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André Voros
∗

Abstract

We use exact WKB analysis to derive some concrete formulae in singular quan-
tum perturbation theory, for Schrödinger eigenvalue problems on the real line with
polynomial potentials of the form (qM + gqN ), where N > M > 0 even, and g > 0.
Mainly, we establish the g → 0 limiting forms of global spectral functions such as the
zeta-regularized determinants and some spectral zeta functions.

§1. Introduction

The purpose of this work is to set up a path to obtain precise statements
of a quantum perturbative nature with the help of exact WKB analysis. The
RIMS has always played a major and pioneering role in the inception and
growth of exact asymptotic analysis, and earlier, in the development of some
of its fundamental tools (such as hyperfunctions and holomorphic microlocal
analysis). This influence is testified by the Proceedings volume of a recent
Kyoto conference, which offers a very complete view of the subject [5]. It is
therefore a great honor and a proper tribute to the RIMS to write here about
a subject which grew thanks to the crucial participation and encouragements
of RIMS researchers.

A prototype problem in quantum perturbation theory is the quartic an-
harmonic oscillator,(

− d2

dq2
+ q2 + gq4 − E

)
Ψ(q) = 0, q ∈ R, g ≥ 0.(1.1)
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∗CEA, Service de Physique Théorique de Saclay, CNRS URA 2306, F-91191 Gif-sur-Yvette
CEDEX, France (also at: Institut de Mathématiques de Jussieu–Chevaleret, CNRS UMR
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974 André Voros

This problem has a purely discrete eigenvalue spectrum {Ek(g)} for all g ≥ 0.
A typical task in (Rayleigh–Schrödinger) perturbation theory is to compute
individual eigenvalues Ek(g) (or their eigenfunctions) as formal power series
of the coupling constant g [1]. This is of important practical use when the
unperturbed (g = 0) problem is exactly solvable, here a harmonic oscillator;
a major drawback is however that the coupling term has the higher degree,
hence the formalism is singular. Thus, the perturbation series diverges for any
g �= 0; it only gives an asymptotic expansion for g → 0, which is moreover
non-uniform in the quantum number k.

As our theoretical discussion can readily include all binomials potentials,
we immediately turn to the more general Schrödinger equation(

− d2

dq2
+ Ug(q) − E

)
Ψ(q) = 0,(1.2)

Ug(q)
def= qM + gqN , q ∈ R, N > M ≥ 2 even, g ≥ 0;

we keep Ek(g) as a generic notation for the eigenvalues of this problem ((N, M)-
dependences now being implied).

(Exact WKB formalisms accommodate non-even potentials as well [2, 8];
for instance, eq. (1.2) could be considered with odd N or M but on the half-line
[0, +∞) [8]; however, this extension is not essential here while it does complicate
the classification when M = 1, so we omit it in the present work.)

A very basic fact (Symanzik scaling property) is that a simple coordinate
dilation, q �→ g−1/(N+2)q, establishes a unitary equivalence between the two
Schrödinger operators

v2/(M+2)(−d2/dq2 + Ug(q)) and Ĥv
def= −d2/dq2 + Vv(q),(1.3)

where v ≡ g−(M+2)/(N+2) and Vv(q) def= qN + vqM .(1.4)

Thus, eq. (1.2) is equivalent to

(1.5)(
− d2

dq2
+ qN + vqM + λ

)
Ψ(q) = 0, v ≡ g−(M+2)/(N+2), λ ≡ −v2/(M+2)E.

In this transformed Schrödinger equation, the interaction term is now vqM

and has the lower degree, so that v can act as a regular deformation parameter;
the former perturbative regime g → 0 translates as the asymptotic v → +∞
regime. However, at no finite v is the problem (1.5) solvable in any traditional
sense, and this has severely limited practical uses of this reparametrization. On
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the other hand, this deformation can be fully studied by exact WKB analysis,
which now handles general (1D) polynomial potentials. One earlier detailed
study of this sort is based on resurgence theory [2]. Another such path from
exact-WKB to perturbation theory lies in proving the Zinn-Justin conjectures
about multi-instantons [3, 9]. Here we will develop still another line of calcu-
lations started in [8] (Secs. 3–4), using an exact WKB framework built upon
Sibuya’s formalism [6]: i.e., we will fully compute how the spectral determi-
nants themselves (and related spectral functions) asymptotically depend on the
coupling parameter v → +∞ (or g → 0). Spectral functions being symmetric
functions of all eigenvalues Ek(g) together, the non-uniformity in k of pertur-
bative approximations must show up somehow, and the g → 0 behavior of
such objects may not be obviously traceable to existing (fixed-k) perturbative
results.

To give a concrete example, we ask: how do the spectral zeta functions
Zg(s) =

∑∞
k=0 Ek(g)−s precisely behave for g → 0? Specially at s = 1 when

M = 2: then, that series converges for any g > 0 but term by term it becomes
the divergent (odd) harmonic series

∑
k(2k + 1)−1 at g = 0. The latter series

admits a fundamental regularization by means of a sharp summation cutoff K:

K−1∑
k=0

1
2k + 1

∼ 1
2 (log K + γ +2 log 2), K → +∞,(1.6)

which is (in just a slight variant form) the basic definition of Euler’s constant γ.
Now, the eigenvalues themselves obey Ek(g) ∼ 2k+1 for g → 0 (k fixed) by per-
turbation theory, but Ek(g) ∝ [g(2k+1)N ]2/(N+2) for k → +∞ (g fixed) by the
asymptotic Bohr–Sommerfeld condition. Hence the series Zg(1) =

∑
k Ek(g)−1

naturally provides another regularization to the odd harmonic series, now by
gradually forcing it into a convergent regime; the crossover zone roughly lies
around k ∝ Kg

def= g−2/(N−2) [4]. By substituting K = Kg into eq. (1.6), we
intuitively conjecture Zg(1) ∼ − 1

N−2 log g + CN , which will prove correct for
the logarithmic slope; such an approach is however very crude, and it cannot
guess the additive constant CN . By contrast, exact WKB analysis will yield
more precise, rigorous asymptotic results for such zeta-values, such as the final
formula (5.13) for Zg(1).

The outline of the paper is as follows. §2 recalls essential prerequisites
and definitions for the exact WKB approach to be used here. §3 presents
the asymptotic problem and its conceptual resolution by exact WKB theory,
namely eq. (3.10). §4 performs the key computational steps: a class of specific
improper action integrals

∫ +∞
0

Π(q) dq are explicitly evaluated (where Π(q) are
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essentially classical momentum functions, and the integrals are primitively very
divergent). Finally, §5 processes all intermediate calculations into concrete
formulae, mainly eqs. (5.1), (5.5).

§2. Some Notions from Exact WKB Theory

We recall the essential facts and notations to be used later concerning the
exact WKB treatment of a Schrödinger operator Ĥ

def= −d2/dq2 + V (q) on
L2(R) with a polynomial potential V (q) = +qN + [lower-degree terms], here
taken real and even. (Details and justifications have to be omitted: cf. [8]
Sec. 1, and references therein). Such an operator is self-adjoint, has a compact
resolvent and commutes with the parity operator (q �→ −q). A frequently
needed quantity (which we call the order of the problem) is

µ(N) def=
1
2

+
1
N

.(2.1)

As standard notations, we will also use ψ(z) ≡ [Γ′ / Γ](z), and γ = Euler’s
constant.

§2.1. Improper action integral, and residual polynomial

Important quantities enter at the classical dynamical level around the
(complexified) momentum function,

Πλ(q) def= (V (q) + λ)1/2,(2.2)

where the constant (−λ) stands for the classical energy and, say, λ > − inf V

(initially). Improper action integrals taken over semi-infinite paths prove most
useful:

∫ +∞
q

Πλ(q′) dq′ (primitively divergent) is very naturally defined as the
analytical continuation to s = 0, when finite, of

(2.3)

Iq(s, λ) def=
∫ +∞

q

(V (q′) + λ)−s+1/2 dq′ (convergent for Re (s) > µ(N)).

Now, any s-plane singularities of Iq(s, λ) arise in {Re (s) ≤ µ(N)} from the
large-q′ behavior of the integrand. Specifically, the q′ → +∞ expansion

(V (q′) + λ)−s+1/2 ∼
∑

ρ

βρ(s) (q′)ρ−Ns (ρ = N/2, N/2 − 1, . . .)(2.4)
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(where βρ(s) are polynomials in s, explicitly computable one by one), implies
the singular decomposition

Iq(s, λ) ∼ −
∑

ρ

βρ(s)
qρ+1−Ns

ρ + 1 − Ns
;(2.5)

hence at s = 0, Iq(s, λ) has at most a simple pole, generated by the ρ = −1
term (if any):

Ress=0 Iq(s, λ) = β−1(0)/N,(2.6)

a value actually independent of λ (save when N = 2) and of q. Remark: for
non-monic V (q) = vqN + · · ·, βρ(s) will also carry a non-polynomial but trivial
factor ∝ v−s (as in eq. (3.5) below).

A central distinction sets in at this point: if the “residual” polynomial
β−1(s) ≡ 0, the Schrödinger problem (Ĥ + λ)Ψ = 0 will behave more simply
(“normal” type, N); otherwise, “anomaly” terms will occur (type A). Wholly
generic polynomials (V (q) + λ) are of type A; still, in a sense, “a majority” of
them have β−1(s) ≡ 0: among the even ones, already all those having a degree
N multiple of 4 (and, among the non-even ones, all those of odd degree).

Thus for the N type,
∫ +∞

q
Πλ(q′) dq′ is readily defined as the analytical

continuation of Iq(s, λ) to the (regular) point s = 0. As for a more general
specification including type A, the best choice is not the bare finite part of
Iq(s, λ) at the pole s = 0 (denoted FPs=0Iq(s, λ)), but rather ([8], eq. (32))∫ +∞

q

Πλ(q′) dq′
def= FPs=0Iq(s, λ) + 2(1 − log 2) β−1(0)/N(2.7)

in order to preserve the basic identities (2.15) below. Additivity is also main-
tained:∫ +∞

q

Πλ(q′) dq′ =
∫ q′′

q

Πλ(q′) dq′ +
∫ +∞

q′′
Πλ(q′) dq′ for all q, q′′ finite(2.8)

(because a finite integral
∫ q′′

q
(V (q′) + λ)−s+1/2 dq′ is entire in s).

Remarks. (i)
∫ +∞

q
Πλ(q′) dq′ is an “Agmon distance from q to +∞”,

suitably renormalized; (ii) this procedure is a classical counterpart to zeta-
regularization at the quantum level; (iii) like the extra term in eq. (2.7), all
anomaly terms here will just be proportional to “the residue” β−1(0) (residue
of Πλ(q) at ∞), but more general anomaly terms occur elsewhere [8].
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§2.2. Spectral functions

A (1D) operator Ĥ as above has a purely discrete real spectrum {λ0 < λ1 <

λ2 < · · ·}, (λk ↑ +∞), where even (resp. odd) k correspond to eigenfunctions
of even (resp. odd) parity.

Generalized (à la Hurwitz) spectral zeta functions can be defined for each
parity:

Z±(s, λ) def=
∑

k even
odd

(λk + λ)−s for Re s > µ(N)(2.9)

and, say, λ > −λ0; yet some results will separate more neatly upon a skew
versus a full zeta function, respectively defined as

ZP ≡ Z+ − Z−, Z ≡ Z+ + Z−.(2.10)

Spectral determinants D±(λ) ≡ det±(Ĥ + λ) are defined next by zeta-
regularization:

(2.11)

D±(λ) def= exp[−∂sZ
±(s, λ)]s=0 (and DP ≡ D+/D−, D ≡ D+D−),

where s = 0 is reached by analytical continuation from {Re s > µ(N)}. These
functions also admit more explicit characterizations:

- their Weierstrass infinite products (written for µ(N) < 2, as is the case
here):

D±(λ)≡D±(0) eFPs=1Z±(s,0) λ
∏

k even
odd

(1 + λ/λk) e−λ/λk ,(2.12)

≡D±(0)
∏

k even
odd

(1 + λ/λk) when µ(N) < 1, i.e., N > 2(2.13)

and likewise for D, DP; this shows that the determinants continue to entire
functions (of order µ(N)) in the variable λ (except for DP, meromorphic);

- the basic identities of the exact-WKB method: let Ψλ(q) be the canon-
ical recessive solution of the differential equation, specified through its q → +∞
asymptotic form

Ψλ(q) ∼ Πλ(q)−1/2 e
∫+∞

q
Πλ(q′)dq′

,(2.14)

where
∫ +∞

q
Πλ(q′) dq′ is fixed according to eq. (2.7); then, under that precise

normalization,
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D−(λ) ≡ Ψλ(0), D+(λ) ≡ −Ψ′
λ(0),(2.15)

(also valid for a rescaled potential, i.e., V (q) = uqN + · · ·, with u > 0).
Remark. the solutions (2.14) are proportional to Sibuya’s subdominant

solutions [6], but the two normalizations fully coincide only when the type
is N.

Finally, we will need the transformation rules for spectral functions under
a global spectral dilation (λk �→ rλk, r = cst. > 0). Obviously,

Z±(s, λ) �→ r−sZ±(s, λ/r) for Re s > µ(N)(2.16)

(and likewise for Z, ZP); hence upon continuation to s = 0, and applying
eq. (2.11),

D(λ) �→ rZ(0,λ/r)D(λ/r), DP(λ) �→ rZP(0,λ/r)DP(λ/r)(2.17)

where, moreover, ([8], eqs. (27), (37))

Z(0, λ) ≡ −2β−1(0)/N, ZP(0, λ) ≡ 1/2.(2.18)

§3. The Asymptotic v → +∞ Problem

We now return to the Schrödinger operator Ĥ(v) = −d2/dq2 + qN + vqM ,
as in eq. (1.5) (N > M ≥ 2 both even, v > 0). We will find the asymptotic
behaviors of its spectral determinants in the regime of singular perturbation
theory for eq. (1.1):

D±(λ, v) ≡ det±(Ĥ(v) + λ) (λ > 0), v ≡ g−(M+2)/(N+2) → +∞.(3.1)

By the lowest-order g → 0 perturbation theory, the individual eigenvalues
λk(v) of Ĥ(v) (“coupled problem”) become asymptotic to those of Ĥ0(v) =
−d2/dq2 + vqM (“uncoupled problem”). We then expect det±(Ĥ(v) + λ) to
somehow behave like det±(Ĥ0(v) + λ) as v → +∞, but the latter regime is
singular and moreover non-uniform in k; hence the actual behavior of the
determinants is an open problem. In [8] (Secs. 3–4), we tackled it for a few
binomial potentials and exclusively at λ = 0; here we treat it in full generality.

§3.1. Detailed anomaly types

As argued in §2.1, it is essential to distinguish between normal (N) and
anomalous (A) cases, but now this has to be done for each problem Ĥ(v) and
Ĥ0(v) independently.
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- the coupled problem (Πλ(q)2 = qN + vqM + λ): the residual polyno-
mial is the coefficient of q−1−Ns in the generalized binomial expansion for
qN(1/2−s)(1 + vqM−N + λq−N )1/2−s. When Πλ(q)2 has degree �= 2, like here,
the residual polynomial β−1(s) cannot depend on λ; concretely, it evaluates as
follows:

(3.2)

β−1(s) ≡ 0 unless
N + 2

2(N − M)
= j ∈ N

∗ (“anomaly condition Aj of level j”);

thus, anomalies require exponent pairs (N, M) obeying special congruence
relations :

(level j :) N = 2jm − 2, M = N − m for m ∈ N
∗(3.3)

(with m even for even potentials),

and then

(3.4)

β−1(s) ≡ (−1)j Γ(s+j−1/2)
Γ(s − 1/2) j!

vj

[
β−1(0) = (−1)j−1 (2j−2)!

22j−1(j−1)! j!
vj

]
.

- the uncoupled problem (Π0,λ(q)2 = vqM + λ): the same calculation now
simply yields

β−1(s) ≡ v−1/2−sλ (1/2 − s) if M = 2 [A1 for λ �= 0],(3.5)

otherwise β−1(s) ≡ 0 [N].

The harmonic oscillator (Π(q)2 = vq2 + λ) thus gives the prime example of
anomaly, and the only case (among all potentials) where the residue depends on
the spectral parameter; all other binomials {vqM +λ} (M �= 2) are of type N.

The type can jump either way in the v → +∞ limit, giving birth to four
distinct variants (and the “basic” example of eq. (1.1) is not the simplest!):

N → N: e.g., V (q) = q8 + vq4;
Aj → N: e.g., V (q) = q6 + vq4, of level j = 2;
N → A1: e.g., V (q) = q4 + vq2 (the “basic” example) when λ �= 0;
Aj → A1: only one case, V (q) = q6 + vq2 when λ �= 0, for which j = 1.
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§3.2. The main estimate

We can relate the coupled and uncoupled spectral determinants very easily
through a key result of exact WKB theory, the basic identities (2.15). These
are to be written for both (coupled and uncoupled) problems independently:

det−(Ĥ(v) + λ) ≡ Ψλ(0, v), det+(Ĥ(v) + λ) ≡ −Ψ′
λ(0, v),

det−(Ĥ0(v) + λ) ≡ Ψ0,λ(0, v), det+(Ĥ0(v) + λ) ≡ −Ψ′
0,λ(0, v),

(3.6)

where Ψλ(q, v), resp. Ψ0,λ(q, v) are the canonical recessive solutions of
(Ĥ(v) + λ)Ψ = 0, resp. (Ĥ0(v) + λ)Ψ0 = 0. So, the problem boils down
to relating Ψλ(q, v) and Ψ0,λ(q, v) near q = 0 as v → +∞.

Now, as soon as |q|N−M � v, the term qN becomes a negligible per-
turbation of vqM within the Schrödinger equation, hence the recessive solution
Ψλ(q, v) has to become asymptotically proportional to Ψ0,λ(q, v) in that regime.
Indeed, the alternative normalization of recessive solutions based at q = 0,

Ψλ(q, v) ∼ Πλ(q, v)−1/2 e−
∫

q
0 Πλ(q′,v) dq′

,(3.7)

Ψ0,λ(q, v) ∼ Π0,λ(q, v)−1/2 e−
∫

q
0 Π0,λ(q′,v) dq′

(valid for Πλ(q) → +∞ in the {q > 0} domain) immediately entails

Ψλ(q, v) ∼ Ψ0,λ(q, v) for v → +∞, |q|N−M � v,(3.8)

simply by invoking the asymptotic equivalence Πλ(q′, v) ∼ Π0,λ(q′, v) all over
the bounded interval [0, q] when v → +∞ at fixed q.

The only remaining issue is then to relate the two normalizations, our
canonical one of eq. (2.14) “based at q = +∞”, and the latter one of eq. (3.7)
based at q = 0. Thanks to eq. (2.8), the answer is simply

(3.9)

Ψλ(q, v) ≡ e
∫+∞
0 Πλ(q′,v) dq′

Ψλ(q, v) (and likewise for Ψ0,λ with Π0,λ).

Finally, putting together eqs. (3.6)–(3.9), we end up with the comparison
formula

det±(Ĥ(v) + λ) ∼ eS(λ,v) e−S0(λ,v) det±(Ĥ0(v) + λ) (v → +∞)(3.10)

(stated in most general terms), where

S(λ, v) =
∫ +∞

0

Πλ(q, v) dq, resp. S0(λ, v) =
∫ +∞

0

Π0,λ(q, v) dq,(3.11)
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are coupled, resp. uncoupled, improper action integrals. Specifically here,

(3.12)

S(λ, v) =
∫ +∞

0

(qN + vqM + λ)1/2 dq, resp. S0(λ, v) =
∫ +∞

0

(vqM + λ)1/2 dq.

The problem has thus been reduced to the separate asymptotic (v → +∞)
evaluations of the two (improper) action integrals in eq. (3.12).

§4. Explicit Formulae for Improper Action Integrals

This Section constitutes a kind of technical digression; it derives a num-
ber of formulae for improper action integrals

∫ +∞
0

Π(q) dq which might be of
interest for their own sake. Basically, those integrals will be given exactly for
any binomial Π(q)2, by eqs. (4.4), (4.8); whereas the integral for a trinomial
Π(q)2 = qN + vqM + λ will be given asymptotically for v → +∞, by eq. (4.16).

§4.1. Binomial Π(q)2 : exact evaluation

We compute the improper action integral
∫ +∞
0

Π(q) dq exactly for a bino-
mial Π(q)2 = uqN + vqM , in the rather general setting N > M ≥ 0, u, v > 0,
resulting in the extensive formulae (4.4) and (4.8) (where N and M might even
be non-integers).

At the core, by eq. (2.3),
∫ +∞
0

Π(q) dq = lims=0 I0(s) where

I0(s)
def=

∫ +∞

0

(uqN + vqM )1/2−s dq (Re s > 1
2 + 1

N ),(4.1)

as long as the limit (understood as the analytical continuation to s = 0) is
finite. Now the right-hand side reduces to a Eulerian integral, of the form∫ +∞

0

(ax + b)1/2−sxα−1dx ≡ a−αb1/2 +α−s Γ(α) Γ(s − α − 1/2)
Γ(s − 1/2)

(4.2)

(under the change of variable qN−M = u−1v x); specifically here, α =
[M(1 − 2s) + 2]/[2(N − M)] and

I0(s) ≡
Γ(M(1−2s)+2

2(N−M) ) Γ(−N(1−2s)+2
2(N−M) )

(N − M) Γ(s−1/2)
u−M(1−2s)+2

2(N−M) v
N(1−2s)+2
2(N−M) .(4.3)

Consequently, at s = 0,∫ +∞

0

(uqN + vqM )1/2 dq =
Γ( M+2

2(N−M) ) Γ(− N+2
2(N−M) )

(N − M) Γ(−1/2)
u− M+2

2(N−M) v
N+2

2(N−M)(4.4)
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in the normal case, i.e., when the right-hand side is finite, meaning here
N+2

2(N−M) /∈ N.
Concrete examples of this N type are:∫ +∞

0

(q4 + vq2)1/2 dq =−v3/2/3(4.5) ∫ +∞

0

(uqN + λ)1/2 dq =−Γ(1 + 1
N ) Γ(−1

2 − 1
N )

2
√

π
u− 1

N λ
1
2+ 1

N (N �= 2).(4.6)

Now, the right-hand side of eq. (4.4) turns infinite whenever (2j − 1)N =
2(jM + 1) for some j ∈ N

∗ (j = 0 cannot occur): this is precisely the anomaly
condition Aj of level j. All these exceptional cases are readily (albeit tediously)
handled by applying eq. (2.7) to I0(s). (The formula (4.11) below, resp. also
(4.5), were already implicitly derived in [8] (as eqs. (115), resp. (84)) by a
variant route.) First, the residue is

β−1(0) = (−1)j−1 (2j−2)!
22j−1(j−1)! j!

u1/2−jvj ;(4.7)

then, the finite part at s = 0 of eq. (4.3) gets extracted as

β−1(0)
{ 2j

N+2

[
ψ(j + 1) − log v +

M

N

(
−ψ(j − 1/2) + log u

)]
− 1

N
ψ(−1/2)

}
;

so that finally, when M = [(j − 1/2)N − 1]/j (condition Aj), eq. (2.7) yields∫ +∞

0

(uqN + vqM )1/2 dq =
2j β−1(0)

N + 2
(4.8)

×
[
− log v +

j∑
m=1

1
m

+
2M

N

(
log 2 + 1

2 log u −
j−1∑
m=1

1
2m−1

)]
.

The cases with j = 1 are of special interest. First comes the harmonic
oscillator (N = 2) at a general energy value (−λ), for which∫ +∞

0

(vq2 + λ)1/2 dq = 1
4v−1/2λ(1 − log λ).(4.9)

The higher binomials of type A1 occur in supersymmetric quantum mechanics
(at zero energy) [7], [8] Sec. 4:

Π(q)2 = uqN + vqM with N = 2M + 2 (M > 0),(4.10)

in which case eq. (4.8) distinctly simplifies to∫ +∞

0

(uqN + vqN/2−1)1/2 dq =
u−1/2v

N+2
(4.11)

×
[
− log v + 1 +

N−2
N

(log 2 + 1
2 log u)

]
(j = 1).
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§4.2. Trinomial Π(q)2 : asymptotic v → ∞ evaluation

We now consider a trinomial Π(q)2 of the form qN + vqM + λ, with even
N > M > 0, and a systematically constant third term: the spectral parameter
itself, λ (> 0) (−λ = the total energy). One of the coefficients can always be
scaled out to unity, and we have done this for the highest power initially.

In the fully trinomial case, we can no longer compute the action integral∫ +∞
0

Π(q) dq exactly. In view of eq. (3.10), however, we mainly need its large-v
behavior, specially for v → +∞ in order to recover singular perturbation theory
according to eq. (1.3) (but as in [8], we expect the results to remain valid over
suitable sectors in the complex v-plane).

According to the zeta-regularization idea, we must start from the large-v
behavior of I(s; λ, v) def=

∫ +∞
0

(qN + vqM + λ)1/2−s dq; this problem is rather
delicate, so any brute-force expansion scheme is dubious. Instead, we apply
the following general idea: if the function I(v) under study is an inverse Mellin
transform,

I(v) = (2πi)−1

∫ c+i∞

c−i∞
Ĩ(σ)vσ dσ,(4.12)

then the singularities of Ĩ(σ) in the half-plane {Re σ < c} encode the large-v
behavior of I(v). In particular, (by the residue calculus) any polar part of
the form A(σ − σ0)−2 + B(σ − σ0)−1 in Ĩ(σ) expresses an asymptotic contri-
bution vσ0(A log v + B) to I(v). This perfectly works for I(s; λ, v), because
its direct Mellin transform Ĩ(s; λ, σ) def=

∫ +∞
0

I(s; λ, v) v−σ−1 dv is exactly com-
putable (by the same formula (4.2) as for the binomial case but now used twice
in succession), and meromorphic in σ: formally,

(4.13)∫ +∞

0

dvv−σ−1(qN + vqM + λ)1/2−s

= Γ(−σ) Γ(s + σ − 1/2)
Γ(s − 1/2)

qMσ(qN + λ)1/2−s−σ

=⇒ Ĩ(s; λ, σ) =
Γ(−σ) Γ(Mσ+1

N ) Γ(s + σ − 1
2 − Mσ+1

N )
N Γ(s − 1/2)

λ−s−N−M
N σ+ 1

2+ 1
N

(using the change of variable qN = λ r for the q-integration). In addition, the
Mellin integral has to be genuinely defined somewhere: here, all integrations
converge in some strip σ′ < Re σ < 0 provided Re s > µ(N), and the inverse
transformation (4.12) applies with c = −0. Consequently, the poles σ(s) rel-
evant to the current asymptotic problem are those which lie in {Re σ < 0}
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0 1/2 µ(N) 1
s

−3/M

−2/M

−1/M

0

1

2

σ

← confluence if  M=2

← confluence if  (A j )

j=0

j=1

j=2

σ0
σ1

Figure 1. Schematic depiction (using some non-integer N , M) of the poles σ(s) of
the Mellin transform Ĩ(s; λ, σ) in eq. (4.13). The two main contributing poles (in the
v → +∞ limit) are drawn with bold lines; non-contributing poles are drawn with
dashed lines.

when Re s > µ(N), and their contributions are then to be analytically con-
tinued to s = 0. Overall, the poles in eq. (4.13) form three arithmetic pro-
gressions, one for each Gamma factor in numerator; they are real for real s

(Fig. 1). At s = 0, any pole σ(s) will contribute an asymptotic term of degree
dv = σ(0) in v (on general grounds) and of degree dλ = 1

2 + 1
N − N−M

N σ(0)
in λ (by examination of eq. (4.13)). At the end, we plan to keep the terms
of degree dg ≤ 0 in the perturbative coupling constant g (discarding o(1)
terms when g → 0); now the Symanzik scaling (eq. (1.5) at fixed E) entails
dg ≡ −M+2

N+2 (dv+ 2
M+2 dλ) = −(Mσ(0)+1)/N ; altogether, dg ≤ 0 then amounts

to keeping only the poles for which σ(0) ≥ −1/M .
When M ≥ 2 (as here), only two poles σ(s) satisfy both criteria, (in real

form) σ(s) < 0 for s > µ(N) and σ(0) ≥ −1/M : they are, in decreasing order
at s = 0,

(4.14)

σ0(s) ≡
N

N − M

(1
2

+
1
N

− s
)

(leading) and σ1(s) ≡ − 1
M

(subleading).

They are generically simple, with two exceptions at s = 0: σ0(0) = N+2
2(N−M)

becomes confluent with the (fixed) pole σ = +j when the coupled problem is
of anomalous type Aj ; and independently, σ1 becomes confluent with the (next
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mobile) pole N
N−M ( 1

2+ 1
N −s−1) when the uncoupled problem is anomalous, i.e.,

M = 2. The latter confluence will induce a usual double-pole contribution; the
former confluence is worse, making the inverse-Mellin representation singular
as the integration path gets pinched between the two poles.

We now specifically evaluate the two dominant polar contributions at
s = 0, from σ0 and σ1.

- the leading pole σ0(0) = N+2
2(N−M) : if the coupled problem is of type N this

pole remains simple, and its asymptotic contribution [Resσ0(0) Ĩ(0; λ, σ)] vσ0(0)

turns out (by inspection) to be just
∫ +∞
0

(qN +vqM )1/2 dq (as given by eq. (4.4)
at u = 1). Furthermore, ∂λI(s; λ, σ) ∝ I(s + 1; λ, σ), an operation which pre-
cisely annihilates this leading pole part in all cases, so the latter has to be a con-
stant in λ; then, its computation at λ = 0 precisely yields

∫ +∞
0

(qN +vqM )1/2dq,
now including the confluent cases (Aj).

- the subleading pole σ1 = −1/M : if M > 2 this pole remains simple, and its
asymptotic contribution [Resσ1 Ĩ(0; λ, σ)] vσ1 coincides with

∫ +∞
0

(vqM+λ)1/2dq

as given by eq. (4.6). Under confluence (M = 2), the contribution becomes
that of the double pole of eq. (4.13) at σ = −1/2, i.e.,

∫ +∞
0

(vq2 + λ)1/2 dq +
N

N−2A1(λ, v) where the action integral is given by eq. (4.9), and

A1(λ, v) = 1
4v−1/2λ(log v + 2 log 2).(4.15)

All in all, the asymptotic v → +∞ formula for the trinomial action integral
is then ∫ +∞

0

(qN + vqM + λ)1/2dq ∼
∫ +∞

0

(qN + vqM )1/2dq(4.16)

+
∫ +∞

0

(vqM + λ)1/2 dq + δM,2
N

N − 2
A1(λ, v),

where
∫ +∞
0

(qN +vqM )1/2 dq is specified through eq. (4.4) if the coupled problem
is of type N, or else eq. (4.8) if the coupled problem is of type Aj (i.e., if

N+2
2(N−M) = j ∈ N

∗); whereas
∫ +∞
0

(vqM +λ)1/2 dq is given by eq. (4.6) if M > 2,
or eq. (4.9) if M = 2 (and δM,2 is a Kronecker delta symbol).

§5. Application to Spectral Functions

The theoretical results of § 3–4 translate into concrete asymptotic formulae
for spectral functions in the v → +∞ regime.
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§5.1. The spectral determinants

Returning to the end output of §3, eq. (3.10), if we substitute the explicit
formulae of §4 therein, then

∫ +∞
0

(vqM + λ)1/2 dq cancels out, and a slightly
simpler v → +∞ formula results:

det±(−d2/dq2 + qN + vqM + λ)(5.1)

∼ e
∫+∞
0 (qN+vqM )1/2dq+δM,2

N
N−2 A1(λ,v) det±(−d2/dq2 + vqM + λ),

where
∫ +∞
0

(qN + vqM )1/2 dq is given through eq. (4.4) if the coupled problem
is of type N, or (4.8) if it is of type Aj , and A1(λ, v) by eq. (4.15).

Being homogeneous, the uncoupled potentials obey the scaling eq. (1.3) in
a simpler form: (−d2/dq2 + vqM ) is unitarily equivalent to v2/(M+2)(−d2/dq2

+ qM ). Then the scaling laws (2.17) apply with r = v2/(M+2); but these laws
are more awkward for the det± than for the full and skew determinants det
and detP, so we now switch to the latter combinations and explicitly obtain

det(−d2/dq2+vqM +λ)≡ det(−d2/dq2+qM +v−2/(M+2)λ) (M �= 2)(5.2)

det(−d2/dq2+vq2+λ)≡ v−v−1/2λ/42−v−1/2λ/2
√

2π/ Γ( 1
2 (1+v−1/2λ))(5.3)

detP(−d2/dq2+vqM +λ)≡ v1/(M+2) detP(−d2/dq2+qM +v−2/(M+2)λ).(5.4)

Remark. as the harmonic-oscillator determinants are known in closed form
([8], eqs. (155)), we immediately wrote eq. (5.3) in a fully explicit form (needed
later).

Thus, eqs. (5.1) plus (5.2)–(5.4) can supply the v → +∞ behaviors at
fixed λ of the coupled determinants in terms of the corresponding uncoupled
determinants at λ = 0 (which are computable numbers, cf. [8], eq. (136)).

However, our main concern here is the singular perturbation limit: v ≡
g−(M+2)/(N+2) → +∞ with v−2/(M+2)λ

def= (−E) fixed, according to eq. (1.5).
The corresponding results, deduced from eqs. (5.1)–(5.4) after rescaling both
sides, are

det(−d2/dq2 + qM + gqN − E) / det(−d2/dq2 + qM − E) ∼

{ e2
∫+∞
0 (qN+vqM )1/2dq e−δM,2

1
N−2 ( N+2

4 log v+N log 2)E for type N

v
4β−1(0)
N(M+2) e2

∫+∞
0 (qN+vqM )1/2dq e−δM,2

1
N−2 ( N+2

4 log v+N log 2)E for type Aj

(5.5)

(β−1(0) (given by eq. (4.7)), and type, both refer to the coupled problem). By
contrast, the skew determinants always behave straightforwardly:

detP(−d2/dq2 + qM + gqN − E) ∼ detP(−d2/dq2 + qM − E).(5.6)
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The main non-trivial result here is the asymptotic ratio in eq. (5.5). Its
essential singularity for g → 0 should relate to the non-uniformity of this limit
with respect to the quantum number k. The dependence of its logarithm upon
E is purely affine (with {E = 0} intercepts already determined in [8] for some
cases). The basic example (1.1), being of type N, thus gives

(5.7)

det(−d2/dq2 + q2 + gq4 − E) ∼ e−2/3g e(log g/2−2 log 2)E det(−d2/dq2+q2−E).

(Note the “instanton-like” structure of the first prefactor, computed by
eq. (4.5).)

§5.2. The spectral zeta functions

Over the spectrum {Ek(g)} of the rescaled operator (−d2/dq2+qM +gqN ),
we can consider the full and skew spectral zeta functions

Zg(s; E) def=
∞∑

k=0

(Ek(g) − E)−s, ZP
g (s; E) def=

∞∑
k=0

(−1)k(Ek(g) − E)−s(5.8)

for, say, integer s ∈ N
∗, in which case they converge for g > 0 and relate to the

spectral determinants in a simpler way than for general s,

Zg(s; E) ≡ − 1
(s − 1)!

∂s

∂Es
log det(−d2/dq2 + qM + gqN − E),(5.9)

(obtained from eq. (2.13) upon rescaling; and likewise for (ZP, detP)).
Assuming all previous estimates are stable under E-differentiations (as is

usually the case in WKB theory), the preceding formulae imply the regular
behaviors (see Fig. 2, left)

Zg(s; E) ∼ Z0(s; E), ZP
g (s; E) ∼ ZP

0 (s; E) (g → 0),(5.10)

except for Zg(1; E) (the resolvent trace) when M = 2, which gives the singu-
lar case (Z0(1; E) infinite, while ZP

0 (1; E) stays finite). Those patterns were
conjectured in [8] (Sec. 3), but not the precise divergent behavior of Zg(1; E),
which required the E-linear terms now appearing in exponent in eqs. (5.5). For
s = 1, eq. (5.9) also needs to be regularized at g = 0, as

−(d/dE) log det(−d2/dq2 + q2 − E) ≡ −1
2 [ψ( 1

2 (1 − E)) + log 2](5.11)

(using the known closed form (5.3) of the harmonic-oscillator determinant).
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Figure 2. Illustration of the two g → 0 behaviors of spectral zeta functions at

E = 0, Zg(s)
def
=
∑

k Ek(g)−s and ZP
g (s)

def
=
∑

k(−1)kEk(g)−s, as computed from
numerical spectra (by means of eqs. (5.8)) for a sample of potentials V (q) = q2 + gqN

with N = 4 (+) or 6 (×). Left: regular behaviors verifying eq. (5.10), plotted
against 1/v (visually a convenient variable); remark: ZP

0 (1) = π/4, Z0(2) = π2/8,
and ZP

0 (2) = Catalan’s constant (≈0.9159656). Right: singular behavior of Zg(1),
plotted against log g ; the straight lines show the theoretical asymptotic predictions
(eq. (5.13)).

Then the logarithmic differentiation of eqs. (5.5) for M = 2 yields the g → 0
behavior of Zg(1; E) for all potentials q2 + gqN (irrespective of type), in the
following (singular) form:

Zg(1; E) ∼ 1
N − 2

(− log g + N log 2) − 1
2 [ψ( 1

2 (1 − E)) + log 2].(5.12)

For instance, at E = 0 this gives (see Fig. 2, right)

∞∑
k=0

Ek(g)−1 ∼− 1
N − 2

log g +
1
2

(
γ +

3N − 2
N − 2

log 2
)

(g → 0)(5.13)

∼−1
2 log g + 1

2 (γ +5 log 2) for N = 4

∼−1
4 log g + 1

2
γ +2 log 2 for N = 6, . . .

(to be compared with the sharp cutoff regularization of eq. (1.6)).
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§5.3. Concluding remarks

We have completed here one “exercise in exact quantization” begun in [8]:
we gave the g → 0+ behavior of the spectral determinants det±(−d2/dq2+qM +
gqN − E), now for general parameter values. While it may appear wasteful to
use a wholly exact approach for perturbative calculations, exact WKB analysis
actually proved quite efficient for the task; inversely, such problems help to
strengthen the practical sides of that field, which still need further development.

We are also confident that the above approach can be extended further,
both to complex parameter asymptotics and towards higher orders in powers
of g.
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