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Abstract

It is well known that soliton equations such as the Korteweg-de Vries equation are
members of infinite sequences of PDEs known as hierarchies. Here we consider infinite
sequences of ODEs associated with the Painlevé equations. We review methods of
constructing such hierarchies, specifically the second Painlevé hierarchy, as reductions
of PDE hierarchies. We also show that in the large-parameter limit, the solutions of
the second Painlevé hierarchy are given by the periodic solutions of the stationary
KdV hierarchy.

§1. Introduction

The six classical Painlevé equations are integrable non-linear second-order
ordinary differential equations (ODEs) that are intimately related to soliton
equations [1]. The Painlevé equations were first discovered by Painlevé and
his school [21] when they classified ODEs according to the complex analytic
properties of their solutions. In particular, Painlevé was interested in equations
that defined new transcendental functions globally in the complex plane. As
part of this search, he looked for differential equations that possess what is now
called the Painlevé property, i.e., all movable singularities of all solutions are
poles. The six Painlevé equations represent the only possible canonical classes
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1040 Nalini Joshi

of equations in a class of second-order ODEs that not only possess the Painlevé
property but that also define new trancendental functions.

Recent interest in the Painlevé equations arose because they are similarity
reductions of soliton equations. For example, the Korteweg-de Vries (KdV)
equation

Ut + 6UUx + Uxxx = 0(1.1)

has a similarity reduction given by

U(x, t) =
u(z)
(3t)

2
3
, z =

x

(3t)
1
3
.

The resulting third-order ODE for u(z)

u′′′(z) + 6u′(z)u(z) − zu′(z) − 2u(z) = 0

can be integrated by using the transformation

u(z) = Vz − V 2,

where V (z) solves the second Painlevé equation

PII : V ′′ = 2V 3 + z V + α, V = V (z), α const.(1.2)

It is well known from soliton theory that equations such as the KdV can be
solved (for large classes of initial data) through their associated linear problems
(called Lax pairs) for which they act as compatibility conditions. By reduction,
the Painlevé equations also possess associated linear problems. Their initial
value problems have been shown to be solvable through the Riemann-Hilbert
transform method applied to such linear problems [7].

For each soliton equation, such as the KdV equation, there exists an infinite
sequence of PDEs, indexed by order, with that equation as the first member.
Symmetry reductions of such PDE hierarchies lead to ODE hierarchies with the
Painlevé equations as first members. The second Painlevé hierarchy is given
recursively by

P(n)
II :

(
d

dz
+ 2V

)
Ln

{
Vz − V 2

}
= zV + αn, n ≥ 1(1.3)

where αn are constants and Ln is the operator defined by

∂zLn+1{U}=
(
∂zzz + 4U∂z + 2Uz

)
Ln{U}(1.4a)



�

�

�

�

�

�

�

�

The Second Painlevé Hierarchy 1041

L1{U}= U.(1.4b)

In Section 2, we review the construction of this hierarchy by a reduction of the
KdV hierarchy. We also show how to derive the linear problem(s) associated
with the second Painlevé hierarchy from that of the KdV hierarchy.

The KdV equation is an infinite-dimensional completely integrable Hamil-
tonian system. Its hierarchy also forms a completely integrable Hamiltonian
system [19], with an infinite set of conserved, functionally independent Hamil-
tonians that are in involution. Since the equations of the KdV hierarchy all
share these conserved quantities, the solutions of the KdV equation can be said
to describe the solutions of the whole hierarchy.

However, this involutive structure breaks down for the Painlevé hierar-
chies. The members of the reduced hierarchy no longer share all their con-
served quantities. Moreover, it is not clear whether the tools used for solving
the second-order Painlevé equations work for the whole hierarchy. For exam-
ple, the Riemann-Hilbert transform crucial for solving the Painlevé equations
appears to have only been proved to be invertible for the second-order cases.
These considerations make the development of any tools that describe solutions
of the whole Painlevé hierarchy valuable.

Another open question is whether the higher order members of the hier-
archy admit solutions that are more transcendental than the lower-order mem-
bers. If the asymptotic behaviours of the solutions of the n-th equation are
more transcendental than those of the solutions of lower equations in the hier-
archy, then it follows that the corresponding solutions of the n-th equation must
be more transcendental that those of the lower ones. To resolve this question,
we considered limiting behaviours of solutions of the second Painlevé hierarchy
P(n)

II as αn → ∞. In Section 3, we show that in this limit P(n)
II becomes a

transformed version of the stationary KdV hierarchy.
It is well known that stationary periodic solutions of the KdV equation

and its hierarchy may be constructed through its associated linear problem.
We review this construction in Section 4. These results show that, in the large
parameter limit, the solutions of the second Painlevé hierarchy are given by
elliptic and hyperelliptic solutions of the stationary KdV hierarchy and that
the genus of the hyperelliptic functions increases with n. Since hyperelliptic
functions cannot be expressed as algebraic functions (or compositions) of elliptic
functions, these results imply that the solutions of the higher order members
of P(n)

II necessarily must be more transcendental that those of PII. We end the
paper with a summary in Section 5.
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§2. A Second Painlevé Hierarchy

In this section, we review the method of deducing the Painlevé hierar-
chy P(n)

II as a reduction of the KdV hierarchy. Although this reduction is well
known, the detailed calculations and the integration leading to the Painlevé
hierarchy do not appear to be given explicitly in the literature. Similarly, the
construction of the linear problem associated with each member of a Painlevé
hierarchy is not completely explicit in the literature. We give the hierarchy
of linear problems associated with the KdV hierarchy and show how its ex-
plicit reduction leads to the linear problems associated with the Painlevé hi-
erarchy. The linear problems are important for the deduction of asymptotic
behaviours.

§2.1. KdV hierarchy

The KdV hierarchy is given by

Ut2n+1 + ∂xLn+1[U ] = 0, n ≥ 0(2.1)

where Ln satisfies the recursion relation (1.4a), with z now replaced by x, and
L0 = 1

2 . The first few members of this sequence are

n = 0 : ∂xL1 = (∂3
x + 4U∂x + 2Ux)

(1
2

)
= Ux ⇒

{
Ut1 + Ux = 0

L1 = U

n = 1 : ∂xL2 = (∂3
x + 4U∂x + 2Ux)(U)

= Uxxx + 4UUx + 2UxU ⇒
{

Ut3 + 6UUx + Uxxx = 0

L2 = Uxx + 3U2

n = 2 : ∂xL3 = (∂3
x + 4U∂x + 2Ux)(Uxx + 3U2)

= Uxxxxx + ∂xx(6UUx) + 4UUxxx + 4U(6UUx)

+ 2UxUxx + 6UxU2

= U5x + 6UxxUx + 12UxUxx + 6UUxxx

+ 2UxUxx + 4UUxxx + 30U2Ux

= U5x + 30U2Ux + 20UxUxx + 10UUxxx

= ∂x{U4x + 10U3 + 5U2
x + 10UUxx}

⇒
Ut5 + U5x + 10UUxxx + 20UxUxx + 30U2Ux = 0.
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The fact that at each step equation (1.4a) can be integrated to obtain the
differential operator Ln+1 was proved in [18].

§2.2. MKdV hierarchy

Under the Miura map U = Wx − W 2, the KdV equation becomes

∂t(Wx − W 2) + 6(Wx − W 2)(Wxx − 2WWx) + Wxxxx

−2WxxWx − 4WxWxx − 2WWxxx = 0

This implies

(∂x − 2W )Wt − 6(∂x − 2W )(W 2Wx) + (∂x − 2W )(Wxxx) = 0,

which in turn can be rewritten as

(∂x − 2W )(Wt − 6W 2Wx + Wxxx) = 0

Therefore, if W (x, t) satisfies the modified KdV (MKdV) equation

Wt − 6W 2Wx + Wxxx = 0

then U = Wx − W 2 satisfies the KdV equation. From the KdV hierarchy we
get

∂t2n+1(Wx − W 2) + ∂xLn+1[Wx − W 2] = 0

but

∂xLn+1 = (∂3
x + 4(Wx − W 2)∂x + 2Wxx − 4WWx)Ln

= (∂x − 2W )(∂xxLn) + 2W∂xxLn

+ 4Wx∂xLn − 4W 2∂xLn + (2Wxx − 4WWx)Ln

= (∂x − 2W )(∂xxLn + 2W∂xLn)

+ 2Wx∂xLn + 2WxxLn − 4WWxLn

= (∂x − 2W )(∂xxLn + 2W∂xLn + 2WxLn).

So we get

(∂x − 2W ){∂t2n+1W + (∂xx + 2∂xW )Ln[Wx − W 2]} = 0

i.e., the MKdV hierarchy is

∂t2n+1W + ∂x(∂x + 2W )Ln{Wx − W 2} = 0.(2.2)
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§2.3. The PII hierarchy

In this section, we use the notation Ln to mean the operator defined by
(1.4a) in the variables U , x, while L̂n denotes the usage of Ln with respective
variables Vz − V 2 and z. Substituting

W (x, t3) =
V (z)
(3t3)

1
3
, z =

x

(3t3)
1
3

in the MKdV equation

Wt3 − 6W 2Wx + Wxxx = 0

we obtain

− V

(3t)
4
3
− x

(3t3)
5
3
V ′ − 6

V 2

(3t3)
2
3
· V ′

(3t)
2
3

+
V ′′′

(3t)
4
3

= 0,

which implies

V ′′′ = 6V 2V ′ + zV ′ + V.

Integration with respect to z leads to

V ′′ = 2V 3 + zV + α1, α1 constant

Now for the hierarchy, we use the substitutions:

W (x, t2n+1) =
V (z)(

(2n + 1)t2n+1

) 1
2n+1

, z =
x(

(2n + 1)t2n+1

) 1
2n+1

,(2.3)

Wx − W 2 =
1(

(2n + 1)t2n+1

) 2
2n+1

(V ′ − V 2),(2.4)

Wt2n+1 = − V(
(2n + 1)t2n+1

) 2n+2
2n+1

− zV ′(
(2n + 1)t2n+1

) 2n+2
2n+1

.
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Note that by the above substitutions (2.3) and (2.4) we obtain

L1[U ] = U = Wx − W 2 =
1(

(2n + 1)t
) 2

2n+1
(V ′ − V 2)

=
1(

(2n + 1)t
) 2

2n+1
L1[V ′ − V 2],

L2[U ] = Uxx + 3U2 =
1(

(2n + 1)t
) 4

2n+1
{∂zz(V ′ − V 2) + 3(V ′ − V 2)2},

...

Lemma 2.1.

Lk[U ] =
1(

(2n + 1)t
) 2k

2n+1
L̂k[V ′ − V 2].

Proof. The proof is by induction. The case k = 1 holds by above. The
relations

∂xLk+1[U ] =
1(

(2n + 1)t
) 1

2n+1
∂zLk+1[U ]

and

∂3
x + 4U∂x + 2Ux =

1(
(2n + 1)t

) 3
2n+1

{∂3
z + 4(V ′ − V 2)∂z + 2(V ′ − V 2)z}

imply

∂zLk+1 =
1(

(2n + 1)t
) 2

2n+1
(∂3

z + 4(V ′ − V 2)∂z+2(V ′ − V 2)z)
L̂k(

(2n + 1)t
) 2k

2n+1

=
1(

(2n + 1)t
) 2(k+1)

2n+1

(∂3
z + 4(V ′ − V 2)∂z + 2(V ′ − V 2)z)L̂k.
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Therefore, we get the reduced hierarchy

− V(
(2n + 1)t2n+1

) 2(n+1)
2n+1

− zV ′(
(2n + 1)t2n+1

) 2(n+1)
2n+1

+
1(

(2n + 1)t2n+1

) 2
2n+1

× 1(
(2n + 1)t2n+1

) 2n
2n+1

d

dz

( d

dz
+ 2W

)
L̂n[V ′ − V 2] = 0

This gives the second Painlevé hierarchy( d

dz
+ 2V

)
L̂n[V ′ − V 2] = zV + αn, n ≥ 1.(2.5)

Note that the case n = 0 leads to an algebraic result

(z − 1)V = −α0 ⇒ V = − α0

z − 1

which is not a DE. The next case n = 1 is( d

dz
+ 2V

)
(V ′ − V 2) = zV + α1

which yields PII:

V ′′ = 2V 3 + zV + α1.

The case n = 2 is( d

dz
+ 2V

)
((V ′ − V 2)′′ + 3(V ′ − V 2)2) = zV + α2

which is equivalent to

V ′′′′ − (2V V ′)′′ + 6(V ′ − V 2)(V ′′ − 2V V ′)

+2V (V ′′′ − 2V ′2 − 2V V ′′) + 6V (V ′ − V 2)2 = zV + α2

or

V (4) − 2(3V ′′V ′ + V V ′′′) + 6(V ′V ′′ − 2V V ′2 − V 2V ′′ + 2V 3V ′)

+2V V ′′′ − 4V V ′2 − 4V 2V ′′ + 6V (V ′2 − 2V 2V ′ + V 4)

= zV + α2

The end result is

V (4) − 10V V ′2 − 10V 2V ′′ + 6V 5 = zV + α2.
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§2.4. Linear problems

The KdV hierarchy arises as the compatibility of{
ηxx + (λ + U(x, τ))η = 0

ητ = A[λ; U ]η − B[λ; U ]ηx,
(2.6)

for each time variable τ . Note that this implies

− {∂τUη + (λ + U)(Aη − Bηx)}
= Axxη + 2Axηx + A(−λ − U)η

− Bxxηx + 2Bx(λ + U)η + B(ληx + Uxη + Uηx)

or, collecting terms

(Axx − (λ + U)A + 2Bx(λ + U) + BUx + Uτ + A(λ + U))η

+ (2Ax − Bxx + λB + UB − B(λ + U))ηx = 0.

Setting coefficients of η and ηx to zero, we find

A =
1
2
Bx + a0(2.7)

and

Uτ +
1
2
(∂3

x + 4U∂x + 2Ux)B + 2λ∂xB = 0.(2.8)

We take B = B0λ
n +B1λ

n−1 + · · ·+Bn. These equations must hold identically
in λ. Therefore, equating coefficients at each power of λ leads to the following
results.

λn+1 : ∂xB0 = 0,

without loss of generality (by scaling λ and U , x, τ if necessary), we assume
B0 = −1 and for 0 ≤ k ≤ n − 1

λn−k :
1
2
(∂3

x + 4U∂x + 2Ux)Bk = −2∂xBk+1

and

λ0 : Uτ +
1
2
(∂3

x + 4U∂x + 2Ux)Bn = 0.

That is,

Uτ − 2∂xBn+1 = 0.
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Comparing to the recursion operator L, we have

Bk[U ] = −2
(−1

4

)k

Lk[U ], k ≥ 0 (Note: B0 = −2L0).

This means

Uτ − 2 · −2
(
− 1

4

)n+1

∂xLn+1[U ] = 0

which implies

Uτ +
−1

(−4)n
∂xLn+1[U ] = 0.

We recover the KdV hierarchy in the usual form (2.1) if we define

τ = −(−4)nt2n+1.

Or in the original notation for the hierarchy, we get


ηxx + (λ + U(x, t2n+1))η = 0
−ηt2n+1

(−4)n
=

[
− ∂x

( n∑
k=0

Lk[U ]
(−4)k

λn−k
)

+ a0

]
η

+2
( n∑

k=0

Lk[U ]
(−4)k

λn−k
)
ηx

i.e.




ηxx + (λ + U(x, t2n+1))η = 0

ηt2n+1 =
[
∂x

( n∑
k=0

Lk[U ](−4λ)n−k
)

+ an

]
η

−2
n∑

k=0

Lk[U ](−4λ)n−k · ηx

(2.9)

an = − (−4)na0(2.10)

We show in Appendix A that this is a compatible system giving rise to the
KdV hierarchy as its compatibility conditions.

§2.5. Reduced linear problem

The symmetry reduction (2.3) of the MKdV hierarchy implies a reduction
of the KdV’s linear problem through

η(x, t2n+1) = ψ(z, s), z =
x(

(2n + 1)t2n+1

) 1
2n+1

, s = λ
(
(2n + 1)t2n+1

) 2
2n+1

.
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In turn, these imply

ηxx =
1(

(2n + 1)t2n+1

) 2
2n+1

ψzz

∂t2n+1 =
−x(

(2n + 1)t2n+1

) 2(n+1)
2n+1

∂z + 2λ
(
(2n + 1)t2n+1

)− 2n+1
2n+1

∂s

=
1(

(2n + 1)t2n+1

) 2n+1
2n+1

{−z∂z + 2s∂s}.

Using the reduction (2.4) of the Miura transformation and recalling

Lk[U ] =
1(

(2n + 1)t2n+1

) 2k
2n+1

L̂k[V ′ − V 2]

that is,

Lk[U ](−4λ)n−k =
1(

(2n + 1)t2n+1

) 2k
2n+1 ·

2(n−k)
2n+1

(−4s)n−kL̂k[V ′ − V 2],

we get




ψzz + (s + V ′ − V 2)ψ = 0

2sψs − zψz =
[ d

dz

( n∑
k=0

L̂k[V ′ − V 2](−4s)n−k
)

+ bn

]
ψ

−2
n∑

k=0

L̂k[V ′ − V 2](−4s)n−k · ψz

(2.11)

bn = an(2n + 1)t2n+1(2.12)

(It is conventional at this point to take s = ζ2 and hence 2s∂s =
2s

2
√

s
∂ζ = ζ∂ζ .)

We rewrite this as a system of 2 × 2 linear equations. Let ϕ1 = ψ, ϕ2 = ψz.

ϕz =

(
ψz

ψzz

)
=

(
0 1

−(s + V ′ − V 2) 0

)(
ψ

ψz

)
=

(
0 1

−(s + V ′ − V 2) 0

)
ϕ

ϕs =

(
ψs

ψsz

)
=

(
A B

C D

)(
ψ

ψz

)
=

(
A B

C D

)
ϕ
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where

A =
1
2s

d

dz

( n∑
k=0

L̂k[V ′ − V 2](−4s)n−k
)

+
bn

2s

B =
z

2s
− 1

s

n∑
k=0

L̂k[V ′ − V 2](−4s)n−k

C =
( z

2s
− 1

s

n∑
k=0

L̂k[V ′ − V 2](−4s)n−k
)
(−s − V ′ + V 2)

+
1
2s

d2

dz2

( n∑
k=0

L̂k[V ′ − V 2](−4s)n−k
)

D =
1
2s

− 1
2s

d

dz

( n∑
k=0

L̂k[V ′ − V 2](−4s)n−k
)

+
bn

2s
.

For compatibility, see Appendix B.

§3. The Large-Parameter Limit of P(n)
II

In this section, we show that, for bounded |z|, the limit αn → ∞ of P(n)
II

is solved precisely by the stationary solutions of the KdV hierarchy. In this
limit, P(n)

II becomes an autonomous hierarchy. The large-parameter limit of PII

(for bounded z) was studied in [12]. The results are analogous to the |z| → ∞
limit, first studied in 1913 by Boutroux [3]. The simultaneous limit α → ∞ and
|z| → ∞ of PII has been studied extensively by Kawai, Takei et al. [14]–[16] and
by Kitaev [17]. Asymptotic results as |z| → ∞ for special classes of solutions
of the whole P(n)

II hierarchy, called the tritronquée solutions, were obtained in
[13].

Proposition 3.1. For each n ≥ 1, the transformation

V (z) = αn
1/(2n+1) v(ζ), z = αn

− 1/(2n+1) ζ(3.1)

maps P(n)
II to (

d

dζ
+ 2v

)
Ln

{
vζ − v2

}
= 1 +

ζv

αn
,(3.2)

where Ln is now written in the variables ζ, v(ζ).

Proof. The proof is by induction. The case n = 1 follows from

L1{Vz − V 2} = Vz − V 2 = α
2/3
1

(
vζ − v2

)
= α

2/3
1 L1{vζ − v2}
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and (
d

dz
+ 2V

)
= α

1/3
1

(
d

dζ
+ 2v

)
(3.3)

which implies that PII becomes

α1

(
d

dζ
+ 2v

)
L1{vζ − v2} = ζ v + α1,

as desired. For the inductive step, we use the notation U = Vz − V 2, u =
vζ − v2, and note that U(z) = αn

2/(2n+1) u(ζ). We claim that the operator Ln

transforms according to

Ln{U} = αn
p(n)/(2n+1) Ln{u}, p(n) = 2n.

This result follows from the recursion relation (1.4a) along with (1.4b) which
implies

p(n + 1) + 1 = p(n) + 3, p(1) = 2.

Using the transformation (3.3), we get the desired result.

Remark 3.2. For each integer n ≥ 1, and bounded ζ, the solutions of
P(n)

II in the limit αn → ∞ satisfy(
d

dζ
+ 2v

)
Ln

{
vζ − v2

}
= 1.(3.4)

For n = 1, 2, these are

v′′ = 2v3 + 1(3.5)

v(4) = 10 v v′2 + 10 v2 v′′ − 6v5 + 1(3.6)

where the primes now refer to ζ derivatives.
Equation (3.4) is a first integral of the stationary version of the MKdV

hierarchy (2.2). From Section 2, we know that any solution of the MKdV
hierarchy must give a solution of the KdV hierarchy through the Miura trans-
formation U = Wx − W 2. It is not widely known that for ODE reductions of
these hierarchies, the Miura transformation is invertible . We recall here the in-
vertible transformations between P(n)

II and the so-called thirty-fourth Painlevé
hierarchy P(n)

34 given in [4].



�

�

�

�

�

�

�

�

1052 Nalini Joshi

Proposition 3.3. Suppose integer n ≥ 1 is given. If Ln{U}− z/2 �= 0,
then

U = Vz − V 2(3.7a)

V =− 1
2Ln{U} − z

(
d

dz
(Ln{U}) − αn

)
(3.7b)

maps between the solutions V (z) of P(n)
II and solutions U(z) of

P(n)
34 : (2Ln{U} − z)

d2

dz2
(Ln{U}) −

(
d

dz
Ln{U}

)2

(3.8)

+
d

dz
Ln{U} + (2Ln{U} − z)2 U − αn (1 − αn) = 0.

For the case n = 1, this is the well known transformation between PII and
P34 (the thirty-fourth equation in the Painlevé classification given in Ince [10]).
Note that differentiating P(n)

34 with respect to z gives

d

dz
Ln+1{U} = 2 U + z Uz,(3.9)

where we have used the recursion relation (1.4a). This is just the similarity
reduction of the KdV hierarchy obtained via

U(x, t2n+1) =
U(z)

[(2n + 1)t2n+1]2/(2n+1)
, z =

x

[(2n + 1)t2n+1]1/(2n+1)
.

Under the transformation (3.1), the mappings (3.7) become

u = vζ − v2(3.10a)

v =− 1
2Ln{u} − ζ/αn

(
d

dz
(Ln{u}) − 1

)
(3.10b)

Moreover, the differentiated hierarchy (3.9) becomes

d

dζ
Ln+1{u} =

1
αn

(
2 u + ζ uζ

)
.(3.11)

Taking the limit αn → ∞, we get the stationary KdV hierarchy

d

dζ
Ln+1{u} = 0.

Any solution u(ζ) of the n-th member of this hierarchy yields a solution v(ζ)
of the n-th member of the limiting P(n)

II equation (3.4) under the mapping

v = − 1
2Ln{u}

(
d

dz
(Ln{u}) − 1

)
.
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We show how to construct solutions of the stationary KdV hierarchy in the
next section.

§4. Stationary Solutions of the KdV Hierarchy

In this section, we review the construction of periodic solutions of the
stationary KdV hierarchy. We follow a construction that was first given by
Drach in 1919 [5]. Properties of these solutions were developed and studied in
detail by the Russian school, see [6] and [20]. To simplify the notation, for each
integer n ≥ 1, we write τ instead of t2n+1 and use U both for the solutions of
the KdV hierarchy and its stationary version.

Consider two independent solutions η1, η2 of the Schrödinger equation

ηxx +
(
λ + U(x, τ)

)
η = 0

which forms the first half of the linear problem (2.6). Clearly, the Wronskian
ω := η1

′ η2 − η1 η2
′ is constant in x. The product R(x; λ) := η1 η2 satisfies

R′′ =−2(λ + U(x, τ))R + 2η1
′ η2

′

=−2(λ + U(x, τ))R +
1

2 R

(
(η1

′ η2 + η1 η2
′)2 − (η1

′ η2 − η1 η2
′)2

)
=−2(λ + U(x, τ))R +

1
2 R

(
R′2 − ω2

)
where primes denote differentiation in x. In other words, R satisfies

2RR′′ + 4(λ + U(x, τ))R2 − R′2 + ω2 = 0.(4.1)

The solutions of the KdV that we seek correspond to products R that are
polynomial in λ. Equation (4.1) implies that, then, ω2 is also polynomial in λ.

We write

R(x; λ) =
n∏

k=1

(
γk(x) − λ

)
, Ω(λ) := ω2 = −4

2n+1∏
i=1

(
λ − λi

)
,

where we have used the highest degree terms in Equation (4.1) to relate the
degree of ω2 to the degree of R and their respective coefficients. If we evaluate
Equation (4.1) at each zero γj(x) of R, we are led to the system of equations

γj
′(x)2

n∏
k=1,k �=j

(
γk(x) − γj(x)

)2 = −4
2n+1∏
i=1

(
γj(x) − λi

)
, 1 ≤ j ≤ n.(4.2)
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Moreover, the coefficients of λ2n give

U(x, τ) = 2
n∑

k=1

γk(x, τ) −
2n+1∑
i=1

λi.(4.3)

Consider now the second part of the linear problem (2.9). The result of
differentiating R with respect to τ is

Rτ = η1τ η2 + η1 η2τ(4.4)

=
(
Aη1 − B η1x

)
η2 + η1

(
Aη2 − B η2x

)
= 2 AR − B Rx

Similarly, we get

ωτ =
(
2 A − Bx

)
ω

= 2 a0 ω

where we have used Equation (2.7). For the stationary case, it is clear that we
must take a0 = 0. In that case, with Rτ = 0, Equation (4.4) gives

Bx R − B Rx = 0 ⇒ B = β R,(4.5)

where β is a constant.
To be more explicit, we consider the special cases n = 1 and n = 2. In the

case n = 1, Equation (4.1) leads to

λ2 : γ1(x) =
1
2

(λ1 + λ2 + λ3 + U(x))(4.6)

λ : γ1
′′(x) = 2γ1(x)2 − 2 (λ1λ2 + λ1λ3 + λ2λ3 + 2 U(x)γ1(x))(4.7)

1 : γ1(x) γ1
′′(x) =

1
2
γ1

′(x)2 − 2 U(x)γ1(x)2 − 2λ1λ2λ3(4.8)

Multiplying Equation (4.7) by γ1(x) and subtracting it from Equation (4.8),
then substituting for U by using Equation (4.6), gives

γ1
′(x)2 = − 4(λ1 − γ1(x))(λ2 − γ1(x))(λ3 − γ1(x)) = Ω

(
γ1(x)

)
.(4.9)

This equation is solved by Weierstrass ℘ functions. The solution is given by
the inversion of the function defined by∫ γ1 ds√

Ω(s)
= x + c0,
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where c0 is a constant. Note that although the stationary KdV equation govern-
ing U is third-order, there appears to be four arbitrary constants (λ1, λ2, λ3, c0)
in the description of the solution. To see that there must be one relation be-
tween them, we use Equation (4.5) and the results for B from Section 2. In the
case n = 1, we get B = −λ + U/2 = β (γ1(x) − λ) which implies that β = 1
and U = 2γ1. That is,

λ1 + λ2 + λ3 = 0.

For the case n = 2, we get

γ1
′(x)2 =

Ω(γ1(x))
(γ1(x) − γ2(x))2

(4.10a)

γ2
′(x)2 =

Ω(γ2(x))
(γ1(x) − γ2(x))2

(4.10b)

where Ω(γk(x)) = −4 (λ1 − γk(x))(λ2 − γk(x))(λ3 − γk(x))(λ4 − γk(x))(λ5 −
γk(x)). Equations (4.10) define hyperelliptic functions. By the Jacobi inversion
theorem, the solutions are given by∫ γ1 ds√

Ω(s)
+

∫ γ2 ds√
Ω(s)

= c0(4.11a)

∫ γ1 s ds√
Ω(s)

+
∫ γ2 s ds√

Ω(s)
= x + c1(4.11b)

where c0 and c1 are arbitrary constants. To prove that these are solutions of
Equations (4.10), we note that differentiation of Equations (4.11) gives

γ1
′(x)√

Ω(γ1(x))
+

γ2
′(x)√

Ω(γ2(x))
= 0

γ1(x) γ1
′(x)√

Ω(γ1(x))
+

γ2(x) γ2
′(x)√

Ω(γ2(x))
= 1

Multiplying the first equation by γk(x), k = 1, 2 and subtracting the second
equation from it, we get(

γ1(x) − γ2(x)
)
γk

′(x)√
Ω(γk(x))

= 1, k = 1, 2

which are equivalent to Equations (4.10). It is well known that the functions
γk(x) obtained by inversion of Equations (4.11) are multivalued functions, but
their symmetric combinations γ1(x) + γ2(x) and γ1(x) γ2(x) are meromorphic.
Hence the solution U(x) of the stationary fifth-order KdV equation given by

U(x) = 2
(
γ1(x) + γ2(x)

)
− (λ1 + λ2 + λ3 + λ4 + λ5)
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is meromorphic. Use of Equation (4.5) shows that now there are two conditions
on the constants λi, namely

5∑
i=1

λi = 0,
5∑

i,j=1

i �=j

λiλj = 0.

To deduce solutions u(ζ) of the hierarchy Equation (3.11) in the limit
αn → ∞, we use Equation (4.3) with U(x, τ) replaced by u(ζ) and γk(x, τ)
replaced by γk(ζ). Here the hyperelliptic functions γk(ζ) are given by inversions
of

n∑
k=1

∫ γk si ds√
Ω(s)

= ci, i = 0, . . . , n − 2,(4.12)

n∑
k=1

∫ γk sn−1 ds√
Ω(s)

= ζ + cn−1(4.13)

where c0, . . . , cn−1 are arbitrary constants and the numbers λi, i = 1, . . . , 2n+1
satisfy n conditions on their symmetric combinations.

§5. Summary

In this paper, we gave an explicit review of the reduction of the KdV
hierarchy to the PII hierarchy. We deduced this via the MKdV hierarchy and
its symmetry reduction. We also explicitly described the Lax pair for the KdV
hierarchy and its reduction to the linear problem for the PII hierarchy.

Many hierarchies may be associated with the same Painlevé equation. The
reason is that reductions of many different soliton PDEs may give rise to the
same Painlevé equation. Correspondingly, each PDE’s hierarchy may reduce
to a different hierarchy for that Painlevé equation. For example, PII is known
to have at least two hierarchies, one given by the above reduction of the KdV
equation [2] and another constructed from a water wave equation in [9] (see also
[8]). However, we did not describe such alternative hierarchies in this paper.

Our main focus lay on methods of deducing explicit information about
solutions of hierarchies. In particular, we reviewed the construction of peri-
odic solutions of the stationary KdV equation, in order to find solutions of
autonomous limits of the second Painlevé hierarchy.

Another motivation for this work was to fill the gap in our knowledge con-
cerning the transcendental nature of the solutions of the higher-order members
of a given Painlevé hierarchy. Painlevé’s original mathematical investigations
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were motivated by a search for higher-transcendental functions, of greater tran-
scendentality than the elliptic functions. The proof of transcendentality of the
solutions of the second-order Painlevé equations relied on sophisticated appli-
cations of differential Galois theory [22]. To our knowledge, no attempt towards
a proof has been made for higher-order cases. An outstanding question in the
field is whether the solutions of higher-order Painlevé equations (in a hierarchy)
not only give rise to yet higher transcendental functions, but whether these are
of higher transcendental nature than the solutions of the second-order cases.

Asymptotic behaviours of the solutions of the higher-order Painlevé equa-
tions provide a start towards answering such questions. In this paper, we
described the method of obtaining the hyperelliptic solutions of the stationary
KdV hierarchy through its linear problem. We also showed that these solutions
give rise to solutions of an autonomous hierarchy obtained as large parameter
limits of the second Painlevé hierarchy. Since hyperelliptic functions can be
considered to be higher transcendental functions than elliptic functions, such
behaviours appear to imply that the solutions of higher-order members of the
hierarchy must be of higher transcendental nature than those of the second-
order Painlevé equations.
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Appendix A. Compatibility of KdV Hierarchy’s Linear Problem

Here we show that the linear problem (2.9) is compatible and that the
compatibility conditions are precisely the equations of the KdV hierarchy.

− ∂U

∂t2n+1
η − (λ + U)

(
∂x

( ∑
Lk(−4λ

)n−k

) + an

)
η

+ 2(λ + U)
( ∑

Lk(−4λ)n−k
)
ηx

= ∂xxx

( ∑
Lk(−4λ)n−k

)
η + 2∂xx

( ∑
Lk(−4λ)n−k

)
ηx

+
[
∂x

( ∑
Lk(−4λ)n−k

)
+ an

]
− (λ + U)η

− 2
{

∂xx

( ∑
Lk(−4λ)n−k

)
ηx + 2∂x

( ∑
Lk(−4λ)n−k

)
− (λ + U)η +

( ∑
Lk(−4λ)n−k

)
· [−Uxη − (λ + U)ηx]

}
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Equating the coefficients of ηx and η to zero separately, we get

2(λ + U)
∑

Lk(−4λ)n−k

= 2∂xx

( ∑
Lk(−4λ)n−k

)
− 2∂xx

∑
Lk(−4λ)n−k

+2(λ + U)
∑

Lk(−4λ)n−k,

and

− ∂U

∂t2n+1
− (λ + U)

[
∂x

( ∑
Lk(−4λ)n−k

)
+ an

]
= ∂xxx

( ∑
Lk(−4λ)n−k

)
− (λ + U)

[
∂x

( ∑
Lk(−4λ)n−k

)
+ an

]
+4(λ + U)∂x

( ∑
Lk(−4λ)n−k

)
+ 2Ux

( ∑
Lk(−4λ)n−k

)
.

Hence

− ∂U

∂t2n+1
= (∂3

x + 4U∂x + 2Ux)
∑

Lk(−4λ)n−k − ∂x

n−1∑
l=−1
l=k−1

Ll+1(−4λ)n−l

= ∂x

n∑
k=0

Lk+1(−4λ)n−k − ∂x

n−1∑
l=0

Ll+1(−4λ)n−k

= ∂xLn+1.

Appendix B. Compatibility of Reduced Linear System

In this appendix, we show that the reduced linear system (2.11) is compat-
ible and that the compatibility conditions are precisely P(n)

II . We first observe

−ψ − (s + V ′ − V 2)
{

z

2s
ψz +

1
2s

[
∂

∑
L̂k(−4s)n−k + bn

]
ψ

−1
s

(∑
L̂k(−4s)n−k

)
ψz

}

=
1
s
ψzz +

z

2s
ψzzz +

1
2s

[
∂zzz

∑
L̂k(−4s)n−k

]
ψ

+
1
s
∂zz

( ∑
L̂k(−4s)n−k

)
ψz +

1
2s

(
∂z

∑
L̂k(−4s)n−k + bn

)
ψzz

−1
s
∂zz

( ∑
L̂k(−4s)n−k

)
ψz − 2

s
∂z

∑
L̂k(−4s)n−kψzz

−1
s

∑
L̂k(−4s)n−k · ψzzz
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= −1
s
(s + V ′ + V 2)ψ − z

2s

[
(V ′ − V 2)′ψ + (s + V ′ − V 2)ψz

]
+

1
2s

∑
∂zzzL̂k(−4s)n−k · ψ +

1
s

∑
∂zzL̂k(−4s)n−k · ψz

− 1
2s

( ∑
∂zL̂k(−4s)n−k + bn

)
(s + V ′ − V 2)ψ

−1
s

∑
∂zzL̂k(−4s)n−k · ψz

+
2
s

∑
∂zL̂k(−4s)n−k · (s + V ′ − V 2)ψ

+
1
s

∑
L̂k(−4s)n−k · [(V ′ − V 2)′ψ + (s + V ′ − V 2)ψz]

Note that the coefficients of ψz cancel and we are left only with coefficients of
ψ which give

− 1 − bn

2s
(s + V ′ − V 2) − (s + V ′ − V 2)

2s

∑
∂zL̂k(−4s)n−k

= −1
s
(s + V ′ − V 2) − z

2s
[(V ′ − V 2)′]

+
1
2s

∑
(∂3

z + 3(V ′ − V 2)∂z + 2(V ′ − V 2)′)L̂k(−4s)n−k

− 1
2

∑
∂zL̂k(−4s)n−k − bn

2s
(2 + V ′ − V 2) + 2

∑
∂zL̂k(−4s)n−k.

This implies∑[
∂s

z + 4(V ′ − V 2)∂z + 2(V ′ − V 2)′
]
L̂k(−4s)n−k

−
n−1∑
l=−1

∂zLl+1(−4s)n−l − 2(V ′ − V 2) − z(V ′ − V 2)′ = 0.

Hence
n∑

k=0

∂zL̂k+1(−4s)n−k −
n−1∑
l=0

∂zL̂l+1(−4s)n−l

− 2(V ′ − V 2) − z(V ′ − V 2)′ = 0,

that is,

∂zL̂n+1 − 2(V ′ − V 2) − z(V ′ − V 2) = 0.

Recalling

∂zL̂n = [∂3
z + 4(V ′ − V 2)∂z + 2(V ′′ − 2V V ′)]L̂n

= (∂z − 2V )(∂2
z + 2V ∂z + 2V ′)L̂n,
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we thus obtain

(∂z − 2V )∂z(∂z + 2V )L̂n − (∂z − 2V )(V + 2V ′) = 0,

that is,

∂z(∂z + 2V )L̂n − ∂z(zV + αn) = 0.
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large parameter. II. Multiple-scale analysis of Painlevé transcendents, in Structure of
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