
�

�

�

�

�

�

�

�

Publ. RIMS, Kyoto Univ.
40 (2004), 1063–1091

String and Vortex†

By

Toshiya Kawai
∗

Abstract

We discuss how the geometry of D2-D0 branes may be related to Gromov-Witten
theory of Calabi-Yau threefolds.

§1. Introduction

Topological sigma models, first put forward by Witten [34], have long
fascinated a number of theoretical physicists and mathematicians. Most re-
markably, the task of summing up worldsheet instantons is nowadays elegantly
formulated by the theory of Gromov-Witten invariants. Explicit computations
of them are still being actively pursued.

It goes without saying that among many possible target spaces Calabi-Yau
threefolds have played distinguished roles and are of lasting interest to string
theorists. Since the initial appreciation of the significance of D-branes there
has been the lingering hope that the Gromov-Witten theory of Calabi-Yau
threefolds might be completely rewritten in the language of BPS D-branes.

This contribution is intended for explaining the picture which, to my eye,
looks particularly attractive in this regard. This is based on the general phi-
losophy:

The geometry of D2-D0 branes (and not simply D2-branes) pro-
vides an alternative description of Gromov-Witten invariants of
Calabi-Yau threefolds.
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1064 Toshiya Kawai

What we actually imagine is very simple and intuitive: In analogy with the
(generalized) super Kac-Moody algebras we regard the string partition func-
tion as the inverse of “denominator function” and interpret the bound state
degeneracies of D2-D0 branes as the “super root multiplicities”. The Gromov-
Witten potentials are then extracted from the string partition function. In
particular, the variable y measuring D0-charge is related to the genus expan-
sion parameter κ of Gromov-Witten theory by y = exp(

√
−1κ).

This sort of idea was formerly presented in [21] when the Calabi-Yau three-
fold is elliptically fibered over a Hirzebruch surface. There, an analogy to
Borcherds products [2] was pursued. Recall that Borcherds products or their
inverses arise in some cases as the denominator functions of generalized (super)
Kac-Moody algebras. The first hint of the relevance of Borcherds products
to Gromov-Witten theory was given by Harvey and Moore [14]. I will report
further progress on the string partition functions of these elliptic Calabi-Yau
threefolds elsewhere [20].

So the first purpose of this work is simply to extend the D2-D0 picture
of [21] to general Calabi-Yau threefolds focusing on those aspects which are
believed to be independent of any particular details of the threefolds.

Some time ago Gopakumar and Vafa [10, 11] proposed an alternative re-
formulation of Gromov-Witten theory of Calabi-Yau threefolds based on the
space-time effective theory interpretation of Gromov-Witten potentials. This
claim has been influential but at the same time very mysterious (at least to the
author). The second objective of this paper is to discuss how this proposal of
Gopakumar and Vafa may actually reconcile with ours.

Quite recently, the relation between singular instantons of 6d U(1) gauge
theory and Gromov-Witten theory has been discussed [18, 24] in relation to the
topological vertex formalism [1]. This gauge theoretic approach (Donaldson-
Thomas theory) is probably a dual viewpoint of our D2-D0 picture in the
same way point-like instantons of 4d U(1) gauge theory describe D0-branes.
So, as far as the ideology is concerned, these works seem to have some overlaps
with [21] and the present work. Nevertheless, there is a marked difference in
practice: They discuss the “sum side” with a supply of explicit calculations
for local toric Calabi-Yau threefolds using the localization technique whilst
we discuss the “product side” inspired from the examples of certain elliptic
Calabi-Yau threefolds and the associated Borcherds-like products [21] [20]. It
will be very interesting (and necessary!) to investigate the existence of “sum =
product” formulas connecting both sides for a general Calabi-Yau threefold.
In fact, the topological vertex formalism of [1] seems to allow an intuitive
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understanding in terms of D2-branes and D0-branes. See §6 for comments on
this point.

I am grateful to K. Yoshioka for the collaboration in [21]. I also thank
A. Okounkov for kindly pointing out my nonsensical statement in the previous
version of the manuscript and for explaining to me the marvelous proposal of
him and his collaborators.

Notation.
For a rational function f(y) of one variable y we define ι±f(y) ∈ C((y±1))

as follows: ι+f(y) is the Laurent series of f(y) at y = 0 and ι−f(y) is that at
y = ∞. Consider, for instance, φh(y) = (y

1
2 − y− 1

2 )2h−2 for an integer h ≥ 0.
If h > 0 then ι+φh(y) and ι−φh(y) coincide in Z[y, y−1]. However,

ι±φ0(y) =
∞∑

j=1

jy±j ∈ Z[[y±1]].(1.1)

A Calabi-Yau threefold X is a complex 3-dimensional smooth projective
variety with c1(X) = 0 and h0,1(X) = h0,2(X) = 0. We assume that X is
polarized by some ample line bundle.

§2. Why D2-D0 Rather than D2?

If one ever wishes to connect Gromov-Witten theory of Calabi-Yau three-
folds to some sort of BPS D-brane counting, one might think that D2-branes
alone are relevant since Gromov-Witten theory is concerned with curve count-
ing problems. However, this is too naive and even misleading. What needs to
be emphasized is that in any attempt of this sort we have to incorporate the
effects of D0-branes in addition to D2-branes.

Take as an example the case of a resolved conifold, the total space of
OP1(−1) ⊕ OP1(−1). Since the P1 in the resolved conifold is rigid and the
Jacobian of P1 is just a point, the moduli space of D2-brane wrapping around
the P1 is also a point. If D2-branes were the only relevant D-branes, this would
mean that the Gromov-Witten theory of the resolved conifold was trivial. This
is simply absurd given the result of [4].

The origin for the necessity of D0-branes may be roughly as follows. Let
us suppose that we are trying to answer the problem of counting curves in a
Calabi-Yau threefold X. There could be several different approaches according
what we mean by counting.

In a crude approach by D-branes one may make curves “charged” by
putting line bundles, (or more generally, rank one torsion-free sheaves) on them
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and then claim, to within signs, the Euler-Poincaré characteristics of the moduli
spaces of such sheaves (regarded as torsion sheaves on X) with fixed D-brane
charges as the “numbers of curves”. Apparently, in this naive approach we are
concerned with D2-branes alone.

In Gromov-Witten theory, on the other hand, one tries to “count holo-
morphic maps” from worldsheet connected curves to target curves in X and
regard this as a good substitute of directly counting curves in X. However,
this very substitution introduces some well-known complications. One of them
is the so-called multi-covering effect. This is rather innocuous since we know
more or less how to handle it. Another complication, which seems to be more
difficult, is related to conformal invariance of the holomorphic map equation
and is known as bubbling phenomena. In order to have a nice intersection
theory one must compactify the moduli space of holomorphic maps. For this
we have to include degenerate contributions of bubble trees (bubbling of bub-
bling of . . . ). It should be precisely for this reason that we have to modify
the naive D2-brane approach by including D0-branes when one attempts to
rewrite Gromov-Witten theory in terms of D-branes. An intuitive picture of
D0-branes bound to a D2-brane is that of vortices. So morally speaking, bubble
trees turn into vortices.

§3. String Partition Function

Suppose that we are given a super Kac-Moody algebra. Let Q+ denote the
additive semigroup generated by simple roots. We write α > 0 iff α ∈ Q+ \{0}.
Any α > 0 is either even or odd. Consider

Γ : = −
∑

α>0, α:even

mult(α)e−α +
∑

α>0, α:odd

mult(α)e−α(3.1)

= −
∑
α>0

smult(α)e−α

so that α > 0 is a positive root iff smult(α) �= 0. We have

exp

(
−

∞∑
k=1

1
k

ψk(Γ)

)
=
∏
α>0

(1 − e−α)− smult(α),(3.2)

where ψk is the k-th Adams operation sending e−α to e−kα. The right hand
side is the inverse of the denominator function in the product form.

In a nutshell, what we intend to do is to make the analogy of this relation
in studying a Calabi-Yau threefold X. We express any element of H2(X, Z) ⊕
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H0(X, Z) as (β, j) where β ∈ H2(X, Z) and j ∈ Z ∼= H0(X, Z). Denote by N+

the additive semigroup of classes of effective 1-cycles (“holomorpic curves”) on
X. In other words, N+ is the intersection of the Mori cone with H2(X, Z). We
write β > 0 iff β ∈ N+ \ {0}. Similarly, for (β, j) ∈ H2(X, Z) ⊕ H0(X, Z) we
write (β, j) > 0 iff [

β > 0
]

or
[
β = 0 and j > 0

]
.(3.3)

Assume that there is a suitable Z2-grading so that any (β, j) > 0 is either even
or odd. Now let us suppose in analogy with Γ the existence of a formal sum:

ΓX = −
∑

(β,j)>0

smult(β, j)qβyj,(3.4)

where qβ is a formal symbol satisfying qβqβ′
= qβ+β′

. In the proposal be-
low, smult(β, j) is in Z/2 rather than in Z. This is to match up with the
normalization of Gromov-Witten potentials.

We next introduce the formal truncated1 free energy

F := −
∞∑

k=1

1
k

ψk(ΓX),(3.5)

where ψk is again the k-th Adams operation sending qβyj to qkβykj .
As the inverse of the “denominator function”2 we are led to consider the

following formal product

Z =
∏

(β,j)>0

(1 − qβyj)− smult(β,j).(3.6)

We might call Z as the formal truncated string partition function. However
the expected relation “Z = exp(F )” is rather problematic since, in the formal
sum (3.4), j runs over all integers when β > 0 so that powers of F are not well-
defined in general. Thus F and Z in the above should be interpreted at best as
motivating expressions. In the following we will introduce regularized versions
Z̃ and F̃ related by Z̃ = exp(F̃ ). (These are better behaved but somewhat lose
direct analogy with super Kac-Moody algebras.)

Remark. Those who are familiar with Borcherds products and their re-
lations to surfaces, say, K3 surfaces will recognize that we are trying to cook

1Here truncated means that the “Weyl vector” is truncated. See Remark 5.
2The reason we consider the inverse is that we adopt the usual rule: “even = bosonic” &
“odd = fermionic”.
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up a similar story for Calabi-Yau threefolds here. A novel and distinct point
is the introduction of H0(X, Z) in addition to H2(X, Z). I intend to further
discuss this similarity with Borcherds products in [20].

For the above analogy to be anything useful we have to know ΓX from
the geometry of X. Our basic expectation is that smult(β, j) should be, in
some way or another, identified with the (super) degeneracy of bounded D2-
D0 branes in X with a fixed D2-D0 charge (β, j). Therefore, what needs to be
done is the geometrical understanding of D2-D0 bound systems.

§4. D2-D0 and D2 Moduli Spaces

We first recall the gentlemen’s agreement [15] that even-dimensional D-
branes are related to coherent sheaves and their D-brane charges are determined
by Mukai vectors [25, 26]. We define the D-brane charge Q(E) of a coherent
sheaf E on X by Q(E) = v(E)∩[X] where v(E) = ch(E)

√
td(X) is the Mukai vec-

tor of E. We express Q(E) in the form (Q6, Q4, Q2, Q0) where Q2i ∈ H2i(X, Q).
Note that if the D-brane charge is of the form (0, 0, Q2, Q0) then (Q2, Q0) is
actually in H2(X, Z) ⊕ H0(X, Z). (There is no Witten effect.) For instance,
suppose that i : C ↪→ X is a smooth irreducible curve of genus g and L → C is a
line bundle of degree d, then Q(i∗L) = (0, 0, [C], χ(C, L)) = (0, 0, [C], d+1−g).
This is the D-brane charge of a D2-brane singly wrapping around C bound
with d D0-branes. In this paper any D2-brane is always singly wrapping by
allowing non-reduced curves.

If the D-brane charge (or equivalently the Mukai vector) is fixed, the
Hilbert polynomial is also fixed since X is assumed to be polarized. So it makes
sense to consider the moduli space M(Q) of semi-stable coherent sheaves on
X with a fixed D-brane charge Q. For simplicity let us suppose that M(Q)
consists only of stable sheaves. One well-known fact about M(Q) is that its
expected dimension

∑3
i=0(−1)i+1 dim Exti

0(E, E) vanishes because of the Serre
duality where E ∈ M(Q) and Exti

0 is the trace free part of Exti. By stabil-
ity, Ext00(E, E) ∼= {0} ∼= Ext30(E, E) and by h0,1(X) = h0,2(X) = 0, we have
Exti(E, E) = Exti

0(E, E) (i = 1, 2). The zero-dimensional virtual moduli cycle
was constructed in [31]. Its degree or virtual length λ(M(Q)) ∈ Z serves as
the “number of sheaves”. The Zariski tangent space of M(Q) at E is given
by Ext1(E, E) and the obstruction space is Ext2(E, E). Hence the Serre duality
tells us that if M(Q) is smooth, the obstruction sheaf is the cotangent bundle
of M(Q) and λ(M(Q)) = (−1)dimM(Q)χ(M(Q)).

One can also consider the Hilbert scheme Hilb(Q) with a fixed D-brane
charge Q. As usual, we have Hilb(Q) = M(Q(OX) − Q) by considering ideal
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sheaves. The moduli space of possibly disconnected D2-branes and D0-branes,
which we call the total D2-D0 moduli space, is given by∐

(Q2,Q0)

Hilb(0, 0, Q2, Q0),(4.1)

where (Q2, Q0) runs over all possible values. At first sight (4.1) seems not
to deserve its name. For instance, if an isolated D2-brane is singly wrapping
around a smooth curve C ⊂ X, there should exist degrees of freedom in how
it wraps, namely the Jacobian J(C). On the other hand in the Hilbert scheme
C is allowed to carry only OC . A possible resolution of this puzzle may be
as follows. First of all if a D2-brane wrapping singly around C is bounded
to several D0-branes, the moduli space of this bound system is given by a
symmetric product of C (as we recall later). So this part of the moduli space is
directly related to the Hilbert scheme (4.1). The pure D2-brane moduli space
J(C) is actually related to the symmetric products of C through the Abel-
Jacobi maps. So, once we start to consider both D2-branes and D0-branes
simultaneously, we should forget about J(C) and only consider the symmetric
products of C as fundamental in order not to overcount the degrees of freedom.
A more explanation is given below about how pure D2-brane moduli spaces are
related to the moduli spaces of bounded D2-D0 branes. (This is not unrelated
to the upcoming interpretation of the Gopakumar-Vafa proposal.)

A relation between λ(M(Q)) and Gromov-Witten invariants was already
hinted in [31]. A connection to the Gopakumar-Vafa invariant was conjectured
in [13]. Recently, a striking connection of λ(Hilb(Q)) to Gromov-Witten theory
has been proposed in [24].

We expect that ΓX is related to (4.1) but exactly describing this relation
seems to be a very difficult problem at the moment. Only a limited attempt
is given below. Let us call β ∈ N+ of simple class if its arithmetic genus g(β)
is non-negative and for each integer d ≥ 0 there exist a suitable D2-D0 bound
moduli space Mβ,d and a D2 moduli space Nβ,d whose properties we spell out
in the following. We assume that β = 0 is of simple class and set g(0) = 0.

The D2-D0 bound moduli space Mβ,d describes a D2-brane wrapping
around a curve of class β bound to d D0-branes. In particular we expect an
intimate connection between Mβ,d and Hilb(0, 0, β, d + 1 − g(β)). We assume
that Mβ,d is smooth and connected. As we will see shortly, it seems natural to
have

M0,d = X × Pd.(4.2)

We set Sβ := Mβ,0 for convenience. This is the moduli space of the supports
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of D2-branes. Note that S0 = X by (4.2). There should exist a morphism
Mβ,d → Sβ and

dim Mβ,d = Sβ + d.(4.3)

Moreover, there will be the universal family Cβ → Sβ which is a flat family of
curves of class β and of arithmetic genus g(β). In particular we expect

C0 = X × P1,(4.4)

where the morphism C0 → S0 is the projection. Intuitively speaking, Cβ → Sβ is
the family of curves around which D2-branes are singly wrapping. In favorable
situations it is tempting to identify Mβ,d with the relative Hilbert scheme of
points on curves

C[d]
β := Hilbd

Cβ/Sβ
.(4.5)

Since we assumed that Mβ,d is smooth, our concern is limited to a smooth C[d]
β .

Let us explain why (4.2) and (4.4) seem natural. We regard M0,d as the
moduli space of the bound system of a D2-brane and d D0-branes in the limit
where the support curve of the D2-brane is shrinking to a point. What does
the curve look like? Since we do not expect any D2-brane degree of freedom
in the end, the Jacobian of the curve must be a point. So the curve will be a
P1. With the vortex interpretation given in [21] and to be recalled later, the
moduli space of the D2-brane wrapping around P1 and d D0-branes sticked to
it should be given by the d-th symmetric product of P1 or Pd. Therefore if we
take into account the location of the shrinking P1 in X, we are led to (4.2) and
(4.4).

Let us turn to the properties of the D2 moduli space. We assume that Nβ,d

is smooth and connected. There should exist a natural morphism Nβ,d → Sβ.
Intuitively, Nβ,d is the moduli space of D2-branes singly wrapping around
fibers of Cβ → Sβ. We expect an intimate connection between Nβ,d and
M(0, 0, β, d + 1 − g(β)). We furthermore expect that Nβ,d is independent of d

and is isomorphic to Nβ := Nβ,0. We should have N0 = X. Hence N0 → S0 is
the identity map. We require the existence of a commutative diagram

(4.6)
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For β = 0 we have (4.6) by obvious morphisms. For d = 0, Mβ,0 = Sβ →
Nβ may be viewed as taking a section.

If Mβ,d = C[d]
β , one may take

Nβ,d = Pic
d

Cβ/Sβ
, Nβ = Pic

0

Cβ/Sβ
=: J̄β ,(4.7)

where Pic
d

Cβ/Sβ
is the relative compactified Picard scheme and J̄β is the relative

compactified Jacobian. Then the diagram (4.6) is replaced by

(4.8)

The morphism C[d]
β → J̄β is just the Abel-Jacobi map.

We should have

dim Nβ = dimSβ + g(β).(4.9)

This ends the list of what we demand for β to be of simple class.
We now turn to our proposal on the structure of ΓX :

Proposal 4.1. By taking into account charge conjugation symmetry, we
have

2ΓX =
∞∑

d=0

ν(0, d)yd+1(4.10)

+
∑
β>0

∞∑
d=0

ν(β, d)
(
yd+1−g(β) + y−(d+1−g(β))

)
qβ,

where ν(β, d) ∈ Z and if β is of simple class ν(β, d) = ε(β)χ(Mβ,d) with

ε(β) = (−1)dim Sβ+g(β) = (−1)dim Nβ.(4.11)

This looks like the most natural extension of what we conceived in [21].
The reason why we choose the particular sign factor (4.11) is explained below
by comparison with Gromov-Witten theory. Note that even if Mβ,d is non-
empty, χ(Mβ,d) can vanish. In our analogy with super Kac-Moody algebras
this is related to the vanishing of smult(β, j) when (β, j) is not a “positive
root”.

At the moment we do not know how exactly ν(β, d) should be described
geometrically when β is other than of simple class.
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§5. Gromov-Witten Potentials

To make contact with Gromov-Witten theory we further postulate

Assumption 5.1. For each β ∈ N+ there exists a rational function hβ(y)
with inversion symmetry hβ(y) = hβ(y−1) such that

∞∑
d=0

ν(β, d)y±(d+1−g(β)) = ι±hβ(y).(5.1)

If β is of simple class, we introduce fβ(y) by hβ(y) = ε(β)fβ(y), namely,
∞∑

d=0

χ(Mβ,d)y±(d+1−g(β)) = ι±fβ(y).(5.2)

Moreover we have the expansion of the form

hβ(y) = −
∞∑

g=0

rg
β κ2g−2,(5.3)

where y = exp(
√
−1κ) and rg

β ∈ Q.

One then observes that

2ΓX = ι+h0(y) +
∑
±

ι±
∑
β>0

hβ(y)qβ.(5.4)

So far qβ has been a formal symbol, but in Gromov-Witten theory we
should like to set qβ = exp(ω ∩ β) where ω is the complexified Kähler form of
X. Therefore, motivated by (5.4), we introduce

Γ̃X =
1
2
h0(y) +

∑
β>0

hβ(y)qβ,(5.5)

and interpret this as a power series expansion in qi := exp(ω ∩ βi) (i =
1, . . . , h1,1(X)). Here β1, . . . , βh1,1(X) ∈ H2(X, Z) are generators of the Mori
cone. In addition one may introduce the truncated free energy by

F̃ := −
∞∑

k=1

1
k

ψk(Γ̃X),(5.6)

and the truncated string partition function Z̃ := exp(F̃ ). Then, if |qβyd+1−g(β)|
� 1 for all β ≥ 0 and d ≥ 0, we have an infinite product representation:

Z̃ =
∏
β≥0

∞∏
d=0

(1 − qβyd+1−g(β))µ(β,d),(5.7)
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where

µ(β, d) =

{
1
2ν(0, d), β = 0,

ν(β, d), β > 0.
(5.8)

By (4.2) we have χ(M0,d) = (d + 1)χ(X). Hence we have µ(β, d) ∈ Z because
of χ(X) ∈ 2Z.

To discuss the relation to Gromov-Witten theory we want to set y =
exp(

√
−1κ) with κ ∈ R and |κ| very small and interpret κ as the genus ex-

pansion parameter. As above we always assume |qβ| � 1 for β > 0 in the
following3. For such expansions in κ to be possible, the truncated free energy
needs a bit of regularization:

F̃ s := −
∞∑

k=1

1
ks

ψk(Γ̃X) (s ∈ C, �(s) > 1).(5.9)

Let us introduce F s
g via the expansion F̃ s =

∑∞
g=0 κ2g−2F s

g and define

Fg := lim
s→1

F s
g , (g �= 1), F1 := lim

s→1

[
F s

1 − 1
2
r1
0

(
1

s − 1
+ γem

)]
,(5.10)

where γem is the Euler-Mascheroni constant.

Conjecture 5.1. The Gromov-Witten potentials Fg (g ≥ 0) of X are
given by

F0 = F cl
0 + F0, F1 = F cl

1 + F1, Fg = Fg (g > 1),(5.11)

where

F cl
0 =

1
3!

∫
X

ω3 , F cl
1 = − 1

24

∫
X

c2(X) ω.(5.12)

Remark. In seeking analogy with super Kac-Moody algebras κ−2F cl
0 +

F cl
1 should be interpreted as (the negative of) the “Weyl vector”. This part is

quite delicate and important.

In fact by using (5.3) we find that

Fg =
1
2
rg
0 ζ∗(3 − 2g) +

∑
β>0

rg
β Li3−2g(qβ),(5.13)

where ζ∗(s) := ζ(s) if s �= 1 and ζ∗(1) := 0. This is an expected form.
3However, as is often the case in Gromov-Witten theory we neglect the issue of conver-
gence.



�

�

�

�

�

�

�

�

1074 Toshiya Kawai

Let us give some evidence for our choice (4.11). Note first that ε(0) =
(−1)3 = −1 and

f0(y) =
χ(X)

(y
1
2 − y− 1

2 )2
.(5.14)

This enables us to calculate rg
0 explicitly. For g = 0, we have 1

2r0
0 ζ(3) =

−1
2χ(X)ζ(3). This is familiar to us. As for g > 1, the constant map contribu-

tion is correctly reproduced:

1
2
rg
0 ζ(3 − 2g) =

1
2
χ(X)(−1)g

∫
Mg,0

(λg−1)3 , (g > 1),(5.15)

where Mg,0 is the Deligne-Mumford moduli stack of stable curves of arithmetic
genus g without marked points and λg−1 is the (g − 1)-th Chern class of the
Hodge bundle over Mg,0. The relation (5.15) was conjectured physically in [10]
from M -theory interpretation and in [22] from duality to heterotic string. A
mathematical proof of (5.15) was given in [4]. An argument here from a purely
D2-D0 point of view is new.

Suppose that β is of simple class and that both Cβ and Sβ are smooth.
Assume that all the fibers of Cβ → Sβ are smooth irreducible curves of genus
g(β). Then the vortex interpretation explained below shows that

fβ(y) = χ(Sβ)(y
1
2 − y− 1

2 )2g(β)−2.(5.16)

If ε(β) = (−1)dim Sβ+g(β) we see that r
g(β)
β = (−1)dim Sβχ(Sβ) =

∫
Sβ

ctop(T∨
Sβ

).
This is consistent with Gromov-Witten theory.

§6. Comments on the “Sum Side”

Not infrequently we encounter non-trivial formulas of the form

sum=product.(6.1)

So far we have been discussing the product side. It is natural to ask what the
sum side looks like. Obviously, the sum should be taken over potentially all the
D2-D0 states. So the total D2-D0 moduli space (4.1) will be relevant. Quite
recently [18, 24], in an attempt to understand the formalism of the topological
vertex for local Calabi-Yau threefolds, the connection between singular instan-
tons of 6d U(1) gauge theory and Gromov-Witten theory has been studied.
This is expected to be another description of our D2-D0 picture studied on the
sum side. In particular, [24] treats local Calabi-Yau threefolds and evaluates,
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by the localization technique, the generating function of λ(M(Q)) for the mod-
uli spaces of ideal sheaves M(Q) = Hilb(Q(OX) − Q). This is a very explicit
and remarkable calculation.

In fact the topological vertex formalism [1, 29] fits quite nicely into the
picture of D2-D0 branes. For a local toric Calabi-Yau threefold, the relevant
sum is reduced by localization to the one over the torus-fixed configurations
of D2-D0 branes. In the approach of [1] one writes the diagram consisting
of edges and trivalent vertices. Each internal edge corresponds to a (C×)2-
fixed P1. Each vertex corresponds to a (C×)3-fixed point and is the north or
south poles of the P1’s of the internal edges emanating from it. It is clear
that the torus-fixed configurations of D2-D0 branes are such that D2-branes
are localized to the (C×)2-fixed P1’s (the internal edges) and D0-branes are
localized to the (C×)3-fixed points (the vertices). The way several D2-branes
are localized to the internal edge P1’s must be treated scheme-theoretically
and described by assigning a 2d Young diagram to each edge. Similarly, the
way D0-branes accumulate to the vertex points must also be treated scheme-
theoretically and described by assigning a 3d Young diagram to each vertex.
However the configurations of D0-branes and those of D2-branes are not inde-
pendent. How these are actually linked is specified by the rule of the topological
vertex.

It should be mentioned that having a nice sum expression does not a
priori guarantee the connection to Gromov-Witten theory. For such to exist
“sum = product” will probably have to hold. For super (generalized) Kac-
Moody algebras, this problem is related to finding the set of positive roots
among Q+, which in general is a subtle and difficult task.

Obviously, if our “product” proposal and the “sum” proposal (GW/DT
correspondence) of [24] are consistent, {ν(β, d)} and {λ(Hilb(0, 0, Q2, Q0)} must
be related. This looks plausible since both are concerned with counting D2 and
D0 branes in X. However, the precise geometrical characterization of {ν(β, d)}
is yet to be found.

§7. Comparison with Gopakumar-Vafa Proposal

In [11], Gopakumar and Vafa asserted that the D2-brane moduli spaces of
a Calabi-Yau threefold X have some characteristic properties. We considered
the D2 moduli space Nβ when β is of simple class and assumed that Nβ is
smooth. To recall the Gopakumar-Vafa proposal, let us temporarily lift the
smoothness condition of Nβ . In this slightly more general context, we cast
their claim taking into account the suggestion of [13] as follows:
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Let IH∗(Nβ) denote the intersection cohomologies of Nβ. There exists a
representation ρ : sl(2) ⊕ sl(2) → End(IH∗(Nβ)) in such a way that the re-
stricted representations ρL, ρR, ρD : sl(2) → End(IH∗(Nβ)) associated respec-
tively with the first, the second and the diagonal sl(2) subalgebras of sl(2)⊕sl(2)
have the following interpretations: ρL resp. ρR corresponds to the Lefschetz
action in the “fiber resp. base direction” of the cohomologies of Nβ → Sβ while
ρD corresponds to the usual Lefschetz action. Hence one can introduce

Λβ(y) := TrIH∗(Nβ)(−1)HDyHL ∈ Z[y, y−1],(7.1)

where HL and HD are respectively the images by ρL and ρD of the Cartan
generator of sl(2). (The eigenvalues of HL and HD are twice spins.) Note the
obvious symmetry Λβ(y−1) = Λβ(y).

According to [13], this claim is true if Nβ → Sβ is a projective morphism
between two normal projective varieties.

In the rest of the paper we only consider the cases when β’s are of simple
class. Hence Mβ,d and Nβ do exist and they are smooth and connected. When
dealing with Nβ we do not need IH∗(−) and H∗(−) will suffice.

Gopakumar and Vafa argued that Λβ(y)’s determine the Gromov-Witten
potentials of X. In particular, considering certain combinations of irreducible
representations of sl(2) to be fundamental, they expanded Λβ(y) as

ε(β)Λβ(y) =
g(β)∑
h=0

Nh
β (y

1
2 − y− 1

2 )2h.(7.2)

Then they considered that the integers Nh
β are alternative fundamental invari-

ants4. Since HD acts as the multiplication of dim Nβ − k on Hk(Nβ), we have
ε(β)Λβ(1) = χ(Nβ) = N0

β .
This claim of Gopakumar and Vafa may sound somewhat at odds with

our earlier statement: Considering D2-branes alone is insufficient. Actually
they mapped the problem into M -theory and used a physical interpretation of
space-time effective theory typically using Schwinger-like computations. This
is the reason why D0-branes secretly sneak in interprested in terms of type IIA
theory.

The consistency of our proposal with that of Gopakumar and Vafa implies

Conjecture 7.1.

fβ(y) =
ε(β)Λβ(y)

(y
1
2 − y− 1

2 )2
.(7.3)

4Their definition of the invariants differ in signs with Nh
β here.
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Remark. Since N0 = S0 = X and the “fiber direction” is void, we have
Λ0(y) = −χ(X). Consequently (7.3) is true for β = 0.

Despite its innocent looking the geometrical implication of (7.3) is rather
non-trivial since the interpretations are quite different on both sides of the
equation.

§8. Inversion Relations

Before discussing the validity of (7.3) let us pause to study purely algebraic
consequences of (7.3). We expand ι±fβ(y) as (5.2) and Λβ(y) as (7.2). If we
set

g = g(β), ed = χ(Mβ,d), mi = N
g(β)−i
β ,(8.1)

then the following proposition gives the explicit relations between χ(Mβ,d) and
Nh

β . Note that since e0 = χ(Sβ) by our definition, the relation e0 = m0 below

implies N
g(β)
β = χ(Sβ).

Proposition 8.1. Let g ≥ 0 be an integer. Suppose that sequences of
numbers {ed}∞d=0 and {mi}g

i=0 are related by

∞∑
d=0

ed y±(d+1−g) = ι±

g∑
i=0

mi (y
1
2 − y− 1

2 )2(g−i)−2.(8.2)

(A) One can express {ed}∞d=0 in terms of {mi}g
i=0 as:

∗ g = 0:

ed = (d + 1)m0, (d ≥ 0),(8.3)

∗ g = 1:

e0 = m0,(8.4)

ed = dm1, (d ≥ 1),(8.5)

∗ g ≥ 2:

ed =
d∑

i=0

(
d + i + 1 − 2g

d − i

)
mi, (g − 1 ≥ d ≥ 0),(8.6)

ed =
2g−2−d∑

i=0

(
d + i + 1 − 2g

d − i

)
mi(8.7)

+ (d + 1 − g)mg, (2g − 2 ≥ d ≥ g),

ed = (d + 1 − g)mg, (d ≥ 2g − 1).(8.8)
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(B) Conversely, {mi}g
i=0 can be expressed in terms of {ed}g

d=0 as:

∗ g = 0:

m0 = e0,(8.9)

∗ g = 1:

m0 = e0, m1 = e1,(8.10)

∗ g ≥ 2:

m0 = e0,(8.11)

mi = ei +
i−1∑
d=0

2g − 2d − 2
i − d

(
2g − i − d − 3

i − d − 1

)
ed,(8.12)

(g − 1 ≥ i ≥ 1),

mg = eg − eg−2.(8.13)

(C) If {ed}∞d=0 are integers, so are {mi}g
i=0 and vice versa.

Proof. (8.2) implies the following Taylor expansion at y = 0:

∞∑
d=0

ed yd =
g∑

i=0

mi yi(1 − y)2(g−i)−2.(8.14)

It suffices to analyze this equation.

(A) This is a consequence of straightforward binomial expansions of the right
hand side of (8.14).

(B) Since the cases g = 0 and g = 1 are obvious, we assume g ≥ 2. Notice
that (8.14) is equivalent to∑∞

d=0 ed yd

(1 − y)2g−2
=

g∑
i=0

mi

(
y

(1 − y)2

)i

.(8.15)

Then, by the Lagrange inversion formula, one finds

mi = Resy=0

[∑∞
d=0 ed yd

(1 − y)2g−2

(
y

(1 − y)2

)′(
y

(1 − y)2

)−i−1
]

(8.16)

= Resy=0

[
1 + y

(1 − y)2(g−i)−1

∞∑
d=0

ed yd−i−1

]
,

where ′ represents the derivative with respect to y. To evaluate this residue it
is better to proceed case by case:
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∗ Suppose that 2(g − i) − 1 ≤ 0. Then we actually have to have g = i and

mg = Resy=0

[
(1 − y2)

∞∑
d=0

ed yd−g−1

]
.(8.17)

It is straightforward to evaluate this residue. The result is given by (8.13).

∗ Suppose instead that 2(g − i) − 1 > 0. One uses the formula

1
(1 − y)k

=
∞∑

n=0

(
k + n − 1

n

)
yn,(8.18)

(valid for a positive integer k) to obtain

mi = Resy=0

(1 + y)
∞∑

d,n=0

(
2(g − i) + n − 2

n

)
ed yn+d−i−1

.(8.19)

If i = 0 one easily sees that m0 = e0. If i ≥ 1, the evaluation of the residue
gives

mi =
i∑

d=0

(
2g − i − d − 2

i − d

)
ed +

i−1∑
d=0

(
2g − i − d − 3

i − d − 1

)
ed,(8.20)

which can be rewritten as (8.12).

(C) This is already obvious from what we have seen in this proof.

§9. D2-D0 as Vortices

We briefly recall the vortex picture of D2-D0 branes. For more on this
see [21]. Let C ⊂ X be a smooth irreducible curve of genus g. Suppose that a
D2-brane is singly wrapping around C and d D0-branes are bound to it. Such
a BPS system may be identified with vortices on C with magnetic flux d. As
well-known the moduli space of such vortices is the d-th symmetric product
of C which we write as C(d). There exists a classical result by Macdonald on
the Euler-Poincaré characteristics of symmetric products of smooth curves. As
argued in [21], by taking into account the fact that D-brane charges must be
measured by Mukai vectors, it is more natural to consider a twisted version of
Macdonald formula:

∞∑
d=0

χ(C(d))y±(d+1−g) = ι±(y
1
2 − y− 1

2 )2g−2.(9.1)
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A naive way to treat D2-D0 branes in more general settings is to extend the
vortex picture relatively and to replace C(d) by C[d]

β . To simplify the situation
considerably we make a rather strong

Assumption 9.1. All the fibers of Cβ → Sβ are integral. We have Mβ,d =
C[d]

β and Nβ = J̄β .

Hence,
∞∑

d=0

χ(C[d]
β )y±(d+1−g(β)) = ι±fβ(y).(9.2)

From this (5.16) immediately follows.
Consider for instance the case of OP1(−1) ⊕ OP1(−1). Let [P1] denote the

class of the P1. Then,

f[P1](y) = (y
1
2 − y− 1

2 )−2,(9.3)

and fn[P1](y) = 0 for n > 1. This expression can also be obtained (in a dif-
ficult way!) either by Gromov-Witten theory [4] or by the topological vertex
formalism [1]. In §2 we said that bubble trees in Gromov-Witten theory turn
into D0-branes (vortices). It is instructive to see how this happens on this
simple example. In [4], the authors use the localization technique to evalu-
ate the Gromov-Witten invariants. This boils down to calculate the bubbling
contributions at the north and south poles of the P1. On the other hand, the
approach of the topological vertex gives a diagram consisting of one internal
edge corresponding to the P1 and two trivalent vertices corresponding to the
north and south poles. The torus-fixed D2-D0 configurations relevant to cal-
culate f[P1](y) is such that a D2-brane wraps singly around the P1 (so the 2d

Young diagram is a single box) and D0-branes are localized to the north or
south poles, i.e. the two vertices.

We also note that (9.3) has an interpretation as a two-point function of
vertex operators [12, 28] (See also [21]). This matches well with the appearance
of the Schur polynomials in the approach of [1].

In the simplified setting we assume later, we will find that fβ(y) has an
expansion of the form

fβ(y) =
g(β)∑
h=0

nh
β ϕh(y),(9.4)

with nh
β ∈ Z and ϕh(y) being a rational function. In fact there arise at least

two natural choices of basis functions ϕh(y). One choice is associated with
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Gopakumar-Vafa’s expansion (7.2) and ϕh(y) takes a simple form. The other
choice has a clear geometrical meaning but ϕh(y) takes a more complicated
form.

In [21] we studied an analogous case with X replaced by a projective K3
surface M . Corresponding to Cβ → Sβ in the present situation we considered
the universal family of curves Cn → |Dn| ∼= Pn where Dn is a smooth (integral)
curve of genus n on M . Associated to Cn → |Dn| one considers the relative
compactified Jacobian J̄n → |Dn| together with the Abel-Jacobi map C[d]

n →
J̄n. With the technical assumptions there, all the fibers of Cn → |Dn| are
integral and both C[d]

n and J̄n are smooth. In [21] we proved an exact formula
for

∞∑
d=0

χ(C[d]
n )y±(d+1−n).(9.5)

(The proof there rested on Brill-Noether theory of sheaves on K3 surfaces
developed by Yoshioka [36] and Markman [23].)

Remark. In [19], the authors tried to develop an algorithm for calcu-
lating the numbers Nh

β and in the process of this they also considered C[d]
β .

However in their treatment it played only an auxiliary role since their point of
view is that of Gopakumar-Vafa and not of the D2-D0 picture. They applied
their formalism to concrete examples and obtained satisfactory results with the
caveat that one must be careful when there are reducible fibers in the family of
curves (e.g. the case of local P2). In the following we will see that some of their
findings can be uniformly understood once one considers the relation between
the Gopakumar-Vafa picture and the D2-D0 picture.

§10. Abel-Jacobi Maps and Lefschetz Actions

Let C be a smooth irreducible curve of genus g and let J(C) be its Jacobian.
We have

(−1)g TrH∗(J(C))(−1)HyH = (y
1
2 − y− 1

2 )2g,(10.1)

where H is the image of the Cartan generator of the Lefschetz sl(2) as before.
Rather trivially, it follows that

∞∑
d=0

χ(C(d))y±(d+1−g) = ι±
(−1)g TrH∗(J(C))(−1)HyH

(y
1
2 − y− 1

2 )2
.(10.2)

What (7.3) implies is that one may proceed relatively:
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Conjecture 10.1.
∞∑

d=0

χ(C[d]
β )y±(d+1−g(β)) = ι±

ε(β)Λβ(y)
(y

1
2 − y− 1

2 )2
.(10.3)

This is not obvious at all since there can be singular fibers in Cβ → Sβ.
However, with some simplifying assumptions, this conjecture can be shown to
be true. See Theorem 12.1. Notice that one may take nh

β = Nh
β and ϕh(y) =

(y
1
2 − y− 1

2 )2h−2 in (9.4).
Conjecture 10.1 implies relations between χ(C[d]

β ) and Nh
β again by Propo-

sition 8.1. In particular, we note that (8.12) coincides with the relation claimed
in [19]. If d ≥ 2g − 1 the Abel-Jacobi map C[d]

β → J̄β is a fibration with fiber
Pd−g. Since mg = N0

β = χ(J̄β), the relation ed = (d + 1 − g)mg is just a
reflection of this projective bundle structure.

It is again instructive to see the situation for the K3 surface M as be-
fore. There is little harm5 in replacing J̄n by the Hilbert scheme of points
M [n] := Hilbn

M . When one views M [n] as a compact hyperkähler manifold6 of
real dimension 4n, there are a triple of Kähler forms ωI , ωJ , ωK and therefore
a triple of Lefschetz actions ρI , ρJ , ρK : sl(2) → End(H∗(M [n])). Accord-
ing to Verbitsky [33], ρI , ρJ , ρK generate an action of so(4, 1) on H∗(M [n]).
Gopakumar-Vafa’s sl(2) ⊕ sl(2) should be identified (with the replacement of
J̄n by M [n] understood) as a subalgebra of Verbitsky’s so(4, 1).

We choose one complex structure on M [n] thereby viewing it as an irre-
ducible holomorphic symplectic manifold of complex dimension 2n. Denote the
associated Kähler form by �. Then ρD : sl(2) → End(H∗(M [n])) should be
identified with the usual Lefschetz action. So the lowering operator of the sl(2)
is represented by the wedge operation of � and the raising one by its adjoint.
On the other hand, as we will justify shortly, ρL : sl(2) → End(H∗(M [n]))
should be identified with the holomorphic Lefschetz action first considered by
Fujiki [8]. So the lowering operator is represented by the wedge operation of a
holomorphic 2-form σ ∈ H0(M [n], Ω2

M [n]) and the raising one by its adjoint.
Apparently an analog of Λβ(y) is

Λn(y) := TrH∗(M [n])(−1)HDyHL .(10.4)

Proposition 10.1 (Thompson’s observation). With the convention
that χy(−) is meant for χ−y(−) in the original sense of Hirzebruch, we have

Λn(y) = y−nχy(M [n]).(10.5)

5As well-known they are birationally equivalent or even deformation equivalent under the
conditions in [21]. See there and references therein.

6See [16, 17] for surveys.
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Proof. Since HD acts as the multiplication of 2n−p−q on Hq(M [n], Ωp
M [n])

and we have (−1)2n−p−q = (−1)p+q, we see that Λn(y) is precisely what
Thompson writes as STr U in [32] with y being one of the eigenvalue of U ∈
SL(2, C). (Amusingly, STrU is the Rozansky-Witten invariant of a mapping
torus T 3

U if U ∈ SL(2, Z).) So (10.5) is just a consequence of his observation.

To our please we showed in [21] that

Theorem 10.1.
∞∑

d=0

χ(C[d]
n )y±(d+1−n) = ι±

y−nχy(M [n])
(y

1
2 − y− 1

2 )2
.(10.6)

(This was proved by comparing our formula for χ(C[d]
n ) and the formula

for χy(M [n]) proved earlier by Göttsche and Soergel [9].) Note that what
corresponds to ε(β) is (−1)2n = 1.

§11. Hilbert Schemes of Points on Nodal Curves

As a preparation for the next section we make a digression to study Hilbert
schemes of points on nodal curves. It is well-known that C [d] := Hilbd

C coincides
with C(d) if C is smooth. This, however, is not the case when C is singular.
Suppose that Cg,δ is an integral curve of arithmetic genus g having δ nodes
and no other singularities. In this case we say that Cg,δ is δ-nodal. Note
that g ≥ δ ≥ 0. Let ν : C̃g,δ → Cg,δ be the normalization. Then χ(Cg,δ) =
χ(C̃g,δ) − δ = 2 − 2(g − δ) − δ = 2 + δ − 2g. In general

χ(C(d)
g,δ ) =

(
d + 1 + δ − 2g

d

)
.(11.1)

For the Hilbert schemes we have to find the necessary correction terms to this
formula, which we now turn to.

We introduce the standard notation for multinomial coefficients.(
a1 + · · · + an

a1, . . . , an

)
:=

(a1 + · · · + an)!
a1! · · · an!

, a1 ≥ 0, · · · , an ≥ 0.(11.2)

Recall that a partition is any sequence λ = (λ1, λ2, . . . ) of non-negative
integers in non-increasing order and containing only finitely many non-zero
terms. Then |λ| =

∑
i λi is the weight of λ and we say λ is a partition of d

if |λ| = d. When λ is a partition of d, we also use an alternative notation
λ = (1δ12δ2 · · · dδd) where δ� = #{i | λi = �} is the multiplicity of � in λ. (Note
that δ� might be zero.) We set δ̌1 = δ2 + · · · + δd for convenience.
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If λ = (1δ12δ2 · · · dδd) is a partition of d, we define Aλ by

Aλ = 1, (d = 0, 1) , Aλ =
d∏

�=2

(� − 1)δ� , (d > 1).(11.3)

Proposition 11.1.

χ(C [d]
g,δ) =

∑
λ=(1δ1 ···dδd )

|λ|=d, δ̌1≤δ

Aλ

(
δ

δ − δ̌1, δ2, . . . , δd

)(
δ1 + 1 + δ − δ̌1 − 2g

δ1

)
.(11.4)

Proof. We assume d > 1 since otherwise the assertion is trivial.
Let N be the zero-dimensional subscheme of the nodes on Cg,δ so that its

length is #N = δ. For a given partition λ = (1δ1 · · · dδd) such that δ ≥ δ̌1 we
partition N into mutually disjoint union N =

∐d
�=1 N λ

� with #N λ
1 = δ− δ̌1 and

#N λ
� = δ� (� > 1). In C

(d)
g,δ we consider configurations where a multiplicity �

point collides with each node of N λ
� for each � > 1. Then C

[d]
g,δ differs from C

(d)
g,δ

in that at each node of N λ
� a multiplicity � point is replaced by the punctual

Hilbert scheme of length �.
After some mental exercise, χ(C [d]

g,δ) is then found to be

∑
λ=(1δ1 ···dδd )

|λ|=d, δ̌1≤δ

∑
N=
∐d

�=1 Nλ
�

χ

((
Cg,δ \

∐d
�=2N λ

�

)(δ1)

)
d∏

�=2

(χ(H�) − 1)δ�,(11.5)

where H� is the punctual Hilbert scheme of length � supported at a node. To
proceed we have to calculate χ(H�). According to Ran [30], H� is a rational
chain

H�
∼= R1 ∪

p1
R2 ∪

p2
· · · ∪

p�−2
R�−1,(11.6)

where R1, . . . , R�−1 are P1’s and p1, . . . , p�−2 are nodes. Therefore χ(H�) =
(� − 1) × 2 − (� − 2) = � and we understand why the factor Aλ arises.

Next we easily see that

χ((Cg,δ \
∐d

�=2N λ
� )(δ1)) =

(
δ1 + 1 + δ − δ̌1 − 2g

δ1

)
.(11.7)

Finally, it should be noticed that there are
(

δ
δ−δ̌1,δ2,...,δd

)
ways to partition

N into
∐d

�=1 N λ
� .
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The above formula of χ(C [d]
g,δ) is rather complicated and not that convenient

in practice. Actually there exists a neat formula for the generating function as
we explain below. However, before going to that, it will be worthwhile (and
fun!) to look at several examples of this formula:

χ(Cg,δ) = 2 + δ − 2g

χ(C [2]
g,δ) =

(
3+δ−2g

2

)
+ δ

χ(C [3]
g,δ) =

(
4+δ−2g

3

)
+ δ(1 + δ − 2g) + 2δ

These agree with the sample computations of [19]. We can give further
examples:

χ(C [4]
g,δ) =

(
5+δ−2g

4

)
+ δ
(
2+δ−2g

2

)
+
(
δ
2

)
+ 2δ(1 + δ − 2g) + 3δ

χ(C [5]
g,δ) =

(
6+δ−2g

5

)
+ δ
(
3+δ−2g

3

)
+
(
δ
2

)
(δ − 2g)

+ 2δ
(
2+δ−2g

2

)
+ 2δ(δ − 1) + 3δ(1 + δ − 2g)

+ 4δ

χ(C [6]
g,δ) =

(
7+δ−2 g

6

)
+ δ

(
4+δ−2 g

4

)
+

(
δ
2

)(
1+δ−2 g

2

)

+
(
δ
3

)
+ 2 δ

(
3+δ−2 g

3

)
+ 2 δ (δ − 1) (δ − 2 g)

+ 22
(
δ
2

)
+ 3 δ

(
2+δ−2 g

2

)
+ 3 δ (δ − 1)

+ 4 δ (1 + δ − 2 g) + 5 δ
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Let us now turn to the generating function:

Proposition 11.2.
∞∑

d=0

χ(C [d]
g,δ)y

±(d+1−g) = ι± (y
1
2 − y− 1

2 )2g−2
(
1 + (y

1
2 − y− 1

2 )−2
)δ

.(11.8)

Proof. By eliminating the sum over δ1 in (11.4) one obtains that

χ(C [d]
g,δ) =

∑
δ2≥0,...,δd≥0
∑

�≥2 �δ�≤d
∑

�≥2 δ�≤δ

(
δ∑

�≥2 δ�

)( ∑
�≥2 δ�

δ2, . . . , δd

)( d∏
�=2

(� − 1)δ�

)
(11.9)

×
(

d −
∑

�≥2 �δ� + 1 + δ −
∑

�≥2 δ� − 2g

d −
∑

�≥2 �δ�

)
.

Then consideration of the generating function leads to

∞∑
d=0

χ(C [d]
g,δ)y

d =
δ∑

k=0

∑
δ2≥0,δ3≥0,...

k=
∑

�≥2 δ�

(
δ

k

)(
k

δ2, δ3, . . .

)
(11.10)

×

∏
�≥2

(� − 1)δ�

 y
∑

�≥2 �δ�(1 − y)2g−δ+k−2,

where we understand the sequence δ2, δ3, . . . contains only finitely many non-
zero terms. The right hand side can be rewritten as

(1 − y)2g−δ−2
δ∑

k=0

(
δ

k

)
(11.11)

×
∑

δ2≥0,δ3≥0,...

k=
∑

�≥2 δ�

(
k

δ2, δ3, . . .

)∏
�≥2

{
(� − 1)y�(1 − y)

}δ�
.

The multinomial theorem simplifies this as

(1 − y)2g−δ−2
δ∑

k=0

(
δ

k

)∑
�≥2

(� − 1)y�(1 − y)

k

.(11.12)

By summing up the geometric series one obtains

(1 − y)2g−δ−2
δ∑

k=0

(
δ

k

)(
y2

1 − y

)k

.(11.13)
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By the binomial theorem this is equal to

(1 − y)2g−δ−2

(
1 +

y2

1 − y

)δ

.(11.14)

It thus follows that
∞∑

d=0

χ(C [d]
g,δ)y

d = (1 − y)2g−2

(
1 +

y

(1 − y)2

)δ

.(11.15)

To see that this leads to (11.8) is easy.

Let J(Cg,δ) be the generalized Jacobian of Cg,δ and J(Cg,δ) its compacti-
fication.

Proposition 11.3.

(−1)g TrH∗(J(Cg,δ))(−1)HyH = (y
1
2 − y− 1

2 )2(g−δ)
(
(y

1
2 − y− 1

2 )2 + 1
)δ

.

(11.16)

Proof. This is (with a correction of sign) implicit in [19]. (See the dis-
cussion around eq. (5.8) of [19].) We have an exact sequence of commutative
algebraic groups7

1 → (C×)δ → J(Cg,δ)
ν∗
−→ J(C̃g,δ) → 1.(11.17)

Hence J(Cg,δ) is the product of J(C̃g,δ) and the compactification of (C×)δ.
The latter is given by

(P1)δ/ ∼ ∼= (C∗)δ,(11.18)

where ∼ is a certain equivalence relation essentially identifying 0 and ∞ of each
P1 and C∗ is a rational curve with a single node. See IIIb, §5 in [27] for an
exposition. Since C∗ is obtained by pinching a homologically non-trivial 1-cycle
from an elliptic curve, we obtain

(−1) TrH∗(C∗)(−1)HyH = (y
1
2 − y− 1

2 )2 + 1.(11.19)

Combining this with

(−1)g−δ TrH∗(J(C̃g,δ))(−1)HyH = (y
1
2 − y− 1

2 )2(g−δ),(11.20)

we easily obtain (11.16).

The following may be viewed as an extension of (10.2).
7A line bundle on Cg,δ can be obtained from one on C̃g,δ by gluing the fibers over those

points on C̃g,δ which are identified to form nodes on Cg,δ. For each node the ways to
glue two lines are parametrized by GL(1,C) = C×.
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Theorem 11.1.
∞∑

d=0

χ(C [d]
g,δ)y

±(d+1−g) = ι±
(−1)g TrH∗(J(Cg,δ))(−1)HyH

(y
1
2 − y− 1

2 )2
.(11.21)

Proof. An immediate consequence of Proposition 11.2 and Proposition
11.3.

§12. Severi Varieties

We now investigate how the fibration structure of Cβ → Sβ is directly
reflected to properties of fβ(y). We start by

Definition 12.1. The Severi variety of δ-nodal curves is defined by

Vβ,δ = {x ∈ Sβ | (Cβ)x has δ nodes and no other singularities},(12.1)

where (Cβ)x is the fiber over x.

Severi varieties were originally studied by Severi (and corrected by Harris)
for curves of fixed degrees in P2. There are numerous works on Severi varieties
of other surfaces. See for instance [3, 5]. Here we are extending the definition
for Calabi-Yau threefolds assuming an appropriate family of curves Cβ → Sβ.
For attempts in defining Severi varieties of threefolds see [6, 7] and references
therein. One of the principal issues in the studies of Severi varieties is whether
or not they are regular. The standard way to investigate this is to resort to
a deformation theory. There are many works for surfaces and these show that
in most cases Severi varieties of surfaces are regular but a care is needed when
they are of general type. See again [3, 5]. If Vβ,δ is regular, the δ nodes can
be independently smoothed and dim Vβ,δ = dimSβ − δ. Below we assume the
regularity of Vβ,δ for simplicity so that χ(Vβ,δ) is meaningful.

In order to appreciate the roles of the Severi varieties we wish to add one
more strong

Assumption 12.1. All the singular fibers of Cβ → Sβ are nodal. Hence,
Sβ =

∐g(β)
δ=0 Vβ,δ.

In this ideal situation,

Proposition 12.1.
∞∑

d=0

χ(C[d]
β )y±(d+1−g(β))(12.2)

= ι±

g(β)∑
δ=0

χ(Vβ,δ) (y
1
2 − y− 1

2 )2g(β)−2
(
1 + (y

1
2 − y− 1

2 )−2
)δ

.
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Proof. By our assumptions, we see (as in [35])

∞∑
d=0

χ(C[d]
β )y±(d+1−g(β)) =

g(β)∑
δ=0

χ(Vβ,δ)
∞∑

d=0

χ(C [d]
g(β),δ)y

±(d+1−g(β)),(12.3)

where Cg(β),δ is any integral δ-nodal curve of arithmetic genus g(β). Then
(12.2) follows immediately from Proposition 11.2.

Notice that (12.2) gives another expansion of the form (9.4). We have now
reached the main assertion:

Theorem 12.1. Under our assumptions Conjecture 10.1 is true.

Proof. Observe that

ε(β)Λβ(y) = ε(β)
g(β)∑
δ=0

(−1)dim Sβχ(Vβ,δ) TrH∗(J(Cg(β),δ))(−1)HyH(12.4)

=
g(β)∑
δ=0

χ(Vβ,δ)(−1)g(β) Tr
H∗(J(Cg(β),δ))

(−1)HyH ,

where Cg(β),δ is again any integral δ-nodal curve of arithmetic genus g(β). Use
(12.3), (12.4) and Theorem 11.1.

The relations between χ(Vβ,δ) and Nh
β are as follows:

Proposition 12.2.

N
g(β)−i
β =

g(β)∑
δ=i

(
δ

i

)
χ(Vβ,δ),(12.5)

χ(Vβ,δ) =
g(β)∑
i=δ

(−1)i+δ

(
i

δ

)
N

g(β)−i
β .(12.6)

In particular, we have

N
g(β)
β =

g(β)∑
δ=0

χ(Vβ,δ) = χ(Sβ) , N0
β = χ(Vβ,g(β)) = χ(J̄β).(12.7)

Proof. To prove (12.5) it suffices to binomially expand (· · · )δ on the right
hand side of (12.2) and then notice

g(β)∑
δ=0

δ∑
i=0

=
g(β)∑
i=0

g(β)∑
δ=i

.(12.8)
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The inversion relation that leads to (12.6) is well-known. The last equality in
(12.7) is due to a Yau-Zaslow type argument [35].

The way Gopakumar and Vafa introduced Nh
β was representation theoretic

and was driven by the motivation of finding a convenient expansion basis as in
(7.2). However, to the best of my understanding, the direct geometrical char-
acterization of Nh

β has not yet been available. The relation (12.5) seems to give

an intuitive feeling about the geometrical meaning of N
g(β)−i
β . In general, one

can produce a node on a curve by pinching a handle or gluing two points. Con-
versely given a δ-nodal curve of arithmetic genus g(β) one can make a smooth
curve of genus g(β) − i, where i ≤ δ, by ungluing (or partially normalizing) i

nodes and unpinching δ − i nodes. Of course there are
(
δ
i

)
ways to choose such

i nodes from the entire nodes of the curve.

Remark. If Vβ,δ = ∅ for all δ > i then N
g(β)−i
β = χ(Vβ,i). This was

the claim in [19]. However, such an assumption depends on i and cannot be
satisfied for all i simultaneously unless everything is empty. In general the
relation between Nh

β and χ(Vβ,δ) has to be as above.

To summarize, in our extremely ideal situation we can declare any of

{χ(C[d]
β )}g(β)

d=0 , {Nh
β }

g(β)
h=0 , {χ(Vβ,δ)}g(β)

δ=0,(12.9)

as a fundamental set of invariants. They can be converted from one to another.
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[9] Göttsche, L. and Soergel, W., Perverse sheaves and the cohomology of Hilbert schemes
of smooth algebraic surfaces, Math. Ann., 296 (1993), 235-245.



�

�

�

�

�

�

�

�

String and Vortex 1091

[10] Gopakumar, R. and Vafa, C., M-theory and topological strings–I, Preprint, hep-
th/9809187.

[11] , M-theory and topological strings–II, Preprint, hep-th/9812127.
[12] Grojnowski, I., Instantons and affine algebras I: the Hilbert scheme and vertex operators,

Math. Res. Lett., 3 (1996), 275-291, alg-geom/9506020.
[13] Hosono, S., Saito, M.-H. and Takahashi, A., Relative Lefschetz action and BPS state

counting, Internat. Math. Res. Notices, 15 (2001), 783-816, math.AG/0105148.
[14] Harvey, J. A. and Moore, G., Algebras, BPS states, and strings, Nucl. Phys. B, 463

(1996), 315-368, hep-th/9510182.
[15] , On the algebras of BPS states, Comm. Math. Phys., 197 (1998), 489-519,

hep-th/9609017.
[16] Huybrechts, D., Compact hyper-Kähler manifolds: basic results, Invent. Math., 135

(1999), 63-113; Erratum, ibid., 152 (2003), 209-212.
[17] , Compact hyperkähler manifolds, Calabi-Yau manifolds and related geometries

(Nordfjordeid, 2001), Springer, 2003, pp. 161-225.
[18] Iqbal, A., Nekrasov, A., Okounkov, A. and Vafa, C., Quantum Foam and Topological

Strings, hep-th/0312022.
[19] Katz, S., Klemm, A. and Vafa, C., M-theory, topological strings and spinning black

holes, Adv. Theor. Math. Phys., 3 (1999), 1445-1537, hep-th/9910181.
[20] Kawai, T., in preparation.
[21] Kawai, T. and Yoshioka, K., String partition functions and infinite products, Adv. Theor.

Math. Phys., 4 (2000), 397-485, hep-th/0002169.
[22] Mariño, M. and Moore, G., Counting higher genus curves in a Calabi-Yau manifold,

Nucl. Phys. B, 543 (1999), 592-614, hep-th/9808131.
[23] Markman, E., Brill-Noether duality for moduli spaces of sheaves on K3 surfaces, J.

Algebraic Geom., 10 (2001), 623-694, math.AG/9901072.
[24] Maulik, D., Nekrasov, N., Okounkov, A. and Pandharipande, P., Gromov-Witten theory

and Donaldson-Thomas theory, math.AG/0312059.
[25] Mukai, S., Symplectic structure of the moduli space of sheaves on an abelian or K3

surface, Invent. Math., 77 (1984), 101-106.
[26] , On the moduli space of bundles on K3 surfaces I, Vector bundles on algebraic

varieties, (1987) Tata. Inst. Fund. Res., 1987, pp. 341-413.
[27] Mumford, D., Tata Lectures on Theta II, Progr. Math., 43 Birkhäuser, 1984.
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