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Abstract

For a smooth complex projective variety X defined over a number field, we
have filtrations on the Chow groups depending on the choice of realizations. If the
realization consists of mixed Hodge structure without any additional structure, we can
show that the obtained filtration coincides with the filtration of Green and Griffiths,
assuming the Hodge conjecture. In the case the realizations contain Hodge structure
and etale cohomology, we prove that if the second graded piece of the filtration does
not vanish, it contains a nonzero element which is represented by a cycle defined over
a field of transcendence degree one. This may be viewed as a refinement of results
of Nori, Schoen, and Green-Griffiths-Paranjape. For higher graded pieces we have a
similar assertion assuming a conjecture of Beilinson and Grothendieck’s generalized
Hodge conjecture.

Introduction

Let XC be a smooth complex projective variety, and CHp(XC)Q be the
Chow group with rational coefficients. Choosing a category M of realizations
(see [12], [13], [20]), we can define a filtration FM on CHp(XC)Q by spread-
ing cycles out, see (1.4) below (and also [1], [16], [26], [30]). By definition
F 1
MCHp(XC)Q consists of null homologous cycles, and F 2

MCHp(XC)Q is con-
tained in the kernel of the Abel-Jacobi map (tensored with Q). It is conjectured
that the filtration FM does not depend on the choice of M, and coincides with

Communicated by A. Tamagawa. Received November 6, 2003. Revised January 9, 2004.
1991 Mathematics Subject Classification(s): 14C30.
Key words and phrases: Chow group, Deligne cohomology, cycle map.

†This article is an invited contribution to a special issue of Publications of RIMS com-
memorating the fortieth anniversary of the founding of the Research Institute for Math-
ematical Sciences.

∗RIMS Kyoto University, Kyoto 606-8502 Japan.

c© 2004 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



�

�

�

�

�

�

�

�

934 Morihiko Saito

Murre’s conjectural filtration [24]. We can verify this conjecture, assuming a
conjecture of Beilinson on the injectivity of the Abel-Jacobi map for smooth
projective varieties over number fields [2] together with the Hodge conjecture.

In this paper we assume that XC is defined over a number field k. Then
a similar filtration has been defined by M. Green and P. Griffiths [16], and we
have

Proposition 0.1. If M is the category of mixed Hodge structure with-
out any additional structure, then the filtration FM coincides with the filtration
FG of Green and Griffiths [16], assuming the Hodge conjecture.

Let X be a smooth projective k-variety whose base change by k → C is
XC. Let K be a subfield of C containing k, and having finite transcendence
degree. Let XK be the base change of X by k → K. Then CHp(XK)Q is
identified with a subgroup of CHp(XC)Q, and has the induced filtration FM. It
has been observed by Green and Griffiths [16] that the property of this induced
filtration is very much influenced by the transcendence degree d of K. For
example, Grr

FMCHp(XK)Q vanishes for r > d + 1 if the realization consists of
mixed Hodge structure. If d = 0, it is conjectured that F 2

MCHp(XK)Q = 0 by
the above conjecture of Beilinson. However, for d = 1, it is shown by M. Nori
and C. Schoen [32] that the kernel of the Albanese map for certain surfaces has
a nontrivial cycle defined over a subfield K of transcendence degree 1. Here
we can show also the nonvanishing of Gr2FMCH2(XC)Q (see [26]), which implies
that the above estimate is optimal. The results of Nori and Schoen are recently
generalized by Green-Griffiths-Paranjape [17] to the case of surfaces having a
nontrivial global 2-form. Considering these, we may have

Conjecture 0.2. If Grr
FMCHp(XC)Q �= 0 with r ≥ 1, then it contains

a nonzero element which is represented by a cycle defined over a subfield of
transcendence degree r − 1.

In this paper we prove

Theorem 0.3. Assume that the realizations contain mixed Hodge struc-
ture and étale cohomology with Galois action. Then Conjecture (0.2) is true
for r = 1, 2. Assume further that Grothendieck’s generalized Hodge conjecture
holds, and the filtration FM coincides with the filtration FMHS associated to the
category of realization consisting of mixed Hodge structure. Then Conjecture
(0.2) is true also for r ≥ 3.
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The proof uses Terasoma’s argument on Hilbert’s irreducibility theorem
[35] as in [17]. The same argument was also indicated by A. Tamagawa when
we tried to construct an l-adic theory of normal functions [29]. It is quite
interesting that we cannot prove Theorem (0.3) by using only Hodge theory.
The hypothesis of (0.3) for r = 2 is satisfied for 0-cycles if X has a nontrivial
global 2-from [30] (this follows from Murre’s Albanese motive [23] and Bloch’s
diagonal cycle [7]). So Theorem (0.3) may be viewed as a refinement of the
result of Green-Griffiths-Paranjape [17]. For cycles of arbitrary codimension,
we have a similar assertion if the standard conjecture of Lefschetz-type holds
for X.

If we restrict to the subgroup CHp
alg(XC)Q consisting of cycles algebraically

equivalent to zero, F 2
M coincides with the kernel of the Abel-Jacobi map (or

that of the l-adic Abel-Jacobi map). This applies to the case of 0-cycles on
surfaces, and we have in general Grr

FMCHp(XC)Q = 0 for r > p (see also
[16]). However it is not yet clear whether the nonvanishing of the kernel of the
Albanese map for a surface XC implies that Gr2FMCH2(XC)Q �= 0, because it is
not proved that the filtration FM is separated.

I would like to thank L. Barbieri-Viale, A. Rosenschon and A. Tamagawa
for useful discussions.

§1. Filtrations on Chow Groups

§1.1. Realizations

We will denote by M a category of (systems of) realizations, see [12], [13],
[20], etc. The simplest example in our case is the abelian category MHS of Q-
mixed Hodge structures whose graded pieces GrW

m are polarizable [11]. In this
paper we choose a number field k contained in C. Then we have the category
MHSk of mixed Q-Hodge structures with k-structure, see [26], [30], etc. Let
k be the algebraic closure of k in C, and put G = Gal(k/k). For a prime
number l, we have an abelian category Ml whose object consists of filtered
vector spaces (HQ, W ) over Q, (Hl, W ) over Ql and (HC, F ) over C together
with isomorphisms

αl : (HQ, W )⊗QQl = (Hl, W ), αC : HQ⊗QC = HC,

where (Hl, W ) is endowed with a continuous action of G and (GrW
m HQ, GrW

m

(HC, F )) is a polarizable Q-Hodge structure of weight m for any m (here W

denotes also the induced filtration on HC), see [12], [13], [20], etc.
A polarization of a pure object H of weight n is a compatible system of

perfect pairings on the underlying vector spaces which gives a polarization of
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936 Morihiko Saito

Hodge structure, and induces a morphism H ⊗ H → Q(−n) (or equivalently
H → (DH)(−n), where DH is the dual of H and the last morphism is an iso-
morphism). In particular, a polarization is compatible with the Galois action.
Note that the restriction of a polarization to a subobject H ′ is a polariza-
tion, and this implies the semisimplicity of pure objects, because the injection
H ′ → H induces a splitting H → H ′ using the polarization. (This semisim-
plicity does not necessarily imply the semisimplicity of the Galois action, and
conversely, even if there exists a splitting for each realization, the compatibility
of the splittings is not trivial unless a polarization is used.)

For other examples, we have Mét by considering Hl for any prime numbers
l, and Mk,l,Mk,ét by considering also the k-structure. It is also possible to
consider the category of systems of realizations as in [20].

Note that the category M can be extended naturally to the category of
mixed sheaves M(S/k) for any k-variety S, and there is a forgetful functor
from M(S/k) to the category of perverse sheaves [6], see [30] for the details.

§1.2. Deligne cohomology

Let M be one of the categories of realizations as in (1.1). Let X be a
smooth k-variety. Then the cohomology Hi(X/k, Q) is well-defined in M, using
de Rham cohomology of Xk, étale cohomology of Xk, and cohomology of XC

together with comparison isomorphisms, see [12], [13], [20], etc. Furthermore,
there exists canonically KH(X/k) in the bounded derived category DbM whose
cohomology is isomorphic to the cohomology of X (using, for example, two sets
of affine open coverings associated to general hyperplane sections [5], see also
[26, 1.1]).

We define Deligne cohomology by

Hi
D(X/k, Q(j)) = HomDbM(Q, KH(X/k)(j)[i]),

where (j) is the Tate twist, and [i] is the shift of complexes. If M = MHS, it
is called the absolute p-Hodge cohomology in [3]. If M = MHS or MHSk, then
higher extension groups vanish in M as a corollary of [10] (see [30]), and we
have canonical short exact sequences

(1.2.1)
0 → Ext1M(Q, Hi−1(X/k, Q)(j)) → Hi

D(X/k, Q(j))

→ HomM(Q, Hi(X/k, Q)(j)) → 0.

For a closed subvariety Z of X, we can define similarly the Deligne local co-
homology Hi

D,Z(X/k, Q(j)) using a complex KH,Z(X/k), which is the shifted
mapping cone of KH(X/k) → KH((X \ Z)/k).
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We have the cycle map

(1.2.2) cl : CHp(X)Q → H2p
D (X/k, Q(p)),

which is compatible with the usual cycle class map to H2p(XC, Q)(p). Its
restriction to the null homologous cycles coincides with Griffiths’ Abel-Jacobi
map [18] tensored with Q if k = C, M = MHS and X is smooth proper, see
[9], [14], [15], [19], etc. We can show that (1.2.2) is compatible with the direct
image by a proper morphism and the pull-back by any morphism, and hence
with the action of a correspondence, cf. [28].

§1.3. Leray filtration

Let X, S be a smooth k-varieties. Then the Deligne cohomology Hi
D(X×k

S/k, Q(j)) has the (decreasing) Leray filtration FL induced by the canonical
filtration τ on KH(X/k) using the canonical isomorphism

KH(X×kS/k) = KH(X/k)⊗KH(S/k).

Here F r
L on Hi

D(X×kS/k, Q(j)) is induced by τ≤i−r as in [11]. Assume X is
smooth proper. Then the filtration FL splits because we have a non canonical
isomorphism

(1.3.1) KH(X/k) �
∑

j

Hj(X/k, Q)[−j] in DbM.

(This follows from a general property of pure complexes, see e.g. [27].) In
particular, for a morphism S′ → S, the filtration FL is strictly compatible with
the pull-back morphism

Hi
D(X×kS/k, Q(j)) → Hi

D(X×kS′/k, Q(j)).

By the canonical filtration on KH(S/k), we have for each m ∈ Z the Leray
spectral sequence

(1.3.2)
Ep,q

2 = Extp−m
M (Q, Hm(X/k, Q)⊗Hq(S/k, Q)(j))

⇒ Grp+q−m
FL

Hp+q
D (X×kS/k, Q(j))

It is conjectured that this degenerates at E2, because KH(S/k) would be defined
in the (conjectural) category of motives where higher extension groups should
vanish so that a decomposition similar to (1.3.1) would hold.

We will denote by F ′
L the decreasing filtration on Grr

FL
Hi

D(X×kS/

k, Q(j)) induced by the canonical filtration τ on KH(S/k) so that Grs
F ′

L
Grr

FL
Hi

D
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(X×kS/k, Q(j)) is a subquotient of Exts
M(Q, Hi−r(X/k, Q)⊗Hr−s(S/k, Q)

(j)).
In the case M = MHS or MHSk, the higher extension groups really vanish

so that (1.3.2) degenerates at E2 and we get canonical short exact sequences

(1.3.3)
0 → Ext1M(Q, Hi−r(X/k, Q)⊗Hr−1(S/k, Q)(j)) → Grr

FL
Hi

D(X×kS/k, Q(j))

→ HomM(Q, Hi−r(X/k, Q)⊗Hr(S/k, Q)(j)) → 0.

In particular, F ′2
L Grr

FL
= 0 in this case.

§1.4. Filtration on Chow groups

Let X a smooth k-variety, and K be a subfield of C containing k, and
having finite transcendence degree over k. Put XK = X⊗kK, and XC =
X⊗kC. Then we have natural injections

(1.4.1) CHp(XK)Q → CHp(XC)Q,

and ∪KCHp(XK)Q = CHp(XC)Q.
Let ζ ∈ CHp(XK)Q. By spreading out [7], there exists an irreducible

smooth affine k-variety S such that k(S) = K and ζ is defined over S, i.e.
there exists ζS ∈ CHp(X×kS)Q whose restriction to XK is ζ, where XK is
identified with the generic fiber of X×kS → S. For an open subvariety S′ of S,
let ζS′ denote the restriction of ζS over S′. Then the limit of ζS′ is well-defined,
see [7].

Let kS be the algebraic closure of k in Γ(S,OS), and put SC = S⊗kS
C.

This is an irreducible variety, i.e. S is geometrically irreducible over kS . (If
we consider S⊗kC instead of S⊗kS

C, then the former is a disjoint union of
copies of the latter in the case kS is a normal extension of k.) Note that
X×kS = XkS

×kS
S, and this allows us to replace k with kS . Actually we can

replace k with any finite extension, because we take the limit over K.
The cycle map (1.2.2) induces

(1.4.2) cl : CHp(X×kS)Q → H2p
D (X×kS/kS , Q(p)),

and the filtration FM on CHp(X×kS)Q is defined to be the induced filtration
by the Leray filtration FL on H2p

D (X×kS/kS , Q(p)). Then, taking the inductive
limit over the non empty open subvarieties of S, we get the filtration FM on
CHp(XK)Q.



�

�

�

�

�

�

�

�

Filtrations on Chow Groups and Transcendence Degree 939

This means that ζ ∈ F r
MCHp(XK)Q if cl(ζS) ∈ F r

LH2p
D (X×kS/kS , Q(p))

for some S, and hence Grr
FMζ is nonzero in Grr

FMCHp(XK)Q if the restrictions
of Grr

FL
cl(ζS) to Grr

FL
H2p

D (X×kS′/kS , Q(p)) does not vanish for any non empty
open subvarieties S′ of S.

We can show that FM is strictly compatible with the base change by
K → K ′, see [30]. This implies that CHp(X)Q has the filtration FM which is
strictly compatible with (1.4.1).

§1.5. Filtration of Green and Griffiths

In the case M = MHS, a similar filtration is constructed by M. Green
and P. Griffiths [16]. They assume that the S in (1.4) are smooth projec-
tive, and then, roughly speaking, consider everything modulo ambiguity com-
ing from cycles over proper closed subvarieties of S (here they also assume
Grothendieck’s generalized Hodge conjecture). More precisely, for a smooth
projective k-variety S and a divisor Z of S defined over kS , we have an exact
sequence

(1.5.1) CHp−1(X×kZ)Q → CHp(X×kS)Q → CHp(X×k(S \ Z))Q → 0,

and we define the filtration FG of Green and Griffiths on CHp(X×k(S \ Z))Q

in this paper to be the quotient filtration of FM on CHp(X×kS)Q, where
M = MHS. Then we take the inductive limit as before.

Proposition 1.6. FG = FM, assuming the Hodge conjecture.

Proof. It is enough to show the assertion on CHp(X×k(S \Z))Q. This is
reduced to the case Z is a divisor with normal crossings by using an embedded
resolution. We have a canonical morphism of (1.5.1) to

H2p
D,Z(X×kS/kS , Q(p))→H2p

D (X×kS/kS , Q(p))

→H2p
D (X×k(S \ Z)/kS , Q(p)).

Here we may assume kS = k (and similarly for intersections of irreducible
components of Z) replacing k if necessary. Assuming the Hodge conjecture, we
have to prove the following:

For ζ ∈ F r
MCHp(X×kS)Q such that Grr

FL
cl(ζ) ∈ Grr

FL
H2p

D (X×kS, Q(p))
comes from ξ ∈ Grr

FL
H2p

D,Z(X×kS, Q(p)), there exists ζ ′ ∈ CHp−1(X×kZ)Q
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such that the image of cl(ζ ′) in H2p
D (X×kS, Q(p)) belongs to F r

L, and coincides
with Grr

FL
cl(ζ) modulo F r+1

L .

This is verified by using correspondences Γa ∈ CHdim S−1(S×kZ̃)Q such
that

(Γa)∗:Hj(S,Q) → Hj−2(Z̃,Q)(−1)

vanishes for j �= a, and the restriction of i∗(Γa)∗ to Im i∗ ⊂ Ha(S, Q) is the
identity for j = a, where Z̃ is the normalization of Z. Indeed, if we denote by

ξ0 ∈ HomMHS(Q,H2p−r(X,Q)⊗Hr
Z(S,Q)(p))

the image of ξ by the canonical morphism, then the Hodge conjecture implies
the existence of ζ ′ ∈ CHp−1(X×kZ̃)Q such that the Künneth component of the
cycle class of ζ ′ in Hom(Q, H2p−a(X, Q)⊗Ha

Z(S, Q)(p)) coincides with ξ0 for
a = r, and is zero otherwise. We may assume further that the image of cl(ζ ′)
in H2p

D (X×kS, Q(p)) belongs to F r
L by modifying ζ ′ using Γa for a < r together

with the decomposition (1.3.1). So the assertion is reduced to the case ξ0 = 0
by modifying ζ using ζ ′. Then the assertion follows by using Γa for a = r.

§2. Proof of Theorem (0.3)

§2.1. Hilbert’s irreducibility theorem

We first recall Terasoma’s argument [35] on Hilbert’s irreducibility
theorem, which is essential for the proof of (0.3). Let U be a non empty
open subvariety of P1

k, and

(2.1.1) 0 → L → L̃ → Ql,U → 0

be a short exact sequence of smooth Ql-sheaves on U , where Ql,U denotes the
constant sheaf of rank one on U . Put K = k(U), and let K be an algebraic
closure of K. There exists a k-valued point x of U such that (2.1.1) splits
if and only if its restriction over x does. Indeed, choosing a geometric point
over x on each Galois étale covering of U in a compatible way with natural
projections, we get a morphism of Gal(k/k) to π1(U, SpecK), and hence to
the arithmetic monodromy group of L̃. Then we have infinitely many k-valued
points x such that the last morphism is surjective by Hilbert’s irreducibility
theorem [22] together with the structure of the l-adic monodromy group [33],
see [35]. Related to the l-adic theory of normal functions, the same argument
was indicated by A. Tamagawa, see [29].
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Here it is also possible to get infinitely many k-valued points x such that
the above property holds for the monodromy groups of L and L̃ simultaneously
by the theory of Hilbert set. Note also that the exact sequence (2.1.1) can
be replaced by a short exact sequence 0 → L1 → L̃ → L0 → 0 of smooth
Ql-sheaves, because

Ext1(L0, L1) = Ext1(Ql,U ,Hom(L0, L1)).

§2.2. Restriction of extension classes

Let f : S → U be a smooth projective morphism of smooth irreducible k-
varieties where U is a non empty open subvariety of P1

k. Let n = dim S−1, and
L = Rnf∗QX ∈ M(U/k) where M(U/k) denotes the category of mixed sheaves
on U (shifted by dimU), and L is pure of weight n, see [30]. Here we assume
that there is a forgetful functor from M to Ml in (1.1). By semisimplicity we
have a direct sum decomposition

L = L′ ⊕ L′′ in M(U/k)

such that H0(U/k, L′) = 0 and L′′ is constant over Spec k (i.e. the pull-back
of an object on Spec k by the structure morphism).

Let H be a pure object of weight n + 1 in M (e.g. a direct factor of
Hi(X/k, Q)(q) for a smooth projective k-variety X where i − 2q = n + 1).
Let HU = a∗

UH, where aU : U → Spec k is the structure morphism. By the
adjunction for aU , we have a natural isomorphism

Ext1M(U/k)(HU , L) = HomDbM(H, (aU )∗L[1]).

This implies

(2.2.1)
Ext1M(U/k)(HU , L′) = HomM(H, H1(U/k, L′)),

Ext1M(U/k)(HU , L′′) = Ext1M(H, L′′
x),

for any k-valued point x of U , because HomM(H, H1(U/k, L′′)) = 0.
Let ξ ∈ HomM(H, H1(U/k, L′)). The corresponding extension class is

denoted also by ξ. If ξ �= 0, there exists a k-valued point x of U such that the
restriction ξx of ξ to x does not vanish by (2.1), because (2.2.1) holds also for
l-adic sheaves. Note that the same argument still holds after replacing k by a
finite extension. In the case dimS = 1 and n = 0, we may also assume that
f−1(x) consists of one point. Then replacing U, L with S, Ql,S , the restriction
of ξ to some k-valued point of S does not vanish (replacing k if necessary).
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§2.3. Restriction to open subvarieties

With the above notation and assumptions, let Sx = f−1(x). Then L′
x is a

direct factor of Hn(Sx/k, Q), and we get

ξx ∈ Ext1M(H, Hn(Sx/k, Q)).

We now consider to restrict ξx to a non empty open subvariety S′
x of Sx. We

assume that the underlying Hodge structure of H does not have a nontrivial
subobject with level < n, where the level of a Hodge structure is the difference
between the maximal and minimal numbers p such that Grp

F �= 0 (and the
difference between level and weight is even). Let

H ′ = Hn(S′
x/k, Q).

It has weights ≥ n. If S′
x is sufficiently small, we have

WnH ′ = Hn(Sx/k, Q)/N1Hn(Sx/k, Q),

where N is the ‘coniveau’ filtration.
We have HomM(H, H ′/WnH ′) = HomM(H, GrW

n+1H
′) = 0, because

GrW
n+1H

′ has level < n (see [11]). This implies the injection

Ext1M(H, WnH ′) → Ext1M(H, H ′),

by the long exact sequence associated to

(2.3.1) 0 → WnH ′ → H ′ → H ′/WnH ′ → 0.

Using also the long exact sequence associated to

0 → N1Hn(Sx/k, Q) → Hn(Sx/k, Q) → WnH ′ → 0,

we see that the restriction of ξx to S′
x does not vanish if its image in Ext1M

(H, WnH ′) does not vanish, i.e. if ξx does not come from Ext1M(H, N1Hn

(Sx/k, Q)).
In the case dim S = 2 and n = 1, the last condition is trivially satisfied

because N1H1(Sx/k, Q) = 0. Furthermore, H ′/WnH ′ is a direct sum of copies
of Q, replacing k with a finite extension (depending on S′

x) if necessary. Indeed,
it is given by taking a basis of the kernel of the cycle class map

∑
i Z[Di] →

H2(Sx/k, Q)(1) where the Di are the irreducible components of Sx \S′
x, which

may be assumed to be absolutely irreducible (replacing k if necessary). This
fact will be used in (2.4).
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In general, L′
1,x := N1Hn(Sx/k, Q) ∩ L′

x does not vanish. However,
it corresponds to a Ql-submodule stable by the action of Gal(k/k), and is
hence extended to an étale subsheaf L′

1 of L′ by the argument in (2.1). Let
s = rank L′

1. Then taking the pull-back to UC, it determines a subsheaf with
Q coefficients, and the latter underlies a variation of Hodge structure. Indeed,
∧sL′

1 determines a variation of Hodge structure of rank 1 contained in ∧sL′ by
the global invariant cycle theorem (using a finite covering if necessary, because
the monodromy of ∧sL′

1 is defined over Z and is finite, see [11]). Then L′
1 is

the kernel of L′ → ∧s+1L′ defined locally by a generator of ∧sL′
1, and hence

underlies a variation of Hodge structure.
This argument implies that the restriction of ξx to S′

x does not vanish if
ξ ∈ HomM(H, H1(U/k, L′)) is nonzero. Indeed, if the restriction vanishes, the
corresponding l-adic extension class comes from L′

1,x (⊂ L′
x) which is extended

to L′
1 (⊂ L′). We apply some argument in (2.1) also to L′/L′

1, where we may
assume H = Q by the last remark of (2.1) and the monodromy group of the
extension for L′/L′

1 is a quotient of that for L′. Then we see that ξ comes from
Hom(H, H1(U/k, L′

1)), where Hom is considered in Ml. But H1(U/k, L′
1) has

level < n, because the stalk of L′
1 has level ≤ n − 2, see [36]. So ξ vanishes by

the hypothesis on the level of H, and the assertion follows.

§2.4. Proof of (0.3)

By hypothesis there exists a smooth irreducible affine k-variety S together
with ζ ∈ CHp(X×kS)Q such that its cycle class cl(ζ) in H2p

D (X×kS/k, Q(p))
belongs to F r

L, and the restriction of Grr
FL

cl(ζ) to Grr
FL

H2p
D (X×kS′/k, Q(p))

does not vanish for any non empty open subvariety S′ of S. Using the spectral
sequence (1.3.2), Grr

FL
cl(ζ) induces

ξ0 ∈ HomM(Q, H2p−r(X/k, Q)⊗Hr(S′/k, Q)(p)).

We first consider the case where ξ0 does not vanish for any S′. Let d =
dim X − p. Since ξ0 corresponds to the morphism

ξ′0 : H2d+r(X/k, Q)(d) → Hr(S′/k, Q)),

this nonvanishing is equivalent to that the image of ξ′0 has level r (assuming
Grothendieck’s generalized Hodge conjecture for r > 2). So we may assume
dim S = r by the weak Lefschetz theorem. Put n = r − 1. Let

H = H2d+r(X/k, Q)(d),
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and H<n be the largest subobject of H which has level < n. By semisimplicity
there exists a subobject H>n with a decomposition H = H<n ⊕ H>n, and the
restriction of ξ′0 to H>n does not vanish. So the assertion follows from (2.2-3)
applied to a Lefschetz pencil.

Now we may assume ξ0 = 0, i.e. Grr
FL

cl(ζ) ∈ F ′1
L Grr

FL
, see (1.3). Then

Grr
FL

cl(ζ) induces

ξ1 ∈ Ext1M(Q, H2p−r(X/k, Q)⊗Hr−1(S′/k, Q)(p))

= Ext1M(H, Hr−1(S′/k, Q)).

Consider the case where ξ1 does not vanish for any S′. If r = 1, we may replace
S′ with any point (replacing k if necessary), and the assertion is clear. So
we may assume r > 1. In this case we have to show the nonvanishing of its
restriction to any non empty open subvariety C ′ of a general hyperplane section
C of a smooth projective compactification S of S.

If r = 2, let PS/k,PC/k be the Picard variety of S, C. Then we have an
injective morphism of k-varieties PS/k → PC/k, and any k-valued point on the
image can be lifted to a k-valued point of PS/k. So the assertion follows using
the short exact sequence (2.3.1) for S′ and C ′ (and replacing k if necessary).

If r > 2, we may assume Grothendieck’s generalized Hodge conjecture, and
the ‘coniveau’ filtration N coincides with the filtration by the level of Hodge
structure. If S′ is a sufficiently small open affine subvarieties of S, then

WnHn(S′/k, Q) = Hn(S/k, Q)/N1Hn(S/k, Q),

and similarly for C ′. By the weak Lefschetz theorem, the restriction morphism

Hn(S/k, Q) → Hn(C/k, Q)

is injective, and splits by semisimplicity.
Assume that the pull-back of ξ1 by C ′ → S′ vanishes. Then, using the

long exact sequence associated to (2.3.1), we see that ξ1 factors through a di-
rect factor of H (or equivalently, of H2p−r(X/k, Q)) with level < n, because
GrW

n+1H
n(C ′/k, Q) has level < n. By the Hodge conjecture there exists a

smooth proper k-variety Y of pure dimension r − 2 together with a correspon-
dence Γ ∈ CHp−1(Y ×kX)Q such that the image of

Γ∗ : Hr−2(Y/k, Q) → H2p−r(X/k, Q)(p − r + 1)

coincides with Np−r+1H2p−r(X/k, Q)(p − r + 1) (i.e. the maximal subobject
with level ≤ r − 2). We have also a correspondence Γ′ ∈ CHdim X−p+r−1
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(X×kY )Q such that the restriction of Γ∗Γ′
∗ to Im Γ∗ ⊂ H2p−r(X/k, Q) is the

identity. So we may replace ζ with Γ∗Γ′
∗ζ to show the vanishing of ξ1. Here ζ is

extended to X×kS by taking the closure, and the correspondences preserve the
filtration τ because they induce morphisms of complexes KH(X/k), see [28].
Since Γ′ induces

Γ′
∗ : CHp(X×kS) → CHr−1(Y ×kS),

we see that supp Γ′
∗ζ ⊂ Y ×kZ with Z a divisor on S, because r − 1 > dim Y .

So we get the assertion, because supp Γ∗Γ′
∗ζ ⊂ X×kZ.

Now we may assume further ξ1 = 0, i.e. Grr
FL

cl(ζ) ∈ F ′2
L Grr

FL
. If r > 2, we

have Grr
FL

cl(ζ) = 0 by the hypothesis on the coincidence of the two filtrations,
because F ′2

L Grr
FL

= 0 for M = MHS and the filtrations FM and F ′
M in (1.4)

are functorial for M. So we may assume r = 2, since the case r = 1 is trivial
by the vanishing of Hr−2(S′/k, Q). Then Grr

FL
cl(ζ) induces

ξ2 ∈ Ext2M(Q, H2p−2(X/k, Q)⊗H0(S′/k, Q)(p)),

because d2 : Em,1
2 → Em+2,0

2 vanishes in (1.3.2) (replacing k if necessary) where
m = 2p − 2, j = p. Indeed, H0(S′/k, Q) = Q is a direct factor of KH(S′/k)
by choosing a k-valued point x of S′, because we have Q → KH(S′/k) → Q

by the structure morphism and x. In this case, the assertion is clear because
H0(S′/k, Q) = H0(C ′/k, Q) = Q (replacing k if necessary). Thus we have
verified all the cases, because Grr

FL
cl(ζ) = 0 if ξ2 = 0 and r = 2. This completes

the proof of Theorem (0.3).

Remark 2.5. (i) It is conjectured that the filtration FM is separated,
and gives the conjectural “motivic” filtration of Beilinson [4] and Bloch [7].
This depends on the injectivity of the Abel-Jacobi map for smooth projective
k-varieties, which is also a conjecture of Beilinson [2], see also [8], [16], [30],
[31], etc. It is expected that the filtration FM does not depend on the choice
of M, and coincides with Murre’s (conjectural) filtration FMur [24]. Indeed, we
have

(2.5.1) FMur ⊂ FM and FMur = FM mod ∩i F i
M,

see [30]. The existence of FMur can be deduced from the separatedness of
the filtration FM assuming the algebraicity of the Künneth components of the
diagonal, see [21]. The separatedness of FM is reduced to the above conjec-
ture of Beilinson on the Abel-Jacobi map for k-varieties, assuming the Hodge
conjecture in the case the codimension of cycles is more than 2.
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(ii) We have Grr
FMCHp(XC)Q = 0 for r > p. If M = MHS or MHSk, then

Grr
FMCHp(XK)Q = 0 for r > tr deg K/k + 1. These follow from the vanishing

of Hi(SC, Q) for a smooth affine variety S and i > dim S, together with the
compatibility of the cycle map with the pull-back by a closed embedding (and
the vanishing of higher extension groups). These assertions have been shown by
M. Green and P. Griffiths [16] for their filtration, assuming the above conjecture
of Beilinson and Grothendieck’s generalized Hodge conjecture. Note that these
conjectures imply also that the filtration is separated and ends at the p-th
step.

(iii) Restricted to the subgroup CHp
alg(X)Q consisting of cycles algebrai-

cally equivalent to 0, the kernel of the Abel-Jacobi map coincides with F 2
MCHp

alg

(XC)Q, see [31], 3.9. Indeed, for a curve C and a correspondence Γ ∈ CHp

(C×X)Q, we have a decomposition H1(C, Q) = Im Γ∗ ⊕ Ker Γ∗ induced by
idempotents of CH1(C×C)Q, where Γ∗ : H1(C, Q) → H2p−1(X, Q)(p − 1). By
a similar argument, the kernel of the usual Abel-Jacobi map coincides with that
of the l-adic Abel-Jacobi map on CHp

alg(X)Q, because we have the injectivity
in the divisor case using the Kummer sequence, see also [25] for the case of
0-cycles.

(iv) It has been remarked by the referee that some arguments in this paper
are related to a remark of T. Shioda [34, 3(c)] on an analogue of the result of
Terasoma [35] concerning a result of Griffiths on the triviality of the image of
the Abel-Jacobi map for general hypersurfaces. Indeed, his conjecture can be
proved by using Terasoma’s argument together with the facts that the image
of the Abel-Jacobi map is trivial if a certain member of the coniveau filtration
vanishes (because it is enough to consider a family of cycles parametrized by a
curve) and that the subvarieties used in the definition of the coniveau filtration
can be defined over the given number field. Note that the nontriviality of the
coniveau filtration would induce a non trivial local subsystem by the Hilbert
irreducibility theorem (i.e. by the surjectivity to the monodromy group), and it
would contradict the irreducibility of the local system, which follows from the
Picard-Lefschetz formula together with the irreducibility of the discriminant as
well known.
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