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Abstract

The analyticity properties of the S-matrix in the physical region are determined
by the correspondence principle, which asserts that the predictions of classical physics
are generated by taking the classical limit of the predictions of quantum theory. The
analyticity properties deducible in this way from classical properties include the lo-
cations of the singularity surfaces, the rules for analytic continuation around these
singularity surfaces, and the analytic character (e.g., pole, logarithmic, etc.) of these
singularities. These important properties of the S-matrix are thus derived without
using stringent locality assumptions, or the Schroedinger equation for temporal evolu-
tion, except for freely moving particles. Sum-over-all-paths methods that emphasize
paths of stationary action tend to produce the quantum analogs of the contributions
from classical paths. These quantum analogs are derived directly from the associated
classical properties by reverse engineering the correspondence-principle connection.

§1. Introduction

The S matrix was introduced by Wheeler [1]. It specifies the amplitude for
the scattering of any set of originally noninteracting initial particles to any set
of eventually noninteracting final particles. The S matrix is the aspect of rela-
tivistic quantum field theory most clearly related to empirical measurements.

The S matrix is a function of the momentum-energy four-vectors of the
initial and final particles. The law of conservation of momentum-energy entails
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that the term of the S matrix that describes the scattering of any speci-
fied set of initial particles to any specified set of final particles must have a
momentum-energy conservation-law delta function that constrains the sum of
the momentum-energy vectors of the final particles to be equal to the sum of the
momentum-energy vectors of the initial particles. The remaining factor, which
is defined only at points that satisfy this conservation-law condition, is called
a scattering function. It is finite at almost all points in its domain of defini-
tion. This is important because computations starting from the time-evolution
equations tend to give scattering functions that are everywhere infinite. Thus
Heisenberg [2] and others [3] have proposed an S-matrix approach to relativis-
tic quantum theory that avoids the infinities that arise from the time-evolution
equation by discarding that equation altogether, and computing the S matrix
directly from certain of its general properties.

The pure S-matrix approach works well for simple cases. It may work in
general, but new computational techniques would be needed to achieve this.

A key property of the scattering functions is that each of them is analytic
(holomorphic) at almost every point of its original (real) domain of definition.
This property was originally deduced from an examination of Feynman’s for-
mulas for these functions, which are derived essentially from the time-evolution
equations. Landau [4] and Nakanishi [5] independently deduced the very restric-
tive necessary conditions for the occurrence of singularities of these functions.
Coleman and Norton [6] then noted that these Landau-Nakanishi conditions
are precisely the conditions for the existence of a classical physical process
that has the same topological structure — i.e., has the same arrangement of
line segments connected at vertices — as the Feynman graph with which it
is associated.

A Feynman graph is topological structure of line segments joined at ver-
tices. It was used by Feynman to specify a corresponding mathematical contri-
bution to the S matrix. The associated Landau-Nakanishi diagram is a diagram
in four-dimensional space-time that has the same topological structure, but
moreover satisfies all of the conditions of a corresponding process in classical
physics. Thus a Landua-Nakanishi diagram can be regarded as a representa-
tion of a process in classical-physics that consists of a network of point particles
that interact only at point vertices, and that propagate between these vertices
as freely moving particles.

The rules of (relativistic) classical particle physics assign a momentum-
energy four-vector to each line of the diagram, and impose the conservation-law
condition that the energy-momentum flowing into the diagram along the initial
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incoming lines must be able to flow along the lines of the graph, and then
out along the final outgoing lines with energy-momentum conserved at each
vertex. This conservation-law condition is imposed also by the Feynman rules.
But the Landau-Nakanishi (i.e., classical-physics) diagram is required to satisfy
also the “classical physics” requirement that each line of the spacetime diagram
be a straight-line segment that is parallel to the momentum-energy carried by
that line. [In classical relativistic particle physics each freely-moving parti-
cle moves in space-time in the direction of its momentum-energy four-vector
(p = mv, v2 = 1), but this property is not imposed in quantum theory: it
would conflict with the uncertainty principle, and, likewise, with the Fourier-
transformation connection between space-time displacements and momentum-
energy that constitutes the foundation of quantum theory.]

The Landau-Nakanishi diagram is, then, the picture of a possible classical
process, involving point particles interacting at points, and conforming to the
conditions of relativistic classical-particle physics. These conditions were shown
by Landau and Nakanishi to specify the location (in the space of the momentum-
energy four vectors of the initial and final particles) of a singularity—failure of
analyticity—of the contribution to the S matrix corresponding to the associated
Feynman graph.

The purpose of this article is to highlight the fact that although this im-
portant connection between the physical-region singularities of the quantum
scattering functions and associated classical scattering processes was originally
derived from very strong quantum assumptions involving the concepts of point
interactions and continuous Schroedinger evolution in time, the result is actu-
ally a consequence of much less. It is a consequence of the “correspondence prin-
ciple” connection between relativistic quantum physics and relativistic classical-
particle physics. This principle asserts that the predictions of classical physics
emerge from quantum theory in the “classical limit” in which all effects due to
the nonzero value of Planck’s constant become negligible.

The correspondence principle entails, however, much more than just the
analyticity of the S matrix at all points that do not correspond to a classical-
physics process. It entails also that, in a real neighborhood of almost every
real singular point, the scattering function is the limit of a function analytic in
the interior of a certain cone-like domain that extends some finite distance into
the complex domain from its tip in the real neighborhood. This means that
each physical scattering function is a limit of single analytic function. That
feature of the S matrix is one of the key general properties upon which the
S-matrix approach is based. Its derivation from the correspondence principle
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was given by Chandler and Stapp [7] and by Iagolnitzer and Stapp [8]. The
first of these two papers sets out the general framework, but is formulated
within a distribution-analytic framework in which the wave functions are, apart
from mass-shell-constraint delta functions, infinitely differentiable functions of
compact support. Consequently, it achieves analyticity only modulo infinitely
differentiable background terms. The second of these papers uses essentially
Gaussian wave functions to obtain full analyticity.

It is worth noting that Sato [9] independently constructed a mathematical
machinery called the sheaf of microfunctions, which can be used to describe
the same cone-like domain when applied to the S matrix.

The correspondence principle entails even more. It specifies also the na-
ture of these singularities: whether they are, for example, pole, or logarithmic
singularities. This means that the quantum effects closely associated with these
classical-physics processes are determined already by the correspondence princi-
ple, without appeal to the notion of true point interactions or of the relativistic
generalization of the Schroedinger equation. That is, the correspondence prin-
ciple, which is a condition on the classical limit of quantum theory, can be
“reverse engineered” to deduce those features of the quantum S matrix that
produce the classical result in the classical limit. And these feature include the
analytic character of the S Matrix scattering functions in their original (real)
domains of definition.

§2. An Asymptotic Fall-Off Property

The papers with Chandler and Iagolnitzer just cited deal exclusively with
particles of non-zero rest mass. The momentum-space wave function of particle
i then has, due to the mass-shell condition, the form

(2.1) Ψi(pi) = ψi(pi)2πδ(p2
i − m2

i ),

where p2
i is the Minkowsky inner product of pi with itself, with metric (1,−1,

−1,−1), and mi is the (nonzero) rest-mass of particle i. Quantum theory is
characterized, fundamentally, by the Fourier-transform link between momen-
tum-energy and space-time. Thus the spacetime form of this momentum-energy
wave function is given by the Fourier transform:

(2.2) Ψ̃i(xi) =
∫

(2π)−4d4pi exp(−ipixi)Ψi(pi).

The spacetime wave function has important asymptotic fall-off properties.
In Appendix A of reference [19] it is shown that if ψi(pi) has compact support
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and is continuous, together with its first and second derivatives, and if v is any
positive time-like four-vector satisfying v2 = 1, then

(2.3) lim
τ→∞

f(mi, τ )Ψ̃i(vτ ) = ψi(miv),

where

(2.4) f(mi, τ ) = 2mi(2πiτ/mi)2/3 exp(imiτ ).

In the formula (2.2) the expression pixi in the exponent is originally di-
vided by Planck’s constant over 2π. But that factor has been removed by
choosing units of space and time so that Planck’s constant (divided by 2π)
and the velocity of light are both unity. But then letting τ go to infinity is
effectively equivalent to letting Planck’s constant go to zero: the expansion
of the spacetime scale is mathematically equivalent to going to the classical
limit. Formula (2.3) shows that in this limit the probability distribution in
spacetime for a freely moving particle is specified by the momentum-space dis-
tribution function ψi(pi) in accordance with the relativistic classical physics
formula pi = miv.

The fall-off property described above was derived from quantum theory.
Later I shall derive it from classical physics.

The correspondence principle asserts that the classical-physics results hold
not only for these free-particle states but also for processes corresponding to
networks of locally interacting particles that propagate freely over the asymp-
totically large distances between their interactions: the classical physics proba-
bilities emerges from the quantum probabilities in the asymptotic τ → ∞ limit.
This correspondence-principle requirement determines not only the locations
and natures of the singularities of the quantum momentum-space scattering
functions, but normally entails also that, in a real neighborhood of a singular
point P , the scattering function is a limit of a function analytic in the intersec-
tion of a complex neighborhood of P with the interior of a cone that extends
from the real domain in a set of directions that is specified by the structures of
the classical scattering diagrams associated with that singular point P . This
connection between directions of analyticity at singularities and classical space-
time diagrams is made via a 4n-dimensional displacement vector U introduced
in reference [7].

§3. The 4n-dimensional Displacement Vector U

Consider a spacetime diagram D that describes a possible network of
classical particles with a total of n initial and final particles. This diagram D
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determines (via the directions of the initial and final lines) a set P = (p1, ..., pn)
of initial and final momentum-energy vectors.

It is convenient to introduce in addition to the physical momentum-energy
vectors pi, which have positive energy components, also the mathematical
momentum-energy vectors ki, where ki = pi for initial particles, and ki = −pi

for final particles. Then the law of conservation of energy momentum reads∑
ki = 0.

The 4n-dimensional displacement vector U is defined as follows. From any
arbitrarily chosen origin O in spacetime draw, for each initial and final particle
i, a vector ui from O to some point on the straight-line that contains the initial
or final line i. Define

(3.1) U = (u1, ..., un).

For a fixed spacetime diagram D this 4n-dimensional displacement vector
U is not uniquely fixed: one can add to U any vector of the form

(3.2) U0 = (a + b1k1, a + b2k2, ..., a + bnkn),

where a is a real spacetime vector, and for each i the parameter bi is a real
number. Changing a just shifts the location of D relative to the origin O, and
changing bi just slides the tip of ui along the straight line i.

Notice that the combination of the four conservation-law delta functions
and the n mass-shell delta functions restricts the relevant set of points in the
4n-dimensional space of points K = (k1, ..., kn) to a surface of co-dimension
4+n, and that the 4+n dimensional set of vectors U0 spans the set of normals
to that co-dimension 4 +n surface: the contravariant vectors formed by taking
linear combinations of the gradients to the arguments of the 4+n delta functions
constitute the set of vectors U0. This is the simplest example of the important
fact that the set of vectors U associated with a singular point K generally span
the space defined by the set of normal vectors to the surface of singular points
passing though K. This normality of the vectors U associated with diagrams
of classical physics to the surfaces of singularities of the S matrix provides the
link between relativistic classical physics and domains of analyticty of scattering
functions in relativistic quantum physics.

§4. Another Asymptotic Fall-Off Property

If the wave function ψi(pi) in Eq. (2.1) is infinitely differentiable and of
compact support, and if V is the associated velocity (double) cone consisting
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of all lines through the origin (pi = 0) that intersect the compact support (in
the mass shell p2

i = m2
i ) of ψi(pi) then, for all u in any compact set that does

not intersect V , the function Ψ̃(uτ ) uniformly approaches zero faster than any
inverse power of the scale parameter τ : for any integer N

(4.1) lim
τ→∞

τN Ψ̃i(uτ ) = 0.

This is a standard result (cf. ref [8], Eqn. (28)), and it allows one to prove
the weaker analyticity properties that hold modulo infinitely differential back-
ground terms. (See ref. [7]). But to derive full analyticity from the correspon-
dence principle a stronger fall-off property is needed.

This stronger asymptotic fall-off property is obtained by introducing into
the wave functions ψi(pi) an exponential factor that shrinks in width as τ

tends to infinity. Specifically, one introduces free-particle momentum-space
wave functions of the form

(4.2) ψτ,γ,p̄(p) = χ(p) exp(−(p − p̄)2γτ ).

and also requires the infinitely differential function χ(p) (of compact support)
to be analytic at p = p̄, where p2 = p̄2 = m2. Then the following fall-off
property holds: for all 4-vectors u in any compact set that does not intersect
the line through the origin containing p̄, and for all γ ≥ 0 smaller than some
fixed γ0, there is a pair of finite numbers (C, α) such that for all τ

(4.3) |Ψ̃τ,γ,p̄(uτ )| < C exp−αγτ.

Classical and quantum proofs of this fall-off property will be described
below. But let us first show how this property of the free-particle coordinate-
space wave functions is used to deduce, from the correspondence principle,
domains of analyticity for the momentum-space scattering function.

§5. Kinematics and Probabilities

The connection to the correspondence principle is obtained by using initial
and final wave functions Ψi(pi, ui) of the form

(5.1) Ψi(τ, γ, p̄i; pi, ui) = Ψi(τ, γ, p̄i; pi) exp iuipi

where, for any i, in accordance with (2.1) and (4.2),

Ψ(τ, γ, p̄; p) = ψτ,γ,p̄(p)2πδ(p2 − m2)
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The wave function (5.1) represents the particle state obtained by translating
the state represented by Ψi by the spacetime displacement ui. The parameters
γ are taken to be the same for all i. It is convenient to use henceforth real
χi(pi), each of which is equal to one (unity) in some finite neighborhood of p̄i.

The correspondence-principle results are obtained by examining the τ →
∞ behaviour of the transition amplitude

(5.2) A(τ ) = S[{Ψi(τ, γ, p̄i; pi, uiτ )}]

where the right-hand side is[∏
i

∫
(2π)−4d4kiΨi(τ, γ, k̄i; ki)

]
S(K) exp iKUτ.

The absolute value squared of the complex number A(τ ), times f(τ ), is
the transition probability associated with these states of the initial and final
particles, and f(τ ) is the inverse of the square of the product of the norms of
the wave functions ψi of (4.2). This factor grows like (τ )3n, but this growth
can be absorbed into a bound of the form Cexp − αγτ by a slight adjustment
of C and α.

§6. The Correspondence-Principle Condition

For any fixed K̄ (with
∑

k̄i = 0 and, for each i, k̄2
i = m2

i ) there is a set
C(K̄) of vectors U such that each pair of 4n-dimensional vectors (K̄, U) sat-
isfies the Landau-Nakanishi conditions. This set C(K̄) includes the set C0(K̄)
consisting of all of the vectors U0 of the form (3.2): each of these vectors U0

specifies a classical-physics diagram D in which all of the initial and final par-
ticles pass through a single common point. Each of these vectors U0 has a
null (Lorentz) inner product with every tangent vector to — i.e., with every
infinitesimal displacement in — the surface at K̄ of singularities generated by
the mass-shell and overall conservation-law delta functions.

Suppose C(K̄) = C0(K̄). That would mean that, on the one hand, there
are for the set {k̄i} of initial and final (mathematical) momentum-energy vec-
tors specified by K̄ no classical-physics diagrams except the trivial ones in which
all the initial and final particles pass through a common point, and, on the other
hand, according to the Feynman rules, no singularity of the quantum scattering
function. But from the S-matrix point of view the Feynmam rules are suspect,
because they come essentially from the physically meaningless continuous time
evolution, and also lead to infinities. However, the general correspondence prin-
ciple condition that the predictions of classical physics should emerge in the
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limit where Planck’s constant goes to zero, or, equivalently, where τ goes to
infinity, would seem to be an exceedingly plausible and secure condition. The
analyticty of the scattering function at this point K̄ is, in fact, a consequence
of that correspondence condition.

For any point K̄ such that C(K̄) = C0(K̄) consider any U that does not
belong C(K̄). If U does not belong to C(K̄) = C0(K̄) then for at least one of
the n particles i the component vector Ui is not parallel to k̄i. But then the
amplitude A(τ ) will pick up an exponential fall-off factor of the kind shown in
(4.3). These vectors U cover a unit sphere in the 3n − 4-dimensional subspace
that is normal to the n + 4-dimentional subspace C(K̄). Thus there will be a
least value of α for the U ’s on this (compact) unit sphere.

This uniform exponential fall-off over this unit sphere arises, in the classical
computation, from the exponential fall off of the overlap of the probability
functions of the initial and final particles: i.e., from the exponentially decreasing
probability, as τ increases, for all of the initial and final particles to be in
any single finite region of space-time that grows like the square root of τ . In
classical physics such an exponential decrease in this probability, coupled with
the fact that the only classical scattering process that can carry the initial
momentum-energies to the final momentum-energies is one where all the initial
and final particle trajectories pass through some such growing space-time region
entails a similar fall off of the transition probabilities: the probability for this
kind of classical process to occur cannot grow faster than the product of the
probabilities that the particle can all be in any such growing region. Thus
the correspondence principle requires that transition amplitude A(τ ) have the
same sort of fall off as the one arising from the overlap of the wave functions.
It will now be shown that this condition entails the analyticity of the scattering
function at this point K̄ where C(K̄) = C0(K̄).

§7. Derivation of Analyticity at Trivial Points

By a “trivial point” I mean a point K̄ such that C(K̄) = C0(K̄): the
only classical processes with external momenta specified by K̄ are the trivial
single-vertex diagrams.

The set of Landau-Nakanishi surfaces that enter any bounded region of K

space has been shown to be finite [Ref. 10]. And each such surface is confined
to a co-dimension-one analytic manifold. Consequently, each trivial point K̄

lies in an open neighborhood of such points.
Introduce a set of analytic coordinates q in the 3n−4-dimensional manifold

in K-space restricted by the mass-shell and conservation-law conditions near
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K̄. Let the q be a subset of the space components of the set of vectors (ki− k̄i),
and let the v associated with any q(K) in the neighborhood of q(K̄) = 0 be
the corresponding 3n− 4 components of Uτ mod C0(K), so that KUτ in (5.2)
becomes (−qv − k̄v), where the metric (1, 1, 1) is now used, and v represents
displacements away from the displacements that generate the trivial single-
vertex processes. Then the A(τ ) in (5.2), times the (unimportant) phase factor
exp(ik̄v). can be written as

T (v, r) =
∫

dqF (q) exp(−rµ(q)) exp(−iqv),(7.1)

where

µ(q) =
∑

i

(ki(q) − ki(0))2,(7.2)

r = γτ , and F (q) is the scattering function times a factor that is real, infinitely
differentiable of compact support, and analytic at q = 0, which is the q-space
image of K̄. A fall-off property of the form (4.3) is required to hold for all τ

and all 0 ≤ γ ≤ γ0, with r = γτ , and all v = v̂τ with |v̂| = 1 . What needs
to be proved is that this fall-off condition, together with the analogous rapid
(faster than any power of τ ) fall off at γ = 0, entails the analyticity of F (q) at
q = 0.

This rapid fall off of the bounded T (v, 0) = T (v̂τ, 0) for all unit vectors v̂

means that F (q) is the well-defined and infinitely differentiable Fourier trans-
form:

F (q) = (2π)l

∫
dv exp(iqv)T (v, 0),(7.3)

where l = 3n− 4. To show that F (q) is analytic at q = 0 re-write this equation
in the form

(2π)lF (q) =
∫

dv exp(iqv) ×(7.4) [
T (v, γ0|v|)exp(γ0|v|µ(q)) −

∫ γ0|v|

0

dr
∂

∂r
[T (v, r) exp(rµ(q))]

]
.

Consider first the first term in the big brackets. The correspondence prin-
ciple requires the factor T (v, γ0|v|) to be bounded by C exp(−αγ0|v|). The
function µ(q) is zero at q = 0, and hence the associated exponential growth
is dominated by the fall-off factor for q in a sufficiently small neighborhood of
q = 0. Indeed, this bound keeps the integral well defined and analytic for all
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q in a small complex neighborhood of q = 0. Thus the contribution F1(q) to
F (q) coming from the first term in the big brackets is analytic at q = 0.

To prove that this property holds also for the other contribution, F2(q),
substitute (7.1) into the second term in the big brackets. The ∂/∂r can be
moved under the integral over dq because F (q) is infinitely differentiable of
compact support. This gives for the integrand

exp(iqv)
∂

∂r
[T (v, r) exp(rµ(q))](7.5)

=
∫

dq′F (q′) exp(i(q − q′)v) exp(r(µ(q) − µ(q′)))[µ(q) − µ(q′)]

Hefer’s theorem [8] allows one to write

µ(q) − µ(q′) = ρ(q, q′) · (q − q′),(7.6)

where ρ is a vector whose the components ρj (j = 1, ..., 3n − 4) are analytic in
a product of domains around q = 0, and q′ = 0. Then (7.5) becomes

exp(iqv)
∂

∂r
[T (v, r) exp(rµ(q))] = Divv[exp(iqv) exp(rµ(q))H(q, v, r)],(7.7)

where H(q, v, r) is the vector

H(q, v, r) = −i

∫
dq′F (q′) exp(−iq′v)exp(−rµ(q′))ρ(q, q′).(7.8)

We may thus write

(2π)lF2(q) = − lim
R→∞

[∫
|v|<R

dv

∫ γ0|v|

0

drDivv[exp(iqv) exp(rµ(q))H(q, v, r)]

]
.

(7.9)

For fixed R we can change the order of integration and perform first an
integration over v for r/γ0 < |v| < R. Then Gauss’ theorem gives the volume
integral of the divergence as the difference of two surface integrals, one at
|v| = r/γ0, the other at |v| = R. The estimates given in Appendix IV of
ref. [10] show that the contribution at R vanishes as R → ∞. The contribution
at |v| = r/γ0 integrated on r from 0 to ∞ generates an integration over all v

with r replaced by |v|γ0, and a Jacobian factor J(q) that is analytic at q = 0.
Thus we obtain

(2π)lF2(q) = γ0

∫
dv exp(iqv) exp(γ0|v|µ(q))v̂ · H(q, v, γ0|v|),(7.10)
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where v̂ = v/|v|. This function F2(q) is analytic at q = 0 for the same rea-
sons that F1(q) was. This completes the proof, apart from the straightforward
calculations given in Appendix IV of reference [10].

Note that (7.1), with r = γ0τ , and (7.4) together with (7.10), gives a gen-
eralization of the Fourier transformation theorem that incorporates Gaussian
factors. It gives, from the mathematical point of view, a localized version of the
familiar connection between analyticity and exponential fall off of the Fourier
transform. From the physics point of view it gives a connection between the
analyticity of the scattering functions of relativistic quantum theory and the
results of classical physics that emerge from quantum theory in the classical
limit where Planck’s constant goes to zero.

The analyticity of the scattering functions except on the Landau-Nakanishi
surfaces has thus been derived, by “reverse engineering” the correspondence
principle: quantum properties have been deduced from classical properties, the
correspondence principle, and the basic connection between classical and quan-
tum physics, namely the Fourier-transform connection between the momentum-
energy and the space-time displacements of freely moving particles.

§8. Derivation of Cone of Analyticity at Most Singular Points

A more complex category of points K̄ consists of points K̄ such that all of
the spacetime diagrams corresponding to this K̄ are the same apart from shifts
in location or scale, but which differ from the simple single-vertex case except
in the limit where the diagram is shrunk to a point. For any such point K̄ the
set C(K̄) consists of C0(K̄) plus a single ray, U(K̄): the displacements along
U(K̄) generate the displacements of the external lines of the diagram away
from positions where they all intersect at a single point. [The argument can
be extended to cover all points K̄ such that all of the Landau-Nakanishi sur-
faces that contain K̄ coincide with a single co-dimension-one Landau-Nakanishi
surface, and hence all specify the same unique ray U(K̄).]

It is important that U(K̄) is a ray, not a full line: a displacement in
the opposite direction does not give the locations of the external lines of a
classically allowed process. (The intermediate particles would have to move
backward in time, and carry the incoming positive energy backward in time.)
Thus a compact set of displacements U not in C(K̄), but confined to a space
essentially normal to the set C0(K̄), cannot now cover an entire sphere: there
must be a hole in this compact set through which the single ray U(K̄) can
pass.
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To deal with this case one can introduce the same set of local coordinates
(q, v) as before, with v̂ = v/|v|, and let v̂(K̄) be the point on the unit sphere
|v| = 1 that is the image in |v| = 1 of U(K̄). Let A(K̄) be a compact set in
v space that lies in the unit sphere, and covers this sphere |v| = 1 except for
points in a small open spherical ball about the point v̂(K̄). Let the points in
this ball that lie also on the sphere |v| = 1 be called H(K̄) (for Hole), so that
each point on |v| = 1 lies either in A(K̄) or in H(K̄), but not in both.

Choose the functions χ(pi) in (4.2) so that their supports are small enough
so that the point v̂(K) corresponding to each point K in the support of the
product of the χ(pi)s lies in a closed subset of the open set H(K̄). Then
for all points v̂ = v/|v| in A(K̄) the function T (v, γ|v|) will, by virtue of the
correspondence principle, fall off faster than any power of |v| for γ = 0, and like
(4.3) for 0 < γ ≤ γ0. The problem is then to show that the function F (q) in
(7.1) is the boundary value, in some real neighborhood of q = 0, of a function
analytic in the intersection of a complex neighborhood of q = 0 with an open
cone Q in Im q.

To prove this, separate the v-space domain of integration in (7.3) into two
disjoint parts, V (H(K̄)) and V (A(K̄)), where the latter consists of all rays from
v = 0 that pass through the closed set A(K̄) of points in the sphere |v| = 1,
and V (H(K̄)) is the rest of v space.

This separation of the space of integration of the (bounded-by-virtue-of-
unitarity) function T (v, 0) into two parts separates F (q) into two terms:

(8.1) F (q) = FH(q) + FA(q).

The imaginary part of q in FH(q) is restricted to the open cone Q in which Im

qv > 0 for all v in a closed cone V that contains the closure of V (H(K̄)) in its
interior, apart from the origin v = 0. For these q the exponential factor exp iqv

in (7.3) get from Im q a factor exp−α|Im q||v|, where α > const > 0. This
means, because T (v, 0) is bounded, that the integral is absolutely convergent,
and hence that FH(q) is analytic near q = 0 for Im q in Q.

Most of the real points q very near to q = 0 are “trivial” points, of the
kind considered in the preceding section. At those trivial points q′, the function
F (q′) = FH(q′)+FA(q′) is analytic. These two terms are taken at these points
q′ to be just the contributions to F (q) specified in (7.4) and (7.10) restricted to
the regions V (H(K̄)) and V (A(K̄)) respectively. Both of these contributions
are analytic in the intersection of some neighborhood of q with the cone Q.
Thus one can stay in the domain of analyticity by moving Im q slightly into
the cone Q in order to pass to the other side of the surface of singularities that
passes through q = 0.
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A more elaborate presentation of this argument, and of its generalizations
to more complex cases, can be found in references [7] and [8], and also in
Iagolnitzer’s book [11].

§9. Correspondence-Principle Asymptotic Fall Off

I have described some of the analytic consequences of the fall-off properties
(2.3), (4.1), and (4.3). I turn now to a fuller discussion of the roots of these
fall-off properties in the correspondence to classical properties.

The statistical predictions of quantum mechanics correspond, at least in
a formal way, to the predictions of classical statistical mechanics. In the latter
theory one describes a system of n particles at any time t in terms of a function
ρ(x, p, t), which specifies how the probability is distributed over the points (x, p)
of “phase space,” where x specifies the 3n coordinate variables and p specifies
the 3n momentum-space variables. Free-particle evolution keeps p fixed and
shifts the location xi of a particle of (rest) mass mi during a time interval
t to the location xi + tpi/mi. For large t the second term dominates, and
the coordinate-space probability function goes over to the momentum-space
probability function, properly scaled to account for the diverging directions of
the different momentum vectors. This classical kinematics entails that for free
particles the classical distribution ρ(x, p, t) at large times t becomes a product
over i of functions

(9.1) ρ(uit, pi, t) = |ρ(uimi)ρ(pi)/f(mi, t)2|,

where

(9.2) ρ(pi) =
∫

d3xiρ(xi, pi, t
′),

is independent of t′, and f(mi, t) is the function defined in (2.4). Here I am,
for simplicity, assuming that the momenta are small enough so that the non-
relativistic formulas (where t = τ and p0 = m) are adequate. (The fully
covariant formulation gives the same results.) The factor (mi/t)3 coming from
f(mi, t)−2 compensates for the linear spreading out of the probability distri-
bution in coordinate space, and the 1/(2mi)2 comes from the normalization
in (2.1). This equality of the classically-derived and quantum-mechanically
derived limits constitutes, in this case, part of the correspondence-principle re-
lationship between the asymptotic properties in classical and quantum theory:
both theories give the same asymptotic form for the probability distribution in
(x, p), for the case γ = 0.
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There is no conflict here with the uncertainty principle limitation on the
idea of a distribution in both x and p simultaneously: the huge spreading out
of the coordinate-space distribution eliminates any such conflict.

But what is the rate of approach to this limit?
The probability distribution in coordinate space at t = 0 for the function in

(4.2), at γ = 0, would be given by the (absolute value squared of the) Fourier
transform of χ(p). This transform of the infinitely differentiable compactly
supported χ(p) falls off faster than any power of |x|. This leads to the quantum
mechanical prediction (4.1). Classically, this original x-space distribution is the
constant (non-expanding) background to the t-dependent diverging trajectories.
If this non-expanding background falls off faster than any power of x then its
contribution at points x = uτ will fall off faster than any power of τ . Hence
the approach to the large-t limit computed classically, by using the straight-
line trajectories in space-time, also exhibits the faster than any power fall off
specified in (4.1): the classical and quantum predictions agree about both the
limit and the rate of approach to this limit.

But what is the rate of fall off for the case γ > 0?
To show that the fall off in this case conforms to (4.3) it is sufficient to go

to the frame where p̄ is pure spacelike and the space part of u is nonzero. Then

(9.3) |Ψ̃τ,γ,p̄(uτ )| =

∣∣∣∣∣
∫

d3q/(2π)−3χ(q) exp(−τ [q2γ + i(qu − u0(q0 − p̄0))])

∣∣∣∣∣,
where I again use the metric (1,1,1) for the 3-vector products qu and q2, and
q0 − p̄0 = (q2 + m2)1/2 − m.

To get the quantum prediction, consider a distortion of the q-space contour
that is parameterized by a scalar α. For q2 > α there is no distortion. For Re

q2 < α the component of Im q that is directed along u is shifted (keeping real
the other two components of the 3-vector q) so that

(9.4) Re[q2γ + i(qu − u0(q0 − p̄0))] = αγ.

Distort the contour from α = 0 to a value such that all real q in q2 ≤ α lie
inside the open set where χ is one, and such that |Im q| remains less than m.

Then for all real points q with q2 > α one has an exponential fall-off
factor exp−αγτ . For real q such that q2 < α the condition (9.4) gives a fac-
tor exp−αγτ . One can obtain a bound like this for every four vector u on
the unit (Euclidean) sphere, minus small open holes around the rays along
the positive and negative time axis (along which p̄ has been taken to lie).
These holes can be defined by conditions on the three-vector part 
u of u:
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|
u| < ε. The only singularity that could block this continuation is the sin-
gularity of q0 at q2 + m2 = 0, and this is prevented by our condition |Im

q| < m.
A more detailed presentation is given in Appendix III of Ref. 9.
The classical analog is obtained by taking the classical coordinate-space

probability function, imagined now to specify the distribution of the classical
particles, to be the one obtained from the Fourier transform. For large τ the
contributions from χ − 1 fall off exponentially. Ignoring that contribution, at
very large τ , one has a coordinate-space function that is essentially a Gaussian,
which has a width that grows like the square root of τ . Hence in the scaled-
down coordinate u = x/τ the width of the Gaussian shrinks like (τ )−1/2, just
as it does in momentum space. Thus the probability function in (u, p)-space
(or in (
u, 
p)-space) for fixed (u, p), falls off exponentially in τ , as long as one
keeps |
u| finitely away from zero.

The fall-off properties (4.1) and (4.3) pertain to the individual freely mov-
ing particles. But we need analogous fall-off properties for process involving
multiple scatterings of such freely moving particles by quasi-local interactions.

In quantum theory one has an initial Ψin and a final Ψfin. If a certain
preparation procedure In prepares a system to be in the initial state Ψin, and if
a certain measurement procedure Fin will definitely produce a “Yes” outcome
if the final state is Ψfin, and will definitely produce a “No” outcome if the final
state is orthogonal to Ψfin, then

(9.5) Probability = |Ψ∗
inSΨfin|2

is the predicted probability that a preparation of type In followed by a mea-
surement of type Fin will yield an outcome “Yes”.

If the intersection of the supports of the wave functions (4.2) contain no
points K such that C(K) is bigger than C0(K) then the only relevant classi-
cal scattering diagrams are the trivial one that have only one vertex. If the
interactions not carried by physical particles have finite range (with perhaps
exponential tails) then the transition probability will (as mentioned previously)
be bounded, in classical physics, by the probability that all of the particles can
be in some region that grows like the square root of τ . And the condition that
C(K) = C0(K) for all points in the support of the wave functions means that
for any such growing region in spacetime the probability that all the particles
will be in this region will have an exponential in τ fall off coming from some
nonzero displacement in either a momentum variable q or a translation variable
u. And the range of these displacements is compact: they cover the compact
surface in v space times the product of the compact domains in q-space. Thus
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for these “trivial” points one gets, in the classical-physics analog, a fall off of
type (4.3), as already noted.

But how does one get the analogous result for multiple-scattering processes,
which involve intermediate particles?

The answer is that if all interaction regions can be taken to grow no faster
than the square root of τ , then in the scaled-down (by a factor τ ) coordi-
nate system the diagram must have point vertices. And momentum-energy is
strictly conserved in classical mechanics. So the scaled-down diagrams depict
classical processes with point vertices. If no such diagram can match the exter-
nal conditions imposed by the (U, K) then there will always be an exponential
fall-off factor coming from some external particle, which is what the arguments
require.

§10. Nature of the Singularity

The correspondence principle entails analyticity except on the surfaces
specified by the Landau-Nakanishi equations, and it assures analyticity in the
associated cones of analyticity at the Landau-Nakanishi points. But what about
the nature of these singularities?

Consider a 3-particle to 3-particle process in which two particles collide to
create one final particle plus one intermediate particle that eventually collides
with the third initial particle to produce the other two final particles. Classical
physics demands that in the positive-time asymptotic regime the transition
probability function must fall off as τ−3, due to the geometric spreading. This
is just the fall off obtained in section 2, and it corresponds to a pole singularity,

(10.1) f(p) = i(p2 − m2 + iε)−1,

which is the energy-increases-with-time part of the mass-shell delta function
2πδ(p2−m2) of classical physics. Thus not only the location of this singularity,
and the iε rule for continuing around it, but also the pole character of this
singularity is determined essentially by the fall-off properties entailed by the
correspondence principle.

The geometric conditions that lead to the τ−3/2 fall off in the single-
intermediate-particle case can be generalized to the case of any number of
intermediate particles. One obtains the condition

(10.2a) 2d = 3Nl − 4(Nv − 1) − 1,

or

(10.2b), d =
1
2
(3Nl − 4Nv + 3),
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where Nv is the number of vertices, Nl is the number of internal lines, and d

is the “degree” of the singularity, with d = −1 being δ(E) or E−1, and d = 0
being log E, etc. Thus for the two-vertex, one internal line case one gets d = −1
(a pole singularity) and for the triangle diagram with three vertices and three
internal lines one gets d = 0 (a logarithmic singularity.) For Nv = 2 and Nl = 2
(two-particle threshold) one gets d = 1/2, (

√
E).

To understand (10.2) from the classical point of view consider the applica-
tion of (9.1), applied to the entire classical diagram D, consisting of Nl internal
lines, Ne external lines, and Nv vertices. The factors |ρ(uimi)/f(mi, t)2|, with
tpi/mi = τui, give the 3Nl in (10.2a). Each internal lines contributes a factor
τ−3 to the fall-off of the probability, and hence a fall-off factor τ−3/2 in the am-
plitude, and this translates via the Fourier connection to an increase by 3Nl/2
of the degree d of the singularity.

But the classical formula (9.1) has also a momentum factor ρ(p). The pi in
(9.1) must include an external momentum-energy four-vector at each external
line, and the function ρ(p), with p being the collection of internal and external
four vectors, will have a conservation-law delta function at each of the Nv ver-
tices. This is a classical condition. The scattering function has the one overall
conservation-law delta function factored off, leaving 4(Nv − 1) delta functions.

The term of zeroth order in Nl and Nv is not determined by this argument,
but is fixed by the known pole case to be the extra term −1 in (10.2a). The
important point is that to the extent that (10.2) determines the degree d of
the singularity, this degree is fixed by the fall-off and conservation-law features
exhibited by the associated classical process: the classical process exhibits the
features that enter into Eqn. (10.2).

These remarks tie Eqn. (10.2) to classical physics, but do not give a deriva-
tion of (10.2). This equation is derived in Kawai and Stapp [12], for all of the
cases mentioned above, and, more generally, for each physical-region singular-
ity that corresponds to a unique Landau-Nakanishi diagram in which no two
vertices coincide, at most two lines connect any pair of vertices, and no vertex
is trivial in the sense that all of the lines connected to it are parallel. [Actually,
far more is derived in ref. 12, namely an explicit form of the S-matrix near
certain points where several surfaces intersect, and these forms play an impor-
tant role in understanding the global analytic structure of the S matrix.] The
proof is based on the analyticity properties derived from the correspondences
principle, on the general theory of holonomic microfunctions described in Sato,
Kawai, and Kashiwara [13], and on the techniques and results developed in
Coster and Stapp [14, 15] for combining the analytity properties that follow
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from the correspondence principles with the important unitarity property of
the S matrix.

The other key element in S-matrix theory is “crossing”: the postulate that
a certain analytic continuation that changes ki to −ki will take one to the
scattering function of a “crossed” process where initial (resp. final) particle
i is replaced by final (resp. initial) anti-particle i. Hence much of the struc-
ture of quantum theory is seen to be entailed already by the correspondence
principle, plus natural extensions of the analyticity properties entailed by the
correspondence principle.

§11. Photons and Infra-Red Divergences

Massless particles, such as photons, pose new technical problems, which are
entwined with an important infra-red problem. A number of studies [16, 17, 18]
of the effects of the interaction of an electron (or positron) with low-energy
photons appeared to show that the pole-character of the electron is disrupted
by this interaction: the pole exponent −1 is modified by a term of order 1/137.
However, any such change at the level of the S matrix itself would entail a
significant deviation from the 1/r3 fall off, which is empirically confirmed to
very high accuracy.

Part of the problem in those works is that what was studied was the elec-
tron propagator, which corresponds, physically, to suddenly creating a charged
electron at some point x and suddenly destroying it at some other point x′. But
charge is conserved: it cannot be suddenly created or destroyed. So one should
examine, instead, closed loops of charge, where two particles of opposite charge
emerge from an initial place, and eventually come together at some later place.
But even when this is done there still remains an infra-red divergence problem,
associated with the emission of “infinite” numbers of soft (i.e., low-energy)
photons at each place where some deflection or deviation of the spacetime tra-
jectory of the charged particle from straight-line motion occurs. This infra-red
problem is solved by again appealing to the correspondence principle.

The point is this. If one considers the space-time diagram associated
with the Feynman graph as a classical multiple-scattering process—of charged
particles—then one can compute the classical electromagnetic field radiated by
those moving charges. It has long been known that for every classical radiation
field there is a corresponding quantum state, called a coherent state. It involves
infinite numbers of photons. To resolve the infra-red divergence problem com-
pletely one should use for the final quantum state of the radiant electromagnetic
field, not the vacuum state plus added photons, but rather the quantum co-
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herent state corresponding to the classical electromagnetic field radiated from
the classical process specified by the Landau-Nakanishi diagram, plus added
photons. So again, as before, the quantum process is largely determined by the
underlying classical process: the classical process determines the bulk of the
radiated quantum electromagnetic field, and once this part is properly incor-
porated the fall-off properties associated with motions of the charged particles
come into proper accord with the predictions of classical physics, which then
fixes, via analyticty, the parts of the quantum scattering function closely as-
sociated with this classical process. One can then, again, reverse engineer the
correspondence principle to get the quantum counterpart of the classical pro-
cess. The program was initiated by Stapp [19], and various resulting analyticity
properties were derived in a series of papers by Kawai and Stapp [20, 21].

In the works described above the particle trajectories were always taken
to be straight-line segments. However, Eqn. (2.16) of ref. 19 shows the effect of
the “Coulomb” contribution. It conforms to the classical rule. The correspon-
dence principle approach discussed here suggests allowing the classical-particle
trajectory to deviate from straight lines in a way that gives stationary action.
That will cause these classical trajectories to curve as they do classically under
the influence of a Coulomb potential. These curved trajectories will radiate
soft photons that will need to be added to the final coherent state.

This suggested application of the correspondence principle begins to look
more like a traditional spacetime description than an S-matrix calculation.
However, it is built not upon the presumption of local interactions but rather
upon analyticity properties derived by a reverse engineering of the correspond-
ence-principle classical limit.
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