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A Cabling Formula for
the 2-Loop Polynomial of Knots†

By
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∗

Abstract

The 2-loop polynomial is a polynomial presenting the 2-loop part of the loga-
rithm of the Kontsevich invariant of knots. We show a cabling formula for the 2-loop
polynomial of knots. In particular, we calculate the 2-loop polynomial for torus knots.

§1. Introduction

The Kontsevich invariant is a very strong invariant of knots (which dom-
inates all quantum invariants and all Vassiliev invariants) and it is expected
that the Kontsevich invariant will classify knots. A problem when we study the
Kontsevich invariant is that it is difficult to calculate the Kontsevich invariant
of an arbitrarily given knot concretely. It has recently been shown [20, 9, 6]1

that the infinite sum of the terms of the logarithm of the Kontsevich invariant
with a fixed loop number is presented by using polynomials (after appropriate
normalization by the Alexander polynomial). In particular, it is known2 that
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1It was conjectured by Rozansky [20]. The existence of such rational presentations has
been proved by Kricker [9] (though such a rational presentation itself is not necessarily
a knot invariant in a general loop degree). Further, Garoufalidis and Kricker [6] defined
a knot invariant in any loop degree, from which such a rational presentation can be
deduced.

2This follows from the theory of [2] on the MMR conjecture. See also [9, 6] and references
therein.
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950 Tomotada Ohtsuki

the 1-loop part is presented by the Alexander polynomial. The polynomial
giving the 2-loop part is called the 2-loop polynomial. The values of the 2-loop
polynomial has been calculated so far only for particular3 classes of knots.

In this paper, we give a cabling formula for the 2-loop polynomial (Theorem
4.1), which presents the 2-loop polynomial of a cable knot (see Figure 1) of a
knot K in terms of the 2-loop polynomial of K. In particular, we calculate a
formula of the 2-loop polynomial for torus knots (Theorem 3.1). This formula
and the cabling formula are also obtained independently by Marché [14, 15].

is the (3, 5) cable knot of .

Figure 1. A cable knot of a knot

This paper is organized as follows. In Section 1 we review the definition
of the 2-loop polynomial. In Section 2 we calculate the 2-loop polynomial of
torus knots as the 2-loop part of the primitive part of the cabling formula of the
Kontsevich invariant of the trivial knot. In Section 3 we give a cabling formula
for the 2-loop polynomial. In Section 4 we show relations to some Vassiliev
invariants. In Section 5 we present the sl2 reduction of the 2-loop polynomial
by a 1-variable reduction of it.

The author would like to thank Andrew Kricker, Thang Le, Lev Rozansky,
Julien Marché, Stavros Garoufalidis, Dror Bar-Natan for valuable discussions
and comments. He is also grateful to the referee for careful comments.

§2. The Kontsevich Invariant and the 2-Loop Polynomial

The 2-loop polynomial is a polynomial presenting the 2-loop part of the
logarithm of the Kontsevich invariant. In this section, we review its definition
and a cabling formula of the Kontsevich invariant.

An open Jacobi diagram is a uni-trivalent graph such that a cyclic order of
the three edges around each trivalent vertex of the graph is fixed. Let A(∗) be

3A table of the 2-loop polynomial for knots with up to 7 crossings is given by Rozansky
[21]. The 2-loop polynomial of knots with the trivial Alexander polynomial can often
been calculated by surgery formulas [6, 10].
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A Cabling Formula for the 2-Loop Polynomial 951

the vector space over Q spanned by open Jacobi diagrams subject to the AS
and IHX relations; see Figure 2 for the relations.

The AS relation: = −

The IHX relation: = −

Figure 2. The AS and IHX relations

The Kontsevich invariant Zσ(K) of a framed knot K is defined in A(∗);
for a definition4 see e.g. [17]. It is known [12] that the value of the Kontsevich
invariant for each knot is group-like, which implies that it is presented by the
exponential of some primitive element. That is, Zσ(K) is presented by the
exponential of a primitive element, where a primitive element of A(∗) is a
linear sum of connected open Jacobi diagrams.

For example, it is shown [4] that the Kontsevich invariant of the trivial
knot, denoted by Ω, is presented by

Zσ(the trivial knot) = Ω = exp�(ω),

where exp� denotes the exponential with respect to the disjoint-union product,
and ω is defined by

ω =

1
2 log sinh(x/2)

x/2

.

Here, a label of a power series f(x) = c0 + c1x + c2x
2 + c3x

3 + · · · implies

= c0 + c1 + c2 + c3 + · · · ,

where a label is put on either of the sides of an edge, and the corresponding

4In literatures, the Kontsevich invariant is often defined by Z(K) in the space A(S1).
The version Zσ(K) is defined to be the image of Z(K) by the inverse map σ of the
Poincare-Birkhoff-Witt isomorphism A(∗) → A(S1).
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legs are written in the same side of the edge.5 Note that = by the

AS relation, in the notation of this paper.
Let K be a framed knot with 0 framing. (Throughout this paper, we

often mean a framed knot with 0 framing also by a knot, abusing terminology.)
A connected open Jacobi diagram is called an n-loop diagram when the first
Betti number of the uni-trivalent graph of the diagram is equal to n. The loop
expansion of the Kontsevich invariant is given by

log� Zσ(K) =

1
2 log sinh(x/2)

x/2 − 1
2 log ∆K(ex)

+
finite∑

i

pi,1(ex)/∆K(ex)

pi,2(ex)/∆K(ex)

pi,3(ex)/∆K(ex)

+
(
terms of (≥ 3)-loop

)
,

where log� denotes the logarithm with respect to the disjoint-union product,
and ∆K(t) is the normalized6 Alexander polynomial of K, and pi,j(ex) is a
polynomial in ex. The 2-loop part is characterized by the polynomial,

Θ′
K(t1, t2, t3) =

∑
i

pi,1(t1)pi,2(t2)pi,3(t3).

We call its symmetrization,7

ΘK(t1, t2, t3) =
∑

ε=±1
{i,j,k}={1,2,3}

Θ′
K(tεi , t

ε
j , t

ε
k) ∈ Q[t±1

1 , t±1
2 , t±1

3 ]/(t1t2t3 = 1),

the 2-loop polynomial of K, which is an invariant8 of K. (Note that this nor-
malization of ΘK(t1, t2, t3) is 12 times the usual normalization.) ΘK(t, t−1, 1)

5Our notation is different from the notation in [6, 10] where a label of an edge is defined
by setting a local orientation of the edge that determines the side in which we write the
corresponding legs.

6We suppose that ∆K(t) is normalized, satisfying that ∆K(t) = ∆K(t−1) and ∆K(1) = 1.
7With respect to the symmetry of the theta graph, of order 12.
8This is not trivial, since there is another 2-loop trivalent graph, what is called, a “dumb-
bell diagram”.



�

�

�

�

�

�

�

�

A Cabling Formula for the 2-Loop Polynomial 953

is a symmetric polynomial in t±1 divisible by t− 1 (since ΘK(1, 1, 1) = 0) and,
hence, divisible by (t − 1)2. We define the reduced 2-loop polynomial by

Θ̂K(t) =
ΘK(t, t−1, 1)

(t1/2 − t−1/2)2
∈ Q[t±1],

which is a symmetric polynomial in t±1. This gives the sl2 reduction of the
2-loop polynomial; see Proposition 6.1.

Let us review the cabling formula of the Kontsevich invariant of [4]. An-
other version of the Kontsevich invariant, called the wheeled Kontsevich invari-
ant [3], is defined by

Zw(K) = ∂−1
Ω Zσ(K),

where ∂Ω : A(∗) → A(∗) is the wheeling isomorphism; see [4]. Here, for open
Jacobi diagrams C and D, ∂C(D) is defined to be 0 if C has more univalent
vertices than D, and the sum of all ways of gluing all univalent vertices of C

to some univalent vertices of D otherwise. We graphically present it by

∂C(D) = .

Let Ψ(p) : A(∗) → A(∗) be the map which takes a diagram with k univalent
vertices to its pk multiple. The (p, q) cable knot of a knot K is the knot given
by a simple closed curve on the boundary torus of a tubular neighborhood of
K which winds q times in the meridian direction and p times in the longitude
direction (see e.g. [13]); for example see Figure 1. The cabling formula of the
Kontsevich invariant is given by9

Proposition 2.1 Le ([4], see also [22]). Let K be a framed knot with 0
framing, and let K(p,q) be the (p, q) cable knot of K (with 0 framing). Then,

Zw(K(p,q)) = ∂−1
Ω Ψ(p)∂Ω

(
Zw(K) � exp�

( q

2p
− q

48p
θ
))

� exp�
(
− pq

2
+

pq

48
θ
)
.

§3. The 2-Loop Polynomial of a Torus Knot

In this section, we calculate the 2-loop polynomial of a torus knot, picking
up the 2-loop part of the primitive part of the cabling formula of the Kontsevich

9Proposition 2.1 is obtained from Theorem 1 of [4] by pulling back by the isomorphism

A(∗) ∂Ω−→ A(∗) χ−→ A(S1), and by modifying the contribution from the framing of the
cable knot, noting that the (p, q) cable knot in the definition of [4] has framing (p − 1)q.
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invariant of the trivial knot. The 2-loop part of the logarithm of the Kontsevich
invariant for torus knots is also calculated10 independently by Marché [14, 15].

Figure 3. The (5, 3) torus knot

The torus knot T (p, q) of type (p, q) is the (p, q) cable knot of the trivial
knot (which is isotopic to T (q, p)); for example see Figure 3. It is known, see
e.g. [13], that the Alexander polynomial of a torus knot is given by

∆T (p,q)(t) =
(tpq/2 − t−pq/2)(t1/2 − t−1/2)
(tp/2 − t−p/2)(tq/2 − t−q/2)

.

Theorem 3.1. The 2-loop polynomial of the torus knot T (p, q) of type
(p, q) is given by11

ΘT (p,q)(t1, t2, t3) = −1
4

∑
{i,j,k}={1,2,3}

ψp,q(ti)ψq,p(tj)∆T (p,q)(tk)

∈ Z[t±1
1 , t±1

2 , t±1
3 ]/(t1t2t3 = 1),

where ψp,q is defined by

ψp,q(t) = ∆T (p,q)(t) ·
( tp/2 + t−p/2

tp/2 − t−p/2
− q · tpq/2 + t−pq/2

tpq/2 − t−pq/2

)

=
t1/2 − t−1/2

(tp/2 − t−p/2)(tq/2 − t−q/2)

×
(
(tp/2 + t−p/2) · tpq/2 − t−pq/2

tp/2 − t−p/2
− q(tpq/2 + t−pq/2)

)
.

In particular, ΘT (p,q)(t1, t2, t3) is a polynomial in t±1
1 , t±1

2 , t±1
3 with integer

coefficients of degreet1

(
ΘT (p,q)(t1, t2, t−1

1 t−1
2 )

)
= (p − 1)(q − 1).

10Bar-Natan has also obtained some presentation of the wheeled Kontsevich invariant for
torus knots (private communication).

11This value coincides with the value in [14, 15]. However, the values of the 2-loop polyno-
mial for some torus knots in Table 2 of [21] have opposite signs to our values. The signs
of some values in Table 2 of [21] might not be correct.
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Remark. ψp,q(t) is not a polynomial, but a rational function, while
ΘT (p,q)(t1, t2, t3) is a polynomial. Rozansky [21] suggests that the 2-loop poly-
nomial is a polynomial with integer coefficients; this holds for torus knots by
the theorem. He also suggests a conjectural inequality

degreet1

(
ΘK(t1, t2, t−1

1 t−1
2 )

)
≤ 2g(K),

where g(K) denotes the genus of K. Since the genus of T (p, q) equals (p −
1)(q − 1)/2 (see e.g. [13]), torus knots give the equality of the above formula.

Remark. The sl2 reduction of the n-loop part of the primitive part of
the Kontsevich invariant is equal to the nth line in the expansion of the colored
Jones polynomial; see Section 6. Rozansky [19] has calculated it for torus knots.

For group-like elements α, β ∈ A(∗) we write α ≡ β if log� α − log� β is
equal to a linear sum of Jacobi diagrams, either, of (≥ 3)-loop, or, having a
component of a trivalent graph (i.e., a component with no univalent vertices).

Proof of Theorem 3.1. Since the torus knot T (p, q) is obtained from the
trivial knot by cabling, we have that

Zw
(
T (p, q)

)
≡ ∂−1

Ω Ψ(p)∂Ω

(
Ω � exp�

( q

2p

))
� exp�

(
− pq

2
)

by Proposition 2.1. The first term of the right hand side is calculated as follows.
From the definition of ∂Ω,

∂Ω

(
exp�

( q

2p

)
� Ω

)
=

exp ( )
q

2p

Ω

Ω .(3.1)

Since any component of Ω has a loop, the (≤ 1)-loop part of the primitive
part of the right hand side has no edges between the two Ω’s, and, hence, the
exponential of this part is presented by

∂Ω exp�
( q

2p

)
� Ω.

Further, its first term is given by

∂Ω exp�
( q

2p

)
≡ exp�

( q

2p

)
� Ω q

p x,
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where the equivalence is obtained in the same way as Lemma 6.3 of [4], and,
as in [4], Ω q

p x denotes the element obtained from Ω by replacing open Jacobi
diagrams with l legs by their (q/p)l multiples. The 2-loop part of the primitive
part of the right hand side of (3.1) is equal to a linear sum of diagrams, each
of which has precisely one edge between the two Ω’s. Hence, it is presented by

ωω exp ( )
q

2p .

Since

= for D = ,

the previous diagram is equivalent to
f(x) f( q

px)

,

where f(x) is given by

f(x) =
d

dx

(1
2

log
sinh x/2

x/2

)
=

1
4
· ex/2 + e−x/2

ex/2 − e−x/2
− 1

2x
.

Hence, the (≤ 2)-loop part of the primitive part of (3.1) is presented by

∂Ω

(
exp�

( q

2p

)
� Ω

)
(3.2)

≡ exp�
( q

2p

)
� Ω � Ω q

p x � exp�

( f(x) f( q
px) )

.

The map Ψ(p) sends this to

exp�
(pq

2
)
� Ωpx � Ωqx � exp�

( f(px) f(qx) )
.

Further, ∂−1
Ω sends this (modulo the equivalence) to

∂Ω−1

(
exp�

(pq

2
)
� Ωpx � Ωqx

)
� exp�

( f(px) f(qx) )
.
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Its first term is graphically shown as

exp ( )

ΩΩ

2

1−
px

Ωqx

pq

.(3.3)

The 2-loop part of the primitive part of this diagram is calculated similarly as
before; for example, when there is precisely one edge between Ω−1 and Ωpx, we
have the following component,

ωω exp ( )2−px

pq
p ≡ −p

f(px) f(pqx)

.

Thus, the 2-loop part of the primitive part of (3.3) is equal to

(
the 2-loop part of the primitive part of ∂Ω−1 exp�

(
pq
2

))

− p

f(px) f(pqx)

− q

f(qx) f(pqx)

= pq

f(pqx) f(pqx)
− p

f(px) f(pqx)

− q

f(qx) f(pqx)
,

where the equality is obtained from Lemma 3.1 below. Hence, the 2-loop part
of the primitive part of Zw

(
T (p, q)

)
is given by

f(px) f(qx)

+ pq

f(pqx) f(pqx)

(3.4)

− p

f(px) f(pqx)

− q

f(qx) f(pqx)
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=
1
16

φp,q(t) φq,p(t)

= −1
8

φp,q(t)

φq,p(t) ,

where we put t = ex and φp,q is defined by φp,q(ex) = 4
(
f(px)− qf(pqx)

)
, that

is,

φp,q(t) =
tp/2 + t−p/2

tp/2 − t−p/2
− q · tpq/2 + t−pq/2

tpq/2 − t−pq/2
.

Therefore, from the definition of the 2-loop polynomial, we obtain the required
formula.

By Corollary 3.1 below, the degree of Θ̂T (p,q)(t) equals (p − 1)(q − 1) − 1.
Since (t1/2 − t−1/2)2Θ̂T (p,q)(t) = ΘT (p,q)(t, 1, t−1) by definition, t1-degree of
ΘT (p,q)(t1, t2, t−1

1 t−1
2 ) is at least (p − 1)(q − 1). We can show that it is exactly

(p − 1)(q − 1) in the same way as the proof of Example 1.

Corollary 3.1. The reduced 2-loop polynomial of the torus knot T (p, q)
is given by

Θ̂T (p,q)(t) =
1

2(t1/2 − t−1/2)2
ψp,q(t)ψq,p(t)

=
1
2
· 1
(tp/2 − t−p/2)2

·
(

(tp/2 + t−p/2) · tpq/2 − t−pq/2

tp/2 − t−p/2
− q(tpq/2 + t−pq/2)

)

× 1
(tq/2 − t−q/2)2

·
(

(tq/2 + t−q/2) · tpq/2 − t−pq/2

tq/2 − t−q/2
− p(tpq/2 + t−pq/2)

)
.

Lemma 3.1. For a scalar c,

∂−1
Ω exp�

( c

2
)
≡ exp�

( c

2
)
� Ω−1

cx � exp�

(
c

f(cx) f(cx) )
.

Proof. From the definition of ∂Ω,

∂Ω

(
exp�

( c

2
)
� Ω−1

cx

)
=

exp ( )

Ω

Ω

2
c

cx
1−

.(3.5)
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Similarly as in the proof of Theorem 3.1, the (≤ 1)-loop part of the primitive
part of the right hand side is presented by

∂Ω exp�
( c

2
)
� Ω−1

cx ≡ exp�
( c

2
)
.

Further, the 2-loop part of the primitive part of the right hand side of (3.5) is
presented by

ωω exp ( )2
c

cx− ≡ −c

f(cx) f(cx)

.

This implies that ∂Ω takes the right hand side of the formula of the lemma to

exp�
(

c
2

)
.

Example 1. For the (p, 2) torus knot, Theorem 3.1 implies that

ΘT (p,2)(t1, t2, t3) =
1

(t1 + 1)(t2 + 1)(t3 + 1)

×
(

p − 1
2

(
tp1 + t−p

1 + tp2 + t−p
2 + tp3 + t−p

3

)

− tp−1
1 − t

−(p−1)
1

t1 − t−1
1

− tp−1
2 − t

−(p−1)
2

t2 − t−1
2

− tp−1
3 − t

−(p−1)
3

t3 − t−1
3

)
.

For example, the coefficients of ΘT (7,2)(t1, t2, t3) are as shown in Table 1.
Further,

Θ̂T (p,2)(t) =
t2

(t2 − 1)2
(p − 1

2
(
tp + t−p

)
− tp−1 − t−(p−1)

t − t−1

)

=
t3

(t2 − 1)3
(p − 1

2
(tp+1 − t−p−1) − p + 1

2
(tp−1 − t−p+1)

)
.

Proof. By definition,

∆T (p,2)(t) =
tp/2 + t−p/2

t1/2 + t−1/2
, ψp,2(t) = − tp/2 − t−p/2

t1/2 + t−1/2
,

ψ2,p(t)=
1

(t1/2 + t−1/2)(tp/2 − t−p/2)
·
(
(t + t−1) · tp − t−p

t − t−1
− p(tp + t−p)

)
.
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n −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

m = 6 · · · · · · 3 −3 3 −3 3 −3 3
m = 5 · · · · · −3 · · · · · · −3
m = 4 · · · · 3 · 2 −2 2 −2 2 · 3
m = 3 · · · −3 · −2 · · · · −2 · −3
m = 2 · · 3 · 2 · 1 −1 1 · 2 · 3
m = 1 · −3 · −2 · −1 · · −1 · −2 · −3
m = 0 3 · 2 · 1 · · · 1 · 2 · 3
m = −1 −3 · −2 · −1 · · −1 · −2 · −3 ·
m = −2 3 · 2 · 1 −1 1 · 2 · 3 · ·
m = −3 −3 · −2 · · · · −2 · −3 · · ·
m = −4 3 · 2 −2 2 −2 2 · 3 · · · ·
m = −5 −3 · · · · · · −3 · · · · ·
m = −6 3 −3 3 −3 3 −3 3 · · · · · ·

Table 1. The non-zero coefficients of tn1 tm2 in ΘT (7,2)(t1, t2, t−1
1 t−1

2 )

Hence, when {i, j, k} = {1, 2, 3}, we have that

1
2

(
ψp,2(ti)∆T (p,2)(tk) + ψp,2(tk)∆T (p,2)(ti)

)
=

t
p/2
j − t

−p/2
j

(t1/2
i + t

−1/2
i )(t1/2

k + t
−1/2
k )

.

Therefore,

− 1
4
ψ2,p(tj) ·

(
ψp,2(ti)∆T (p,2)(tk) + ψp,2(tk)∆T (p,2)(ti)

)

=
1

(t1/2
i +t

−1/2
i )(t1/2

j +t
−1/2
j )(t1/2

k +t
−1/2
k )

× 1
2
·
(
p(tpj +t−p

j ) − (tj +t−1
j ) ·

tpj −t−p
j

tj−t−1
j

)

=
1

(t1/2
i +t

−1/2
i )(t1/2

j +t
−1/2
j )(t1/2

k +t
−1/2
k )

×
(p − 1

2
(
tpj +t−p

j

)
−

tp−1
j −t

−(p−1)
j

tj−t−1
j

)
.

By Theorem 3.1, we obtain ΘT (p,2)(t1, t2, t3) as the sum of the above formula
over (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2), which gives the required formula.
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Example 2. In a similar way as the previous example, we have that

ΘT (p,3)(t1, t2, t3) =
(t1 − 1)(t2 − 1)(t3 − 1)
(t31 − 1)(t32 − 1)(t33 − 1)

×
(
(p − 1)

(
tp1 + t−p

1 + tp2 + t−p
2 + tp3 + t−p

3

+ t2p
1 + t−2p

1 + t2p
2 + t−2p

2 + t2p
3 + t−2p

3

+ t2p
1 tp2 + t−2p

1 t−p
2 + tp1t

2p
2 + t−p

1 t−2p
2 + tp1t

−p
2 + t−p

1 tp2
)

− t
3(p−1)/2
1 − t

−3(p−1)/2
1

t
3/2
1 − t

−3/2
1

·
(
2t

p/2
1 + 2t

−p/2
1 + t

p/2
2 t

−p/2
3 + t

−p/2
2 t

p/2
3

)

− t
3(p−1)/2
2 − t

−3(p−1)/2
2

t
3/2
2 − t

−3/2
2

·
(
2t

p/2
2 + 2t

−p/2
2 + t

p/2
1 t

−p/2
3 + t

−p/2
1 t

p/2
3

)

− t
3(p−1)/2
3 − t

−3(p−1)/2
3

t
3/2
3 − t

−3/2
3

·
(
2t

p/2
3 + 2t

−p/2
3 + t

p/2
1 t

−p/2
2 + t

−p/2
1 t

p/2
2

))
,

and

Θ̂T (p,3)(t) =
t3(tp/2+t−p/2)

(t3 − 1)2

×
(
(p−1)(t3p/2+t−3p/2) − 2 · t3(p−1)/2−t−3(p−1)/2

t3/2−t−3/2

)

=
tp/2+t−p/2

(t3/2−t−3/2)3

×
(
(p−1)(t3(p+1)/2−t−3(p+1)/2)−(p+1)(t3(p−1)/2−t−3(p−1)/2)

)
.

See also Tables 2 and 3 for the values of ΘT (p,q) and Θ̂T (p,q) for some (p, q).

§4. A Cabling Formula for the 2-Loop Polynomial

In this section, we give a cabling formula for the 2-loop polynomial. We
show the formula by picking up the 2-loop part of the primitive part of the
cabling formula of the Kontsevich invariant, modifying the proof of Theorem
3.1. This cabling formula is also obtained independently by Marché [15].

It is known, see e.g. [13], that a cabling formula for the Alexander poly-
nomial is given by

∆K(p,q)(t) = ∆T (p,q)(t)∆K(tp).

A cabling formula for the 2-loop polynomial is given by
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(p, q) : The non-zero coefficients of tn1 tm2 in ΘT (p,q)(t1, t2, t−1
1 t−1

2 ) in the
fundamental domain

(3, 2) :
−1

· · 1

(5, 2) :
2

−1 · −2
· · 1 · 2

(7, 2) :

−3
2 · 3

−1 · −2 · −3
· · 1 · 2 · 3

(4, 3) :

3
3 −3 ·

1 −2 · 3 −3
· · −1 4 −3 · 3

(5, 3) :

−4
−4 · 4

−6 3 4 −4 ·
−2 1 3 −6 · 4 −4

· · 2 −2 · 6 −4 · 4

(7, 3) :

6
6 −6 ·

10 −5 · 6 −6
12 −5 −5 10 −6 · 6

6 −5 −4 10 −10 · 6 −6 ·
2 −3 −1 6 −8 · 10 −10 · 6 −6

· · −2 6 −4 −2 12 −10 · 10 −6 · 6

(5, 4) :

−6
−6 6 ·

9 · · −6 6
1 −5 · · 6 −6 ·

−5 4 −4 5 −5 · · · ·
1 1 −2 · 3 1 −4 · · 6 −6

· · −1 −2 9 −8 1 −2 9 · −6 · 6

(7, 4) :

−9
−9 9 ·

15 · · −9 9
15 −15 · · 9 −9 ·

−6 −6 · 15 −15 · · 9 −9
−18 7 −1 12 −15 8 7 · −9 · 9

−8 10 5 −6 1 · 7 −15 8 · 9 −9 ·
5 −5 4 −11 13 −13 7 −7 8 −8 · · · · ·

2 −4 2 4 2 −9 · 11 −6 −5 · 15 −15 · · 9 −9
· · −2 8 −9 2 −4 20 −18 2 4 12 −15 · 15 · −9 · 9

Table 2. The non-zero coefficients of tn1 tm2 in ΘT (p,q)(t1, t2, t−1
1 t−1

2 ) in a funda-
mental domain {0 ≤ 2m ≤ n} (see [21]) for (p, q) with p ≤ 7, q ≤ 4. The array
for each (p, q) is a subset of the full array such as shown in Table 1 and the
most left dot is at (n, m) = (0, 0). We can recover the other coefficients for each
(p, q) from the presented coefficients by the symmetry of ΘK(t1, t2, t−1

1 t−1
2 ).
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(p, q) : The part of non-negative powers in Θ̂T (p,q)(t)

(3, 2) : t
(5, 2) : 3t + 2t3

(7, 2) : 6t + 5t3 + 3t5

(9, 2) : 10t + 9t3 + 7t5 + 4t7

(4, 3) : 3t + 4t2 + 3t5

(5, 3) : 6t + 4t2 + 6t4 + 4t7

(7, 3) : 10t + 12t2 + 6t4 + 12t5 + 10t8 + 6t11

(8, 3) : 15t + 12t2 + 16t4 + 7t5 + 15t7 + 12t10 + 7t13

(10, 3) : 21t + 24t2 + 16t4 + 25t5 + 9t7 + 24t8 + 21t11 + 16t14 + 9t17

(5, 4) : 6t + 12t2 + 9t3 + 8t6 + 9t7 + 6t11

(7, 4) : 15t + 24t2 + 9t3 + 18t5 + 20t6 + 18t9 + 12t10 + 15t13 + 9t17

(9, 4) : 21t + 40t2 + 27t3 + 12t5 + 36t6 + 30t7 + 28t10 + 30t11 + 16t14 + 27t15

+21t19 + 12t23

(6, 5) : 10t + 24t2 + 27t3 + 16t4 + 15t7 + 24t8 + 18t9 + 15t13 + 16t14 + 10t19

(7, 5) : 36t + 12t2 + 20t3 + 30t4 + 36t6 + 24t8 + 18t9 + 30t11 + 24t13 + 18t16

+20t18 + 12t23

(8, 5) : 45t + 24t2 + 14t3 + 48t4 + 36t6 + 30t7 + 45t9 + 21t11 + 32t12 + 36t14

+30t17 + 21t19 + 24t22 + 14t27

(9, 5) : 28t + 60t2 + 54t3 + 16t4 + 36t6 + 60t7 + 42t8 + 40t11 + 54t12 + 24t13

+40t16 + 42t17 + 36t21 + 24t22 + 28t26 + 16t31

Table 3. The parts of non-negative powers in Θ̂T (p,q)(t) for (p, q) with p ≤ 10,
q ≤ 5. The remaining part for each (p, q) can recover from the presented part
by replacing t with t−1.

Theorem 4.1. Let K be a knot, and let K(p,q) be the (p, q) cable knot
of K. Then,

ΘK(p,q)(t1, t2, t3) = ΘT (p,q)(t1, t2, t3) + ΘK(tp1, t
p
2, t

p
3)

+
1
2
∆T (p,q)(t1)∆T (p,q)(t2)∆T (p,q)(t3)

×
∑

{i,j,k}={1,2,3}
∆′

K(tpi ) · t
p
i · φq,p(tj)∆K(tpj )∆K(tpk).

Proof. We show the theorem, modifying the proof of Theorem 3.1. By
Proposition 2.1, we have that

Zw
(
K(p,q)

)
≡ ∂−1

Ω Ψ(p)∂Ω

(
Zw(K) � exp�

( q

2p

))
� exp�

(
− pq

2
)
,
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where Zw(K) is presented by

Zw(K) = Ω � exp�

(−1
2 log ∆K(ex) )

+ (terms of (≥ 2)-loop).

The 2-loop part of log� Zw(K) contributes to the required formula by ΘK(tp1, t
p
2,

tp3). We calculate the contribution from the 1-loop part in the following of this
proof.

In a similar way as (3.2), we have that

∂Ω

(
Zw(K) � exp�

( q

2p

))

≡ exp�
( q

2p

)
� Ω � Ω q

p x

� exp�

(−1
2 log ∆K(ex)

+

f(x)+g(x) f( q
px) )

,

where g(x) is given by

g(x) =
d

dx

(
− 1

2
log ∆K(ex)

)
= −∆′

K(ex) · ex

2∆K(ex)
.

The map Ψ(p) sends this to

exp�
(pq

2
)
�Ωpx �Ωqx � exp�

(−1
2 log ∆K(epx)

+

f(px)+g(px) f(qx) )
.

Calculating its image by ∂−1
Ω in a similar way as in the proof of Theorem 3.1,

the error term corresponding to the formula (3.4) is as follows,

g(px) f(qx)

− p

g(px) f(pqx)

=
1
4

g(px) φq,p(t)

= −1
2

g(px)

φq,p(t) .

This contributes to the required formula by
∑

{i,j,k}={1,2,3}

∆′
K(tpi ) · t

p
i

2∆K(tpi )
· ∆K(p,q)(ti)φq,p(tj)∆K(p,q)(tj)∆K(p,q)(tk).
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Noting that ∆K(p,q)(t) = ∆T (p,q)(t)∆K(tp), we obtain the required formula.

A cabling formula for the reduced 2-loop polynomial is given by

Corollary 4.1. For the notation in Theorem 4.1,

Θ̂K(p,q)(t) = Θ̂T (p,q)(t) +
(tp/2 − t−p/2)2

(t1/2 − t−1/2)2
· Θ̂K(tp)

− tp

(t1/2 − t−1/2)2
· ∆T (p,q)(t)∆K(tp)∆′

K(tp)ψq,p(t).

Proof. The required formula is obtained from the formula of Theorem 4.1
by putting t1 = t, t2 = 1/t, and t3 = 1.

§5. Relations to Vassiliev Invariants

In this section we show some relations to Vassiliev invariants of degree 2, 3.
A leading part of the Kontsevich invariant is presented by

log� Zσ(K)−ω =
v2(K)

2
+

v3(K)
4

+(terms of degree ≥ 4),

where the degree of a Jacobi diagram is half the number of univalent and triva-
lent vertices of the diagram, and v2, v3 are Z-valued primitive Vassiliev invari-

ants of degree 2, 3 respectively (see [17]). Since has 1-loop, v2(K) can

be presented by the Alexander polynomial; in fact, from the formula of the
loop expansion,

v2(K) = −
(
the coefficient of x2 in the expansion of ∆K(ex)

)
= −1

2
∆′′

K(1).

Further, since has 2-loop, v3(K) can be presented by the 2-loop

polynomial; in fact, we have

Proposition 5.1.

v3(K) =
1
2
Θ̂K(1).

Proof. Let us consider the map

�−→ f3(0) + f2(0) + f1(0)
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�−→ 1
6

∑
{i,j,k}={1,2,3}

fi(x)fj(−x)fk(0).

This map takes the 2-loop part of log� Zσ(K) to 1
12 (ex/2 − e−x/2)2Θ̂K(ex)/

(∆K(ex))2, whose coefficient of x2 equals 1
12 Θ̂K(1). Since =

by the AS and IHX relations, the above maps takes this diagram to 2
3x2. Hence,

1
6v3(K) = 1

12 Θ̂K(1), which implies the required formula.

Example 3. A cabling formula for v3 is given by

v3(K(p,q)) = p2 · v3(K) +
1
12

p(p2 − 1)q · ∆′′
K(1) +

1
144

p(p2 − 1)q(q2 − 1).

Proof. From Proposition 5.1 and Corollary 4.1 putting t = 1, we have
that

v3(K(p,q)) = v3

(
T (p, q)

)
+ p2 · v3(K) − p

2
∆′′

K(1)φ′
q,p(1).

The required formula follows from it, by using

v3

(
T (p, q)

)
=

1
2
Θ̂T (p,q)(1) =

1
144

p(p2 − 1)q(q2 − 1),

φ′
q,p(1) =

1
6
q(1 − p2).

For the value of the first formula, see also [22].

§6. The sl2 Reduction of the 2-Loop Polynomial

The aim of this section is to show Proposition 6.1, which implies that the
sl2 reduction of the 2-loop part of the logarithm of the Kontsevich invariant is
presented by the reduced 2-loop polynomial.

The loop expansion of the colored Jones polynomial

Let us denote by J(L; t) the Jones polynomial [8] of a link L defined by

t−1V
(

; t
)
− tV

(
; t

)
= (t1/2 − t−1/2)V

(
; t

)

and by the normalization12 J(the trivial knot; t) = t1/2+t−1/2, where the three
pictures in the above formula denote three oriented links, which are identical

12This normalization is the normalization of the quantum sl2 invariant (see e.g. [17]),
which differs from the usual normalization where the value of the trivial knot is 1.
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except for a ball, where they differ as shown in the pictures. The colored Jones
polynomial [16], which we denote by Jk(K; t), of a knot K is defined by

J(K(n); t) =
∑

0≤k≤n/2

cn,kJn+1−2k(K; t)

where K(n) denotes the disconnected n cable of K with 0 framing, and cn,k’s are
scalars characterized13 by V ⊗n

2 =
⊕

0≤k≤n/2

cn,kVn+1−2k; in particular J1(K; t) =

1 and J2(K; t) = J(K; t). The colored Jones polynomial in another normaliza-
tion, which we denote by Vn(K; t), is defined by

Vn(K; t) =
Jn(K; t)

Jn(the trivial knot; t)
=

t1/2 − t−1/2

tn/2 − t−n/2
· Jn(K; t).

As in [19], based on the expansion

Vn(K; eh) =
∑
l≥0

hl
∑
k≥0

dl,k(nh)k,

the 1-loop and 2-loop parts of the colored Jones polynomial are given by

V (1-loop)(K; enh) =
∑
k≥0

d0,k(nh)k,

V (2-loop)(K; enh) =
∑
k≥0

d1,k(nh)k,

where the right hand sides are rational functions of enh, as discussed in [19].
The aim of this section is to present V (2-loop)(K; t) by the reduced 2-loop
polynomial of K.

The colored Jones polynomial is obtained from the Kontsevich invariant
by14

Jn(K; e−h) = Wsl2,Vn

(
Z(K)

)
,

where Wsl2,Vn
denotes the weight system derived from the Lie algebra sl2 and

its n-dimensional irreducible representation Vn, which can be calculated recur-
sively (see [5, 17]) by

=
sl2

2h
(

−
)
,(6.1)

13This characterization is based on the disconnected cabling formula of quantum invariants
(see e.g. [17]). There scalars are concretely presented by cn,k =

(n−1
k

)
−
( n−1
n+1−k

)
.

14In the left hand side, we put, not t = eh, but t = e−h. This difference is derived from
the difference of normalization between the colored Jones polynomial and the quantum
sl2 invariants.
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=
sl2

4h ,(6.2)

� α =
sl2

hC · α,(6.3)

where we write α =
sl2

β if Wsl2,Vn
(α) = Wsl2,Vn

(β), and C denotes the Casimir

element of sl2, whose eigenvalue on Vn is equal to n2−1
2 . We apply these

recursive relations to

Zw(K)
Zw(O)

= exp�

(
−1

2 log ∆K(ex)

+
finite∑

i

pi,1(ex)/∆K(ex)

pi,2(ex)/∆K(ex)

pi,3(ex)/∆K(ex)

+
(
(≥ 3)-loop part

))
.

The 1-loop part

Lemma 6.1. For a positive integer l,

=
sl2

(2C)l/2hl
(
1 + (−1)l

)
.

Proof. If l is odd, the diagram is equal to 0 by the AS relation, and,
hence, the lemma holds. If l is even, the lemma is proved by induction on l

using (6.1) and (6.3).

Putting −1
2 log ∆K(ex) =

∑
k≥0 akx2k, we have that

exp�

(
−1

2 log ∆K(ex)
)

=
sl2

∑
k≥0

exp
(
2ak(2C)kh2k

)
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≡ exp
(
2

∑
k≥0

ak(nh)2k
)

=
1

∆K(enh)
,

where we write α ≡ β if log α − log β is equal to a linear sum of contributions
from (≥ 3)-loop diagrams. Hence,

V (1-loop)(K; t) =
1

∆K(t)
.

This is nothing but the Melvin-Morton-Rozansky conjecture proved in [2].

The 2-loop part

Lemma 6.2. Let l1, l2, l3 be non-negative integers such that at least one
of them is positive. Then,

=
sl2




0 if l1l2l3 	= 0,

2h(2C)(li+lj)/2hli+lj
(
(−1)li+(−1)lj

)
if lilj 	= 0 and lk = 0,

4h(2C)li/2hli
(
1 + (−1)li

)
if li 	=0 and lj = lk =0,

where {i, j, k} = {1, 2, 3}.

Proof. We assume that l1 ≥ l2 ≥ l3 without loss of generality. If l1 > l2 =
l3 = 0, then the lemma is obtained from (6.2) and Lemma 6.1. If l2 > l3 = 0,
then the lemma is obtained from (6.1) and Lemma 6.1. If l3 > 0, then we
obtain the lemma by induction on l3; we can decrease l3 by moving one of l3
legs to upper edges by the IHX relation.

By Lemma 6.2,

=
sl2

2h
(
f3(0) + f2(0) + f1(0)

)

≡ 2h
∑

{i,j,k}={1,2,3}
fi(nh)fj(−nh)fk(0).

Hence, similarly as in the proof of Proposition 5.1, the sl2 reduction of the
2-loop part of log�(Zw(K)/Zw(O)) is equal to h(enh/2 − e−nh/2)2Θ̂K(enh)/
(∆K(enh))2. Therefore, we obtain
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Proposition 6.1.

V (2-loop)(K; t) = − (t1/2 − t−1/2)2(
∆K(t)

)3 Θ̂K(t).

This gives a concrete presentation of the formula of [19, Conjecture 2] in
terms of the reduced 2-loop polynomial.
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[14] Marché, J., On Kontsevich invariant of torus knots, math.GT/0310111.
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