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820 Shinichi Mochizuki

Introduction

The goal of the present manuscript is to consider the following question:

To what extent can the fundamental group of a Galois category
be constructed in a canonical fashion which is independent of a
choice of basepoint?

Put another way, we would like to consider the extent to which the elements
(considered, say, up to conjugation) of the fundamental group may be assigned
canonical names, or labels.

In §1, §2, we consider this issue from a very general point of view. That is
to say, we develop the general theory of “anabelioids” — i.e., “multi-Galois
categories” in the terminology of [SGA1] — with an eye to giving an answer
to this question. We use the new terminology “anabelioid”, partly because it
is shorter than “(multi-)Galois category”, and partly because we wish to em-
phasize that we would like to treat such objects from a fundamentally different
point of view — a point of view partially motivated by Grothendieck’s anabelian
philosophy (cf. [Groth]; Remark 1.1.4.1 below) — from the point of view taken
in [SGA1]: Namely, we would like to regard anabelioids as the primary geomet-
ric objects of interest, which themselves form a category [i.e., not as a category
containing as objects the primary geometric objects of interest].

Our main result in §1, §2, is Theorem 2.4.3, which states that:

When an anabelioid possesses a “faithful quasi-core” (cf. Definition
2.3.1), then its fundamental group may be constructed in a canonical
fashion as a profinite group.

The notion of a “quasi-core” is motivated partly by the notion of a “hyper-
bolic core” (cf. [Mzk3]) and partly by the “Motivating Example” given below.
The condition for a quasi-core states, roughly speaking, that a certain “forget-
ful functor” from a category of geometric objects equipped with some special
auxiliary structure to the category of the same geometric objects not equipped
with this auxiliary structure is, in fact, an equivalence. Indeed, this general
pattern of considering such forgetful functors which are, in fact, equivalences is
an important theme in the present manuscript (cf. Definition 2.3.1, as well as
Theorem 2.4.2). One elementary example of this sort of phenomenon — which
was, in fact, one of the main motivations for the introduction of the notion of
a “quasi-core” — is the following example from elementary complex analysis:
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Motivating Example: Metrics on Hyperbolic Riemann Surfaces.
A connected Riemann surface is called hyperbolic if its universal covering is
biholomorphic to the upper half plane. An arbitrary Riemann surface will
be called hyperbolic if every connected component of this Riemann surface is
hyperbolic. Let us write

Lochyp

for the category whose objects are hyperbolic Riemann surfaces and whose mor-
phisms are étale morphisms [i.e., holomorphic maps with everywhere nonvan-
ishing derivative]. If X ∈ Ob(Lochyp) is a object of Lochyp, then we shall refer
to the metric on its tangent bundle determined by the standard Poincaré met-
ric on the upper half plane [which is biholomorphic to the universal covering of
every connected component of X] as the canonical metric on X. If f : X → Y

is a morphism in Lochyp, then we shall say that this morphism f is integral if
the norm of its derivative [when measured with respect to the canonical metrics
on the tangent bundles of X, Y ] is ≤ 1. Let us write

Lochyp
int ⊆ Lochyp

for the subcategory whose objects are the objects of Lochyp and whose morphisms
are the integral morphisms of Lochyp. Then it follows from the “theory of the
Kobayashi hyperbolic metric” that the natural inclusion functor

Lochyp
int ↪→ Lochyp

is, in fact, an equivalence. At a more concrete level, one verifies easily that the
essential substantive fact that one needs to show this equivalence is the well-
known Schwarz lemma of elementary complex analysis [to the effect that any
holomorphic function φ : D → C on the open unit disc D in the complex plane
satisfying φ(0) = 0, |φ(z)| ≤ 1 (for all z ∈ D), necessarily satisfies |φ′(0)| ≤ 1].
This lemma of Schwarz in turn may be regarded as a formal consequence of the
well-known “maximum modulus principle” of elementary complex analysis.

From a category-theoretic point of view, the point of this example is that,
although the object of Lochyp determined by the upper half plane is by no
means a terminal object in Lochyp — i.e., a “core” (cf. the theory of [Mzk3]) —
the fact that the inclusion functor Lochyp

int ↪→ Lochyp is an equivalence serves to
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822 Shinichi Mochizuki

express, in a rigorous mathematical fashion, the sentiment that, in some sort of
“metric” sense, the upper half plane “almost serves as a core” for Lochyp. It is
this set of circumstances that led the author to the introduction of the notion
of a “quasi-core”.

This example also suggests an interesting relationship between the notions
of uniformization and of canonical labels for elements of the fundamental group:
Namely, the Koebe uniformization theorem for hyperbolic Riemann surfaces
gives rise to “canonical labels” (up to an ambiguity arising from some sort of
conjugation action) via 2 by 2 matrices since it induces an embedding of the
topological fundamental group of the Riemann surface into PSL2(R).

This leads us to the content of §3: In §3, we discuss the theory of §1, §2,
in the case of hyperbolic curves over p-adic and number fields. In this case, our
main result — Theorem 3.1.6 — states that:

If a non-proper hyperbolic curve over such a field is a “geometric
core” (i.e., a core as in [Mzk3]), then its associated anabelioid admits
a faithful quasi-core.

This allows us to assign “canonical names” to the elements of its arithmetic
fundamental group in a fashion reminiscent of the way in which the Koebe
uniformization theorem allows one to assign “canonical names” to the elements
of the topological fundamental group of a hyperbolic Riemann surface. This
main result is, in essence, a formal consequence of Theorem A of [Mzk6], and
may be regarded as an interpretation of the main result of [Mzk9], §2, via the
geometry of anabelioids.

§0. Notations and Conventions

Numbers:

We will denote by N the set of natural numbers, by which we mean the set
of integers n ≥ 0. A number field is defined to be a finite extension of the field
of rational numbers Q.

Topological Groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup. Let
us write

ZG(H) def= {g ∈ G | g · h = h · g, ∀ h ∈ H}
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for the centralizer of H in G;

NG(H) def= {g ∈ G | g · H · g−1 = H}

for the normalizer of H in G; and

CG(H) def=
{
g ∈ G | (g · H · g−1)

⋂
H has finite index in H, g · H · g−1

}
for the commensurator of H in G. Note that: (i) ZG(H), NG(H) and CG(H)
are subgroups of G; (ii) we have inclusions

H, ZG(H) ⊆ NG(H) ⊆ CG(H)

and (iii) H is normal in NG(H).

Note that ZG(H), NG(H) are always closed in G, while CG(H) is not
necessarily closed in G.

Indeed, one may construct such an example as follows: Let

M
def=

∏
N

Zp

endowed with the product topology (of the various copies of Zp equipped with
their usual topology). Thus, M is a Hausdorff topological group. For n ∈ N,
write Fn(M) ⊆ M for the sub-topological group given by the product of the
copies of Zp indexed by m ≥ n. Write AutF (M) for the set of automor-
phisms of the topological group M that preserve the filtration F ∗(M) on M .
If α ∈ AutF (M), then for every n ∈ N, α induces a continuous homomor-
phism αn : M/Fn(M) → M/Fn(M) which is clearly surjective, hence an iso-
morphism (since M/Fn(M) is profinite and topologically finitely generated —
cf. [FJ], Proposition 15.3). It thus follows that α induces an isomorphism
Fn(M) ∼→ Fn(M), hence that the inverse of α also lies in AutF (M). In partic-
ular, we conclude that AutF (M) is a group. Equip AutF (M) with the coarsest
topology for which all of the homomorphisms AutF (M) → Aut(M/Fn(M))
(where Aut(M/Fn(M)) ∼= GLn(Zp) is equipped with its usual topology) are
continuous. Note that relative to this topology, AutF (M) forms a Hausdorff
topological group. Now define G to be the semi-direct product of M with
AutF (M) (so G is a Hausdorff topological group), and H to be∏

n∈N

pn · Zp ⊆
∏
N

Zp = M
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(so H ⊆ G is a closed subgroup). Then CG(H) is not closed in G. For instance,
if one denotes by en ∈

∏
N Zp the vector with a 1 in the n-th place and zeroes

elsewhere, then the limit A∞ (where

A∞(en) def= en + en+1

for all n ∈ N) of the automorphisms Am ∈ CG(H) (where Am(en) def= en + en+1

if n ≤ m, Am(en) def= en if n > m) is not contained in CG(H).

Curves:

Suppose that g ≥ 0 is an integer. Then a family of curves of genus g

X → S

is defined to be a smooth, proper, geometrically connected morphism X → S

whose geometric fibers are curves of genus g.

Suppose that g, r ≥ 0 are integers such that 2g − 2 + r > 0. We shall
denote the moduli stack of r-pointed stable curves of genus g (where we as-
sume the points to be unordered) by Mg,r (cf. [DM], [Knud] for an exposition
of the theory of such curves; strictly speaking, [Knud] treats the finite étale
covering of Mg,r determined by ordering the marked points). The open sub-
stack Mg,r ⊆ Mg,r of smooth curves will be referred to as the moduli stack of
smooth r-pointed stable curves of genus g or, alternatively, as the moduli stack
of hyperbolic curves of type (g, r).

A family of hyperbolic curves of type (g, r)

X → S

is defined to be a morphism which factors X ↪→ Y → S as the composite of
an open immersion X ↪→ Y onto the complement Y \D of a relative divisor
D ⊆ Y which is finite étale over S of relative degree r, and a family Y → S of
curves of genus g. One checks easily that, if S is normal, then the pair (Y, D)
is unique up to canonical isomorphism. (Indeed, when S is the spectrum of a
field, this fact is well-known from the elementary theory of algebraic curves.
Thus, the asserted uniqueness follows formally from the normality of S and the
fact that Mg,r is a separated algebraic stack (cf. [DM], [Knud]).) We shall refer
to Y (respectively, D; D; D) as the compactification (respectively, divisor at
infinity; divisor of cusps; divisor of marked points) of X. A family of hyperbolic
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curves X → S is defined to be a morphism X → S such that the restriction
of this morphism to each connected component of S is a family of hyperbolic
curves of type (g, r) for some integers (g, r) as above.

Next, we would like to consider “orbicurves”. We shall say that an al-
gebraic stack is generically scheme-like if it admits an open dense algebraic
substack which is isomorphic to a scheme. Let X be a smooth, geometrically
connected, generically scheme-like algebraic stack of finite type over a field k of
characteristic zero. Then we shall say that X is an orbicurve if it is of dimen-
sion 1. We shall say that X is a hyperbolic orbicurve if it is an orbicurve which
admits a compactification X ↪→ X (necessarily unique!) by a proper orbicurve
X over k such that if we denote the reduced divisor X\X by D ⊆ X, then X is
scheme-like near D, and, moreover, the line bundle ωX/k(D) on X has positive
degree. An example of a hyperbolic orbicurve over k is given by the quotient —
in the sense of stacks — of a hyperbolic curve over k by the action of a finite
group which acts freely on all but a finite number of points of the curve.

Now suppose that
X

is a hyperbolic orbicurve over a field k (of characteristic zero), with compacti-
fication X ↪→ X. Let k be an algebraic closure of k. Write

X → X
′

for the “coarse moduli space” (cf. [FC], Chapter I, Theorem 4.10) associated
to X. Thus, X

′
is a smooth, proper, geometrically connected curve over k.

Denote the open subscheme of X
′
which is the image of X by X ′. Write:

N∞
def= (N\{0, 1})

⋃
{∞}

Then we shall say that the hyperbolic curve X is of type

(g, �r)

if X
′

is of genus g and �r : N∞ → N is the function with finite support [i.e.,
which is 0 away from some finite subset of N∞] defined as follows: �r(∞) is
the cardinality of (X

′\X ′)(k). For every positive integer e ∈ N∞, �r(e) is the
cardinality of the set of k-valued points of X ′ over which X is (necessarily
tamely) ramified with ramification index e.

When k = k, it is well-known (and easily verified) that the isomorphism
class of the algebraic fundamental group π1(X) is completely determined by the
type (g, �r).
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Categories:

We shall say that two arrows fi : Ai → Bi (where i = 1, 2) in a category C
are abstractly equivalent — and write f1

abs≈ f2 — if there exists a commutative
diagram:

A1
∼→ A2�f1

�f2

B1
∼→ B2

(where the horizontal arrows are isomorphisms in C).

We shall refer to a natural transformation between functors all of whose
component morphisms are isomorphisms as an isomorphism between the func-
tors in question. A functor φ : C1 → C2 between categories C1, C2 will be called
rigid if φ has no nontrivial automorphisms.

A diagram of functors between categories will be called 1-commutative
if the various composite functors in question are rigid and isomorphic. When
such a diagram “commutes in the literal sense” we shall say that it 0-commutes.
Note that when a diagram “1-commutes”, it follows from the rigidity hypothesis
that any isomorphism between the composite functors in question is necessarily
unique. Thus, to state that the diagram 1-commutes does not result in any “loss
of information” by comparison to the datum of a specific isomorphism between
the various composites in question.

We shall say that two rigid functors φi : Ci → C′
i (where i = 1, 2; the Ci, C′

i

are categories) are abstractly equivalent — and write φ1
abs≈ φ2 — if there exists

a 1-commutative diagram
C1

∼→ C2�φ1

�φ2

C′
1

∼→ C′
2

(in which the horizontal arrows are equivalences of categories).

§1. Anabelioids

§1.1. The notion of an anabelioid

We begin by fixing a (Grothendieck) universe V , in the sense of set-theory
(cf., e.g., [McLn1]; [McLr], §12.1), in which we shall work. Also, let us assume
that we are given a V -small category Ens

f of finite sets.
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Let G be a (V -small) profinite group — that is to say, the underlying
profinite set of G is an inverse limit of V -sets indexed by a V -set. Then to G,
we may associate the (V -small) category

B(G)

of (V -small) finite sets ∈ Ob(Ens
f) with continuous G-action. This category is

a(n) (elementary) topos (in the sense of topos theory). In fact, it forms a rather
special kind of topos called a Galois category (cf. [John1] for an exposition of
the general theory of topoi and, in particular, of Galois categories; cf. also
[SGA1], Exposé V).

Definition 1.1.1. We shall refer to as a connected anabelioid any cate-
gory X which is equivalent to a category of the form B(G) for some profinite
group G.

Remark 1.1.1.1. Thus, a “connected anabelioid” is the same as a Galois
category (as defined, for instance, in [John1], p. 285) — i.e., a “Boolean topos”
that admits an “exact, isomorphism reflecting functor” to the category of finite
sets.

Let X be a connected anabelioid. Then recall (cf. [SGA1], Exposé V, §5)
the notion of a fundamental functor

β∗ : X → Ens
f

— i.e., an exact functor. Here, we recall that an exact functor is a functor
that preserves finite limits and finite colimits. Note that (since X is assumed
to be a connected anabelioid) an exact functor β∗ : X → Ens

f is necessarily
isomorphism reflecting (i.e., a morphism α of X is an isomorphism if and only
if β∗(α) is). Recall, moreover, that if X def= B(G), and β∗ : B(G) → Ens

f is
the functor defined by forgetting the G-action, then G may be recovered, up to
inner automorphism, from X , β as the group:

Aut(β∗)

Also, let us recall that any two fundamental functors are isomorphic. Note that
Ens

f itself is a connected anabelioid (i.e., the result of applying B(−) to the
trivial group), so we may think of fundamental functors as “basepoints” in the
following way:
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Definition 1.1.2.

(i) If X and Y are connected anabelioids, then we define a morphism φ : X →
Y to be an exact functor φ∗ : Y → X (cf. [SGA1], Exposé V, Proposi-
tion 6.1). An isomorphism between connected anabelioids is a morphism
whose corresponding functor in the opposite direction is an equivalence of
categories.

(ii) We define a basepoint of a connected anabelioid X to be a morphism β :
Ens

f → X . If β is a basepoint of X , then we refer to the group Aut(β) as
the fundamental group π1(X , β) of (X , β).

Remark 1.1.2.1. Thus, the “category of (V -small) connected anabelioids” is
a 2-category (cf., e.g., [John1], §0.1; [McLr], Chapter 12; [McLn2], XII), hence
requires special care, for instance, when considering composites, etc. Also,
we remark, relative to the standard terminology of category theory, that if
φ : X → Y is an isomorphism (of connected anabelioids), it will not, in general,
be the case that φ∗ is an isomorphism of categories (i.e., an equivalence for
which the correspondence between classes of objects in the two categories is a
bijection — cf. [McLn2], IV, §4).

Remark 1.1.2.2. Since the isomorphism class of the fundamental group
π1(X , β) is independent of the choice of basepoint β, we will also speak of the
“fundamental group π1(X ) of X” when the choice of basepoint is irrelevant to
the issue under discussion.

Remark 1.1.2.3. Note that a functor φ∗ : Y → X which is an equivalence
is always necessarily exact. Thus, an isomorphism of anabelioids φ : X → Y is
simply an equivalence φ∗ : Y → X in the opposite direction.

Example 1.1.3. Anabelioids Associated to Schemes. Let X be a
(V -small) connected locally noetherian scheme. Then we shall denote by

Ét(X)

the category whose objects are (V -small) finite étale coverings of X and whose
morphisms are morphisms of schemes over X. Then it is well-known (cf.
[SGA1], Exposé V, §7) that Ét(X) is a connected anabelioid.
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If G is a profinite group, then we shall use the notation

Aut(G); Inn(G); Out(G) def= Aut(G)/Inn(G)

to denote the group of (continuous) automorphisms (respectively, inner auto-
morphisms; (continuous) outer automorphisms) of G. If H is another profinite
group, then we shall write Hom(G, H) for the set of continuous homomorphisms
G → H, and

HomOut(G, H)

for the set of continuous outer homomorphisms G → H, i.e., the quotient of
Hom(G, H) by the natural action of H from the right. Also, we shall write

Hom
Out(G, H)

for the (V -small) category whose objects are the elements of the set Hom(G, H)
and for which the morphisms

MorHomOut(ψ1, ψ2)

from an object ψ1 : G → H to an object ψ2 : G → H are the elements h ∈ H

such that ψ2(g) = h ·ψ1(g) ·h−1, ∀g ∈ G. Thus, HomOut(G, H) may be thought
of as the set of isomorphism classes of the category Hom

Out(G, H).

Proposition 1.1.4 (The “Grothendieck Conjecture” for Connec-

ted Anabelioids). Let X def= B(G), Y def= B(H) (where G, H are profinite
groups), and β : Ens

f → X , γ : Ens
f → Y be the tautological basepoints of X ,

Y , respectively, determined by the definition of the notation “B(−)”. Then:

(i) There is a natural equivalence of categories:

Hom
Out(G, H) ∼→ Mor(X ,Y)

which induces a natural bijection:

HomOut(G, H) ∼→ Mor(X ,Y)

Here, Mor(X ,Y) (respectively, Mor(X ,Y)) denotes the category (respec-
tively, set of isomorphism classes) of morphisms X → Y.

(ii) There is a natural bijection:

Hom(G, H) ∼→ Mor{(X , β); (Y , γ)}

Here, Mor{(X , β); (Y , γ)} denotes the set of (isomorphism classes of) mor-
phisms φ : X → Y such that φ ◦ β = γ.
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Proof. Let us first consider the situation of (2). Given a homomorphism
ψ : G → H, composition with ψ induces a continuous action of G on any
finite set with continuous H-action. Moreover, this operation does not affect
the underlying finite set, so we get an element ψMor ∈ Mor{(X , β); (Y , γ)}.
This defines the morphism of (2). On the other hand, given an element φ ∈
Mor{(X , β); (Y , γ)}, it follows from the definitions that φ induces a morphism
Aut(β) → Aut(γ). One checks easily that this correspondence defines a two-
sided inverse (well-defined up to composition with an inner automorphism of
Aut(γ) ∼= H) to the correspondence ψ �→ ψMor.

Next, we consider the situation of (1). By the above paragraph, we get a
morphism

Hom(G, H) → Mor(X ,Y)

Let us first verify that this morphism is a surjection. Denote by S the pro-
object of Y whose underlying profinite set Sset = H and whose H-action is
given by the usual action on Sset = H from the left. Note that the group of
automorphisms AutY(S) of S (as a pro-object of Y) may be identified with
H via the action of H on Sset = H from the right. In fact, this action of H

on S (from the right) endows S with a structure of “H-torsor object” of Y .
Thus, if φ : X → Y is a morphism, then T

def= φ∗(S) is an H-torsor object of
X . If we think of T as a profinite set Tset equipped with a G-action from the
left and an H-action from the right, then let us observe that, by fixing some
element t ∈ Tset, we may identify the group of automorphisms AutH(Tset) of
the profinite set Tset that commute with the H-action from the right with H

via its action from the left. Here, we observe that such an identification

AutH(Tset) ∼= H

is determined by the choice of a “basepoint” t ∈ Tset, hence is well-defined, up to
composition with an inner automorphism of H. It thus follows that the action
of G on Tset from the left determines a continuous outer homomorphism G →
AutH(Tset) = H which (cf. the preceding paragraph) gives rise to a morphism
X → Y isomorphic to φ. This completes our verification of surjectivity.

Thus, to complete the proof of (1), it suffices to verify that there is a natural
bijection between the set of isomorphisms between the morphisms φ1, φ2 : X →
Y arising from two continuous homomorphisms

ψ1, ψ2 : G → H

and the subset MorHomOut(ψ1, ψ2) ⊆ H. To verify this, let us observe that if we
pull-back the H-torsor object S of Y (cf. the preceding paragraph) via φ1, φ2
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to obtain H-torsor objects T1
def= φ∗

1(S), T2
def= φ∗

2(S) of X , then it is a tautol-
ogy that isomorphisms φ1

∼→ φ2 are in natural bijective correspondence with
isomorphisms T1

∼→ T2 of H-torsor objects of X . Thus, the desired bijection is
a consequence of Lemma 1.1.5 below.

Lemma 1.1.5 (Two-Sided Group Actions). Let

ψ1, ψ2 : G → H

be continuous homomorphisms. For i = 1, 2, denote by Yi a copy of H equipped
with the usual action of H from the right and the action of G determined by
composing the usual action of H from the left with ψi; write ti for the copy of
“1” in Yi. Then

ξ �→ h ∈ H

— where h satisfies ξ(t1) = t2 · h — determines a bijection from the set of
(G, H)-equivariant bijections ξ : Y1

∼→ Y2 to the subset MorHomOut(ψ1, ψ2) ⊆
H.

Proof. Indeed,

t2 · h · ψ1(g) = ξ(t1) · ψ1(g) = ξ(t1 · ψ1(g)) = ξ(g · t1) = g · ξ(t1) = t2 · ψ2(g) · h

i.e., h · ψ1(g) · h−1 = ψ2(g), ∀ g ∈ G. Thus, h ∈ MorHomOut(ψ1, ψ2) ⊆ H.
Similarly, if ψ1 and ψ2 differ by composition with an inner automorphism of
H defined by an element h ∈ MorHomOut(ψ1, ψ2), then t1 �→ t2 · h defines a
(G, H)-equivariant bijection ξ, as desired.

Remark 1.1.4.1. Many readers may feel that Proposition 1.1.4 is “trivial”
and “well-known”. The reason that we nevertheless chose to give a detailed
exposition of this fact here is that it represents the essential spirit that we
wish to convey in the term “anabelioid”. That is to say, we wish to think of
anabelioids X as generalized spaces (which is natural since they are, after all,
topoi — cf. [John2]) whose geometry just happens to be “completely determined
by their fundamental groups” (albeit somewhat tautologically!). This is meant
to recall the notion of an anabelian variety (cf. [Groth]), i.e., a variety whose
geometry is determined by its fundamental group. The point here (which will
become clear as the manuscript progresses) is that:
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The introduction of anabelioids allows us to work with both “algebro-
geometric anabelioids” (i.e., anabelioids arising from (anabelian) va-
rieties — cf. Example 1.1.3) and “abstract anabelioids” (i.e., those
which do not necessarily arise from an (anabelian) variety) as geo-
metric objects on an equal footing.

The reason that it is important to deal with “geometric objects” as opposed to
groups, is that:

We wish to study what happens as one varies the basepoint of one
of these geometric objects.

That is to say, groups are determined only once one fixes a basepoint. Thus,
it is difficult to describe what happens when one varies the basepoint solely in
the language of groups.

Next, let
φ : X → Y

be a morphism between connected anabelioids. Write

Iφ ⊆ X

for the smallest subcategory of X that contains all subquotients of objects in the
essential image of the pull-back functor φ∗. One verifies immediately that Iφ

is a connected anabelioid. Note that the morphism φ : X → Y factors naturally
as a composite

X → Iφ → Y
with the property that if we choose a basepoint βX of X and denote the resulting
basepoints of Iφ, Y , by βIφ

, βY , respectively, then the induced morphisms of
fundamental groups

π1(X , βX ) � π1(Iφ, βIφ
) ↪→ π1(Y , βY)

are a surjection followed by an injection. Moreover, we note the following
consequence of Proposition 1.1.4, (i):

Corollary 1.1.6 (Automorphism of an Arrow Between Connected
Anabelioids). The set of automorphisms Aut(X → Y) of a 1-arrow X → Y
between connected anabelioids is in natural bijective correspondence with the
centralizer in the fundamental group of Y of the image of the fundamental
group of X .
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Definition 1.1.7.

(i) We shall refer to Iφ as the image of X in Y .

(ii) We shall refer to a morphism φ : X → Y between connected anabelioids
as a π1-epimorphism (respectively, π1-monomorphism) if the morphism
Iφ → Y (respectively, X → Iφ) is an equivalence.

Now let I be a finite set. Assume that for each i ∈ I, we are given a
connected anabelioid Xi. Write

XI
def=

∏
i∈I

Xi

for the product of the categories Xi. In the terminology of [SGA1], Exposé V,
§9, this XI is a “multi-Galois category”. In particular, XI is a topos.

Definition 1.1.8. Let X be a topos, and S ∈ Ob(X ) an object of X .
Write 0X (respectively, 1X ) for the initial (respectively, terminal) object of X .
Then any collection of data

S ∼=
∐
a∈A

Sa

(where 0X �∼= Sa ∈ Ob(X ); the index set A is finite) will be called a decom-
position of S. The object S will be called connected if the index set of any
decomposition of S has cardinality one. The topos X will be called connected
if 1X is connected.

Next, let us observe that:

The set I and the categories Xi (for i ∈ I), as well as the equivalence
of categories between XI with the product of the Xi may be recovered
entirely from the abstract category XI .

Indeed, let us denote (for i ∈ I) the object of XI obtained by taking the product
of 1Xi

with the 0Xj
(for j �= i) by εi. Thus, we obtain a decomposition

1XI
=

∐
i∈I

εi

of the object 1XI
. Moreover, this decomposition is clearly maximal with respect

to the partial ordering on decompositions of 1XI
determined by the (obviously

defined) notion of refinements of decompositions of 1XI
. Thus, we see that
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this decomposition may be recovered solely from internal structure of the cate-
gory XI . In particular, the finite set I may be recovered category-theoretically
from the category XI . Moreover, the category Xi may be recovered category-
theoretically from the category XI as the subcategory of objects over εi. Finally,
it is clear that these subcategories determine the equivalence of categories be-
tween XI with the product of the Xi.

Definition 1.1.9. We shall refer to the Xi as the connected components
of XI and to π0(XI)

def= I as the (finite) index set of connected components.

Definition 1.1.10.

(i) We shall refer to a category equivalent to a category of the form XI as an
anabelioid. We shall denote the 2-category of V -small anabelioids by

Anab
V

(or simply Anab, when there is no danger of confusion).

(ii) A morphism between anabelioids is defined to be an exact functor in the
opposite direction. An isomorphism between anabelioids is a morphism
whose corresponding functor in the opposite direction is an equivalence of
categories.

Next, let us observe that if we are given a finite set J , together with
connected anabelioids Yj for each j ∈ J , and morphisms

ζ : I → J ; φi : Xi → Yζ(j)

we get an exact functor φ∗
I : YJ → XI (by forming the product of the φi), which

we would like to regard as a morphism φI : XI → YJ .

Proposition 1.1.11 (Morphisms of Not Necessarily Connected
Anabelioids). The association

{ζ, φi} �→ φI

defines an equivalence between the category of data on the left and the category
of arrows ψ : XI → YJ .
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Proof. Indeed, this follows immediately by considering the pull-back of
1YJ

, as well as of its maximal decomposition, via the exact functor ψ∗, in light
of the fact (observed above) that

1XI
=

∐
i∈I

εi

is the maximal (relative to refinement) decomposition of 1XI
.

Definition 1.1.12. We shall refer to a morphism between anabelioids as
a π1-epimorphism (respectively, π1-monomorphism) if each of the component
morphisms (cf. Proposition 1.1.11) between connected anabelioids is a π1-
epimorphism (respectively, π1-monomorphism).

§1.2. Finite étale morphisms

In this §, we consider the notion of a “finite étale morphism” in the context
of anabelioids.

Let X be an anabelioid. Let S ∈ Ob(X ). We will denote the category of
objects over S by

XS

(i.e., the objects of XS are arrows T → S in X ; the arrows of XS between
T → S and T ′ → S are S-morphisms T → T ′). Let us write

jS : XS → X

for the forgetful functor (i.e., the functor that maps T → S to T ) and

i∗S : X → XS

for the functor given by taking the product with S.

Proposition 1.2.1 (The Extension Functor).

(i) The category XS is an anabelioid whose connected components are in
natural bijective correspondence with the connected components of S.

(ii) The functor jS is left adjoint to the functor i∗S.

(iii) The functor i∗S is exact, hence defines a morphism of anabelioids iS : XS →
X .
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(iv) Suppose that S is the coproduct of a finite number of copies of 1X (indexed,
say, by a (V -)set A). Then each connected component of XS may be iden-
tified with X ; the set of connected components of XS may be identified with
A. Moreover, jS maps a collection of objects {Sa}a∈A of X indexed by A

to the coproduct object ∐
a∈A

Sa

in X .

(v) Suppose that X = B(G) (where G is a (V -small) profinite group) and that
S is given by the G-set G/H, where H ⊆ G is an open subgroup. Then
iS : XS → X may be identified with [i.e., is “abstractly equivalent” (cf. §0)
— in a natural fashion — to] the morphism

B(H) → B(G)

induced by the inclusion H ↪→ G. Moreover, if T ∈ Ob(XS) is represented
by an H-set Tset, then jS(T ) is isomorphic to the G-set given by

(G × Tset)/H

where H 
 h acts on G × Tset 
 (g, t) via (g, t) �→ (hg, ht), and the G-
action is the action induced on (G × Tset)/H by letting G 
 g act on G by
multiplication by g−1 from the right.

Proof. These assertions all follow immediately from the definitions.

Thus, Proposition 1.2.1, (ii), shows that if φ : Y → X factors as the
composite of an isomorphism α : Y ∼→ XS with the morphism iS : XS → X for
some S ∈ Ob(X ), then there is a natural choice for the isomorphism α, namely,
the isomorphism induced by the left adjoint φ! : Y → X to the functor φ∗.
Indeed, it follows from Proposition 1.2.1, (ii), that such a left adjoint φ! always
exists and that φ! induces an isomorphism Y ∼→ XSφ

, where Sφ
def= φ!(1Y).
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Definition 1.2.2.

(i) A morphism of anabelioids φ : Y → X will be called finite étale if it
factors as the composite of an isomorphism α : Y ∼→ XS with the morphism
iS : XS → X for some S ∈ Ob(X ).

(ii) Suppose that φ : Y → X is a finite étale morphism. Then we shall refer
to the left adjoint functor φ! to the pull-back functor φ∗ as the extension
functor associated to φ.

Remark 1.2.2.1. Thus, the morphism B(H) → B(G) induced by a contin-
uous homomorphism φ : H → G is finite étale if and only if φ is an injection
onto an open subgroup of G. Moreover, any finite étale morphism of connected
anabelioids may be written in this form (by choosing appropriate basepoints for
the domain and range). The characterization of Definition 1.2.2, (i), however,
has the virtue of being independent of choices of basepoints.

Definition 1.2.3. Let φ : Y → X be a finite étale morphism of anabe-
lioids. Then we shall say that φ is a covering (respectively, relatively connected)
if the induced morphism π0(Y) → π0(X ) on connected components (cf. Defi-
nition 1.1.9) is surjective (respectively, an bijective).

Definition 1.2.4.

(i) Let G be a profinite group. Then we shall say that G is slim if the centralizer
ZG(H) of any open subgroup H ⊆ G in G is trivial.

(ii) Let X be an anabelioid. Then we shall say that X is slim if the fundamental
group π1(Xi) of every connected component i ∈ π0(X ) of X is slim.

(iii) A morphism of anabelioids whose corresponding pull-back functor is rigid
will be called rigid. A 2-category of anabelioids will be called slim if every
1-morphism in the 2-category is rigid.

(iv) If C is a 2-category, we shall write

|C|

for the associated 1-category whose objects are objects of C and whose mor-
phisms are isomorphism classes of morphisms of C. We shall also refer to
|C| as the coarsification of C.
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Remark 1.2.4.1. The name “coarsification” is motivated by the theory of
“coarse moduli spaces” associated to (say) “fine moduli stacks”.

Remark 1.2.4.2. Thus, a diagram of rigid morphisms of anabelioids “1-
commutes” (cf. §0) if and only if it commutes in the coarsification.

In a word, the theory of coverings of anabelioids is easiest to understand
when the anabelioid in question is slim. For instance:

Proposition 1.2.5 (Slim Anabelioids). Let X be a slim anabelioid.
Then:

(i) The pull-back and extension functors associated to a finite étale morphism
between slim anabelioids are rigid (cf. §0). In particular, if we write

Et(X ) ⊆ Anab

for the 2-category whose (0-)objects are finite étale morphisms Y → X
and whose (1-)morphisms are finite étale arrows Y1 → Y2 “over” X [i.e.,
in the sense of “1-commutativity” — cf. §0], then Et(X ) is slim. Write:
Ét(X ) def= |Et(X )|.

(ii) The functor

FX : X → Ét(X )

S �→ (XS → X )

(where S ∈ Ob(X )) is an equivalence (i.e., fully faithful and essentially
surjective).

Proof. Indeed, (i) follows formally from Corollary 1.1.6 and Definition
1.2.4, (i), (ii), (iii). As for (ii), essential surjectivity follows formally from
Definition 1.2.2, (i). To prove fully faithfulness, it suffices to compute, when
X = B(G), Y1 = B(H1), Y2 = B(H2), and H1, H2 are open subgroups of G,
the subset

MorX (Y1,Y2) ⊆ Mor(Y1,Y2)

[i.e., of isomorphism classes of morphisms “over” X ] via Proposition 1.1.4, (i).
This computation yields that the set in question is equal to the quotient, via
the conjugation action by H2, of the set of morphisms H1 → H2 induced
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by conjugation by an element g ∈ G such that H1 ⊆ g · H2 · g−1. But this
quotient may be identified with the subset of elements g ·H2 ∈ G/H2 such that
H1 ⊆ g · H2 · g−1. Note that here we must apply the assumption of slimness,
to conclude that it is not necessary to quotient G/H2 any further by various
centralizers in G of conjugates of H1. On the other hand, this quotient is simply
another description of the set

HomG(G/H1, G/H2)

as desired.

Remark 1.2.5.1. By Proposition 1.2.5, (i), it follows that, at least when we
restrict our attention to finite étale morphisms of slim anabelioids, we do not
“lose any essential information” by working in the coarsification (of Anab).
Thus, in the following discussion, we shall often do this, since this simplifies
things substantially. For instance, if φ : Y → X and ψ : Z → X are arbitrary
finite étale morphism of slim anabelioids, then [if we work in the coarsification]
it makes sense to speak of the pull-back (of φ via ψ), or fiber product (of Y , Z
over X ):

Y ×X Z

Indeed, such an object may be defined by the formula:

Zψ∗(φ!(1Y)) → Z

By thinking of φ : Y → X as some “XS → X” as in the above discussion,
one verifies easily that this definition satisfies all the expected properties. One
verifies easily that all conceivable compatibilities are satisfied [e.g., when one
interchanges the roles of φ and ψ].

Remark 1.2.5.2. In fact, essentially all of the anabelioids that we shall
actually deal with in this paper will be slim. Thus, in some sense, it might have
been more natural to take the notion of a “slim anabelioid” as our definition
of the term “anabelioid”. There are two reasons why we chose not to do this:
First, this would require us to prove slimness every time that we wish to use
term “anabelioid”, which would, in some sense, be rather unnatural, just as
having to prove separatedness every time one uses the term “scheme” (if, as in
the earlier terminology, one defines a scheme to be a “separated scheme” (in
the current terminology)). Second, just as with the separatedness of schemes,
which is not a Zariski local notion, the notion of slimness of an anabelioid is not
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(finite) étale local. (That is to say, a non-slim anabelioid may admit a finite
étale covering which is slim.) Thus, requiring anabelioids to be slim would
mean that the notion of an anabelioid is not “finite étale local”, which would
again be unnatural.

Remark 1.2.5.3. Note that although FX is fully faithful and essentially
surjective, substantial care should be exercised when speaking of FX as an
“equivalence”. The reason for this is that:

The collection of objects of Ét(X ) or Et(X ) necessarily belongs to
a larger Grothendieck universe — that is to say, unlike X , the
category Ét(X ) is no longer V -small — than the collection of objects
of X .

Put another way, FX , i.e., the passage from X to Ét(X ), may be thought of as
a sort of “change of Grothendieck universe, while keeping the internal category
structure intact”.

Just as in the theory of schemes, one often wishes to work not just with
finite étale coverings, but also with “profinite étale coverings” (i.e., projective
systems of étale coverings). In the case of anabelioids, we make the following

Definition 1.2.6. We shall refer to as a pro-anabelioid any “pro-object”
(indexed by a set)

X = lim←−
α

Xα

relative to the coarsified category

Anab def= |Anab|

in which all of the transition morphisms Xα → Xβ are finite étale coverings
of slim anabelioids. Here, by “pro-object”, we mean an equivalence class of
projective systems (relative to the evident notion of equivalence).

Remark 1.2.6.1. Thus, (for us) pro-anabelioids only exist at the “coarsified
level ” (unlike anabelioids, which may be treated either in Anab or in Anab).

Remark 1.2.6.2. Given a pro-anabelioid

X = lim←−
α

Xα
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it is natural to define the set of connected components of X by:

π0(X ) def= lim←−
α

π0(Xα)

In general, π0(X ) will be a profinite set. Moreover, for each i ∈ I, one obtains
a connected pro-anabelioid

Xi

by forming
lim←−
α

of the compatible system of connected components of the Xα indexed by i.

Remark 1.2.6.3. Given two pro-anabelioids X = lim←− α Xα; Y = lim←− β Yβ,
by the definition of a “pro-object”, it follows that:

Mor(X ,Y) = lim←−
β

lim−→
α

Mor(Xα,Yβ)

Note that this formula also applies in the case when one or both of X , Y is
an anabelioid, by thinking of anabelioids as pro-anabelioids indexed by the set
with one element.

Suppose that we are given a connected anabelioid X def= B(G) (where G is
a profinite group). Let us write β : Ens

f → X for the tautological basepoint of
B(G). Then one important example of a pro-anabelioid which forms a profinite
étale covering of X is the “universal covering” X̃β , defined as follows: For

each open subgroup H ⊆ G, let us write XH
def= B(H). (In other words, XH

is the category XS associated to the object S ∈ Ob(X ) determined by the
G-set G/H.) Thus, if H ′ ⊆ H, then we have a natural morphism XH′ →
XH . Moreover, these morphisms form a projective system whose transition
morphisms are clearly finite étale coverings. Hence, we obtain a pro-anabelioid

X̃β
def= lim←−

H
XH

(where H ranges over the open subgroups of G), together with a “profinite étale
covering”

X̃β → X

which (just as in the case of schemes) has the property that the pull-back via
this covering of any finite étale covering Y → X splits (i.e., is isomorphic to the
coproduct of a finite number of copies of the base).
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Definition 1.2.7. Let X be an anabelioid, and Y a pro-anabelioid. Then
a profinite étale covering Y → X will be referred to as a universal covering of
X if it is relatively connected [i.e., given by a projective system of relatively
connected finite étale morphisms] and satisfies the property that the pull-back
to Y of any finite étale covering of X splits.

Note that by Proposition 1.2.5, (ii), it follows that when X = B(G) is slim,
the set

MorX (X̃β ,XH)

may be identified with G/H. In particular, we obtain the result that the
basepoint β is naturally equivalent to the restriction to the image of the functor
FX of Proposition 1.2.5, (ii), of the basepoint of Ét(X ) defined by the formula:

MorX (X̃β ,Y)

(where Y → X is an object of Ét(X )).

Proposition 1.2.8 (Basic Properties of Universal Coverings). Let
X be a slim anabelioid. Then:

(i) There exists a universal covering Y → X .

(ii) Any two universal coverings Y → X , Y ′ → X are isomorphic over X .

(iii) Suppose that X is connected. Then the formula

βX̃ (S) def= MorX (X̃ ,XS)

(where S ∈ Ob(X )) defines an equivalence of categories between the
category of universal coverings X̃ → X (whose morphisms are isomor-
phisms X̃ ∼→ X̃ ′ over X ) and the category of basepoints β : Ens

f → X
(whose morphisms β

∼→ β′ are isomorphisms of functors (β′)∗ ∼→ β∗). In
particular, if X̃ → X determines the basepoint βX̃ , then

AutX (X̃ ) = Aut(βX̃ ) = π1(X , βX̃ )

(where AutX (X̃ ) is the set of automorphisms relative to the category of
universal coverings just defined).



�

�

�

�

�

�

�

�

The Geometry of Anabelioids 843

(iv) Suppose that X def= B(G), X ′ def= B(G′) are slim connected anabelioids. Let
X̃ → X , X̃ ′ → X ′ be the universal coverings determined by the tautolog-
ical basepoints β, β′. Then, if we denote by Isom(X̃ , X̃ ′) the set of iso-
morphisms X̃ ∼→ X̃ ′ which do not necessarily lie over some isomorphism
X ∼→ X ′, we have a natural isomorphism

Isog((X , β); (X ′, β′)) def= Isom(X̃ , X̃ ′) ∼→ lim−→
H

{open injections H ↪→ G′}

(where H ranges over the open subgroups of G).

Proof. Assertions (i), (ii) follow formally from the definitions and the
above discussion. Now let us consider assertion (iv). Suppose that we are given
an isomorphism φ : X̃ ∼→ X̃ ′. By Proposition 1.1.4, (i), such a morphism arises
from some homomorphism H → H ′, determined up to conjugation with an in-
ner automorphism arising from H ′. Here, we take H ⊆ G, H ′ ⊆ G′ to be normal
open subgroups. If K ′ ⊆ G is another normal open subgroup contained in H ′,
then there exists a normal open subgroup K ⊆ G contained in H, together with
a homomorphism K → K ′ (determined by φ, up to conjugation with an inner
automorphism arising from K ′) such that the outer homomorphism H → H ′ is
compatible with the outer homomorphism K → K ′. Note, moreover, that since
X ′ is slim, a unique homomorphism H → H ′ up to conjugation with an inner
automorphism arising from K ′ is determined by the homomorphism K → K ′.
(Indeed, this follows by considering the faithful actions (by conjugation) of H,
H ′ on K, K ′, respectively.) Thus, by taking K ′ to be arbitrarily small, we see
that φ determines a unique homomorphism H → H ′ ⊆ G′. Consideration of
the inverse to φ shows that this homomorphism H → G′ is necessarily an open
injection. On the other hand, any open injection H ↪→ G′ clearly determines
an isomorphism φ. This completes the proof of (iv).

Finally, we consider property (iii). Since it is clear that any isomorphism
between universal coverings induces an isomorphism of the corresponding base-
points, it suffices to prove property (iii) in the “automorphism” case. For sim-
plicity, we shall write X = B(G), and assume that the basepoint β in question
is the tautological basepoint. By property (iv), any isomorphism φ : X̃ ∼→ X̃
arises from an open injection H ↪→ G. The fact that the composite of φ with
X̃ → X is isomorphic to X̃ → X implies (cf. Proposition 1.1.4, (i)) that this
open injection H ↪→ G is induced by conjugation by a unique (by slimness)
element of G. On the other hand, conjugation by an element of G clearly de-
termines an element of AutX (X̃ ). Thus, AutX (X̃ ) = G, as desired.
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Remark 1.2.8.1. When (cf. Proposition 1.2.8, (iv)) β, β′ are fixed through-
out the discussion, we shall write

Isog(X ,X ′)

for Isog((X , β); (X ′, β′)). When (X , β) = (X ′, β′), we shall write Isog(X ) for
Isog(X ,X ′).

Finally, before proceeding, we present the following:

Definition 1.2.9.

(i) We shall say that a continuous homomorphism of Hausdorff topological
groups G → H is relatively slim if the centralizer in H of the image of
every open subgroup of G is trivial.

(ii) We shall say that a morphism of anabelioids U → V is relatively slim if the
induced morphism between fundamental groups of corresponding connected
components of U , V is relatively slim.

Remark 1.2.9.1. Thus, X is slim if and only if the identity morphism
X → X is relatively slim. Also, if U → V is relatively slim, then the arrow
U → V is rigid [i.e., has no nontrivial automorphisms — cf. Corollary 1.1.6].
If U → V is a relatively slim morphism between connected anabelioids, then
it follows that V is slim; if, moreover, U → V is a π1-monomorphism, then it
follows that U is also slim.

Remark 1.2.9.2. The construction of a pull-back, or fiber product, discussed
in Remark 1.2.5.1 generalizes immediately to the case where φ : Y → X is a
finite étale morphism of slim anabelioids, and ψ : Z → X is an arbitrary
relatively slim morphism of slim anabelioids, via the formula of loc. cit.:

Zψ∗(φ!(1Y )) → Z

One verifies immediately that all conceivable compatibilities are satisfied.

§2. Cores and Quasi-Cores

§2.1. Localizations and cores

In this §, we discuss the notion of a core in the context of slim anabelioids.
This notion will play a central role in the theory of the present paper.



�

�

�

�

�

�

�

�

The Geometry of Anabelioids 845

Let X be a slim anabelioid. Let us write

Loc(X ) (⊆ Anab)

for the 2-category whose (0-)objects are (necessarily slim) anabelioids Y that
admit a finite étale morphism to X , and whose (1-)morphisms are finite étale
morphisms Y1 → Y2 (that do not necessarily lie over X !). Note that given
an object of Loc(X ), the set of connected components of this object may be
recovered entirely category-theoretically from the coarsification

Loc(X ) def= |Loc(X )|

of the 2-category Loc(X ) (cf. Proposition 1.1.11).

Proposition 2.1.1 (Categories of Localizations). Let X be a slim
anabelioid. Then:

(i) Loc(X ) is slim.

(ii) Denote by
Loc(X)

the 2-category whose (0-)objects Z are slim anabelioids which arise as
finite étale quotients of objects in Loc(X ) [i.e., there exists a finite étale
morphism Y → Z, where Y ∈ Ob(Loc(X ))] and whose (1-)morphisms
are finite étale morphisms. Then the 2-category Loc(X ) is slim. Write:
Loc(X ) def= |Loc(X )|.

(iii) The 2-category Loc(X ) (respectively, category Loc(X )) may be reconstruc-
ted entirely category-theoretically from Loc(X ) (respectively, Loc(X ))
by considering the “2-category (respectively, category) of objects of Loc(X )
(respectively, Loc(X )) equipped with a finite étale equivalence relation”.

(iv) Suppose that we arbitrarily choose finite étale structure morphisms to X
for all of the objects of Loc(X ). Then every morphism Y1 → Y2 of Loc(X )
may be written as the composite of an isomorphism Y1

∼→ Y3 with a
finite étale morphism Y3 → Y2 over X .

Proof. Assertions (i) and (ii) are formal consequences of Corollary 1.1.6.
Assertions (iii) and (iv) follow formally from the definitions.
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Let X be a slim anabelioid. Then:

Definition 2.1.2.
(i) We shall say that X is a(n) (absolute) core if X is a terminal object in

Loc(X ).

(ii) We shall say that X admits a(n) (absolute) core if there exists a terminal
object Z in Loc(X ). In this case, Loc(X ) = Loc(Z) = Loc(Z), so we shall
say that Z is a core.

Remark 2.1.2.1. Note that in Proposition 2.1.1, (ii), it is important to
assume that the quotients Z that one considers are slim. Indeed, if one did
not impose this condition, then by “forming quotients of slim anabelioids by
the trivial actions of finite groups”, one verifies easily that the 1-category as-
sociated to the resulting 2-category never admits a terminal object — i.e., “no
slim anabelioid would admit a core”. From the point of view of anabelian vari-
eties — e.g., hyperbolic orbicurves — this condition of slimness amounts to the
condition that the algebraic stacks that one works with are generically schemes
(cf. [Mzk9], §2).

Remark 2.1.2.2. Note that the definability of Loc(X ), Loc(X ) is one of
the most fundamental differences between the theory of finite étale coverings
of anabelioids as discussed in §1.2 and the theory of finite étale coverings from
the point of view of “Galois categories”, as given in [SGA1]. Indeed, from the
point of view of the theory of [SGA1], it is only possible to consider “Ét(X )”
— i.e., finite étale coverings and morphisms that always lie over X . That is
to say, in the context of the theory of [SGA1], it is not possible to consider
diagrams such as:

Z
↙ ↘

X Y
(where the arrows are finite étale) that do not necessarily lie over any specific
geometric object. We shall refer to such a diagram as a correspondence or
isogeny between X and Y . When there exists an isogeny between X and Y , we
shall say that X and Y are isogenous.

Next, we would like to consider universal coverings. Let β, γ be basepoints
of a connected slim anabelioid X . Write

πβ : X̃β → X ; πγ : X̃γ → X
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for the associated universal coverings (cf. the discussion of §1.2). In the fol-
lowing discussion, we would also like to consider an isomorphism

ξ : X̃β
∼→ X̃γ

(cf. Proposition 1.2.8, (iv)).

Definition 2.1.3. We shall refer to an isomorphism ξ : X̃β
∼→ X̃γ as

above as an outer path from β to γ. If ξ arises from a commutative [i.e., at the
coarsified level] diagram of anabelioids

X̃β
ξ−→ X̃γ� �

X idX−→ X

then we shall refer to ξ as an inner path from β to γ. An outer (respectively,
inner) path from β to itself will be referred to as an (X̃β-valued) open (respec-
tively, closed) path.

Remark 2.1.3.1. Thus, inner paths are precisely the paths of [SGA1], Ex-
posé V, §7. Note that the difference between an “inner” path and an “outer ”
path depends essentially on the “identity” of β, γ — i.e., what appears to be
an outer path if one thinks of β and γ as in fact being “equal ” may appear to
be an inner path if one thinks of β and γ as “distinct ”. Put another way:

The distinction between inner and outer paths depends essentially on
the “model of set theory” under consideration — i.e., on the labels
that one uses to describe the various sets involved in the discussion.

It is the hope of the author to pursue this point of view in more detail in a
future paper.

Remark 2.1.3.2. Note that an inner path is a special case of an outer path.
The difference between an inner path and an arbitrary outer path is easiest to
analyze when β = γ (but cf. Remark 2.1.3.1!). In this case, an (X̃β-valued)
closed path is simply an element of the fundamental group π1(X , β).

On the other hand, the motivation for the terminology “open path” is the
following. Let K be a perfect field; L a finite Galois extension of K; and K

an algebraic closure of K. Then to give a K-valued basepoint β of L is to
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give an embedding ιβ : L ↪→ K. If we are then given a K-linear isomorphism
σ : K

∼→ K (i.e., an element σ ∈ Gal(K/K)), then the composite of σ with ιβ
determines another embedding ιγ : L ↪→ K. Of course, the two basepoints β, γ

of Spec(L) defined by ιβ , ιγ map to the same basepoint of Spec(K) — i.e., “if
one applies the projection Spec(L) → Spec(K), then σ becomes a closed path
in Spec(K)”. This is intended to be reminiscent of the analogy between Galois
groups in field theory and fundamental groups in algebraic topology (where we
recall that the theory of the latter may be formulated not just in terms of
covering groups, but also in terms of literal closed paths, i.e., topological images
of the circle S1, in the space in question). Thus, it is natural to regard σ —
when working with σ as an object associated to Spec(L) — as an open path
(valued in K), i.e., the analogue of a topological image of the interval [0, 2π] as
opposed to the circle S1, on Spec(L).

Incidentally, this example also shows the reason for the choice of terminol-
ogy “inner/outer path”. That is to say, inner/closed paths induce (via “parallel
transport”) inner automorphisms of the fundamental group, while outer/open
paths arise from arbitrary (outer) automorphisms, or even isogenies, of the
fundamental group.

Proposition 2.1.4 (The Totality of Basepoints). Let X be a con-
nected slim anabelioid. Let X̃ → X be a universal covering of X , that
determines some basepoint β of X . Then:

(i) The subgroup

ΠX
def= π1(X , β) = AutX (X̃ ) ⊆ Aut(X̃ ) = Isog(X )

is commensurable with all of its conjugates in Isog(X ). Moreover, the
open subgroups of ΠX define a basis for a topology on Isog(X ) with respect
to which Isog(X ) forms a Hausdorff topological group. Finally, the
subgroup ΠX ⊆ Isog(X ) is both open and closed with respect to this topology.

(ii) Isog(X ) acts transitively on the set of X̃ -valued basepoints — i.e., (iso-
morphism classes of ) profinite étale morphisms X̃ → X — of X . Moreover,
this action determines a bijection between the set of X̃ -valued basepoints
and the coset space:

Isog(X )/ΠX

(iii) Suppose that X is a core. Then ΠX = Isog(X ). That is to say, X admits
precisely one X̃ -valued basepoint. In particular, all open paths on X are,
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in fact, closed. Moreover, the natural functors

Et(X ) → Loc(X ) → Loc(X ); Ét(X ) → Loc(X ) → Loc(X )

are equivalences.

Proof. These assertions are all formal consequences of the definitions (cf.
also Proposition 1.2.8, (iv)).

Remark 2.1.4.1. Note, however, that the subgroup of Isog(X ) generated
by ΠX and some conjugate of ΠX does not necessarily contain either of these
two groups as a finite index subgroup. Perhaps the most famous example of
this phenomenon is the theorem of Ihara (cf., e.g., [Serre1], II, §1.4, Corollary
1; [Ihara]) expressing SL2(Qp) as an amalgam of two copies of SL2(Zp), amal-
gamated along a subgroup which is open in both copies of SL2(Zp). In the
notation of the present discussion, this example corresponds to the case

X def= B(SL±
2 (Zp))

(where, instead of SL2(Zp), we use its quotient SL±
2 (Zp) by ±1 to ensure that

X is slim). Note that this example shows that Isog(X ) does not necessarily
admit a natural structure of profinite group. Indeed, in the case of SL±

2 (Zp),
one checks easily (by applying the theory of p-adic Lie groups — cf., e.g.,
[Serre2], Chapter V, §7) that Isog(X ) = PGL2(Qp) (which is not profinite).

Remark 2.1.4.2. The above example of SL2(Zp) highlights one of the major
themes of the present paper, i.e., that:

open paths ⇐⇒ Isog(X ) ⇐⇒ correspondences

— that is to say, just as (in the “classical theory” of the étale fundamental group
given in [SGA1]) closed paths (i.e., elements of π1) correspond to elements of
ΠX , open paths corresponds to elements of Isog(X ), i.e., “correspondences”.

Remark 2.1.4.3. It is interesting to note relative to Proposition 2.1.4, (ii)
(cf. also Proposition 1.2.8, (iii); Remark 2.1.3.1) that the cardinality of the
collection of basepoints Ens

f → X is the same as that of the collection of
profinite étale morphisms X̃ → X . Indeed, both collections have the same
cardinality as the collection of morphisms Ens

f → Ens
f.
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§2.2. Holomorphic structures and commensurable terminality

In this §, we wish to discuss a relative version of the theory of §2.1. Let
X , Q be slim anabelioids.

Definition 2.2.1.

(i) A Q-holomorphic structure on X is the datum of a relatively slim morphism
(cf. Definition 1.2.9, (ii)) X → Q, which we shall refer to as the structure
morphism.

(ii) A slim anabelioid equipped with a Q-holomorphic structure will be referred
to as a Q-anabelioid.

(iii) A Q-holomorphic morphism (or “Q-morphism” for short) between Q-ana-
belioids is a morphism of anabelioids compatible with the Q-holomorphic
structures.

(iv) A Q-holomorphic structure/Q-anabelioid will be called faithful if its struc-
ture morphism is a π1-monomorphism.

Remark 2.2.1.1. Here, we note that the term “compatible” in Definition
2.2.1, (iii), makes sense, precisely because of the assumption of relative slimness
in Definition 2.2.1, (i) (cf. Corollary 1.1.6).

Let us write
LocQ(X )

for the 2-category whose (0-)objects Y → Q are Q-anabelioids that admit a
Q-holomorphic finite étale morphism Y → X to X , and whose (1-)morphisms
are arbitrary finite étale Q-morphisms (that do not necessarily lie over X !).
Now we have the “Q-holomorphic analogue” of Proposition 2.1.1:

Proposition 2.2.2 (Categories of Holomorphic Localizations). Let
Q be a slim, connected anabelioid; X a Q-anabelioid. Then:

(i) LocQ(X ) is slim. Write: LocQ(X ) def= |LocQ(X )|.

(ii) Denote by
LocQ(X)

the 2-category whose (0-)objects Z → Q are Q-anabelioids which arise
as finite étale quotients of objects in LocQ(X ) [i.e., there exists a finite
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étale Q-morphism Y → Z, where Y ∈ Ob(LocQ(X ))] and whose (1-)mor-
phisms are finite étale Q-morphisms. Then the 2-category LocQ(X ) is
slim. Write: LocQ(X ) def= |LocQ(X )|.

(iii) The 2-category LocQ(X ) (respectively, category LocQ(X )) may be recon-
structed entirely category-theoretically from LocQ(X ) (respectively,
LocQ(X )) by considering the “2-category (respectively, category) of objects
of LocQ(X ) (respectively, LocQ(X )) equipped with a finite étale equivalence
relation”.

(iv) Suppose that we arbitrarily choose finite étale structure morphisms to
X for all of the objects of LocQ(X ). Then every morphism Y1 → Y2 of
LocQ(X ) may be written as the composite of an isomorphism Y1

∼→ Y3

(over Q) with a finite étale morphism Y3 → Y2 over X .

Let X be a Q-anabelioid. Then:

Definition 2.2.3.

(i) We shall say that X is a Q-core if X [i.e., X → Q] is a terminal object in
LocQ(X ).

(ii) We shall say that X admits a Q-core if there exists a terminal object Z in
LocQ(X ). In this case, LocQ(X ) = LocQ(Z) = LocQ(Z), so we shall say
that Z is a Q-core.

Definition 2.2.4.

(i) We shall say that a closed subgroup H ⊆ G of a profinite group G is com-
mensurably (respectively, normally) terminal if the commensurator CG(H)
(respectively, normalizer NG(H)) is equal to H.

(ii) We shall say that a π1-monomorphism of anabelioids U → V is com-
mensurably (respectively, normally) terminal if the image of the induced
morphism between fundamental groups of corresponding connected com-
ponents of U , V is commensurably (respectively, normally) terminal.

Remark 2.2.4.1. Thus, it is a formal consequence of the definitions that:

commensurably terminal =⇒ normally terminal
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and that

commensurably terminal with slim domain =⇒ relatively slim

(where the “domain” is the group H (respectively, anabelioid U) in Definition
2.2.4, (i) (respectively, (ii))).

Proposition 2.2.5 (Commensurable Terminality and Holomorphic
Cores). Let X be a connected faithful Q-anabelioid; assume that Q is
also connected. Then X is a Q-core if and only if its structure morphism is
commensurably terminal.

Proof. Without loss of generality, we may write X = B(H), Q = B(G),
where H ⊆ G is a closed subgroup. First, we verify sufficiency. By Proposition
1.1.4, it suffices to prove that, if H ′ ⊆ H is an open subgroup, then any
continuous homomorphism φ : H ′ → G whose image lies in H and which
factors as the composite of the natural inclusion H ′ ↪→ G with conjugation by
an element g ∈ G is, in fact, equal to the to composite of the natural inclusion
H ′ ↪→ G with conjugation by an element h ∈ H. But this follows immediately
from Definition 2.2.4, (i), which implies that g ∈ H. Finally, necessity follows
by reversing the preceding argument in the evident fashion.

Let X be a connected Q-anabelioid. For simplicity, we also assume that Q
is connected. Suppose that we are given a universal covering Q̃ → Q of Q and
consider the resulting cartesian diagram:

Q̃|X −→ Q̃� �
X −→Q

Note that ΠQ
def= AutQ(Q̃) acts (compatibly) on Q̃ over Q, as well as on Q̃|X

over X . On the other hand, if we consider a connected component X̃ of Q̃|X
as an independent geometric object, even if the Q-holomorphic structure on X̃
remains fixed, in general X̃ will admit distinct (profinite) étale morphisms to
X . Put another way, in general, X admits distinct X̃ -valued Q-holomorphic
basepoints. That is to say, we have the Q-holomorphic analogue of Proposition
2.1.4:

Proposition 2.2.6 (The Totality of Q-Holomorphic Basepoints).
Let X be a connected faithful Q-anabelioid, where Q is also connected.
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Let Q̃ → Q be a universal covering of Q; X̃ → X a connected component of
Q̃|X → X . Write ΠQ

def= AutQ(Q̃), ΠX
def= AutX (X̃ ). Thus, we have a natural

inclusion ΠX ⊆ ΠQ. Then:

(i) The subgroup

ΠX = AutX (X̃ ) ⊆ IsogQ(X ) def= AutQ(X̃ ) = CΠQ(ΠX )

is commensurable with all of its conjugates in IsogQ(X ). Moreover, the
open subgroups of ΠX define a basis for a topology on IsogQ(X ) with respect
to which IsogQ(X ) forms a Hausdorff topological group. Finally, the
subgroup ΠX ⊆ IsogQ(X ) (respectively, IsogQ(X ) ⊆ Isog(X )) is both open
and closed (respectively, open) with respect to this topology.

(ii) IsogQ(X ) acts transitively on the set of X̃ -valued Q-holomorphic
basepoints — i.e., (isomorphism classes of) profinite étale Q-morphisms
X̃ → X — of X . Moreover, this action determines a bijection between the
set of X̃ -valued Q-holomorphic basepoints and the coset space:

IsogQ(X )/ΠX

(iii) Suppose that X is a Q-core. Then ΠX = IsogQ(X ). That is to say, X
admits precisely one X̃ -valued Q-holomorphic basepoint. In particular,
all “Q-holomorphic” open paths on X are, in fact, closed. Moreover, the
natural functors

Et(X ) → LocQ(X ) → LocQ(X ); Ét(X ) → LocQ(X ) → LocQ(X )

are equivalences.

Remark 2.2.6.1. Thus, at a more intuitive level, just as “(absolute) cores
have essentially only one basepoint”, if X is a Q-core, then every basepoint of Q
determines an essentially unique (up to renaming) Q-holomorphic basepoint
of X .

Remark 2.2.6.2. The topology of Proposition 2.2.6, (i), is not to be con-
fused with the topology on CΠQ(ΠX ) induced by the topology of ΠQ. For
instance, if ΠX is the profinite free group on 2 generators (which is easily seen
to be slim — cf., e.g., [Mzk8], Lemma 1.3.1) and ΠQ = Aut(ΠX ) (which also
has a natural structure of profinite group), then ΠQ = CΠQ(ΠX ), but ΠX
is not open [i.e., relative to the profinite topology of ΠQ] in ΠQ. Here, we
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note that Out(ΠX ) = Aut(ΠX )/ΠX , hence also ΠQ, is infinite and slim. [In-
deed, the slimness of ΠQ may be shown, for instance, as follows: By [Tama],
Theorem 0.4, applied to the projective line minus three points over the field
of rational numbers, it follows that the centralizer of any open subgroup of
Out(ΠX ) is contained in the subgroup of Out(ΠX ) obtained by considering the
permutation group of the three points. On the other hand, by projecting to
Out(Πab

X ) ∼= GL2(Ẑ), one sees that any element of this permutation group that
centralizes an open subgroup of GL2(Ẑ) must be trivial.]

§2.3. Quasi-cores and intrinsic exhaustivity

In order to define the fundamental group of a (connected slim) anabelioid
X , it is necessary to choose a basepoint for X . As we saw in Proposition 1.2.8,
this is equivalent to choosing a universal cover X̃ → X of X . On the other hand,
in general, there is nothing special that distinguishes a given profinite étale
X̃ → X from another X̃ → X obtained from the first by composition with some
element of Aut(X̃ ) = Isog(X ). That is to say, the difference between these two
X̃ → X is a “matter of arbitrary choices of labels”. Thus, the question
naturally arises:

To what extent is it possible to construct the fundamental group of
a (connected slim) anabelioid in a canonical fashion that does not
depend on such arbitrary choices?

In this § and the next, we would like to analyze this issue in more detail. Our
main result (cf. Theorem 2.4.3 below) states that when the anabelioid in ques-
tion admits a “faithful quasi-core” (cf. Definition 2.3.1), then its fundamental
group can indeed be constructed in a rather canonical fashion. In addition to
quasi-cores, we also consider the notion of intrinsic exhaustivity, which provides
a convenient, intrinsic necessary condition for an anabelioid to admit a faithful
quasi-core.

In the following, we shall always consider morphisms between anabelioids
in the coarsification Anab of Anab.

Definition 2.3.1. Let X be a Q-anabelioid (so X , Q are slim). For
simplicity, we also assume that the fundamental group of every irreducible
component of Q is countably (topologically) generated.
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(i) We shall say that X admits (Q as) a quasi-core if the natural functor

LocQ(X ) → Loc(X )

(given by forgetting the Q-holomorphic structure) is an equivalence.

(ii) We shall say that X admits (Q as) a faithful quasi-core if X admits Q as
a quasi-core, and, moreover, the Q-structure on X is faithful.

Next, let us recall that if G is a slim profinite group, then it admits a
natural injection

G ↪→ Isog(G) def= Isog(B(G))

(cf. Propositions 1.2.8, (iv); 2.1.4, (i)). Thus, in the following discussion, we
shall regard G as a subgroup of Isog(G).

Definition 2.3.2. We shall refer to as a profinite subgroup K ⊆ Isog(G)
a subgroup K of the abstract group Isog(G) which is equipped with a structure
of profinite group such that the intersection K

⋂
G is a closed subgroup of

both G and K whose induced topologies from G and K coincide.

Remark 2.3.2.1. If K ⊆ Isog(G) is a profinite subgroup which is, moreover,
commensurable to a closed subgroup F ⊆ G (i.e., K

⋂
F is open in F , K), then

one verifies easily that the topology on K is the unique topology with respect
to which K ⊆ Isog(G) is a profinite subgroup.

Remark 2.3.2.2. One verifies immediately that if G′ ⊆ Isog(G) is a profi-
nite subgroup commensurable to G — so that one has a natural identification
Isog(G) = Isog(G′) — then the profinite subgroups of Isog(G) are the same
(relative to this identification) as the profinite subgroups of Isog(G′).

We will also make use of the following definitions:

Definition 2.3.3.

(i) A profinite group G will be called weakly intrinsically exhaustive if for every
open subgroup H ⊆ G and every open embedding ι : H ↪→ G, we have:

[G : H] = [G : ι(H)]
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(ii) A slim profinite group G will be called intrinsically exhaustive if there exists
a filtration

· · · ⊆ Gn+1 ⊆ Gn ⊆ · · · ⊆ G

(where n ranges over the positive integers) of open normal subgroups Gn

of G such that ⋂
n

Gn = {1}

and, moreover, for any profinite subgroup K ⊆ Isog(G) commensurable to
G, there exists an integer nK — depending only on the profinite subgroup
K — such that Gn ⊆ K for n ≥ nK , and, for any open subgroup H ⊆ Gn

(where n ≥ nK) and any open embedding ι : H ↪→ K, we have ι(H) ⊆
Gn (⊆ K).

(iii) An anabelioid will be called intrinsically exhaustive (respectively, weakly
intrinsically exhaustive) if the fundamental group of every connected com-
ponent of the anabelioid is intrinsically exhaustive (respectively, weakly
intrinsically exhaustive).

Definition 2.3.4. Let X be a Q-anabelioid. Then we shall refer to a
finite étale (necessarily Galois) covering Y → X obtained as the direct sum-
mand of the pull-back via the structure morphism X → Q of a finite étale
Galois covering R → Q as Q-Galois.

Proposition 2.3.5 (Basic Properties of Quasi-Cores and Intrinsic
Exhaustivity).

(i) Suppose that a slim anabelioid X admits a quasi-core X → Q. Then the
natural functor

LocQ(X ) → Loc(X )

(given by forgetting the Q-holomorphic structure) is an equivalence. More-
over, any relatively slim composite X → Q′ of X → Q with a morphism
Q → Q′ of slim anabelioids is also a quasi-core for X .

(ii) If a slim anabelioid X admits a core X → Q, then X → Q is a faithful
quasi-core for X .

(iii) Suppose that X and Y are slim, connected anabelioids which are isogenous.
Then X admits a quasi-core (respectively, admits a faithful quasi-core) if
and only if Y does.
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(iv) Suppose that X and Y are slim, connected anabelioids which are isoge-
nous. Then X is intrinsically exhaustive (respectively, weakly intrinsically
exhaustive) if and only if Y is.

(v) If X is intrinsically exhaustive, then it is weakly intrinsically exhaustive.

(vi) Suppose that X is weakly intrinsically exhaustive. Then there is a
unique map

degX : Ob(Loc(X )) → Q>0

such that

degX (X ) = 1; deg(Y1/Y2) = degX (Y1)/ degX (Y2)

for all morphisms Y1 → Y2 of Loc(X ). In particular, if Y → X is a
finite étale morphism of connected anabelioids of degree > 1, then Y is not
isomorphic to X .

(vii) Let X be a slim, connected, weakly intrinsically exhaustive anabelioid
that admits a quasi-core X → Q. Let

φ : Y → X

be a connected Q-Galois covering. Then any finite étale (not necessarily
Galois!) morphism ψ : Y → X is abstractly equivalent (cf. §0) to φ.

(viii) If X admits a faithful quasi-core, then X is intrinsically exhaustive.
In particular, if X admits a core, then X is intrinsically exhaustive.

Proof. Assertions (i), (ii), (iv), and (vi) are immediate from the defini-
tions. Assertion (iii) follows from the definitions and assertion (i). Next, we
verify assertion (v). Let H ⊆ G be an open subgroup, and ι : H ↪→ G be an
open embedding. Suppose that (for some large n) Gn (as in Definition 2.3.3)
is contained in H, so ι(Gn) ⊆ Gn. Then:

∞ > [G : ι(H)] · [H : Gn] = [G : ι(H)] · [ι(H) : ι(Gn)]

= [G : ι(Gn)] = [G : Gn] · [Gn : ι(Gn)]

≥ [G : Gn] = [G : H] · [H : Gn]

Thus, [G : ι(H)] ≥ [G : H]. On the other hand, if we apply this inequality to
ι−1 : ι(H) ↪→ G, then we obtain the reverse inequality. This implies equality,
as desired.
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Next, we turn to assertion (vii). Suppose that X → Q is a quasi-core for
X . Without loss of generality, we may assume that X = B(G), Q = B(A), and
that X → Q is induced by a continuous homomorphism G → A which factors:

G � GA ⊆ A

If B ⊆ A is an open normal subgroup of A, and HA
def= GA

⋂
B, H

def= G×A B,
then for any open embedding ι : H ↪→ G, it follows from Definition 2.3.1, (i),
that the image of the composite of ι with the homomorphism G → A is equal
to a · HA · a−1 (for some element a ∈ A). Thus, since B is normal in A, we
conclude that a · HA · a−1 ⊆ GA

⋂
B = HA (for some a ∈ A). On the other

hand, this implies that ι factors through H, hence — by assertion (vi) — that
ι(H) = H, as desired.

Finally, we turn to assertion (viii). Suppose that X → Q is a faithful
quasi-core for X . Without loss of generality, we may assume that X = B(G),
Q = B(A), where G ⊆ A is a closed subgroup of a profinite group A. Let

· · · ⊆ An+1 ⊆ An ⊆ · · · ⊆ A

(where n ranges over the positive integers) be a descending sequence of open
normal subgroups of A (which exists since A is assumed to be countably (topo-
logically) generated — cf. Definition 2.3.1) such that:⋂

n

An = {1}

Let Gn
def= G

⋂
An. Then for any profinite subgroup K ⊆ Isog(G) commen-

surable to G, it follows from assertion (i) that K
⋂

G ⊆ G ⊆ A extends
uniquely to an inclusion K ⊆ A. Now take nK to be sufficiently large that
Gn = Kn

def= K
⋂

An (⊆ K), for all n ≥ nK . Then for any open subgroup
H ⊆ Gn (where n ≥ nK) and any open embedding ι : H ↪→ K, it follows
from Definition 2.3.1, (i), that the composite of ι with the inclusion K ⊆ A is
induced by conjugation by an element a ∈ A. Thus, (since An is normal in A)
we obtain the desired inclusion:

ι(H) = a · H · a−1 ⊆ K
⋂

An = Kn = Gn

Remark 2.3.5.1. Thus, in words (cf. Definition 2.3.3; Proposition 2.3.5,
(vi)), weak intrinsic exhaustivity means, with respect to finite étale localization
on B(G), that:
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The property of “being sufficiently local as to be finite étale over B(G)
of degree N” is intrinsic.

On the other hand, intrinsic exhaustivity means that:

The property of “being sufficiently local as to be finite étale over
B(Gn)” is intrinsic.

Moreover, we have implications (cf. Proposition 2.3.5, (v), (viii)):

existence of a faithful quasi-core =⇒ intrinsic exhaustivity

=⇒ weak intrinsic exhaustivity

Here, the second implication is strict (cf. Example 2.3.7, (ii), (iii), below), but
it is not clear to the author at the time of writing to what extent the first
implication is strict (but cf. Theorem 3.1.3, (iii); Corollary 3.1.7).

Proposition 2.3.6 (Quasi-Cores and the Group of Isogenies). Let
G be a slim profinite group.

(i) Suppose that Isog(G) is profinite (i.e., “Isog(G) ⊆ Isog(G) is a profinite
subgroup” — cf. Definition 2.3.2). Then B(G) → B(Isog(G)) is a quasi-
core.

(ii) Suppose that G is intrinsically exhaustive; let {Gn} be as in Definition
2.3.3, (ii). Then the natural inclusions · · · ⊆ Aut(Gn) ⊆ Aut(Gn+1) ⊆
· · · ⊆ Isog(G) (where n ≥ nG) induce an isomorphism of abstract groups:

lim−→
n

Aut(Gn) ∼→ Isog(G)

(iii) Suppose that G is a closed subgroup of a slim profinite group A such that
the inclusion G ↪→ A is relatively slim. Then the following are equivalent:

(a) B(G) → B(A) is a faithful quasi-core.

(b) The natural inclusion CA(G) ↪→ Isog(G) is surjective.

(c) The homomorphism of abstract groups G ↪→ A factors through G ↪→
Isog(G).
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Proof. These assertions are all formal consequences of the definitions.

Remark 2.3.6.1. Relative to Proposition 2.3.6, (ii), we note that Aut(Gn)
is also equal to the normalizer of Gn in Isog(G). When G (hence also the Gn)
is topologically finitely generated, then it follows that G admits an exhaustive
descending sequence of characteristic open subgroups · · · ⊆ Hm ⊆ · · · ⊆ G,
hence that Aut(G) (hence also the Gn) admits a natural structure of profinite
group (by considering the inverse limit of the images of Aut(G) in the various
Aut(G/Hm)). On the other hand, this profinite topology on Aut(Gn) does
not, in general, coincide with the topology induced by the topology of Isog(G)
discussed in Proposition 2.1.4, (i) — cf. Remark 2.2.6.2. Moreover, (relative
to Proposition 2.3.6, (ii)) the work of [TSH] — involving inductive limits of
topological groups whose inductive limit topology (in the category of topology
spaces) is not necessarily compatible with the group structure of the inductive
limit — shows that the topology of inductive limits of topological groups can,
in general, be a rather subtle issue.

Remark 2.3.6.2. The observations given in Proposition 2.3.6, (i), (iii);
Remark 2.3.6.1 were related to the author by A. Tamagawa.

Example 2.3.7. Non-Intrinsically Exhaustive Profinite Groups.
Let p be a prime number.

(i) Take A
def= Zp

×, B
def= Zp. Let A act on B in the usual fashion. Take

G
def= B � A. Note that G is slim. Then the open subgroup

H
def= (p · B) � A ⊆ G

is clearly isomorphic to G, hence violates Proposition 2.3.5, (vi). Thus, G

fails to be weakly intrinsically exhaustive.

(ii) Let G
def= PGL2(Zp). Note that G is slim. For m a positive integer, write

Cm ⊆ G for the subgroup determined by the matrices congruent to the
identity matrix modulo pm. Then G fails to be intrinsically exhaustive.
Indeed, if {Gn} is as in Definition 2.3.3, then there exist positive integers
m ≥ n ≥ nG such that:

Cm ⊆ Gn ⊆ C1

Thus, for all open embeddings ι : Cm ↪→ G, we should have: ι(Cm) ⊆ C1.
But this inclusion fails to hold if we take ι to be the embedding given
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by conjugation by the matrix

(
pm 0
0 1

)
. On the other hand, (it is an easy

exercise to show that) in this case, the unimodularity of the action by
conjugation of GL2(Qp) on M2(Qp) implies that G is weakly intrinsically
exhaustive.

(iii) For n ≥ 2, let G
def= F̂n, the free profinite group on n generators. Then G

is slim (cf., e.g., [Naka], Corollary 1.3.4; [Mzk8], Lemma 1.3.1). Moreover,
since, for any n, m ≥ 2, F̂n, F̂m admit isomorphic open subgroups, in order
to prove that G is not intrinsically exhaustive for all n, it suffices to prove
that G fails to be intrinsically exhaustive for some n (cf. Proposition 2.3.5,
(iv)). On the other hand, there exists an n such that G is isomorphic to an
open subgroup of the profinite completion SL2(Z)∧ of SL2(Z). Thus, one
may show that to assume the intrinsic exhaustivity of any open subgroup
of such a G leads to a contradiction by conjugating by “Hecke operator-
type matrices” — an operation which preserves the quotient SL2(Z)∧ �
SL2(Zp) — as in (ii), above. Note, however, that in this case, the Nielsen-
Schreier formula (cf., e.g., [FJ], Proposition 15.25) implies that G is weakly
intrinsically exhaustive.

(iv) The anabelioid Ét(A1
Fp

) (notation as in Example 1.1.3) associated to the
affine line over Fp fails to be weakly intrinsically exhaustive. Indeed, the
existence of the finite étale morphism A1

Fp
→ A1

Fp
defined by

T �→ T p + T

(where T is the standard coordinate on A1
Fp

) contradicts Proposition 2.3.5,
(vi).

(v) If K is a finite extension of Qp, then the associated anabelioid Ét(K) is
weakly intrinsically exhaustive (cf., e.g., [Mzk5], Proposition 1.2), but fails
to be intrinsically exhaustive, at least when p > 2. Indeed, to see that GK

(the absolute Galois group of K) fails to be intrinsically exhaustive, let us
first recall the following theorem of [JR]:

Let K1, K2 be finite extensions of Qp (where p > 2) which
contain the roots of unity of order p. Then GK1

∼→ GK2 if and
only if [K1 : Qp] = [K2 : Qp] and K1

⋂
(Qp

ab) = K2

⋂
(Qp

ab)
(where Qp

ab is the maximal abelian extension of Qp).

Now suppose that {Gn} is a sequence of open normal subgroups of GK as
in Definition 2.3.3, (ii). Without loss of generality (cf. Proposition 2.3.5,
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(iv)), we may assume that K contains the roots of unity of order p, and
that [K : Qp] ≥ 3. Let L be the finite Galois extension of K corresponding
to some Gn. Write M ⊆ L for the maximal tamely ramified subextension
of L over K. By taking n to be sufficiently large, we may assume that the
extension L of M is not cyclotomic, i.e., that L �= L

⋂
(M · Qp

ab). Since
[M : Qp] ≥ [K : Qp] ≥ 3, it thus follows from local class field theory (cf.,
e.g., [Serre3]) that the wild inertia subgroup of Gab

M has rank ≥ 3 over Zp,
hence that there exists a wildly ramified abelian extension L′ of M such
that:

[L′ : M ] = [L : M ]; L′ �= L; L′
⋂

(M · Qp
ab) = L

⋂
(M · Qp

ab)

Thus, (by the theorem of [JR] quoted above) we conclude that GL′
∼→ GL =

Gn despite the fact that GL′ �= GL. But this contradicts Definition 2.3.3,
(ii).

Remark 2.3.7.1. Examples (iv) and (v) were related to the author by A.
Tamagawa.

§2.4. Canonical construction of the fundamental group

Let X be a slim, connected anabelioid. In this §, we would like to examine
the extent to which the fundamental group of X may be constructed in a
canonical fashion, independent of a choice of basepoint.

We begin by introducing some notation. Let us write

Locbp(X )

for the category each of whose objects is an arrow U → Y , where Y is a connected
object of Loc(X ), and U → Y is a universal covering of Y (cf. Definition 1.2.7),
and whose morphisms from an arrow U1 → Y1 to an arrow U2 → Y2 are pairs
of arrows αU : U1

∼→ U2, αY : Y1 → Y2 such that the diagram

U1
αU−→U2� �

Y1
αY−→Y2

commutes; αU is an isomorphism; and αY is finite étale. Thus, in particular,
by mapping U → Y to Y , we obtain a functor

ΦX : Locbp(X ) → Loc(X )0
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— where the superscript “0” is to denote the full subcategory consisting of
connected objects — which (by definition) is surjective on objects.

On the other hand, if we define

SGp

to be the category whose objects are pairs (G, H), where G is a group, and
H is a subgroup of G, and whose morphisms from (G1, H1) to (G2, H2) are
homomorphisms φ : G1 → G2 such that φ(H1) ⊆ H2, then we obtain a natural
functor

ΨX : Locbp(X ) → SGp

by mapping an arrow U → Y to the pair

(Aut(U), AutY(U) ⊆ Aut(U))

and a morphism from U1 → Y1 to U2 → Y2 to the isomorphism Aut(U1)
∼→ Aut(U2). Thus:

Locbp(X ) may be thought of as the “category of objects of Loc(X )
equipped with a basepoint” and ΨX may be thought of as the standard
construction of the fundamental group (in the presence of a basepoint).

When it is necessary to specify the universe V relative to which we are work-
ing — i.e., relative to which we take all of our (pro-)anabelioids (respec-
tively, groups) to be V -small (respectively, V -sets) — we shall write LocV

bp(X ),
LocV (X ) (respectively, SGp

V ). [Similarly, we shall write ΦV
X , ΨV

X .] Thus, we
observe, in particular, that the categories LocV

bp(X ), LocV (X ) are not V -small.

Proposition 2.4.1 (Dependence of the Fundamental Group on the
Choice of Universal Covering). Let V be a universe [which is, therefore,
in particular, a “set” in some ambient model of set theory]. Let X be a V -
small slim, connected anabelioid such that the subgroup ΠX ⊆ Isog(X ) (cf.
Proposition 2.1.4, (i)) is not normal. Then there exist distinct objects of
LocV

bp(X ) that map via ΦV
X to the same object of LocV (X )0, but via ΨV

X to
distinct objects of SGp

V . In particular, the functor ΨV
X does not factor

through ΦV
X .

Proof. Indeed, let π : X̃ → X be a universal covering; let α ∈ Aut(X̃ ) be
an element that does not normalize ΠX

def= AutX (X̃ ). Then π′ def= π ◦ α−1 is
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also a universal covering of X . Moreover, we have

ΨV
X (π) = (Aut(X̃ ), ΠX ) �= ΨV

X (π′) = (Aut(X̃ ), α · ΠX · α−1)

but ΦV
X (π) = ΦV

X (π′) = X .

Remark 2.4.1.1. Thus, the proof of Proposition 2.4.1 suggests, in particu-
lar, that, in order to obtain a factorization of ΨV

X through ΦV
X — i.e., to obtain

a “canonical construction” of the fundamental group that does not depend on
the choice of basepoint — it is necessary to modify ΨV

X so that it takes values
in some sort of “quotient” in which subgroups of Aut(X̃ ) are identified with
their conjugates. This motivates the following discussion.

Let V , X be as in Proposition 2.4.1. Then let us denote by

SGp
V
X

the category each of whose objects is an assignment A

U �→ AU

— where U ranges over all V -small universal coverings of X [i.e., all domains of
arrows in Locbp(X )], and AU is a collection of subgroups of Aut(U) — such that
for every isomorphism U1

∼→ U2, the induced isomorphism Aut(U1)
∼→ Aut(U2)

maps AU1 onto AU2 ; and whose morphisms Hom(A, A′) are defined as fol-
lows: The cardinality of Hom(A, A′) is always ≤ 1; we take the cardinality of
Hom(A, A′) to be 1 if and only if the following condition is satisfied: for every
U , every H ∈ AU , there exists an H ′ ∈ A′

U such that H ⊆ H ′. Note that this
category SGp

V
X is not V -small.

Thus, we obtain a natural functor

Ξ̃V
X : LocV

bp(X ) → SGp
V
X

by mapping an arrow U → Y to the assignment that maps a universal covering
V to the conjugacy class of subgroups of Aut(V) determined by the subgroup
AutY(U) ⊆ Aut(U) and an isomorphism Aut(U) ∼→ Aut(V) which is induced
by an isomorphism U ∼→ V . [Note that this conjugacy class is independent of
the choice of isomorphism U ∼→ V .] Moreover, it is evident from the definition
of Ξ̃V

X that:
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Theorem 2.4.2 (Canonical Fundamental Groups up to Isogeny).
Let V , X be as in Proposition 2.4.1. Then there exists a functor

ΞV
X : LocV (X )0 → SGp

V
X

such that ΞV
X = Ξ̃V

X ◦ ΦV
X .

Remark 2.4.2.1. Thus, the functor of Theorem 2.4.2 yields a functorial
[i.e., with respect to finite étale coverings] construction of the fundamental
group as a group of transformations of some geometric object [i.e., the universal
covering], albeit up to a certain indeterminacy, given by the action of Isog(X ).
On the other hand, this functor has the drawback that it only constructs the
fundamental group as an “abstract group”, i.e., not as a profinite group, as
one might ideally wish.

Now let us assume that X is a connected Q-anabelioid. For simplicity,
we assume that Q is also connected. In the following discussion, we would
like to show that (certain quotients) of the fundamental group of X may be
constructed in a very canonical fashion complete with their profinite structure,
under the assumption that X → Q is a quasi-core for X .

First, let us choose an explicit system of finite étale Galois coverings

· · · → Qn+1 → Qn → · · · → Q

of Q which, when regarded as a pro-anabelioid Q∞, forms a universal covering
of Q. For each n, choose a coherent system of connected components

Xn ↪→ Qn|X

of Qn|X (cf. the proof of Proposition 2.3.5, (viii)). This system thus defines a
pro-anabelioid X∞, together with a morphism X∞ → Q∞.

Now observe that, since X → Q is a quasi-core, it follows that any auto-
morphism α : Xn

∼→Xn necessarily lies over Q, hence that the natural morphism

Xn → Qn

[obtained by composing the inclusion Xn ↪→ Qn|X with the projection Qn|X →
Qn] is preserved by composition on the the left with arbitrary automorphisms of
Xn, up to the action of a (unique) element of Gal(Qn/Q) def= AutQ(Qn). That
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is to say, there is a unique element αQn
∈ Gal(Qn/Q) for which the following

diagram commutes:
Xn →Qn�α

�αQn

Xn →Qn

Moreover, the uniqueness of this element implies that the assignment α �→
αQn

is a homomorphism. Thus, in summary, we see that we obtain an outer
homomorphism

ρAut
n : Aut(Xn) → Gal(Qn/Q)

which is entirely determined (as an outer homomorphism) by the isomorphism
class of Xn. In particular, restricting to Gal(Xn/X ) ⊆ Aut(Xn), we obtain an
outer homomorphism

ρGal
n : Gal(Xn/X ) → Gal(Qn/Q)

which is entirely determined (as an outer homomorphism) by the abstract equiv-
alence class of the morphism Xn → X , hence, in particular, by the isomorphism
class of X plus the covering Qn → Q (since X → Q is a quasi-core).

Since the above construction is clearly “functorial in n”, by passing to the
limit over n, we thus obtain an outer homomorphism

ρGal
∞ : Gal(X∞/X ) → ΠQ

def= Gal(Q∞/Q)

whose image is entirely determined (up to conjugacy) by the isomorphism class
of X . Let us denote this image (well-defined up to conjugacy) by:

ΠX/Q ⊆ ΠQ

Moreover, since the above construction is determined entirely by the isomor-
phism class of X , it follows (cf. Proposition 2.1.1, (iv)) that the assignment
X �→ ΠX/Q is functorial with respect to finite étale coverings X1 → X2 of con-
nected objects of Loc(X ) in the sense that such a covering induces an inclusion

ΠX1/Q ⊆ ΠX2/Q (⊆ ΠQ)

which is well-defined up to conjugation by elements of ΠQ. (That is to say, one
allows an indeterminacy with respect to distinguishing between, say, a given
inclusion ΠX1/Q ⊆ ΠX2/Q and some other inclusion ΠX1/Q ⊆ π · ΠX2/Q · π−1,
where π ∈ ΠQ.)
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If G is a Hausdorff topological group, then let us write

Sub(G)

for the category whose objects are conjugacy classes of closed subgroups H ⊆ G,
and whose morphisms H → H ′ are inclusions of H into a (conjugate of) H ′.
That is to say, the cardinality of the set of morphisms between two objects of
Sub(G) is either 0 or 1.

Then the above discussion may be summarized as follows:

Theorem 2.4.3 (Canonically Constructed Fundamental Groups
via Quasi-Cores). Let Q be a slim, connected anabelioid. Suppose that X is
a connected Q-anabelioid for which X → Q is a quasi-core. Then there is a
functor

Loc(X )0 → Sub(ΠQ)
Y �→ {ΠY/Q ⊆ ΠQ}

such that B(ΠY/Q) is isomorphic to the image of Y in Q (cf. Definition 1.1.7).
In particular, if X → Q is a faithful quasi-core, then Y ∼= B(ΠY/Q).

Remark 2.4.3.1. Thus, Theorem 2.4.3 yields a canonical construction
of the fundamental group of a slim, connected X which admits a faithful quasi-
core Q. Moreover, this construction has the virtue that it is compatible [cf. the
above discussion!] with the profinite structure of the fundamental group of
X . That is to say, more concretely:

The functor of Theorem 2.4.3 may be written as an inverse limit of
a compatible system of functors to the categories

Sub(ΠQ/Hn)

where · · · ⊆ Hn ⊆ · · · ⊆ ΠQ is an exhaustive descending sequence of
open normal subgroups of ΠQ.

This compatibility with the profinite structure is closely related to the the
intrinsicity of “knowing how local one is” (cf. Remark 2.3.5.1).

On the other hand, one drawback of the construction of Theorem 2.4.3 is
that it depends on the arbitrary choice of a universal covering Q∞ → Q for
Q as an “input datum”. This motivates the following definition:
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Definition 2.4.4. Let X be a slim, connected anabelioid. Then we shall
refer to a closed subgroup ∆ ⊆ ΠX , considered as a subgroup of Isog(X ), as
an intrinsic profinite subgroup if it is topologically finitely generated, normal
in Isog(X ), and, moreover, the continuous inclusion of Hausdorff topological
groups ∆ ↪→ Isog(X ) is relatively slim.

Remark 2.4.4.1. Note that since ∆ is topologically finitely generated, it
follows (cf. Remark 2.3.6.1) that Aut(∆) has a natural structure of profinite
group.

Proposition 2.4.5 (The Faithful Quasi-Core Associated to an In-
trinsic Profinite Subgroup). Let ∆ ⊆ Isog(X ) be an intrinsic profinite
subgroup. Then the action by conjugation of ΠX on ∆ yields a morphism

X ∼= B(ΠX ) → B(Aut(∆))

which is a faithful quasi-core for X .

Proof. Indeed, this is a formal consequence of Proposition 2.3.6, (iii), (a)
⇐⇒ (c).

Remark 2.4.5.1. Thus, when the quasi-core of Theorem 2.4.3 is obtained
as in Proposition 2.4.5, one can replace the functor of Theorem 2.4.3 by a
functor in the style of Proposition 2.4.2: That is to say, instead of considering
a conjugacy class of subgroups of a particular profinite group ΠQ, we observe
that for any universal covering U , we obtain a natural profinite subgroup

∆U ⊆ Aut(U)

(determined by conjugating ∆ by some isomorphism U ∼→ X̃ of U to the uni-
versal covering X̃ used to define Isog(X )) such that any isomorphism U1

∼→ U2

maps ∆U1 to ∆U2 . In particular, we obtain an assignment

U �→ AU
def= Aut(∆U )

which is functorial in isomorphisms U1
∼→ U2. Then instead of obtaining a

conjugacy class of subgroups [as in Theorem 2.4.3] in a particular ΠQ, we
obtain a conjugacy class of subgroups of AU , for each U , which is compatible
with all isomorphisms U1

∼→ U2. [We leave the routine details to the reader.]
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At any rate, this yields a construction of the canonical fundamental groups of
Theorem 2.4.3 which is independent of the choice of any universal covering
of Q.

§3. Anabelioids Arising from Hyperbolic Curves

§3.1. Anabelioid-theoretic interpretation of scheme-theoretic cores

In the following discussion, we wish to translate the scheme-theoretic theory
of cores in the context of hyperbolic curves (cf. [Mzk9], §2) into the language
of anabelioids (cf. the profinite group-theoretic approach to such a translation
given in [Mzk9], §2). The main technical tool that will enable us to do this is
the “Grothendieck Conjecture” — i.e., Theorem A of [Mzk6].

For i = 1, 2, let Fi be either Q or Qpi
(for some prime number pi). Let

Ki be a finite extension of Fi. Let (Xi)Ki
be a hyperbolic orbicurve over

Ki. Assume that we have chosen basepoints of the (Xi)Ki
, which thus in-

duce basepoints/algebraic closures Ki of the Ki and determine fundamental
groups Π(Xi)Ki

def= π1((Xi)Ki
) and Galois groups GKi

def= Gal(Ki/Ki). Thus,
for i = 1, 2, we have an exact sequence:

1 → ∆Xi
→ Π(Xi)Ki

→ GKi
→ 1

(where ∆Xi
⊆ Π(Xi)Ki

is defined so as to make the sequence exact). Here, we
shall think of GKi

as a quotient of Π(Xi)Ki
(i.e., not as an independent group to

which Π(Xi)Ki
happens to surject). One knows (cf. [Mzk8], Lemma 1.3.8) that

this quotient Π(Xi)Ki
→ GKi

is an intrinsic invariant of the profinite group
Π(Xi)Ki

.

Next, we would like to introduce anabelioids into our discussion. Write:

Xi
def= Ét((Xi)Ki

); Si
def= Ét(Ki)

Note that Xi, Si are slim (cf. [Mzk8], Theorem 1.1.1, (ii); [Mzk8], Lemma
1.3.1), and that the structure morphisms Xi → Si are relatively slim (cf. [Mzk8],
Theorem 1.1.1, (ii)). Thus, we may think of Xi as an Si-anabelioid (cf. §2.2).
In particular, we may consider the categories

LocSi
(Xi); LocSi

(Xi)

of §2.2. In the following discussion, we shall work with anabelioids “at the
coarsified level ” [i.e., in Anab].
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Corollary 3.1.1 (Anabelioid-Theoretic Preservation of Arith-
metic Quotients). Any finite étale morphism

α : X1 → X2

induces a commutative diagram

X1
α−→X2� �

S1
αS−→ S2

(where the horizontal morphisms are finite étale), hence pull-back

LocS2(X2) → LocS1(X2 ×S2 S1); LocS2(X2) → LocS1(X2 ×S2 S1)

and extension functors

LocS1(X1) ↪→ LocS1(X2 ×S2 S1); LocS1(X1)
∼→ LocS1(X2 ×S2 S1)

which are equivalences whenever α is an isomorphism. Here, the extension
functor on “Loc(−)’s” (respectively, “Loc(−)’s”) is a full embedding (respec-
tively, equivalence).

Proof. Indeed, this is a formal consequence of [Mzk8], Lemma 1.3.8 (and
Proposition 2.2.2, (iv)).

Theorem 3.1.2 (Anabelioid-Theoreticity of Correspondences). Let
K be a finite extension of Qp or Q; XK a hyperbolic orbicurve over K; write

X def= Ét(XK), S def= Ét(K). Then the natural functor

LocK(XK)−→ LocS(X )
Z �→ Ét(Z)

(defined by applying “Ét(−)”) is an equivalence of categories. A similar asser-
tion holds for “Loc(−)” replaced by “Loc(−)”. In particular, XK is (respec-
tively, admits) a K-core if and only if X is (respectively, admits) an S-core.

Proof. Since “Loc(−)” may be categorically reconstructed from “Loc(−)”
via the same recipe for both schemes and anabelioids, it suffices to prove the
asserted equivalence in the case of “Loc(−)”.
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In this case, it is immediate from the definitions that the functor in question
is essentially surjective. It follows from the injectivity of [Mzk6], Theorem A
(cf. also Proposition 1.1.4) that this functor is faithful. Thus, it suffices to
prove that this functor is full. Since “fullness” follows from Proposition 1.2.5,
(ii), for morphisms over X , it suffices (by Proposition 2.2.2, (iv)) to prove that
every S-isomorphism

Y ∼→ Z

(where Y , Z are anabelioids representing objects of LocS(X )) arises from a
morphism of schemes in LocK(XK). But this is a formal consequence of [Mzk6],
Theorem A (cf. also Proposition 1.1.4).

Theorem 3.1.3 (Absolute Cores over Number Fields). Let K be
a number field; XK a hyperbolic orbicurve over K; write X def= Ét(XK).
Then:

(i) XK is an [absolute] core if and only if XK is a K-core, and, moreover, K

is a minimal field of definition for XK .

(ii) Applying “Ét(−)” induces an equivalence of categories:

Loc(XK) ∼→ Loc(X )

In particular, X is (respectively, admits) an [absolute] core if and only if
XK is (respectively, admits) an [absolute] core.

(iii) Suppose that XK is non-proper. Then X admits a core if and only if it
is intrinsically exhaustive.

Proof. Assertion (i) follows formally from [Mzk9], Definition 2.1 and
[Mzk9], Remark 2.1.1. Assertion (ii) follows, in light of [Mzk8], Theorem 1.1.3,
by the same argument as that used to prove Theorem 3.1.2. To prove assertion
(iii), let us recall from the theory of [Mzk3] (cf. [Mzk9], Remark 2.1.2) that XK

[or, equivalently, by assertion (ii), X ] fails to admit a core if and only if XK

is isogenous to a Shimura curve. Since XK is assumed to be non-proper, this
Shimura curve may be taken to be the moduli stack of hemi-elliptic curves (cf.
[Take], p. 396, second paragraph). Thus, if XK fails to admit a core, one may
show that X fails to be intrinsically exhaustive by using Hecke correspondences
on the moduli stack of hemi-elliptic curves, as in Example 2.3.7, (ii), (iii) (cf.
Proposition 2.3.5, (iv)). On the other hand, if X admits a core, then it follows
from Proposition 2.3.5, (ii), (viii), that X is intrinsically exhaustive.
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Remark 3.1.3.1. One expects that the assumption that XK be non-proper
in Theorem 3.1.3, (iii), is inessential. We made this assumption only to tech-
nically simplify the proof that X fails to be intrinsically exhaustive (when it is
assumed to fail to admit a core). The point of Theorem 3.1.3, (iii), was to give
an example where the existence of a core is equivalent to intrinsic exhaustivity
(cf. Remark 2.3.5.1), since this contrasts with the situation that occurs in the
p-adic case (cf. Remark 3.1.6.1, Corollary 3.1.7 below).

Corollary 3.1.4 (Anabelioid-Theoreticity of Cores). Let

α : X1 → X2

be a finite étale morphism. Then:

(i) α induces — in a fashion functorial with respect to α — a pull-back func-
tor

LocK2((X2)K2) → LocK1((X1)K1)

which is an equivalence whenever S1 → S2 is an isomorphism, and is
equal to the usual scheme-theoretic pull-back functor whenever α arises
from a finite étale morphism of schemes (X1)K1 → (X2)K2 .

(ii) (X1)K1 is K1-arithmetic if and only if (X2)K2 is K2-arithmetic. Simi-
larly, if X1 → X2 ×S2 S1 is an isomorphism, then (X1)K1 is a K1-core if
and only if (X2)K2 is a K2-core.

(iii) If a finite étale morphism (X2)K2 → (Z2)K2 to a K2-core (Z2)K2 maps (via
the functor of (i)) to a finite étale morphism (X1)K1 → (Z1)K1 , then (Z1)K1

is a K1-core, and, moreover, the morphism X1 → X2 ×S2 S1 extends
uniquely to a commutative diagram:

X1 → X2 ×S2 S1 →X2� � �
Z1

∼→ Z2 ×S2 S1 →Z2

(where Zi
def= Ét((Zi)Ki

), and the lower horizontal arrow on the left is an
isomorphism).

Proof. The functor of (i) is obtained by composing the pull-back functor
on “Loc(−)’s” of Corollary 3.1.1 with an inverse to the extension functor on
“Loc(−)’s” of Corollary 3.1.1 (which is an equivalence), and then applying the
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equivalences of Theorem 3.1.2 to the domain and codomain of this composite.
Assertion (ii) is a formal consequence of assertion (i); [Mzk9], Definition 2.1;
[Mzk9], Remark 2.1.1; and [Mzk9], Proposition 2.3, (i). To prove assertion (iii),
we may assume, for simplicity, (cf. Proposition 2.1.1, (iv)) that S1 → S2 is an
isomorphism. Then it follows that the pull-back functor on “Loc(−)’s” of (i)
is an equivalence:

LocK2((X2)K2)
∼→ LocK1((X1)K1)

Thus, the existence of an extension as in assertion (iii) follows formally by
thinking of Xi, Zi as subcategories of LocKi

((Xi)Ki
) (cf. Proposition 1.2.5,

(ii)). The uniqueness of such an extension is a formal consequence of the
slimness of Zi.

Proposition 3.1.5 (Absolute Degrees). For i = 1, 2, set:

degarith(Xi)
def= [Ki : Fi]

and deggeo(Xi) equal to the Euler characteristic of (Xi)Ki
. [That is to say,

if (Xi)Ki
is a hyperbolic curve of type (gi, ri), then we set deggeo(Xi) equal to

2gi − 2 + ri; more generally, if (Xi)Ki
is only an orbicurve, then we take its

deggeo(−) to be the deggeo(−) of some degree d finite étale covering of (Xi)Ki

which is a curve, divided by d.] Then for any finite étale morphism α : X1 → X2

(which thus induces a commutative diagram as in Corollary 3.1.1), we have:

deggeo(X1) = deggeo(X2) · (deg(α)/ deg(αS));

degarith(X1) = degarith(X2) · deg(αS)

In particular, Xi is weakly intrinsically exhaustive. We shall refer to
deggeo(Xi) (respectively, degarith(Xi)) as the absolute geometric (respectively,
absolute arithmetic) degree of Xi.

Proof. Indeed, this follows from [Mzk8], Lemma 1.3.9, (for the absolute
geometric degree) and [Mzk8], Proposition 1.2.1, (i), (v) (for the absolute arith-
metic degree).

Remark 3.1.5.1. Proposition 3.1.5 already suggests the possibility that,
under the further assumption that (Xi)Ki

admits a Ki-core, Xi should admit
a faithful quasi-core. In the remainder of the present §, we shall show that
this is, in fact, the case (at least when (Xi)Ki

is non-proper) — cf. Theorem
3.1.6 below. In light of Proposition 2.3.5, (ii); Theorem 3.1.3, (ii), this fact is
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primarily of interest in the case where Ki is a p-adic local field (although we
shall not assume this to be the case in the following discussion).

In the following discussion, we would like to assume that:

(a) The hyperbolic orbicurve (Xi)Ki
admits a Ki-core (Zi)Ki

(where i = 1, 2).

(b) The anabelioids X1, X2 are isogenous.

Choose basepoints for (Zi)Ki
, so that we obtain, for i = 1, 2, exact sequences:

1 → ∆Zi
→ Π(Zi)Ki

→ GKi
→ 1

Write Zi
def= Ét((Zi)Ki

). Then assumptions (a), (b); Corollary 3.1.4, (iii); and
[Mzk8], Lemma 1.3.9, imply that (Z1)K1 , (Z2)K2 are hyperbolic orbicurves of
the same type (g, �r). Let us choose once and for all a model

Π̂g,�r

of the geometric fundamental group of a hyperbolic orbicurve of type (g, �r) (in
characteristic 0). To simplify notation, in the following discussion, we shall
simply write Π̂ for Π̂g,�r.

Thus, we have (noncanonical) isomorphisms Π̂ ∼= ∆Zi
. Such isomorphisms

induce an outer homomorphism Π(Zi)Ki
→ Aut(Π̂) which is independent (as an

outer homomorphism) of the choice of such isomorphism and, moreover, fits
into a commutative diagram:

1−→∆Xi
−→Π(Xi)Ki

−→ GKi
−→ 1� � �

1−→ ∆Zi
−→ Π(Zi)Ki

−→ GKi
−→ 1� � �

1−→ Π̂ −→ Aut(Π̂) −→Out(Π̂)−→ 1

Here, we observe that the vertical arrows between the first and second lines are
always injective. If, moreover, (Xi)Ki

is non-proper, then the vertical arrows
between the second and third lines are also injective (by the theory of [Mtmo]
— cf. [Mzk8], Theorem 1.3.6). If we then set

Zcom
def= B(Aut(Π̂)) → Mcom

def= B(Out(Π̂))
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— i.e., we wish to think of Zcom → Mcom as a sort of “universal combinatorial
model ” of Zi → Si — then we obtain a commutative diagram of connected slim
anabelioids

Xi −→Zi −→ Zcom� � �
Si

id−→ Si −→Mcom

in which the horizontal arrows are all relatively slim (cf. [Mzk8], Theorem 1.1.1,
(ii); [Mzk8], Lemma 1.3.1; [Mzk6], Theorem A). Next, let us observe that the
intrinsic nature of the anabelioid associated to a geometric core (cf. Corollary
3.1.4, (iii)) implies that the morphism Xi → Zcom is functorial with respect to
arbitrary finite étale morphisms X1 → X2.

Finally, let us observe that Aut(Π̂) (hence also Out(Π̂)) is countably (topo-
logically) generated. Indeed, to show this, it suffices to show the existence of a
descending sequence of open subgroups

· · · ⊆ An+1 ⊆ An ⊆ · · · ⊆ Aut(Π̂)

such that
⋂

n An = {1}. To this end, let us note that Π̂ admits a descending
sequence of open characteristic subgroups

· · · ⊆ Π̂[n + 1] ⊆ Π̂[n] ⊆ · · · ⊆ Aut(Π̂)

such that
⋂

n Π̂[n] = {1}. Thus, if we set

An
def= Ker(Aut(Π̂) → Aut(Π̂/Π̂[n]))

we obtain a sequence {An} with the desired properties.

Thus, in summary, we see that we have proven (most of) the following:

Theorem 3.1.6 (The Quasi-Core Associated to a Geometric Core).
Let K be a finite extension of Qp or Q; XK a hyperbolic orbicurve over K

which admits a K-core ZK of type (g, �r). Write:

X def= Ét(XK); Z def= Ét(ZK); Zcom
def= B(Aut(Π̂g,�r)); Mcom

def= B(Out(Π̂g,�r))

Then:

(i) ZK determines a Zcom-holomorphic structure X → Zcom on X which is
a quasi-core for X . In particular, the theory of §2.3, 2.4 may be applied
to X .
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(ii) If XK is non-proper, then this quasi-core is faithful and, moreover, ob-
tained as the quasi-core associated to an intrinsic profinite subgroup
(cf. Proposition 2.4.5). Finally, if K is a number field which is a min-
imal field of definition for ZK , then the morphism Z → Zcom is com-
mensurably terminal.

Proof. It remains only to observe that the final part of (ii) is a formal
consequence of Theorem 3.1.3, (i), (ii); Proposition 2.2.5.

Remark 3.1.6.1. In the case of p-adic local fields, one does not expect
Z def= Ét(ZK) to be a core (even if K is a minimal extension of Qp over which
ZK is defined). Nevertheless, Theorem 3.1.6 shows that Z has the interesting
property of being “closer to being a core” than, for instance, PGL2(Qp) (cf.
Example 2.3.7, (ii), (iii); Theorem 3.1.3, (iii); Corollary 3.1.7 below).

Remark 3.1.6.2. Our use of [Mzk8], Theorem 1.3.6 [i.e., the main result
of [Mtmo]] in the above construction of a faithful quasi-core — which (by the
theory of §2.4) allows us to construct “canonical fundamental groups”, i.e., to
assign canonical names, or labels (up to conjugacy) to the elements of the
fundamental group — is reminiscent of the essential idea lying behind the theory
of the Grothendieck-Teichmüller group, which applies this same injectivity to
assign canonical names (up to conjugacy) to the elements of GQ. It is interest-
ing to note, however, that although this theory of the Grothendieck-Teichmüller
group is typically applied to analyzing GQ, in fact, (by the “Neukirch-Uchida
Theorem” — cf., e.g., [Mzk8], Theorem 1.1.3) the elements of GQ already pos-
sess intrinsic, canonically determined names (up to conjugacy). Thus, the
ability to assign canonically determined names has much greater significance in
the case of p-adic local fields.

Remark 3.1.6.3. Relative to Remark 3.1.6.2, it is also interesting to note
that, just as the theory of §2.4 only applies in the case where the curve in
question admits a geometric core, the theory of the Grothendieck-Teichmüller
group centers around considering not just the projective line minus three points
— a curve which fails to admit a geometric core — but instead a certain system
of moduli stacks of hyperbolic curves, which includes, for instance, the moduli
stack of hyperbolic curves of type (0, 5) which (by [Mzk3], Theorem C) does
admit a geometric core.

Finally, we have the following analogue of Theorem 3.1.3, (iii), which is
valid in the local p-adic case as well:
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Corollary 3.1.7 (Criteria for the Existence of a Geometric Core).
Let K be a finite extension of Qp or Q; XK a non-proper hyperbolic orbi-

curve over K; write X def= Ét(XK). Then the following assertions are equiva-
lent:

(i) XK admits a K-core.

(ii) X admits a faithful quasi-core.

(iii) X is intrinsically exhaustive.

Proof. This is a formal consequence of Theorem 3.1.6, (i), (ii); Proposi-
tion 2.3.5, (viii); and the existence of Hecke correspondences (cf. the proof of
Theorem 3.1.3, (iii)) when XK does not admit a K-core.

Remark 3.1.7.1. The implication (i) =⇒ (iii) of Corollary 3.1.7 (in the p-
adic case) is somewhat surprising in light of Example 2.3.7, (v). That is to say,
Corollary 3.1.7 implies that (when XK admits a K-core) the rigidity of Ét(XK)
is sufficiently strong to eliminate the non-intrinsic exhaustivity of Ét(K). In
particular, we conclude in this case that the natural inclusion

COut(∆Z)(GK) ↪→ Isog(GK)

fails to be surjective (cf. Propositions 2.3.5, (viii); 2.3.6, (iii)).

§3.2. The logarithmic special fiber via quasi-cores

In this §, we interpret the results of [Mzk8], §2, from the point of view of
the theory of quasi-cores — cf. §2.3, 2.4.

Let XK be a hyperbolic curve over a finite extension K of Qp. Denote the
ring of integers (respectively, residue field) of K by OK (respectively, k); also
we shall use notation such as “klog”, “(klog)∼”, as in [Mzk8], §2.

Assume that XK admits a stable model over OK (cf. [Mzk8], §2), as well
as a K-core ZK , and that XK is Galois over ZK . Then we define the stable
model of ZK to be the quotient — in the sense of [log] stacks — of the stable
model of XK by Gal(XK/ZK). Let us denote the logarithmic special fibers of
the stable models of XK , ZK by X log

k , Z log
k , respectively. Write:

X def= Ét(XK); Z def= Ét(ZK)
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Also, let us write Zcom for the quasi-core (for X , Z) of Theorem 3.1.6.

Now recall from [Mzk8], the discussion following Remark 2.5.3, the “uni-
versal admissible covering”

X̃ log
k → X log

k

of X log
k determined by the admissible quotient ΠXK

� Πadm
XK

. Put another
way, this covering is the composite of all admissible coverings (cf. [Mzk4], §3)
of X log

k ×klog (klog)∼. In the following discussion, let us denote the category
of (disjoint unions of coverings isomorphic to) subcoverings of this universal
admissible covering (respectively, subcoverings of the “geometric universal ad-
missible covering” X̃ log

k → X log
k ×klog (klog)∼) by:

Étadm(X log
k ) (respectively, Étadm(X log

k ×klog (klog)∼))

To keep the notation simple, we set:

X0
def= Étadm(X log

k ); X 0
def= Étadm(X log

k ×klog (klog)∼)

[so the fundamental group of X0 (respectively, X 0) may be identified with Πadm
XK

(respectively, the geometric portion ∆adm
XK

⊆ Πadm
XK

of Πadm
XK

— cf. [Mzk8], §2)].

Similarly, we may construct

Z0
def= Étadm(Z log

k )

[for instance, as the quotient of X0 by the faithful action on X0 of the finite
group Gal(XK/ZK)].

Next, let us write
Q0

for the “anabelioid quotient” of X 0 by the natural action on X 0 by the profinite
group

Aut(X log
k ×klog (klog)∼)

[i.e., the group of automorphisms of the abstract log scheme which do not
necessarily lie over klog or (klog)∼!]. That is to say, at the level of profinite
groups, the fundamental group of the anabelioid Q0 is the extension of the
profinite group Aut(X log

k ×klog (klog)∼) by the [slim! — cf. [Mzk8], Lemma
2.2, (i)] fundamental group of X 0 determined by the natural outer action of the
former profinite group on the latter. Note that by the definition of “Aut”, the
slimness of X 0, and the slimness of Gal((klog)∼/klog) [cf. [Mzk8], Proposition
1.2.3, (iii)], it follows that Q0 is also slim.
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Thus, we have a commutative diagram of natural relatively slim morphisms
of slim, connected anabelioids

X → Z� �
X0 →Z0 →Q0

in which the horizontal morphisms are all finite étale.

Theorem 3.2.1 (The Admissible Quotient as Quasi-Core). Assume
that X → Z is Zcom-Galois. Then the morphism

X → Q0

is a quasi-core. In particular, the theory of §2.3, 2.4 may be applied to this
morphism.

Proof. By the functoriality of the anabelioid associated to a geometric
core [(cf. Corollary 3.1.4, (iii)] and our hypothesis that X → Z is Zcom-Galois
[cf. Proposition 2.3.5, (vii)], it follows that it suffices to consider, for K ′ a finite
extension of K, the behavior of automorphisms of the quotient

(ΠX ⊇) ΠXK′ � Πadm
XK′ (⊆ ΠX0)

induced by arbitrary automorphisms of ΠXK′ . By [Mzk8], Theorem 2.7, it
follows that such automorphisms of Πadm

XK′ necessarily arise from automorphisms
of the logarithmic special fiber of XK′ . Thus, we conclude by the definition
of Q0 and the easily verified fact that base-change to totally wildly ramified
extensions K ′′ of K ′ does not affect the automorphism group of the logarithmic
special fiber.

Remark 3.2.1.1. Note that the anabelian nature of the logarithmic special
fiber (i.e., [Mzk8], Theorem 2.7) is applied in Theorem 3.2.1 in a fashion similar
to the way in which the anabelian nature of hyperbolic curves over number fields
is applied in Theorem 3.1.3, (ii).
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