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Abstract

We derive sets of functional equations for the eight vertex model by exploiting an
analogy with the functional equations of the chiral Potts model. From these equations
we show that the fusion matrices have special reductions at certain roots of unity. We
explicitly exhibit these reductions for the 3, 4 and 5 order fusion matrices and compare
our formulation with the algebra of Sklyanin.

§1. Introduction

The solution of the 8 vertex model by Baxter [1] has many inventive steps.
First of all the eigenvalues of the transfer matrix T are studied without having
any information on the eigenvectors. Secondly these eigenvalues are computed
by inventing a new auxiliary matrix (called Q) which commutes with T and
which satisfies a functional equation with T . This functional equation has
the further property that it can be used to find all eigenvalues of T . The
determination of these eigenvalues is often what is called “solving the 8 vertex
model”.

Many years after the eigenvalues of the 8 vertex model transfer matrix
were computed a more elaborate model called the chiral Potts model was dis-
covered to be integrable [2]. For this model there is also an auxiliary matrix Q
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906 Klaus Fabricius and Barry M. McCoy

which satisfies a functional equation [3] with the transfer matrix but unlike the
8 vertex model this functional equation is not sufficient to compute the eigen-
values of the transfer matrix. However, further functional equations were first
conjectured [4, 5] and then proven true [6] from which the desired eigenvalues
are computed.

There are in fact many matrices Q which satisfy the TQ equations first
discovered [1] in 1972 for the special “root of unity” case

η =
m1K

L
(1.1)

where the parameter η of the 8 vertex model is a rational multiple of K the real
period of the elliptic functions. In 1973 Baxter [7–9] found a second matrix Q

which satisfies the TQ equations in the root of unity case and also for the case
of generic η. We will here concentrate on the Q matrix of the 1972 paper [1]
which we denote by Q72.

Recently we have discovered [10] that in the root of unity case (1.1) the
functional equations discovered by Baxter [1] do not in fact exhaust the totality
of functional equations of the 8 vertex model and we conjectured a functional
equation [10] obeyed by Q72 alone which allows the computation of the eigen-
values of Q72 without reference to T . When (1.1) holds many of the eigenvalues
of T are degenerate and Baxter’s TQ functional equation is not sufficient to
compute the degeneracy of the eigenvalues. However the auxiliary matrix Q72 is
non degenerate and the new functional equation of ref. [10] allows the complete
determination of the spectrum of T including the degeneracies.

In the course of searching for a proof of the conjectured functional equa-
tion of ref. [10] it has become clear that the 8 vertex model has several more
functional equations than were originally found in ref. [1] and in fact there is a
complete analogy between the 8 vertex model and all the functional equations
found in ref. [6] for the chiral Potts model. The purpose of this paper is to
present this analogy.

The concept of the fusion hierarchy [11–17] will play an important role in
the analogy and will allow us to find a new functional equation for the 8 vertex
transfer matrix which has not yet appeared in the literature. Curiously enough,
for the chiral Potts model the fusion matrices have been explicitly computed
in ref. [6] for all levels of fusion while for the 8 vertex model we are at present
only able to compute explicit formulas for the fusion levels 3, 4 and 5.

In Sec. 2 we review the derivation of the TQ functional equation of Baxter.
In Sec. 3 we present the analogy with the chiral Potts model in detail and
derive functional equations for the 8 vertex model. In Sec. 4 we explicitly
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Functional Equations for 8-Vertex Model 907

compute the fusion matrices for levels 3, 4 and 5. In Sec. 5 we introduce a
similarity transformation which makes explicit the degeneration which takes
place in T (L+1)(v) when η satisfies the root of unity condition (1.1). In Sec. 6
we compare our results with the algebra of Sklyanin [13, 14]. We close in Sec. 7
with a proof of the functional equation of ref. [10] for the case of L = 2.

§2. Baxter’s TQ Equation

We begin our considerations by reviewing Baxter’s derivation of the TQ

functional equation of ref. [1]. The transfer matrix for the eight vertex model
with N columns and periodic boundary conditions is

T8(u)|µ,ν = TrW8(µ1, ν1)W8(µ2, ν2) · · ·W8(µN , νN )(2.1)

where in the conventions of (6.2) of ref. [1].

W8(1, 1)|1,1 = W8(−1,−1)|−1,−1 = Θ(2η)Θ(v − η)H(v + η) = a(v)(2.2)

W8(−1,−1)|1,1 = W8(1, 1)|−1,−1 = Θ(2η)H(v − η)Θ(v + η) = b(v)

W8(−1, 1)|1,−1 = W8(1,−1)|−1,1 = H(2η)Θ(v − η)Θ(v + η) = c(v)

W8(1,−1)|1,−1 = W8(−1, 1)|−1,1 = H(2η)H(v − η)H(v + η) = d(v)

The definition and useful properties of H(v) and Θ(v) are recalled in the ap-
pendix.

In ref. [1] the matrix QR(v) is defined as

[QR(v)]α|β = TrSR(α1, β1)SR(α2, β2) · · ·SR(αN , βN )(2.3)

where αj and βj = ±1 and S(α, β) is an L × L matrix given as

SR(α, β) =




z0 z−1 0 0 · 0
z1 0 z−2 0 · 0
0 z2 0 z−3 · 0
· · · · · ·
0 0 0 · 0 z1−L

0 0 0 · zL−1 zL




(2.4)

where

zm = q(α, β, m|v)(2.5)

with

q(+, β, m|v) = H(v + K + 2mη)τβ,m,(2.6)

q(−, β, m|v) = Θ(v + K + 2mη)τβ,m
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and the integer L is defined by (1.1). The τβ,m are generically arbitrary but
we note that if they are all set equal to unity then QR(v) is so singular that its
rank becomes 1.

Furthermore ref. [1] also defines the companion matrix QL(v)

[QL(v)]α|β = TrSL(α1, β1)SL(α2, β2) · · ·SL(αN , βN )(2.7)

where αj and βj = ±1 and SL(α, β) is an L × L matrix given as

SL(α, β) =




z′0 z′−1 0 0 · 0
z′1 0 z′−2 0 · 0
0 z′2 0 z′−3 · 0
· · · · · ·
0 0 0 · 0 z′1−L

0 0 0 · z′L−1 z′L




(2.8)

with

z′m = q′(α, β, m|v)(2.9)

and

q(α, +, m|v) = τ ′
α,mH(v − K − 2mη),(2.10)

q(α,−, m|v) = τ ′
α,mΘ(v − K − 2mη)

In ref. [1] it is shown that (C22)

T (v)QR(v) = hN (v − η)QR(v + 2η) + hN (v + η)QR(v − 2η)(2.11)

and (C24)

QL(v)T (v) = hN (v − η)QL(v + 2η) + hN (v + η)QL(v − 2η)(2.12)

where

h(v) = Θ(0)Θ(v)H(v)(2.13)

and it is further shown that (C28)

QL(v)QR(v′) = QL(v′)QR(v).(2.14)

Thus it follows that if we define (C37)

Q72(v) = QR(v)Q−1
R (v0) = Q−1

L (v0)QL(v)(2.15)
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then (C38)

T (v)Q72(v) = hN (v − η)Q72(v + 2η) + hN (v + η)Q72(v − 2η)(2.16)

with

[T (v), T (v′)] = [T (v), Q72(v′)] = [Q72(v), Q72(v′)] = 0(2.17)

We note the periodicity relations

T (v ± 2K) = (−1)NT (v)(2.18)

QR,L(v ± 2K) = SQR,L(v) = QR,L(v)S(2.19)

h(v + 2K) =−h(v)(2.20)

where

S =
N∏

j=1

σz
j(2.21)

which are consistent with (2.11) and (2.12) and we also note the commutation
relation

QR(v1)Q−1
R (v2)QR(v3) = QR(v3)Q−1

R (v2)QR(v1)(2.22)

§3. Fusion Relations and the Conjectured Functional
Equation for Q

The functional equation (2.16) is derived for the matrices T (v) and Q72(v)
but it follows from the commutation relations (2.17) that the four matrices
T (v), Q72(v), Q72(v ± 2η) may be simultaneously diagonalised and thus (2.16)
may be regarded as an equation for the eigenvalues. The matrix Q72(v) is
found (empirically, we know of no mathematical proof in the literature) to be
nondegenerate and thus if T (v) were also nondegenerate there would be a 1−1
map between eigenvalues of T (v) and Q72(v). However, in ref. [1] the condition
(1.1) holds and in this case, when the number of sites in the lattice N is
sufficiently large, the matrix T (v) always has degenerate eigenvalues. There is
thus a many to one map of eigenvalues of Q72(v) to eigenvalues of T (v) and this
leads to the fact that the functional equation is not sufficient to determine all
the eigenvalues of Q72(v) which correspond to a degenerate eigenvalue of T (v).

In order to resolve this problem of degeneracy and multiplicity of the eigen-
value of T (v) we recently conjectured [10] the following functional equation
for Q72.
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Conjecture.

For either L even or L and m1 odd

e−Nπiv/2KQ72(v − iK ′)(3.1)

= A

L−1∑
l=0

hN (v − (2l + 1)m1K/L)

× Q72(v)
Q72(v − 2lm1K/L)Q72(v − 2(l + 1)m1K/L)

where A is a normalizing constant matrix independent of v that commutes with
Q72(v). What this matrix is depends on the normalization value of v0 in the
definition (2.15) of Q72(v).

We prove this conjecture for L = 2 in Sec. 7 and have numerically verified
it for L = 3 for various values of N .

The matrix Q72(v) as defined by (2.15) is not in the form of QR(v) and
QL(v) of being the trace of a product of matrices and thus it is natural to
rewrite the conjecture (3.1) in terms of QL(v) and QR(v) as

e−Nπiv/2KQL(v − iK ′) = QL(v0)AQR(v0)(3.2)

×
L−1∑
l=0

hN (v − (2l + 1)m1K/L)

×Q−1
R (v − 2lm1K/L)QR(v)Q−1

R (v − 2(l + 1)m1K/L)

The form (3.2) of the conjecture is strikingly similar in form to the functional
equation (4.40) in ref. [6] of the chiral Potts model if we make the identification
of QL(v) with T̂cp and QR(v) with Tcp where the subscript cp indicates the
quantities in ref. [6]. It is therefore natural to search for a proof of (3.1) by
following the methods of ref. [6].

We begin by writing (2.11) in the form

T (v) = hN (v − η)QR(v + 2η)Q−1
R (v) + hN (v + η)QR(v − 2η)Q−1

R (v)(3.3)

which is analogous to (4.20) of ref. [6] if we identify T (v) with τ
(2)
cp .

To continue we need to define quantities analogous to τ
(j)
cp which obey

functional equations analogous to (4.27a) of ref. [6]. The appropriate objects
are the “fusion matrices” T (j)(v) which may be defined recursively, for any η

not just (1.1), by
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T (2)(v) = T (v)(3.4)

T (2)(v − 2η)T (2)(v − 4η) = hN (v − 3η)T (3)(v − 4η)(3.5)

+ hN (v − η)hN (v − 5η)

and for j ≥ 3

T (2)(v − 2η)T (j)(v − 2jη)(3.6)

= hN (v − 3η)T (j+1)(v − 2jη) + hN (v − η)T (j−1)(v − 2jη).

From these defining equations we show that T (j) may be written in terms
of QR(v) as

(3.7)

T (j)(v − 2(j − 1)m1K/L) =
j−1∑
l=0

hN (v − (2l + 1)m1K/L)

×QR(v)Q−1
R (v − 2lm1K/L)QR(v − 2jm1K/L)Q−1

R (v − 2(l + 1)m1K/L)

by directly substituting (3.7) into (3.5) and (3.6), using the commutation
relation (2.22) and noting that (3.7) reduces to (3.3) if we set j = 2 and send
v → v + 2η. Equation (3.7) is the analogue of (4.34) of ref. [6].

Now define

M = QL(v0)AQR(v0)(3.8)

and multiply (3.2) on the left by QR(v)M−1 we obtain

e−Nπiv/2KQR(v)M−1QL(v − iK ′)(3.9)

=
L−1∑
l=0

hN (v − (2l + 1)m1K/L)QR(v)

×Q−1
R (v − 2lm1K/L)QR(v)Q−1

R (v − 2(l + 1)m1K/L)

If we now use the periodicity property (2.19) in the right hand side of (3.7)
with j = L and compare with the right hand side of the conjectured functional
equation (3.9) we conclude that the conjectured functional equation will hold
if we can prove that

T (L)(v − 2(L − 1)m1K/L)(3.10)

= e−iNπv/2KQR(v)M−1QL(v − iK ′)Sm1 .

which is the analogue of (4.44) of ref. [6].
We conclude this section by noting that in the chiral Potts model there

is a functional equation (4.27c) of ref. [6] which relates τ (L+1) to τ (L−1). To
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obtain the analogous equation in the eight vertex model we specialize j = L+1
in (3.7) and use (2.19) to get

(3.11)

T (L+1)(v − 2m1K) =
L∑

l=0

hN (v − (2l + 1)m1K/L)

×QR(v)Q−1
R (v − 2lm1K/L)QR(v − 2m1K/L)Sm1Q−1

R (v − 2(l + 1)m1K/L)

We now write the terms l = 0, L separately and use (2.20) to find

(3.12)

T (L+1)(v − 2m1K)

= [1 + (−1)N ]hN (v − m1K/L)Sm1 +
L−1∑
l=1

hN (v − (2l + 1)m1K/L)

×QR(v)Q−1
R (v − 2lm1K/L)QR(v − 2m1K/L)Sm1Q−1

R (v − 2(l + 1)m1K/L).

In the sum we use the commutation relation (2.22), set l = k+1 and use (2.19)
to write Sm1QR(v) = QR(v − 2m1K) = QR(v − 2m1K/L − 2(L − 1)m1K/L)
and thus we find

(3.13)

T (L+1)(v − 2m1K)

= [1 + (−1)N ]hN (v − m1K/L)Sm1 +
L−2∑
k=0

hN (v − 2m1K/L − (2k + 1)m1K/L)

×QR(v − 2m1K/L)Q−1
R (v − 2m1K/L − 2km1K/L)

×QR(v − 2m1K/L − 2(L − 1)m1K/L)

×Q−1
R (v − 2m1K/L − 2(k + 1)m1K/L).

The sum on the right hand side is seen to be T (L−1)(v − 2m1K/L − 2(L −
2)m1K/L) by use of (3.7) and thus

T (L+1)(v − 2m1K) = [1 + (−1)N ]hN (v − m1K/L)Sm1(3.14)

+T (L−1)(v + 2m1K/L − 2m1K)

and finally by use of (2.18) we obtain the desired result

T (L+1)(v) = [1 + (−1)N ]hN (v − m1K/L)Sm1(3.15)

+T (L−1)(v + 2m1K/L)
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In the six vertex limit this functional equation was first exhibited by
Nepomechie as (1.3) of ref. [18] where it is proven for L = 2, 3, 4 and in (2.17)
in ref. [19] and it was used to study various open six vertex chains at roots
of unity in [18–20]. For the eight vertex model this result has been obtained
by Bazhanov and Stroganov (see footnote g on page 141 of [21]) and Bax-
ter [22].

§4. Explicit Fusion Matrices for J=3, 4, 5

We introduced the matrices T (j)(v) by the recursion relations (3.4)-(3.6)
and called them “fusion matrices”. However in ref. [6] the analogous matrices
τ (j) are not defined by the analogue of (3.4)-(3.6) but rather they are defined
as the trace of products of explicitly given j×j matrices and (3.4)-(3.6) follows
as a theorem. The explicit form of τ (j) is used in the proof of the analogue of
(3.10).

The existence of matrices T (j)(v) written in the form

T (j)(v)|µ,ν = TrR(j)(µ1, ν2)(v) · · ·R(j)(µN , νN )(v)(4.1)

with R(j)(µ, ν) being j × j matrices which generalizes (2.1) and has the global
property that [T (j)(v), T (j)(v′)] = 0 by virtue of R(j)(µ, ν)(v) and R(j)(µ, ν)(v′)
satisfying a local Yang-Baxter equation using

R(2)(µ, ν)(v) = W8(µ, ν)(4.2)

as the elements of the 2 × 2 intertwining matrix has been extensively stud-
ied [11–17] for both the 8 and the 6 vertex model. The final result of these
studies for the 8 vertex model is given by lemma 2.3.1 of ref. [17] which says
that T (j)(v) as defined by (4.1) is given in terms of a matrix R(j)(µ, ν)(v) which
is constructed from R(2)(µ, ν)(v) by

(4.3)

R(j)(µ, ν)(v) =

P
∑

ν1,···νj−2
R(2)(µ, ν1)(v)R(2)(ν1, ν2)(v + 2η) · · ·R(2)(νj−2, µ)(v + 2(j − 2)η)∏j−3

l=0 h[v + (2l + 1)η]

where P is the projection from the internal space of dimension 2j−1 to the space
of dimension j of completely symmetric tensors. This construction is known as
“fusion”. The matrix R(j)(v) has no poles and T (j)(v) satisfies (3.4)-(3.6).
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Unfortunately the result (4.3) is not as explicit as the expression for τ (j) in
the chiral Potts model [6] or the corresponding expression for the fusion weights
in the RSOS model [17]. However, it would appear that such an explicit form
would be of help in proving the conjecture (3.10) for the 8 vertex model. There-
fore in order to gain insight into the fusion matrices we have constructed the
matrices T (j)(v) directly from (4.3) for j = 3, 4, 5. The computation is straight-
forward and makes extensive use of properties of theta functions (presented in
detail for example in ref. [23]). In particular we use the two addition formulas
for theta functions (15.4.25) and (15.4.26) of ref. [24].

Θ(u)Θ(v)Θ(a − u)Θ(a − v) − H(u)H(v)H(a − u)H(a − v)(4.4)

= Θ(0)Θ(a)Θ(u − v)Θ(a − u − v)

and

H(v)H(a − v)Θ(u)Θ(a − u) − Θ(v)Θ(a − v)H(u)H(a − u)(4.5)

= Θ(0)Θ(a)H(v − u)H(a − u − v)

and the fact that in the set of functions given for a fixed and j an integer

Θ(v + jη)H(v + (a − j)η)(4.6)

only two are linearly independent. Similarly of the functions for fixed a

Θ(v + jη)Θ(v + (a − j)η), H(v + jη)H(v + (a − j)η)(4.7)

only two are linearly independent. There are accordingly many equivalent ways
to write the theta functions in R(j)(µ, ν)(v).

We note that the matrix R(j)(−,−)(v) is obtained from R(j)(+, +)(v) and
the matrix R(j)(−, +)(v) is obtained from R(j)(+,−)(v) by the interchange
Θ(v+2kη) ↔ H(v+2kη). Furthermore the matrix elements have the symmetry
property

R(j)(µ, ν)(v)m,n ↔ R(j)(µ, ν)(v)j−1−m,j−1−n(4.8)

by the substitution Θ(v + 2aη) ↔ H(v + 2aη)

With these provisos we have the following results:
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A. The matrices R(3)(µ, ν)(v)

The matrix R(3)(+, +)(v) is

(4.9)

R(3)(+, +)(v)

=




Θ2(2η)
Θ(0)

Θ(v − η)

×H(v + 3η)
0

H2(2η)
Θ(0)

H(v − η)

×Θ(v + 3η)
0 Θ(4η)H(v + η)Θ(v + η) 0

H2(2η)
Θ(0)

Θ(v − η)

×H(v + 3η)
0

Θ2(2η)
Θ(0)

H(v − η)

×Θ(v + 3η)




and the matrix R(3)(+,−)(v) is

(4.10)

R(3)(+,−)(v)

=




0 H(4η)H2(v + η) 0
Θ(2η)H(2η)

Θ(0)
Θ(v − η)

×Θ(v + 3η)
0

H(2η)Θ(2η)
Θ(0)

H(v − η)

×H(v + 3η)
0 H(4η)Θ2(v + η) 0


 .

B. The matrices R(4)(µ, ν)(v)

The matrix R(4)(+, +)(v) is

R(4)(+, +)(v) =




R
(4)
00 0 R

(4)
02 0

0 R
(4)
11 0 R

(4)
13

R
(4)
20 0 R

(4)
22 0

0 R
(4)
31 0 R

(4)
33


(4.11)

where the 4 independent elements of R(4)(++) are

R
(4)
00 (+, +) =

Θ3(2η)
Θ2(0)

Θ(v − η)H(v + 5η)(4.12)

R
(4)
20 (+, +) =

H2(2η)Θ(2η)
Θ2(0)

Θ(v − η)H(v + 5η)(4.13)
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R
(4)
11 (+, +) =

Θ(4η)H(4η)
H(2η)

H(v + η)Θ(v + 3η)(4.14)

−Θ3(2η)
Θ2(0)

H(v − η)Θ(v + 5η)

R
(4)
31 (+, +) =

H2(4η)
Θ(2η)

Θ(v + η)H(v + 3η)(4.15)

−H2(2η)Θ(2η)
Θ2(0)

H(v − η)Θ(v + 5η)

and the remaining 4 elements are obtained by the symmetry (4.8).
The matrix R(4)(+,−)(v) is

R(4)(+,−)(v) =




0 R
(4)
01 0 R

(4)
03

R
(4)
10 0 R

(4)
12 0

0 R
(4)
21 0 R

(4)
23

R
(4)
30 0 R

(4)
32 0


(4.16)

where the 4 independent elements are

R
(4)
10 (+,−) =

Θ2(2η)H(2η)
Θ2(0)

Θ(v − η)Θ(v + 5η)(4.17)

R
(4)
30 (+,−) =

H3(2η)
Θ2(0)

Θ(v − η)Θ(v + 5η)(4.18)

R
(4)
21 (+,−) =−H3(2η)Θ(4η)

Θ3(0)
H(v + η)H(v + 3η)(4.19)

+
Θ3(2η)H(4η)

Θ3(0)
Θ(v + η)Θ(v + 3η)

=
Θ2(4η)H(4η)
Θ(0)Θ(6η)

Θ(v − η)Θ(v + 5η)(4.20)

+
Θ(2η)H2(2η)H(6η)

Θ2(0)Θ(6η)
H(v − η)H(v + 5η)

R
(4)
01 (+,−) =−Θ2(2η)H(2η)

Θ2(0)
H(v − η)H(v + 5η)(4.21)

+
H2(4η)
H(2η)

H(v + η)H(v + 3η)
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=
H3(4η)

Θ(0)Θ(6η)
Θ(v − η)Θ(v + 5η)

+
Θ3(2η)H(6η)
Θ2(0)Θ(6η)

H(v − η)H(v + 5η)

and the four other elements obtained by the symmetry (4.8).

C. The matrices R(5)(µ.ν)(v)

The matrix R(5)(+, +)(v) is

R(5)(+, +)(v) =




R
(5)
00 0 R

(5)
02 0 R

(5)
04

0 R
(5)
11 0 R

(5)
13 0

R
(5)
20 0 R

(5)
22 0 R

(5)
24

0 R
(5)
31 0 R

(5)
33 0

R
(5)
40 0 R

(5)
42 0 R

(5)
44




(4.22)

where the 6 independent non symmetric elements are

R
(5)
00 (+, +) =

Θ4(2η)
Θ3(0)

Θ(v − η)H(v + 7η)(4.23)

R
(5)
20 (+, +) =

H2(2η)Θ2(2η)
Θ3(0)

Θ(v − η)H(v + 7η)(4.24)

R
(5)
40 (+, +) =

H4(2η)
Θ3(0)

Θ(v − η)H(v + 7η)(4.25)

R
(5)
11 (+, +) =

Θ2(2η)Θ2(4η)
Θ3(0)

Θ(v + η)H(v + 5η)(4.26)

−H2(2η)H2(4η)
Θ3(0)

H(v + η)Θ(v + 5η)

R
(5)
31 (++) =

Θ2(2η)H2(4η)
Θ3(0)

Θ(v + η)H(v + 5η)(4.27)

−H2(2η)Θ2(4η)
Θ3(0)

H(v + η)Θ(v + 5η)

R
(5)
02 (+, +) = −H2(2η)Θ2(2η)H(8η)

Θ2(0)H(4η)Θ(4η)
H(v + 3η)Θ(v + 3η)(4.28)

+
H3(4η)

H(2η)Θ(2η)
H(v + η)Θ(v + 5η),
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the companion non symmetric elements are obtained by the symmetry (4.8)
and the one symmetric element is

R
(5)
22 (+, +) = Θ−3(0)

(
Θ3(2η)Θ(6η)(4.29)

−H3(2η)H(6η)
)
H(v + 3η)Θ(v + 3η)

The matrix R(5)(+,−)(v) is

R(5)(+,−)(v) =




0 R
(5)
01 0 R

(5)
03 0

R
(5)
10 0 R

(5)
12 0 R

(5)
14

0 R
(5)
21 0 R

(5)
23 0

R
(5)
30 0 R

(5)
32 0 R

(5)
34

0 R
(5)
41 0 R

(5)
43 0




(4.30)

where the six independent elements are

R
(5)
10 (+,−) =

H(2η)Θ3(2η)
Θ3(0)

Θ(v − η)Θ(v + 7η)(4.31)

R
(5)
30 (+,−) =

H3(2η)Θ(2η)
Θ3(0)

Θ(v − η)Θ(v + 7η)(4.32)

R
(5)
01 (+,−) =

Θ(2η)
Θ2(0)Θ(6η)

[H3(4η)Θ(v − η)Θ(v + 7η)(4.33)

+Θ2(2η)H(8η)H(v + η)H(v + 5η)]

R
(5)
21 (+,−) =

H(4η)Θ(4η)
Θ3(0)

[Θ2(2η)Θ(v + η)Θ(v + 5η)(4.34)

−H2(2η)H(v + η)H(v + 5η)]

R
(5)
41 (+,−) =

H(2η)
Θ2(0)H(6η)

[H3(4η)Θ(v − η)Θ(v + 7η)(4.35)

+H2(2η)H(8η)Θ(v + η)Θ(v + 5η)]

R
(5)
12 (+,−) =

H(2η)Θ(6η)
Θ(0)

H(v + η)H(v + 5η)(4.36)

+
H(2η)Θ3(2η)H(8η)
Θ2(0)H(4η)Θ(4η)

H2(v + 3η)

and the other six elements are obtained by the symmetry (4.8).

§5. A Similarity Transformation

The fusion matrices derived in the preceding section by direct application of
the fusion construction do not have a particularly revealing form. Furthermore
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they do not directly reveal the reduction (3.15) of T (L+1)(v) at the root of
unity point (1.1). However, because the form (4.1) for T (j)(v) is the trace of a
product of matrices any similarity transformation of the R(j)(µ, ν)(v)

R̃(j)(µ, ν)(v) = Mj(η)R(j)(µ, ν)(v)M−1
j (η)(5.1)

with Mj(η) independent of v is just as good for our purposes as the original
R(j)(µ, ν)(v).

The form of the functional equation (3.15) will follow if we can determine
a similarity transformation matrix Mj(η) such that when the root of unity
condition (1.1) holds the matrix elements of R̃(L+1)(µ, ν) have the property
that

R̃(L+1)(µ, ν)0,k = R̃(L+1)(µ, ν)L−1,k = 0 for 1 ≤ k ≤ L − 2(5.2)

The matrix R(3)(µ, ν) already has this property but the matrices R(4)(µ, ν) and
R(5)(µ, ν) do not. However, because the functional equation (3.15) has been
proven true in Sec. 3 by an independent method it must be possible to find a
similarity transformation which does in fact put R(4)(µ, ν) and R(5)(µ, ν) into
the required form. It is straightforward to determine these matrices. In fact
these matrices are not unique and have several arbitrary parameters we can
freely chose. We have determined the families of these similarity transforma-
tions for L = 3 and 4. These similarity transformations may then be extended
from the root of unity case to the case of arbitrary η essentially by replacing
m1K/L everywhere by η. When this is done we find the following similarity
transformations which are easily verified.

A. Transformation of R(4)(µ, ν)

The transformation matrix is

M4(η) =




1 0 −f 0
0 1 0 0
0 0 1 0
0−f 0 1


(5.3)

and

M−1
4 (η) =




1 0 f 0
0 1 0 0
0 0 1 0
0 f 0 1


(5.4)
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with

f = H2(2η)/Θ2(2η)(5.5)

Thus using the notation

Θa = Θ(v + aη)(5.6)

Ha = H(v + aη)(5.7)

we have

R̃(4)(+, +) = M4(η)R(4)(++)M−1
4 (η)(5.8)

=




C
(4)
00 Θ−1H5 0 C

(4)
02 Θ3H1 0

0 C
(4)
11 Θ1H3 0 C

(4)
13 Θ5H−1

C
(4)
20 Θ−1H5 0 C

(4)
22 Θ3H1 0

0 C
(4)
31 Θ1H3 0 C

(4)
33 Θ5H−1




where

C
(4)
00 = C

(4)
33 =

Θ(0)Θ(4η)
Θ(2η)

(5.9)

C
(4)
22 = C

(4)
11 =

Θ2(4η)
Θ(2η)

(5.10)

C
(4)
20 = C

(4)
13 =

H2(2η)Θ(2η)
Θ2(0)

(5.11)

C
(4)
31 = C

(4)
02 =

Θ2(0)H(2η)H(6η)
Θ3(2η)

(5.12)

and

R̃(4)(+,−) = M4(η)R(4)(+,−)M−1
4 (η)(5.13)

=




0 C
(4)
01 H1H3 0 0

C
(4)
10 Θ−1Θ7 0 C

(4)
12 H1H3 0

0 C
(4)
21 Θ1Θ3 0 C

(4)
23 H−1H5

0 0 C
(4)
32 Θ1Θ3 0




with

C
(4)
10 = C

(4)
23 =

Θ2(2η)H(2η)
Θ2(0)

(5.14)

C
(4)
21 = C

(4)
12 =

H(4η)Θ(4η)
Θ(2η)

(5.15)

C
(4)
32 = C

(4)
01 =

Θ2(0)H(6η)
Θ2(2η)

(5.16)
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B. Transformation of R(5)(µ, ν)

The transformation matrix is

M5(η) =




1 0 f 0 0
0 1 0 g 0
0 0 h 0 0
0 g 0 1 0
0 0 f 0 1


(5.17)

where

f =−H2(4η)
Θ2(4η)

(5.18)

g =−H2(2η)
Θ2(2η)

(5.19)

h =
Θ2(0)H(2η)

H(4η)Θ(4η)Θ(2η)
(5.20)

and

M−1
5 (η) =




1 0 a 0 0
0 b 0 c 0
0 0 d 0 0
0 c 0 b 0
0 0 a 0 1


(5.21)

with

a =−f

h
=

H3(4η)Θ(2η)
Θ(4η)Θ2(0)H(2η)

(5.22)

b =
1

1 − g2
=

Θ4(2η)
Θ3(0)Θ(4η)

(5.23)

c =− g

1 − g2
=

H2(2η)Θ2(2η)
Θ3(0)Θ(4η)

(5.24)

d =
1
h

=
H(4η)Θ(4η)Θ(2η)

H(2η)Θ2(0)
(5.25)
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Thus we find

(5.26)

R̃(5)(+, +) = M5(η)R(5)(++)M5(η)−1

×




C
(5)
00 Θ−1H7 0 C

(5)
02 Θ3H3 0 C

(5)
04 Θ7H−1

0 C
(5)
11 Θ1H5 0 C

(5)
13 Θ5H1 0

C
(5)
20 Θ−1H7 0 C

(5)
22 Θ3H3 0 C

(5)
24 Θ7H−1

0 C
(5)
31 Θ1H5 0 C

(5)
33 Θ5H1 0

C
(5)
40 Θ−1H7 0 C

(5)
42 Θ3H3 0 C

(5)
44 Θ7H−1




where

C
(5)
00 = C

(5)
44 =

Θ3(2η)Θ(6η)
Θ(0)Θ2(4η)

(5.27)

C
(5)
20 = C

(5)
24 =

H3(2η)Θ(2η)
Θ(0)Θ(4η)H(4η)

(5.28)

C
(5)
40 = C

(5)
04 =

H3(2η)H(6η)
Θ(0)Θ2(4η)

(5.29)

C
(5)
02 = C

(5)
42 =

H(8η)H(6η)Θ(6η)Θ2(2η)
Θ4(4η)

(5.30)

C
(5)
11 = C

(5)
33 =

Θ(2η)Θ(6η)
Θ(0)

(5.31)

C
(5)
13 = C

(5)
31 =

H(2η)H(6η)
Θ(0)

(5.32)

C
(5)
22 =

1
Θ(0)Θ2(4η)

(
Θ2(2η)Θ2(6η) + H2(2η)H2(6η)

)
(5.33)

and

(5.34)

R̃(5)(+,−) = M5(η)R(5)(+−)M5(η)−1

=




0 C
(5)
01 H1H5 0 0 0

C
(5)
10 Θ−1Θ7 0 C

(5)
12 H2

3 0 0

0 C
(5)
21 Θ1Θ5 0 C

(5)
23 H1H5 0

0 0 C
(5)
32 Θ2

3 0 C
(5)
34 H−1H7

0 0 0 C
(5)
43 Θ1Θ5 0




where

C
(5)
10 = C

(5)
34 =

H(2η)Θ(4η)
Θ(2η)

(5.35)
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C
(5)
21 = C

(5)
23 =

H(2η)Θ(2η)
Θ(0)

(5.36)

C
(5)
32 = C12 =

H(6η)H(4η)Θ(6η)
H(2η)Θ(2η)

(5.37)

C
(5)
43 = C

(5)
01 =

H(8η)Θ2(2η)
Θ2(4η)

(5.38)

C. The matrix R(3)(µ, ν)

For comparison we write R(3)(µ, ν) in the notation used above as

R(3)(v)(+, +) =




C
(3)
00 Θ0H2 0 C

(3)
02 Θ2H0

0 C
(3)
11 Θ1H1 0

C
(3)
20 Θ0H2 0 C

(3)
22 Θ2H0


 ,(5.39)

where

C
(3)
00 = C

(3)
22 = Θ2(2η)/Θ(0)(5.40)

C
(3)
20 = C

(3)
02 = H2(2η)/Θ(0)(5.41)

C
(3)
11 = Θ(4η)(5.42)

R(3)(v)(+,−) =


 0 C

(3)
01 H2

1 0
C

(3)
10 Θ0Θ2 0 C

(3)
12 H0H2

0 C
(3)
21 Θ2

1 0


 ,(5.43)

where

C
(3)
10 = C

(3)
12 = H(2η)Θ(2η)/Θ(0)(5.44)

C
(3)
01 = C

(3)
21 = H(4η)(5.45)

D. Comments

In the matrix R(3)(µ, ν) of (5.43), the coefficients C
(3)
01 = C

(3)
21 vanish for

η = K/2; in the matrix R(4)(µ, ν) of (5.8), (5.13), the coefficients C
(4)
02 = C

(4)
31

and C
(4)
01 = C

(4)
32 vanish for η = m1K/3; and in the matrix R(5)(µ, ν) of (5.26),

(5.34), the coefficients C
(5)
01 = C

(5)
43 and C

(5)
02 = C

(5)
42 vanish for η = m1K/4.

Therefore the decomposition property (5.2) holds and it is now a simple mat-
ter to see that the functional equation (3.15) holds. This, of course, was the
criteria used to obtain the similarity transformation matrices in the first place.
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What is not automatically guaranteed by our construction is that the trans-
formed matrices R̃(j)(µ, ν) have matrix elements which depend only on one of
the two linearly independent products of theta functions and that with the
exception of C

(5)
22 all C

(j)
jk are factored products of the theta functions H(aη)

and Θ(aη). These two properties make R̃(j)(µ, ν) much simpler for j = 4, 5
than the original matrices R(j)(µ, ν). It is our belief that these R̃(j)(µ, ν) are
the “simplest possible” similarity transformations of R(j)(µ, ν) and that this is
the form which should be generalized to arbitrary j.

§6. Comparison with Sklyanin

An alternative approach to the fusion matrices has been given by
Sklyanin [13, 14] who, instead of R(j)(µ, ν) considers the four matrices inde-
pendent of the spectral variable v S

(j)
k with 0 ≤ k ≤ 3 which are defined by

(a(v + (j − 2)η)) + b(v + (j − 2)η))S(j)
0(6.1)

= R(j)(+, +)(v) + R(j)(−,−)(v)

(a(v + (j − 2)η)) − b(v + (j − 2)η))S(j)
3(6.2)

= R(j)(+, +)(v) − R(j)(−,−)(v)

(c(v + (j − 2)η)) + d(v + (j − 2)η))S(j)
1(6.3)

= R(j)(+,−)(v) + R(j)(−, +)(v)

(c(v + (j − 2)η)) − d(v + (j − 2)η))S(j)
2(6.4)

= R(j)(+,−)(v) − R(j)(−, +)(v)

where a(v), b(v), c(v) and d(v) are defined by (2.2).
Sklyanin shows that in order for R(j)(µ, ν)(v) to satisfy the Yang Baxter

equation that the S
(j)
k must be a representation of the algebra

SαS0 − S0Sα = Jβ,γ(SβSγ + SγSβ)(6.5)

SαSβ − SβSα = (S0Sγ + SγS0)

where α, β, γ are any cyclic permutation of 1, 2, 3 and the structure constants
Jα,β satisfy

J12 + J23 + J31 + J12J23J31 = 0(6.6)

and are explicitly computed in terms of theta functions. Sklyanin demonstrated
that the finite dimensional representations of this algebra may be constructed
from the space of theta functions with zero characteristics of order j as defined
in [23].
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We have verified that the matrices S
(j)
k constructed from our matrices

R̃(j)(µ, ν)(v) do in fact satisfy Sklyanin’s algebra although we are not aware of
any direct proof that the fusion construction and the algebra (6.5) are equiva-
lent. The relation of the functional equation (3.15) to Sklyanin’s algebra also
remains to be studied.

§7. The Functional Equation for Q at L = 2

We conclude by proving relation (3.10) for L = 2.

T (2)(v − K) = e−iNπv/2KQR(v)M−1QL(v − iK ′)S.(7.1)

We proceed in two steps by first explicitly computing the matrix M and then
proving that (7.1) holds.

A. Computation of M

The conjecture for the functional equation for Q in (3.1) is not complete
because we have not given an explicit form for the normalizing matrix A. There-
fore because M is computed from A by (3.8) our first task is to find a form for
M which is consistent with the conjecture. For L = 2 we do this by setting
v = 3K/2 in (3.9) to find

M =
exp(− i3πN

4 )
hN (K)

QL(3K/2 − iK ′)QR(K/2)(7.2)

The matrices QR and QL are defined by (2.3) and (2.7) where the matrices SR

and SL contain the arbitrary parameters τα,m which are restricted only by the
requirement that the resulting matrices be nonsingular. We find it convenient
to make the choice

τγ,0 = δγ,−1, τγ,1 = δγ,−1, τγ,−1 = δγ,1, τγ,2 = δγ,1(7.3)

and thus we have explicitly from (2.4) and (2.8) with L = 2

SR(+, β)(v) =

(
H(v + K)δβ,−1 H(v)δβ,1

−H(v)δβ,−1 −H(v + K)δβ,1

)
,(7.4)

SR(−, β)(v) =

(
Θ(v + K)δβ,−1 Θ(v)δβ,1

Θ(v)δβ,−1 Θ(v + K)δβ,1

)
,
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SL(α, +)(v) =

(
H(v − K)δα,−1 H(v)δα,1

−H(v)δα,−1 −H(v − K)δα,1

)
,(7.5)

SL(α,−)(v) =

(
Θ(v − K)δα,−1 Θ(v)δα,1

Θ(v)δα,−1 Θ(v − K)δα,1

)

Thus we find

Mαβ =
exp(− i3πN

4 )
hN (K)

Trm(α1, β1)m(α2, β2) · · ·m(αN , βN )(7.6)

where

m(α, β) = SL(α, +)(3K/2 − iK ′)SR(+, β)(K/2)(7.7)

+SL(α,−)(3K/2− iK ′)SR(−, β)(K/2)

= −2iq−1/4 exp(
iπ

4
)H(K/2)Θ(K/2)m̂(α, β)

with

m̂(α, β) =




δα,−1δβ,−1 δα,−1δβ,1 iδα,1δβ,−1 iδα,1δβ,1

0 0 0 0
0 0 0 0
iδα,−1δβ,−1 iδα,−1δβ,1 δα,1δβ,−1 δα,1δβ,1


(7.8)

Only the first and the last column of m̂ contribute to trace in (7.6) and thus

Mα,β =
(
−2

H(K/2)Θ(K/2)
q1/4h(K)

)N

Tr(ρ(α1, β1) · · · ρ(αN , βN ))(7.9)

where

ραβ =

(
δα,−1δβ,−1 iδα,1δβ,1

iδα,−1δβ,−1 δα,1δβ,1

)
(7.10)

and

M−1
α,β =

(
−2

H(K/2)Θ(K/2)
q1/4h(K)

)−N

Tr(ρ(α1, β1) · · · ρ(αN , βN ))(7.11)

B. Computation of e−iNπv/2KQR(v)M−1QL(v − iK ′)S

We now use (2.19), (7.5), (7.6) and (7.11) in the right hand side of (7.1)
to find

e−iNπv/2KQR(v)M−1QL(v − iK ′)S|α,β(7.12)

=
(
− h(K)

2H(K/2)Θ(K/2)

)N

TrX(α1, β1) · · ·X(αN , βN )
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where

Xα,β = e−iπv/2Kq1/4(7.13)

×
∑
γ,λ

SR(α, γ)(v)ρ(γ, λ)SL(λ, β)(v + 2K − iK ′)

which, using the notation,

HK = H(v + K), ΘK = Θ(v + K), H = H(v), Θ = Θ(v)(7.14)

is explicitly written as

X(+, +) =
∑
γ,λ

(
HKδγ,−1 Hδγ,1

−Hδγ,−1 −HKδγ,1

)
⊗

(
δγ,−1δλ,−1 iδγ,1δλ,1

iδγ,−1δλ,−1 δγ,1δλ,1

)
(7.15)

⊗
(

ΘKδλ,−1 iΘδλ,1

−iΘδγ,−1 −ΘKδγ,1

)

X(−,−) =
∑
γ,λ

(
ΘKδγ,−1 Θδγ,1

Θδγ,−1 ΘKδγ,1

)
⊗

(
δγ,−1δλ,−1 iδγ,1δλ,1

iδγ,−1δλ,−1 δγ,1δλ,1

)
(7.16)

⊗
(

HKδλ,−1 −iHδλ,1

−iHδγ,−1 HKδγ,1

)

X(+,−) =
∑
γ,λ

(
HKδγ,−1 Hδγ,1

−Hδγ,−1 −HKδγ,1

)
⊗

(
δγ,−1δλ,−1 iδγ,1δλ,1

iδγ,−1δλ,−1 δγ,1δλ,1

)
(7.17)

⊗
(

HKδλ,−1 −iHδλ,1

−iHδγ,−1 HKδγ,1

)

X(−, +) =
∑
γ,λ

(
ΘKδγ,−1 Θδγ,1

Θδγ,−1 ΘKδγ,1

)
⊗

(
δγ,−1δλ−1 iδγ,1δλ1

iδγ,−1δλ,−1 δγ,1δλ,1

)
(7.18)

⊗
(

ΘKδλ,−1 iΘδλ,1

−iΘδγ,−1 −ΘKδγ,1

)
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We note that

X(+, +) =




HKΘK 0 0 0 0 0 0 −HΘ
−iHKΘ 0 0 0 0 0 0−iHΘK

iHKΘK 0 0 0 0 0 0 iHΘ
HKΘ 0 0 0 0 0 0 −HΘK

−HΘK 0 0 0 0 0 0 HKΘ
iHΘ 0 0 0 0 0 0 iHKΘK

−iHΘK 0 0 0 0 0 0 −iHKΘ
−HΘ 0 0 0 0 0 0 HKΘK




(7.19)

The rank of X(+, +) is two and thus when used in the trace in (7.12) it may
be replaced by

Z(+, +) =

(
HKΘK −HΘ
−HΘ HKΘK

)
(7.20)

Similarly X(+,−), X(−, +), and X(−,−) may be replaced by

Z(+,−) =

(
H2

K H2

−H2 −H2
K

)
(7.21)

Z(−, +) =

(
Θ2

K −Θ2

Θ2 −Θ2
K

)
(7.22)

Z(−,−) =

(
ΘKHK ΘH

ΘH ΘKHK

)
(7.23)

and therefore we have

e−iNπv/2KQR(v)M−1QL(v − iK ′)S|α,β(7.24)

=
(
− h(K)

2H(K/2)Θ(K/2)

)N

TrZ(α1, β1) · · ·Z(αN , βN )

C. Proof of (7.1)

We recall from (4.1) and (4.2) that

T (2)|α,β(v − K) = TrR(2)(α1, β1)(v − K) · · ·R(2)(αN , βN )(v − K)(7.25)

with
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R(2)(+, +)(v − K) =

(
a(v − K) 0

0 b(v − K)

)
,(7.26)

R(2)(+,−)(v − K) =

(
0 d(v − K)

c(v − K) 0

)
,

R(2)(−, +)(v − K) =

(
0 c(v − K)

d(v − K) 0

)
,

R(2)(−,−)(v − K) =

(
b(v − K) 0

0 a(v − K)

)

We thus complete the proof of (7.1) by noting that there is a similarity
transformation by a matrix G which maps the matrices Z(α, β) on the matrices
R(2)(α, β). Specifically

GZ(+, +)G−1 = − H(K)
H(K/2)Θ(K/2)

(
a(v − K) 0

0 b(v − K)

)
(7.27)

GZ(+,−)G−1 = − H(K)
H(K/2)Θ(K/2)

(
0 d(v − K)

c(v − k) 0

)
(7.28)

GZ(−, +)G−1 = − H(K)
H(K/2)Θ(K/2)

(
0 c(v − K)

d(v − k) 0

)
(7.29)

GZ(−,−)G−1 = − H(K)
H(K/2)Θ(K/2)

(
b(v − K) 0

0 a(v − K)

)
(7.30)

where

G =

(
a11 a11

−a22 a22

)
G−1 =

(
a22 −a11

a22 a11

)
(7.31)

with

a11 =
1√
2

(
H(K/2)
Θ(K/2)

)1/2

a22 =
1√
2

(
Θ(K/2)
H(K/2)

)1/2

(7.32)

The verification of this similarity transformation is straightforward by use of
identities such as

(7.33)

H(v)Θ(v) + H(v + K)Θ(v + K) =
H(K)Θ(K)

H(K/2)Θ(K/2)
H(v + K/2)Θ(v − K/2)

= − H(K)
H(K/2)Θ(K/2)

b(v − K),
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(7.34)

H(v + K)Θ(v + K) − H(v)Θ(v) = − H(K)Θ(K)
H(K/2)Θ(K/2)

H(v − K/2)Θ(v + K/2)

− H(K)
H(K/2)Θ(K/2)

a(v − K)

and

H2(v + K) + H2(v) =
H2(K)

Θ2(K/2)
Θ(v + K/2)Θ(v − K/2)(7.35)

=
H(K)

Θ2(K/2)
c(v − K).

Thus using (7.27)–(7.30) and (7.25) in (7.24) and recalling the definition
(2.13) of h(v) we find

(7.36)

e−iNπv/2KQR(v)M−1QL(v − iK ′)S|α,β =
(

Θ(0)H2(K)Θ(K)
2H2(K/2)Θ2(K/2)

)N

T
(2)
α,β(v − K)

Thus if we finally use the identity

Θ(0)H2(K)Θ(K)
2H2(K/2)Θ2(K/2)

= 1(7.37)

which follows from (4.5) with a = K, v = K/2 and u = −K/2 we see that
(7.1) is proven.

Appendix A. Theta Functions

The definition of Jacobi Theta functions of nome q is

H(v) = 2
∞∑

n=1

(−1)n−1q(n− 1
2 )2 sin[(2n − 1)πv/(2K)](A.1)

Θ(v) = 1 + 2
∞∑

n=1

(−1)nqn2
cos(nvπ/K)(A.2)

=−iq1/4eπiv/(2K)H(v + iK ′)

where K and K ′ are the standard elliptic integrals of the first kind and

q = e−πK′/K .(A.3)
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These theta functions satisfy

Θ(v) = Θ(−v), H(v) = −H(−v)(A.4)

and the quasi periodicity relations (15.2.3) of ref. [24]

H(v + 2K) =−H(v)(A.5)

H(v + 2iK ′) =−q−1e−πiv/KH(v)(A.6)

and

Θ(v + 2K) = Θ(v)(A.7)

Θ(v + 2iK ′) =−q−1e−πiv/KΘ(v).(A.8)

From (A.2) we see that Θ(v) and H(v) are not independent but satisfy (15.2.4)
of ref. [24].

Θ(v ± iK ′) = ±iq−1/4e∓
πiv
2K H(v)(A.9)

H(v ± iK ′) = ±iq−1/4e∓
πiv
2K Θ(v).
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