DB0(x, t).

This completes the proof of (2.13).
It follows from the explicit form (2.15) of det(µ − B0) that the product

µ1 · · ·µN is a linear polynomial of x and that all the other elementary symmetric
polynomials of {µj} except the product are independent of x. Since D(x, t) is
a symmetric polynomial of {µj} of degree N(N − 1)/2, we can conclude that
D(x, t) is a polynomial of degree at most m in x. Thus all the assertions in
Proposition 2.1 are proved.

Remark. Using Sylvester’s expression∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 · · · aN

1 · · · · · · aN

· · · · · ·
1 a1 · · · aN

N · · · aN−1

· · · · · · · · ·
N · · · aN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.6)

for the resultant between a polynomial p = µN + a1µ
N−1 + · · · + aN and its

derivative p′ = NµN−1 + · · · + aN−1 with p = det(µ − B0), we readily find
that the discriminant DB0(x, t) is a polynomial of degree l = N − 1 in x.
Furthermore, in the case of l = 2m (i.e., N = 2m + 1), using this observation,
we can also verify that D(x, t) is a polynomial of degree exactly equal to m in
x in the following manner:

We compute the degree (in x) of xN(N−1)DA0(x, t). Since the discriminant
DA0(x, t) is a symmetric polynomial of the eigenvalues {λn} of A0 with degree
N(N − 1), xN(N−1)DA0(x, t) has an expression

xN(N−1)DA0(x, t) =
∑
α

cασα1
1 · · ·σαN

N ,(3.7)
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where σn denotes the n-th elementary symmetric polynomial of {xλn} and the
summation runs over a set of the indices satisfying α1 + 2α2 + · · · + NαN =
N(N − 1). Here an explicit computation of det(xλ − xA0) tells us that σN =
σ2m+1 is a polynomial of degree 2 in x, σn is a polynomial of degree at most 1
for m + 1 ≤ n ≤ 2m, and σn is independent of x for 1 ≤ n ≤ m. This implies
that the degree of xN(N−1)DA0(x, t) is at most αm+1 + · · · + α2m + 2α2m+1,
but this can be estimated as

1
2
(2m + 1)(αm+1 + · · · + α2m + 2α2m+1)(3.8)

=
(

m +
1
2

)
αm+1 + · · · +

(
m +

1
2

)
α2m + (2m + 1)α2m+1

≤ α1 + · · · + (m + 1)αm+1 + · · · + 2mα2m + (2m + 1)α2m+1

= 2m(2m + 1),

where the equality is attained only for α1 = · · · = α2m = 0, α2m+1 = 2m.
Hence xN(N−1)DA0(x, t) is of degree at most 4m and the term of degree 4m

(if it exists) comes only from σ2m
2m+1. On the other hand, using Sylvester’s

expression again for xN(N−1)DA0(x, t), we can confirm that the term σ2m
2m+1

does really exist in xN(N−1)DA0(x, t). Thus the degree of xN(N−1)DA0(x, t) is
exactly equal to 4m and this together with (2.13) and the above observation
leads to the conclusion that the degree of D(x, t) is exactly equal to m.

§3.2. Proof of Theorems 2.1 and 2.2

We first prove Theorem 2.1.
Let t = t0 be a turning point of the first kind. Then, thanks to Proposition

2.3, there exists ρ(t) satisfying

h(ρ(t), t) = 0 and ρ(t) → 0 (as t → t0),(3.9)

where h(ρ, t) is a polynomial of ρ with degree m (l = 2m or l = 2m+1) defined
by godd(µ, t) = µh(µ2, t). In what follows we denote

√
ρ(t) by µ(t).

Let us first define x2(t) by the equation

geven(µ(t), x2(t), t) = 0.(3.10)

Then we readily find that both µ(t) and −µ(t) become roots of det(µ−B0) = 0
at x = x2(t), that is, ±µ(t) are eigenvalues of B0 there. Hence, by the definition
(2.12), D(x, t) vanishes at x = x2(t). This means that x2(t) is a double turning
point of A0.
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Next, let µ±(x, t) be eigenvalues of B0 satisfying

µ±(x, t) = ±µ(t) at x = x2(t).(3.11)

It follows from (3.9) that µ±(x2(t), t) → 0 as t → t0, and hence x2(t) is also
a turning point of B0 at t = t0. Then, using the assumption (2.17), we can
find a simple turning point x = x1(t) of B0 (and hence of A0 as well) so that
it satisfies

x1(t) → x2(t0) as t → t0(3.12)

and

µ+(x, t) = µ−(x, t) at x = x1(t).(3.13)

Thus the two turning points x1(t) and x2(t) of A0 merge at t = t0 and, if we
let λ±(x, t) denote the eigenvalues of A0 corresponding to µ±(x, t) through the
relation (3.4), the eigenvalues λ±(x, t) of A0 merge both at x1(t) and at x2(t).
This proves the statement (i) of Theorem 2.1.

We now prove Theorem 2.1, (ii). Proposition 2.3 implies that the two
eigenvalues ν±(t) of C0 which tend to 0 as t → t0 are given by ±2µ(t). This
and (3.11) entail that

ν+(t) − ν−(t) = 2(µ+(x, t) − µ−(x, t))
∣∣∣∣
x=x2(t)

.(3.14)

Hence, noting that λ±(x, t) merge at xj(t) (j = 1, 2) and that µ±(x, t) merge
at x1(t), we have

d

dt

∫ x2(t)

x1(t)

(λ+ − λ−)dx =
∫ x2(t)

x1(t)

∂

∂t
(λ+ − λ−)dx(3.15)

=
∫ x2(t)

x1(t)

∂

∂x
(µ+ − µ−)dx

= (µ+ − µ−)
∣∣∣∣
x=x2(t)

=
1
2
(ν+ − ν−).

Here we used Proposition 2.2 to derive the second equality. Integrating (3.15)
from t0 to t, we then obtain (2.18). This completes the proof of Theorem 2.1.

Theorem 2.2 is proved in a way similar to that for Theorem 2.1.
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Let t = t0 be a turning point of the second kind. Then there exist ρj(t)
(j = 1, 2) satisfying

h(ρj(t), t) = 0 and ρ1(t) − ρ2(t) → 0 (as t → t0).(3.16)

Let µj(t) denote
√

ρj(t) and define xj(t) by

geven(µj(t), xj(t), t) = 0.(3.17)

Then by the same argument as above we find that ±µj(t) are eigenvalues of
B0 at x = xj(t) and that xj(t) is a double turning point of A0. Furthermore it
follows from (3.16) that x1(t) and x2(t) merge at t = t0.

If we denote µ1(t0)(= µ2(t0)) by µ̂ and x1(t0)(= x2(t0)) by x̂, we know
that godd(µ, t0) and geven(µ, x̂, t0) can be divided by (µ2 − µ̂2)2 and (µ2 − µ̂2)
respectively. Then at (x, t) = (x̂, t0) ±µ̂ become eigenvalues of B0 and they
are simple roots of det(µ−B0) = 0 due to the assumption (2.17). Hence there
exist eigenvalues µ±(x, t) of B0 which do not depend on j and satisfy

µ±(x, t) = ±µj(t) at x = xj(t).(3.18)

Letting λ±(x, t) denote the eigenvalues of A0 corresponding to µ±(x, t) through
the relation (3.4), we thus find that λ±(x, t) merge both at x1(t) and at x2(t).

Finally, Proposition 2.3 again implies that ±2µj(t) (j = 1, 2), denoted by
ν±

j (t) in what follows, give the eigenvalues ν±
k and ν±

k′ of C0(t) in Theorem 2.2,
(ii) and they satisfy the following relations:

ν+
2 (t) − ν+

1 (t) = 2(µ+(x2(t), t) − µ+(x1(t), t))(3.19)

=−2(µ−(x2(t), t) − µ−(x1(t), t)).

By an argument similar to that employed in deriving (3.15) we then obtain

d

dt

∫ x2(t)

x1(t)

(λ+ − λ−)dx(3.20)

=
∫ x2(t)

x1(t)

∂

∂t
(λ+ − λ−)dx

=
∫ x2(t)

x1(t)

∂

∂x
(µ+ − µ−)dx

= (µ+(x2(t), t) − µ−(x2(t), t)) − (µ+(x1(t), t) − µ−(x1(t), t))

= (µ+(x2(t), t) − µ+(x1(t), t))− (µ−(x2(t), t) − µ−(x1(t), t))

= ν+
2 (t) − ν+

1 (t).
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This completes the proof of Theorem 2.2.

§4. Proof of Proposition 2.3

§4.1. In the case of l = 2m

A straightforward computation shows that the top order part C0 of the
linearized equation of (NY )2m at û is of the form

C0 =


u0 + 2q0 u0 −u0 · · · −u0

−u1 u1 + 2q1 u1 · · · u1

u2 −u2 u2 + 2q2 · · · −u2

...
...

...
...

u2m −u2m u2m · · · u2m + 2q2m

 .(4.1)

(Here and in what follows every quantity (such as qj) with the index j running
over 1 ≤ j ≤ N is supposed to be cyclic with respect to j.) Taking the relations
uj + qj + qj+1 = 0 (cf. Lemma 3.1) into account, we then find that

(ν − C0)


1 1

1
. . .
. . . 1

1 1

 =


ν − 2q0 ν + 2q1

ν − 2q1
. . .
. . . ν + 2q2m

ν + 2q0 ν − 2q2m

 .(4.2)

Hence we obtain

2 det(ν − C0) =
∏
j

(ν − 2qj) +
∏
j

(ν + 2qj)(4.3)

= 22m+1

∏
j

(ν

2
− qj

)
−
∏
j

(
−ν

2
− qj

)
= 22m+2godd(µ, t)

∣∣∣∣
µ=ν/2

.

This completes the proof of (2.16) in the case of l = 2m.

§4.2. In the case of l = 2m + 1

Let us define C̃0 and θ respectively by C̃0 = tC0/2 and θ = tν/2 so that
the following holds:

det(ν − C0) = det(C0 − ν) =
(

2
t

)N

det(C̃0 − θ).(4.4)
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We also introduce new symbols pj and rj defined by

pj = −tqj =

 ∑
r=0 or 0≤s<r≤m

uj−1+2ruj+2s −
∑

1≤r≤s≤m

uj−1+2ruj+2s

 ,(4.5)

rj =
∑

1≤r≤s≤m

uj−1+2ruj+2s.

Note that the relation

pj + pj+1 = tuj(4.6)

immediately follows from Lemma 3.1. In the case of l = 2m + 1 (i.e., N =
l + 1 = 2m + 2) each entry of the matrix C̃0 = (Mi,k)0≤i,k≤2m+1 is then given
in terms of these symbols as follows:

Mi,i = ri − ri+1,

M2j,2l = u2j(u2j+1 + u2j+3 + · · · + u2l−1 − u2l+1 − · · · − u2j−1)

(for j �= l),

M2j,2l+1 = (1 − δl+1,j)u2j(u2l+2 + · · · + u2j−2)

− (1 − δl,j)u2j(u2j+2 + · · · + u2l),

M2j+1,2l = (1 − δl,j)u2j+1(u2l+1 + · · · + u2j−1)

− (1 − δl,j+1)u2j+1(u2j+3 + · · · + u2l−1),

M2j+1,2l+1 = u2j+1(u2j+2 + · · · + u2l − u2l+2 − · · · − u2j) (for j �= l),

(4.7)

(0 ≤ i ≤ 2m + 1, 0 ≤ j ≤ m, 0 ≤ l ≤ m).
Now we first transform the matrix C̃0 − θ in the following way:

T (C̃0 − θ)T−1,(4.8)

where

T =



1

. . .

1

1 0 1 · · · 0 1
0 1 0 · · · 1 1


.(4.9)
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The matrix (4.8) obtained by this transformation becomes of the form

∗ ∗

M (1)
...

...
∗ ∗

0 · · · 0 −θ 0
0 · · · 0 0 −θ


,(4.10)

where each entry of the (2m) × (2m) matrix M (1) is given as follows:

M
(1)
j,2l = 2(−1)j−1uj(u2l+1 + · · · + u2m−1) (for 0 ≤ j ≤ 2l − 1),

M
(1)
2l,2l = r2l − r2l+1 − u2l(u2l+1 + · · · + u2m−1 − u2m+1 − · · · − u2l−1) − θ

=−p2l + 2u2l(u2m+1 + · · · + u2l−1) − θ,

M
(1)
j,2l = 2(−1)juj(u2m+1 + · · · + u2l−1) (for 2l + 1 ≤ j ≤ 2m − 1),

M
(1)
j,2l+1 = 2(−1)juj(u2l+2 + · · · + u2m) (for 0 ≤ j ≤ 2l),

M
(1)
2l+1,2l+1 = r2l+1 − r2l+2 − u2l+1(u2l+2 + · · · + u2m − u0 − · · · − u2l) − θ

=−p2l+1 + 2u2l+1(u0 + · · · + u2l) − θ,

M
(1)
j,2l+1 = 2(−1)j−1uj(u0 + · · · + u2l) (for 2l + 2 ≤ j ≤ 2m − 1)

(4.11)

(0 ≤ l ≤ m − 1). Here det(C̃0 − θ) and det M (1) satisfy the following relation:

det(C̃0 − θ) = θ2 detM (1).(4.12)

Next we transform M (1) by using the following matrices:

M (2) def=


t 0

1

0
. . .

1




u2m+1 0

1

0
. . .

1

×(4.13)

×M (1)


u−1

2m+1 · · · ξ0,k · · ·

1

0
. . .

1




t/2 0

1

0
. . .

1


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with ξ0,k (1 ≤ k ≤ 2m − 1) being given by

ξ0,2l =−u−1
2m+1(u2m+1 + · · · + u2l−1),(4.14)

ξ0,2l+1 = u−1
2m+1(u0 + · · · + u2l),

(0 ≤ l ≤ m − 1). The equality (4.13) entails

det M (2) =
t2

2
det M (1),(4.15)

and a repeated use of the relation (4.6) verifies the following:

M (2) =



M
(2)
0,0 M

(2)
0,1 M

(2)
0,2 M

(2)
0,3 · · ·

−(p1 + p2) − (θ + p1) p1 + p2 −(p1 + p2) p1 + p2 · · ·
p2 + p3 −(θ + p2) p2 + p3 −(p2 + p3) · · ·

−(p3 + p4) −(θ + p3) p3 + p4 · · ·
... −(θ + p4) · · ·

. . .


,

(4.16)

where

M
(2)
0,0 =−(θ + p0)(p0 + · · · + p2m+1) + (p0 + p1)(p0 + p2m+1),(4.17)

M
(2)
0,2l = (θ + p0)(p2m+1 + p0 + · · · + p2l) − (p0 + p1)(p0 + p2m+1)

(for 1 ≤ l ≤ m − 1),

M
(2)
0,2l+1 =−(θ + p0)(p0 + p1 + · · · + p2l+1) + (p0 + p1)(p0 + p2m+1)

(for 0 ≤ l ≤ m − 1).

We further transform M (2) into

M (3) = M (2)



1 0
1 1

1
. . .
. . . 1

1




1
−1 1
1 1
...

. . .
−1 1




0 −1
1 0

1 0
. . . . . .

1 0

 .(4.18)

At this step we have

det M (3) = det M (2),(4.19)
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and the matrix M (3) thus obtained becomes

M (3) =



M
(3)
0,0 M

(3)
0,1 M

(3)
0,2 · · · · · · M

(3)
0,2m−1

−(θ + p1) −θ + p2

−(θ + p2) −θ + p3

−(θ + p3) −θ + p4

. . . . . .

−(θ + p2m−1) −θ + p2m



(4.20)

with

M
(3)
0,0 =−(p0 + p1)(θ − p2m+1),(4.21)

M
(3)
0,k = (p2m+1 + (−1)k+1pk+1)(θ + p0) (1 ≤ k ≤ 2m − 1).

Now let M (4) be a (2m + 2) × (2m + 2) matrix defined by



1 1
−(θ + p0) p0 + p1

−(θ + p1) −(θ − p2)
−(θ + p2) −(θ − p3)

. . . . . .
0 0 −(p2m+1+p2)−(p2m+1−p3) · · · −(θ−p2m+1)


.

(4.22)

Then by a straightforward computation we can readily confirm

det M (4) = det M (3).(4.23)

Finally, we transform M (4) as follows:

M (5) =


−1−1 · · · −1

1
. . .

1

×(4.24)

×



2θ

1

1

. . .

0 −1 0 · · · 1


M (4)



1 1
1

1
. . .

1
1 · · · 1 1


.
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Then

detM (5) = −2θ detM (4)(4.25)

holds and the matrix M (5) thus defined becomes

M (5) =


−(θ − p0) −(θ + p2m+1)
−(θ + p0) −(θ − p1)

−(θ + p1) −(θ − p2)
. . . . . .

−(θ + p2m) −(θ − p2m+1)

 .

(4.26)

The determinant of this matrix is readily computed and we obtain

det M (5) = (θ − p0) · · · (θ − p2m+1) − (θ + p0) · · · (θ + p2m+1).(4.27)

After these long computations, combining the seven equalities (4.4), (4.12),
(4.15), (4.19), (4.23), (4.25) and (4.27), and substituting pj = −tqj and θ =
tν/2 = tµ, we conclude

det(ν − C0)(4.28)

=
2N

t

[
µ ((µ − q0) · · · (µ − q2m+1) − (µ + q0) · · · (µ + q2m+1))

]∣∣∣∣
µ=ν/2

=
2N+1

t

[
µgodd(µ, t)

]∣∣∣∣
µ=ν/2

.

Since the coefficient of the top degree part of godd(µ, t) is equal to −(q1 + · · ·+
qN ) = t/2 in this case, this leads to

det(ν − C0) = 2Nµg̃odd(µ, t)
∣∣∣∣
µ=ν/2

.(4.29)

The proof of Proposition 2.3 is now completed at last.

§5. Remarks and Open Problems

As we have observed so far, the Stokes geometry of the Noumi-Yamada
system (NY )l is closely related to the Stokes geometry of its underlying Lax
pair. This relationship between the two Stokes geometries is based on the three
fundamental facts, i.e., Propositions 2.1, 2.2 and 2.3. We are now conjecturing
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that these three facts do hold (with due modifications) for a quite general
Lax pair (1.1). As a matter of fact, similar fundamental facts are confirmed
for the (PI) and (PII) hierarchies in [KKNT] (where the global aspect of the
Stokes geometry of higher-order Painlevé equations is also discussed) and, as
is discussed in [T2], Proposition 2.2 is proved in a general situation. (We can
also verify Proposition 2.1 in a sufficiently general situation.) However at the
present stage it seems difficult to establish Proposition 2.3, i.e., a “bridge”
between Painlevé type equations and their underlying Lax pair, in general. It
is one of the relevant problems to prove Proposition 2.3 in a general situation.

For traditional Painlevé equations the relations between the two Stokes
geometries play a crucially important role in constructing a local reduction to
the first Painlevé equation near a simple turning point. We thus believe that
the relations of the Stokes geometries established in this paper strongly support
the possibility of the exact WKB analysis for the Noumi-Yamada systems, or
more generally for higher-order Painlevé equations. Still, in order to develop the
WKB analysis for such nonlinear equations, there are many things to discuss.
In ending this article, we list up some open problems related to this subject.

1◦) How can one construct the general solutions (of WKB type), i.e., solutions
containing sufficiently many free parameters, of higher-order Painlevé equa-
tions?

2◦) As is proved in this paper, the configuration of the Stokes geometry of
the Noumi-Yamada system (NY )l near a simple turning point of the first
kind is the same as that of the first Painlevé equation (PI) near its unique
turning point t = 0. Then, is it possible to construct a local reduction of
(NY )l to (PI) near a simple turning point of the first kind?

3◦) What is the “normal form” for higher-order Painlevé equations near a turn-
ing point of the second kind?
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higher order Painlevé equations, RIMS Preprint, No. 1443, (2004).



�

�

�

�

�

�

�

�

730 Yoshitsugu Takei

[KT1] Kawai, T. and Takei, Y., WKB analysis of Painlevé transcendents with a large
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[NY2] , Symmetry in Painlevé equations, in: C. J. Howls, T. Kawai and Y. Takei

eds., Toward the Exact WKB Analysis of Differential Equations, Linear or Non-
Linear, Kyoto Univ. Press, (2000), 245-260.

[T1] Takei, Y., An explicit description of the connection formula for the first Painlevé
equation, in: C. J. Howls, T. Kawai and Y. Takei eds., Toward the Exact WKB
Analysis of Differential Equations, Linear or Non-Linear, Kyoto Univ. Press,
(2000), 271-296.

[T2] , On a double turning point problem for systems of linear ordinary differ-
ential equations, Preprint.


