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Abstract

Discrete convex analysis, which is a unified framework of discrete optimization, is
being recognized as a basic tool for mathematical economics. This paper surveys the
recent progress in applications of discrete convex analysis to mathematical economics.

§1. Introduction

Discrete convex analysis, proposed by Murota [25, 26], is a unified frame-
work of discrete optimization. Recently, applications of discrete convex analysis
to mathematical economics have been investigated. The aim of this paper is to
survey the following recent progress on this topic.

The concepts of M-convex functions due to Murota [25, 26] and M�-convex
functions due to Murota and Shioura [30], which play central roles in discrete
convex analysis, are being recognized as nice discrete convex functions from
the point of view of mathematical economics. For instance, for set functions,
Fujishige and Yang [15] showed that M�-concavity is equivalent to the gross sub-
stitutability and the single improvement property which are equivalent to each
other for set functions [17] and are nice in the following sense. These properties
guarantee the existence of the core of several models, e.g., a matching model
proposed by Kelso and Crawford [21]. Relations among these three properties
were extended to the general case by Danilov, Koshevoy and Lang [3] and by
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Murota and Tamura [33]. Furthermore, Farooq and Tamura [9] characterized
M�-concave set functions by using the substitutability which guarantees the
existence of a stable matching of generalized stable marriage models due to
Roth [35, 36], Sotomayor [41], Alkan and Gale [1] and Fleiner [11].

On the other hand, economic models based on M�-concave utility functions
have been proposed. Danilov, Koshevoy and Murota [5] provided a model based
on discrete convex analysis and showed the existence of a competitive equilib-
rium in an exchange economy with indivisible commodities when the utility
function of each agent is quasilinear in money and its reservation value func-
tion is M�-concave. Murota and Tamura [34] proposed an efficient algorithm
for finding a competitive equilibrium of the Danilov-Koshevoy-Murota model.
Danilov, Koshevoy and Lang [4] showed the existence of a competitive equilib-
rium in a model in which commodities are partitioned into two groups: substi-
tutes and complements. B. Lehmann, D. Lehmann and Nisan [22] discussed a
combinatorial auction with M�-concave utilities. Eguchi and Fujishige [6] ex-
tended the stable marriage model to the framework of discrete convex analysis.
Eguchi, Fujishige and Tamura [7] extended the Eguchi-Fujishige model so that
indifference on preferences and multiple partnerships are allowed. Fujishige and
Tamura [14] proposed a common generalization of the stable marriage model
and the assignment model by utilizing M�-concave utilities and verified the
existence of a stable solution of their general model.

The present paper is organized as follows. Section 2 briefly introduces
known results on M-/M�-concave functions. Section 3 discusses relations among
the gross substitutability, the single improvement property, the substitutability
and M�-concavity. Section 4 overviews two-sided matching market models.
Sections 5, 6, 7, 8 and 9 explain the above-mentioned economic models based
on discrete convex analysis. In Section 10, we give several open problems.

§2. M-/M�-Concavity

Since a utility function is usually assumed to be concave in mathemati-
cal economics, we review several definitions and known results on M-concave
functions and M�-concave functions.

Let V be a nonempty finite set, and let Z and R be the sets of integers and
reals, respectively. We denote by ZV the set of integral vectors x = (x(v) : v ∈
V ) indexed by V , where x(v) denotes the vth component of vector x. Also, RV

denotes the set of real vectors indexed by V . We define the positive support
and negative support of z = (z(v) : v ∈ V ) ∈ ZV by

supp+(z) = {v ∈ V | z(v) > 0} and supp−(z) = {v ∈ V | z(v) < 0}.
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For each S ⊆ V , we denote by χS the characteristic vector of S defined by
χS(v) = 1 if v ∈ S; otherwise χS(v) = 0, and write simply χu instead of χ{u}
for each u ∈ V . For a vector p ∈ RV and a function f : ZV → R ∪ {±∞}, we
define functions 〈p, x〉 and f [p](x) by

〈p, x〉 =
∑
v∈V

p(v)x(v) and f [p](x) = f(x) + 〈p, x〉

for all x ∈ ZV and define the set of maximizers of f and the effective domain
of f by

arg max f = {x ∈ ZV | f(x) ≥ f(y) (∀y ∈ ZV )},
domf = {x ∈ ZV | −∞ < f(x) < +∞}.

A function f : ZV → R ∪ {−∞} with domf 
= ∅ is called M-concave
[25, 26] if it satisfies

(−M-EXC) for all x, y ∈ domf and all u ∈ supp+(x − y), there exists v ∈
supp−(x − y) such that

f(x) + f(y) ≤ f(x − χu + χv) + f(y + χu − χv).

From (−M-EXC), the effective domain of an M-concave function lies on a hy-
perplane {x ∈ RV | x(V ) = constant}, where x(V ) =

∑
v∈V x(v).

The concept of M�-concavity is a variant of M-concavity. Let 0 denote a
new element not in V and define V̂ = {0}∪V . A function f : ZV → R∪{−∞}
with domf 
= ∅ is called M�-concave [30] if it is expressed in terms of an M-
concave function f̂ : ZV̂ → R ∪ {−∞} as: for all x ∈ ZV

f(x) = f̂(x0, x) with x0 = −x(V ).

Namely, an M�-concave function is a function obtained as the projection of
an M-concave function. Conversely, an M�-concave function f determines the
corresponding M-concave function f̂ by

f̂(x0, x) =

{
f(x) if x0 = −x(V )
−∞ otherwise

for all (x0, x) ∈ ZV̂ . An M�-concave function can also be defined by using an
exchange property.

Theorem 2.1 [30]. A function f : ZV → R ∪ {−∞} with domf 
= ∅ is
M�-concave if and only if it satisfies



�

�

�

�

�

�

�

�

1018 Akihisa Tamura

(−M�-EXC) for all x, y ∈ domf and all u ∈ supp+(x − y), there exists v ∈
{0} ∪ supp−(x − y) such that

f(x) + f(y) ≤ f(x − χu + χv) + f(y + χu − χv),

where we assume χ0 is the zero vector on V .

Whereas the concept of M�-concavity is equivalent to that of M-concavity
as above, Theorem 2.1 and the definition of M-concavity imply that an M-
concave function is M�-concave. That is, we have

f : (−M�-EXC) ⇐⇒ f̂ : (−M-EXC) =⇒ f̂ : (−M�-EXC).

In the sequel, we concentrate an M�-concave function and assume that its
function value for each point can be calculated in constant time.

The maximizers of an M�-concave function has a good characterization.

Theorem 2.2 [25, 26]. For an M�-concave function f : ZV → R ∪
{−∞} and x ∈ domf , x ∈ arg max f if and only if f(x) ≥ f(x − χu + χv) for
all u, v ∈ {0} ∪ V .

Theorem 2.2 says that we can check whether a given point x is a maximizer
of f or not in O(|V |2) time. Furthermore, it is known that a problem of
maximizing an M�-concave function f can be solved in polynomial time in |V |
and log L, where L = max{||x − y||∞ | x, y ∈ domf} (see [45, 40]).

The sum of two M�-concave functions is not M�-concave in general. So
we need a sophisticated characterization for the maximizers of the sum of two
M�-concave functions.

Theorem 2.3 [25]. For M�-concave functions f1, f2 : ZV → R∪{−∞}
and a point x∗ ∈ domf1 ∩ domf2, we have x∗ ∈ arg max(f1 + f2) if and only if
there exists p∗ ∈ RV such that x∗ ∈ arg max f1[+p∗] and x∗ ∈ arg max f2[−p∗],
and furthermore, for such p∗, we have

arg max(f1 + f2) = arg max(f1[+p∗]) ∩ arg max(f2[−p∗]).

We call the problem of maximizing the sum of two M�-concave functions
the M�-concave intersection problem. It is known that the M�-concave in-
tersection problem for integer-valued M�-concave functions can be solved in
polynomial time (see [19, 18]).

The integer convolution f of a finite family {fi | i ∈ I} of M�-concave
functions defined by

f(x) = sup

{∑
i∈I

fi(xi)
∣∣∣ ∑

i∈I

xi = x, xi ∈ ZV (∀i ∈ I)

}
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for all x ∈ ZV is also M�-concave [25]. It is known that the problem of calcu-
lating f(x) for a given x is transformed to the M�-concave intersection problem
(e.g., see [29]).

§3. M�-Concavity in Mathematical Economics

In this section, we describe nice features of an M�-concave function as a
utility function from the point of view of mathematical economics.

For a function f : ZV → R ∪ {−∞}, its concave closure f is defined by

f(z) = inf
p∈RV ,α∈R

{〈p, z〉 + α | 〈p, y〉 + α ≥ f(y) (∀y ∈ ZV )}

for all z ∈ ZV . We say that f is concave-extensible if f(x) = f(x) for all
x ∈ ZV . An M�-concave function deserves its name in the following sense.

Lemma 3.1 [25]. An M�-concave function is concave-extensible.

A utility function generally has decreasing marginal returns, which is
equivalent to submodularity in the binary case. This is also the case with
an M�-concave function.

Lemma 3.2 [32]. An M�-concave function f is submodular, i.e.,

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y)

for all x, y ∈ domf , where vectors x∨ y and x∧ y are defined by: for all v ∈ V

(x ∨ y)(v) = max{x(v), y(v)}, (x ∧ y)(v) = min{x(v), y(v)}.

We now consider natural generalizations of the gross substitutability and
the single improvement property which were originally proposed for set func-
tions by Kelso and Crawford [21] and Gul and Stacchetti [17], respectively.

(−GSw) For all p, q ∈ RV and all x ∈ domf such that p ≤ q, x ∈ arg max f [−p]
and arg max f [−q] 
= ∅, there exists y ∈ arg max f [−q] such that y(v) ≥
x(v) for all v with p(v) = q(v).

(−GS) For all (p0, p), (q0, q) ∈ R{0}∪V and all x ∈ domf such that (p0, p) ≤
(q0, q), x ∈ arg max f [−p + p01] and arg max f [−q + q01] 
= ∅, there exists
y ∈ arg max f [−q + q01] such that y(v) ≥ x(v) for all v with p(v) = q(v)
and y(V ) ≤ x(V ) if p0 = q0, where 1 denotes the vector of all ones.
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(−SWGS) For all p ∈ RV , all x ∈ arg max f [−p] and all v ∈ V , one of the
following statements holds:

(i) x ∈ arg max f [−p − αχv] for all α > 0,

(ii) there exist α > 0 and y ∈ arg max f [−p−αχv] such that y(v) = x(v)−1
and y(u) ≥ x(u) for all u ∈ V \ {v}.

(−SIw) For all p ∈ RV and all x ∈ domf with x 
∈ arg max f [−p], there exist
u, v ∈ {0} ∪ V such that f [−p](x) < f [−p](x − χu + χv).

(−SI) For all p ∈ RV and all x, y ∈ domf with f [−p](x) < f [−p](y),

f [−p](x) < max
u∈{0}∪supp+(x−y)

max
v∈{0}∪supp−(x−y)

f [−p](x − χu + χv).

We are primarily interested in the case where domf is bounded. Then, for any
p ∈ RV , arg max f [−p] is nonempty. The above properties are interpreted as
follows. Here, we assume that V denotes the set of indivisible commodities, x ∈
ZV the numbers x(v) of commodities v consumed by a consumer and f a utility
function of the consumer. Property (−GSw) states that if the price vector is
increased from p to q then the consumer still wants to consume at least the same
numbers of the commodities whose prices remain the same. (−GS) says that
when prices increase (p ≤ q and p0 = q0), the consumer wants a consumption
such that the numbers of the commodities whose prices remain the same do not
decrease and the total number of commodities does not increase. (−GS) also
says that when all prices decrease by the same amount (p = q and p0 < q0),
the consumer wants at least the same number of each commodity. Obviously,
the property (−GS) is stronger than (−GSw). (−SWGS) is interpreted as
follows: when the price of commodity v is slightly increased, the consumer wants
either (i) the same consumption or (ii) a consumption in which the number
of commodity v is decreased by exactly one and the numbers of the other
commodities are not decreased. (−SIw) states that a nonoptimal consumption
x can be improved strictly by either removing a commodity from x, adding
a commodity to x, or doing both. Moreover, (−SI) is stronger than (−SIw)
in the sense that the consumer can bring consumption x nearer to any better
consumption y.

Properties (−GSw) and (−SIw) for functions on {0, 1}-hypercubes corre-
spond to the gross substitutability and the single improvement property for
set functions, respectively. We note that the equivalence between the gross
substitutability and the single improvement property for set functions was first
pointed out by Gul and Stacchetti [17], and that the equivalence between the
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single improvement property and M�-concavity for set functions was by Fu-
jishige and Yang [15]. (−SWGS) was given by Danilov, Koshevoy and Lang [3]
and the other properties by Murota and Tamura [33]. An M�-concave func-
tion satisfies these properties, and furthermore, it is characterized by these
properties.

Theorem 3.1 [33]. For a concave-extensible function f : ZV → R ∪
{−∞} with a bounded nonempty effective domain, f is M�-concave if and only
if it satisfies (−GS).

Theorem 3.2 [3]. For a concave-extensible function f : ZV → R ∪
{−∞} with a nonempty effective domain, f is M�-concave if and only if it
satisfies (−SWGS).

Theorem 3.3 [33]. For a function f : ZV → R ∪ {−∞} with a non-
empty effective domain, f is M�-concave if and only if it satisfies (−SI).

For a set function, we have the following result.

Theorem 3.4 [33]. For f : {0, 1}V → R ∪ {−∞} with a nonempty
effective domain1, we have

(−M�-EXC) ⇔ (−SI) ⇔ (−SIw) ⇔ (−GS) ⇔ (−GSw).

We next discuss relations between the substitutability and M�-concavity.
Eguchi, Fujishige and Tamura [7] and Fujishige and Tamura [14] showed that
M�-concavity implies the substitutability in the following sense.

Lemma 3.3 [7, 14]. An M�-concave function satisfies the following
properties.

(−SC1) For any z1, z2 ∈ ZV such that z1 ≥ z2 and arg max{f(y) | y ≤ z2} 
= ∅,
if x1 ∈ arg max{f(y) | y ≤ z1}, then there exists x2 such that

x2 ∈ arg max{f(y) | y ≤ z2}, z2 ∧ x1 ≤ x2.

(−SC2) For any z1, z2 ∈ ZV such that z1 ≥ z2 and arg max{f(y) | y ≤ z1} 
= ∅,
if x2 ∈ arg max{f(y) | y ≤ z2}, then there exists x1 such that

x1 ∈ arg max{f(y) | y ≤ z1}, z2 ∧ x1 ≤ x2.

1The original statement in [33] assumes that domf = {0, 1}V . However, the proof in [33]
is valid for the above case.
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The properties (−SC1) and (−SC2) are interpreted as follows. (−SC1)
says that when the consumable quota of each commodity decreases or remains
the same, the consumer wants a consumption such that the numbers of the
commodities whose quotas remain the same do not decrease. (−SC2) says
that when each quota increases or remains the same, the consumer wants a
consumption such that the numbers of the commodities which fail to fill the
original quotas do not increase. If f is a set function (i.e., is defined on the
hypercube {0, 1}V ) then (−SC1) and (−SC2) are equivalent to conditions of
substitutability in Sotomayor [41, Definition 4], and if arg max always gives a
singleton (in this case (−SC1) and (−SC2) coincide) then these are equivalent
to persistence (substitutability) in Alkan and Gale [1].

Farooq and Tamura [9] gave characterizations of M�-concave set functions
by using strengthened properties (−SC1

G) and (−SC2
G) of (−SC1) and (−SC2).

(−SC1
G) For any p ∈ RV , f [−p] satisfies (−SC1).

(−SC2
G) For any p ∈ RV , f [−p] satisfies (−SC2).

Theorem 3.5 [9]. For f : {0, 1}V → R ∪ {−∞} with a nonempty ef-
fective domain, we have

(−M�-EXC) ⇔ (−SC1
G) ⇔ (−SC2

G).

§4. Overview of Two-Sided Matching Market Models

In the theory of two-sided matching markets there are two standard mod-
els: the stable marriage model due to Gale and Shapley [16] and the assignment
model due to Shapley and Shubik [39]. The difference between these two mod-
els is that the former does not include money or transferable utilities and the
latter permits side payments (see Roth and Sotomayor [37] for details of these
models).

In this section, we first explain characterizations of the stability of these
two models in terms of utility functions, because this is useful for understanding
relations among models based on discrete convex analysis and existing models.

Let M and W denote two disjoint sets of agents and E be the set of all
pairs (i, j) of agents i ∈ M and j ∈ W , i.e., E = M × W . Agents in M or W

may be recognized as men or women. For all pairs (i, j) ∈ E, we have pairs
(aij , bij). In the assignment model, aij and bij are interpreted as profits of i

and j when i and j form a partnership. In the stable marriage model, aij and
bij define preferences as follows: man i ∈ M prefers j1 to j2 if aij1 > aij2 , and
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j1 and j2 are indifferent for i if aij1 = aij2 (similarly, preferences of women
j ∈ W are defined by bij ’s). Here, we assume that aij > 0 if j is acceptable to
i, and aij = −∞ otherwise, and bij > 0 if i is acceptable to j, and bij = −∞
otherwise. Define two aggregated utility functions fM for M and fW for W as
follows: for all x ∈ ZE ,

fM (x) =




∑
(i,j)∈E

aijxij if x ∈ {0, 1}E and
∑
j∈W

xij ≤ 1 for all i ∈ M

−∞ otherwise,
(4.1)

fW (x) =




∑
(i,j)∈E

bijxij if x ∈ {0, 1}E and
∑
i∈M

xij ≤ 1 for all j ∈ W

−∞ otherwise.
(4.2)

It is known that functions fM and fW in (4.1) and (4.2) are M�-concave.
We now consider one of comprehensive variations of the stable marriage

model, in which unacceptability and indifference are allowed. The model deals
with the stability of matchings, where a matching is a subset of E such that
every agent appears at most once in the subset. Given a matching X, i ∈
M (respectively j ∈ W ) is called unmatched in X if there exists no j ∈ W

(resp. i ∈ M) such that (i, j) ∈ X. A pair (i, j) 
∈ X is said to be a blocking
pair for X if i and j prefer each other to their partners or to being alone in
X. A matching X is called stable if all pairs (i, j) in X are acceptable for i

and j, and if there is no blocking pair for X. The stability of a matching is
characterized as follows. All men i ∈ M are assigned values qi and all women
j ∈ W are assigned rj . A matching X is stable if and only if

(m1) qi = aij > −∞ and rj = bij > −∞ for all (i, j) ∈ X,

(m2) qi = 0 (resp. rj = 0) if i (resp. j) is unmatched in X,

(m3) qi ≥ aij or rj ≥ bij for all (i, j) ∈ E.

The stability can also be characterized by utility functions fM and fW in (4.1)
and (4.2). A binary vector x on E is stable in this model2 if and only if there
exist binary vectors zM and zW such that

1 = zM ∨ zW ,(4.3)

x maximizes fM in {y ∈ ZE | y ≤ zM},(4.4)

x maximizes fW in {y ∈ ZE | y ≤ zW },(4.5)

2We identify a subset X with its characteristic vector χX .
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where 1 denotes the vector of all ones on E. This characterization can be
interpreted as follows. We note that x satisfying (4.4) and (4.5) must be a
matching because the zero vector attains 0 (finite value) for both fM and fW .
For a matching x, condition (4.4) (resp. (4.5)) claims that each man (resp.
woman) selects one of the best partners among admitted partners in zM (resp.
zW ). Therefore, (4.3) guarantees that there is no pair whose members prefer
each other to their partners matched in x or to being alone in x. Conversely,
for a stable matching x, zM can be constructed as follows. Set zM (i, j) = 0 for
all pairs (i, j) ∈ E such that man i prefers woman j to his partner or to being
alone in x (note that by the stability of x, j does not prefer i to her partner
or to being alone in x), and set zM (i, j) = 1 otherwise. Similarly, zW can be
constructed from x. Thus, the constraint y ≤ zM (resp. y ≤ zW ) expresses the
situation where each man (resp. woman) cannot establish partnerships with
women (resp. men) matched with better men (resp. women).

We next consider the assignment model which includes side payments. An
outcome is a triple of payoff vectors q = (qi : i ∈ M) ∈ RM , r = (rj : j ∈ W ) ∈
RW , and a subset X ⊆ E, denoted by (q, r; X). An outcome (q, r; X) is called
stable if

(a1) X is a matching,

(a2) qi + rj = aij + bij for all (i, j) ∈ X,

(a3) qi = 0 (resp. rj = 0) if i (resp. j) is unmatched in X,

(a4) q ≥ 0, r ≥ 0, and qi + rj ≥ aij + bij for all (i, j) ∈ E,

where 0 denotes a zero vector of an appropriate dimension and pij(= bij −
rj = qi − aij) means a side payment from j to i for each (i, j) ∈ X. The
stability says that no pair (i, j) 
∈ X will be better off by making a partnership.
Shapley and Shubik [39] proved the existence of stable outcomes by linear
programming duality. The maximum weight bipartite matching problem with
weights (aij + bij) and its dual problem are formulated by linear programs:

Maximize
∑

(i,j)∈E

(aij + bij)xij

subject to
∑
j∈W

xij ≤ 1 for all i ∈ M

∑
i∈M

xij ≤ 1 for all j ∈ W

xij ≥ 0 for all (i, j) ∈ E,
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Minimize
∑
i∈M

qi +
∑
j∈W

rj

subject to qi + rj ≥ aij + bij for all (i, j) ∈ E

qi ≥ 0 for all i ∈ M

rj ≥ 0 for all j ∈ W.

Thus, (q, r; X) is a stable outcome if and only if x = χX , q and r are optimal
solutions of the above problems, because (a1) and (a4) require the primal and
dual feasibility and because (a2) and (a3) mean the complementary slackness.
Furthermore, the stability in the assignment model can be characterized by
using utility functions in (4.1) and (4.2). A binary vector x on E is stable3 if
and only if there exists a real vector p on E such that

x maximizes fM [+p],(4.6)

x maximizes fW [−p].(4.7)

This is because a stable outcome (q, r; X) gives x = χX together with p sat-
isfying (4.6) and (4.7) by putting pij = bij − rj for all (i, j) ∈ E, and con-
versely, x = χX and p satisfying (4.6) and (4.7) lead us to a stable outcome
(q, r; X) such that qi = aij + pij and rj = bij − pij for all (i, j) ∈ X and
qi = 0 (resp. rj = 0) for all i (resp. j) unmatched in X. Conditions (4.6)
and (4.7) imply that each agent has one of the best partnerships in x with
respect to the utility modified by side payment vector p. Moreover, (4.6)
and (4.7) say that a stable matching is a competitive equilibrium, and vice
versa.

We next briefly introduce relations among models based on discrete convex
analysis and related existing models.

Gale and Shapley [16] gave a constructive proof of the existence of a sta-
ble matching of the stable marriage model. Since the advent of Gale and
Shapley’s paper a large number of variations and extensions have been pro-
posed in the literature. Recently, a remarkable extension has been made by
Fleiner [10]. He extended the stable marriage model to the framework of ma-
troids and showed the existence of a stable solution. The preference of each
person in Fleiner’s model can be described by a linear utility function on a
matroidal domain. This aspect was extended by Eguchi and Fujishige [6] to
the framework of discrete convex analysis. In the Eguchi-Fujishige model, each

3We say that a binary vector x is stable if and only if there exists a stable outcome (q, r; X)
such that x is the characteristic vector of X.
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agent can express his/her preference by an M�-concave function. Their model
is also a concrete example (in terms of utility functions) of the generalized
models (in terms of choice functions with substitutability) by Roth [35, 36],
Sotomayor [41], Alkan and Gale [1] and Fleiner [11], because an M�-concave
function defines a choice function with substitutability (see Lemma 3.3). Fur-
thermore, Eguchi, Fujishige and Tamura [7] extended the Eguchi-Fujishige
model so that indifference on preferences and multiple partnerships are al-
lowed.

For the other standard model, the assignment model, various extensions
have also been proposed since Shapley and Shubik’s paper. Sotomayor [42]
studies a many-to-many variant of the assignment model, in which each agent
can form multiple partnerships with agents of the opposite set without repe-
tition of the same pair, and showed the existence of a stable outcome in the
model. Sotomayor [44] also verified the nonemptiness of the core in a many-
to-many model with heterogeneous agents, in which repetition of partnerships
of each pair is allowed. Kelso and Crawford [21] introduced a many-to-one
labor market model in which a utility function of each firm has the gross sub-
stitutability and a utility function of each worker is strictly increasing (not
necessarily linear) in salary. Danilov, Koshevoy and Murota [5] provided, for
the first time, a model based on discrete convex analysis. Danilov, Koshevoy
and Lang [4] dealt with a model in which commodities are partitioned into two
groups: substitutes and complements.

On the other hand, research has been made toward unifying the stable
marriage model and the assignment model. Kaneko [20] gave a general model
that includes the two models by means of characteristic functions and proved
the nonemptiness of the core. Roth and Sotomayor [38] proposed a general
model that encompasses the stable marriage model and the assignment model,
and investigated the lattice property for payoffs in their model. However, they
did not provide any guarantee for the existence of a stable outcome. Eriksson
and Karlander [8] proposed a hybridization of the stable marriage model and
the assignment model, for which they verified the existence of a stable out-
come. Sotomayor [43] also made further investigation of the hybrid model of
Eriksson and Karlander with full generality, and gave a non-constructive proof
of the existence of a stable outcome. Fujishige and Tamura [14] generalized
the hybrid model due to Eriksson and Karlander [8] and Sotomayor [43], by
utilizing M�-concave utilities and verified the existence of a stable solution of
the general model. Their model includes many models in this section as special
cases.
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§5. Arrow–Debreu Type Model

This section studies an Arrow–Debreu type economy with a finite set L of
producers, a finite set H of consumers, a finite set K of indivisible commodities
and a perfectly divisible commodity, namely money. Productions of producers
and consumptions of consumers are integer-valued vectors in ZK representing
the numbers of indivisible commodities that they produce and consume. Here
producers’ inputs are represented by negative numbers and their outputs by
positive numbers, and conversely, consumers’ inputs are represented by positive
numbers and their outputs by negative numbers. In the model, for a given price
vector p = (p(k) : k ∈ K) ∈ RK of commodities, each producer l independently
schedules a production in order to maximize l’s profit, and each consumer
h independently schedules a consumption to maximize h’s utility under h’s
budget constraint, and all agents exchange commodities by buying or selling
those through money.

We assume that producer l’s profit is described by his/her cost function
Cl : ZK → R ∪ {+∞} whose value is expressed in units of money. That is, l’s
profit function πl : RK → R is defined by: for all p ∈ RK

πl(p) = max
y∈ZK

{〈p, y〉 − Cl(y)} .

Producer l’s supply function (correspondence) Sl : RK → 2ZK

represents the
set of all productions which attain the maximum of l’s profit for a given price
vector, that is, for all p ∈ RK

Sl(p) = arg max
y∈ZK

{〈p, y〉 − Cl(y)} .

Each consumer h ∈ H has an initial endowment of indivisible commodi-
ties and money which is represented by a vector (x◦

h, m◦
h) ∈ ZK

+ × R+, where
Z+ and R+ denote the sets of all nonnegative integers and nonnegative reals,
respectively. We note that x◦

h(k) denotes the number of commodities k ∈ K

and m◦
h the amount of money in his/her initial endowment. In the model, each

consumer h shares in the profits of the producers and θlh denotes the share of
the profit of producer l owned by consumer h. The numbers θlh are nonnega-
tive and

∑
h∈H θlh = 1 for all l ∈ L. Thus, consumer h gains an income which

is expressed by a function βh : RK → R defined by: for all p ∈ RK .

βh(p) = 〈p, x◦
h〉 + m◦

h +
∑
l∈L

θlhπl(p).

We assume that each consumer’s utility is quasilinear in money. That is, con-
sumer h’s utility is represented by a quasilinear utility function Ūh : ZK ×R →
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R ∪ {−∞} defined by: for all (x, m) ∈ ZK × R

Ūh(x, m) = Uh(x) + m

where Uh : ZK → R ∪ {−∞} whose value is expressed in units of money.
It is natural to assume that domUh is bounded because none can consume an
infinite number of indivisible commodities. We further assume that the amount
of money m◦

h in h’s initial endowment is sufficiently large for any h ∈ H. Since
consumer h’s schedule maximizes Ūh under the budget constraint, h’s behavior
is formulated in terms of an optimization problem

Maximize Uh(x) + m

subject to 〈p, x〉 + m ≤ βh(p).

Since domUh is bounded and m◦
h is large, we can take m = βh(p) − 〈p, x〉 to

reduce the above problem to an unconstrained optimization problem

Maximize Uh(x) − 〈p, x〉.

Thus, we can define h’s demand function (correspondence) Dh : RK → 2ZK

by: for all p ∈ RK

Dh(p) = arg max
x∈ZK

{Uh(x) − 〈p, x〉} .

A tuple ((xh | h ∈ H), (yl | l ∈ L), p), where xh ∈ ZK , yl ∈ ZK and
p ∈ RK , is called a competitive equilibrium if the following conditions hold:

xh ∈ Dh(p) (h ∈ H),(5.1)

yl ∈ Sl(p) (l ∈ L),(5.2) ∑
h∈H

xh =
∑
h∈H

x◦
h +

∑
l∈L

yl,(5.3)

p ≥ 0.(5.4)

That is, each agent achieves what he/she wishes to achieve, the balance of
supply and demand holds and an equilibrium price vector is nonnegative. The
nonnegativity of an equilibrium price vector (5.4) may be ignored in several
models in the literature, e.g., in the assignment model (see (4.6) and (4.7)).

A function U : ZK → R ∪ {−∞} is said to be monotone nondecreasing
if x ≤ y ⇒ U(x) ≤ U(y) for any x, y ∈ domU . Gul and Stacchetti [17]
showed the existence of a competitive equilibrium in an exchange economy
under the gross substitutability and the monotone nondecreasing condition.
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By Theorem 3.4, we see that Theorem 5.1 is a generalization of the result.
Theorems 5.1 and 5.2 stated explicitly by Murota [28, 29] are implied by the
results of Danilov, Koshevoy and Murota [5]. We call the model of this section
the Danilov-Koshevoy-Murota model or simply the DKM-model if each Cl is
M�-convex and each Uh is M�-concave.

Theorem 5.1 [5, 28, 29]. In an exchange economy case, where L = ∅,
the DKM-model has a competitive equilibrium ((xh | h∈H), p) for any initial
total endowment x◦ ∈

∑
h∈H

domUh, where the summation means the Minkowski

sum.

Theorem 5.2 [5, 28, 29]. If the continuous version of the DKM-model,
which is obtained by regarding all indivisible commodities as divisible, has a
competitive equilibrium for an initial total endowment, then the DKM-model
also has a competitive equilibrium ((xh | h∈H), (yl | l∈L), p) of indivisible
commodities, where cost functions and utility functions in the continuous model
are the convex extensions of Cl and concave extensions of Uh, respectively.

The equilibrium price vectors form a well-behaved polyhedron, L�-convex
polyhedron investigated by Fujishige and Murota [13] and Murota and Sh-
ioura [31]. A polyhedron P ⊆ RK is called an L�-convex polyhedron if for all α

with 0 ≤ α ∈ R

p, q ∈ P =⇒ (p − α1) ∨ q, p ∧ (q + α1) ∈ P.(5.5)

Theorem 5.3 [28, 29]. Suppose that the DKM-model has a competitive
equilibrium for an initial total endowment x◦. Then the set P ∗(x◦) of all the
equilibrium price vectors is an L�-convex polyhedron. This means in particular
(α = 0 in (5.5)) that

p, q ∈ P ∗(x◦) =⇒ p ∨ q, p ∧ q ∈ P ∗(x◦).(5.6)

(5.6) implies the existence of the smallest equilibrium price vector, and further-
more, it implies the existence of the largest equilibrium price vector if P ∗(x◦)
is bounded.

In order to find a competitive equilibrium, we adopt the aggregate utility
function Ψ′ : ZK → R ∪ {±∞} of the market defined by: for all z ∈ ZK

Ψ′(z) = sup

{
−

∑
l∈L

Cl(yl) +
∑
h∈H

Uh(xh)
∣∣∣ ∑

h∈H

xh −
∑
l∈L

yl = z

}
.
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We can show that a solution satisfying (5.1), (5.2) and (5.3) attains Ψ′(x◦)
and vice versa. By using the fact that Ψ′ is the integer convolution of the
family of M�-concave functions {−Cl | l ∈ L} ∪ {Uh | h ∈ H}, Murota and
Tamura [34] gave an efficient algorithm for finding a competitive equilibrium.
Their algorithm consists of two phases: the first phase computes productions
and consumptions satisfying (5.1), (5.2) and (5.3) by solving the M�-concave
intersection problem, and the second phase finds an equilibrium price vector
by solving a shortest path problem.

§6. A Model with Substitutes and Complements

The DKM-model is regarded as a model consisting of all substitutes.
Danilov, Koshevoy and Lang [4] consider an extended model with substitutes
and complements, and showed the existence of a competitive equilibrium in the
model. In the setting of Section 5, the model assumes

• K = L × H,

• for any producer l ∈ L, Cl is defined on {0, 1}{l}×H and yl(l′, h) = 0 is
assumed for all l′ ∈ L \ {l} and h ∈ H,

• for any consumer h ∈ H, Uh is defined on {0, 1}L×{h} and xh(l, h′) = 0 is
assumed for all l ∈ L and h′ ∈ H \ {h},

• for any consumer h ∈ H, x◦
h = 0,

• a competitive equilibrium is defined by (5.1), (5.2) and (5.3).

A remarkable feature of the model is that L is partitioned into Ls and Lc. They
give an assumption called a compatibility principle which imposes the following
conditions: (i) Cl is M�-convex for any l ∈ Ls, (ii) Cl is submodular for any
l ∈ Lc and (iii) Uh is a sum of an M�-concave set function on Ls × {h} and a
supermodular set function (i.e., the negative of the submodular set function) on
Lc × {h} for any h ∈ H. The compatibility principle guarantees the existence
of a competitive equilibrium.

Theorem 6.1 [4]. Under the compatibility principle, the above model
has a competitive equilibrium.
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§7. Combinatorial Auction

In this section, we briefly explain a combinatorial auction of non-identical
commodities. Let V be a set of commodities for sale by an auctioneer and B

a set of buyers. Each buyer i ∈ B has its private utility function fi in terms of
money for all subsets X of V such that fi(X) describes the amount of money
paid by buyer i when i gets set X of commodities. The auctioneer’s aim is
to find an optimal allocation, where an allocation is a subpartition of V into
pairwise disjoint subsets {Vi | i ∈ B} of V and an optimal allocation is one
that maximizes

∑
i∈B fi(Vi).

B. Lehmann, D. Lehmann and Nisan [22] discussed combinatorial auctions
with several classes of utility functions, and pointed out that if all fi are M�-
concave then an optimal allocation can be found efficiently as follows. Here we
identify a subset with its characteristic vector. Let us consider a function f0

which is identically zero on {0, 1}V , which is M�-concave. Then, the problem
of finding an optimal allocation can be formulated as the problem of finding a
maximizer of

f(1) = max




∑
i∈{0}∪B

fi(xi)
∣∣∣ ∑

i∈{0}∪B

xi = 1, xi ∈ {0, 1}V (∀i ∈ {0} ∪ B)


 .

Since f is the integer convolution of M�-concave functions {fi | i ∈ {0} ∪
B}, the problem can be transformed to the M�-concave intersection problem.
Furthermore, we have domfi = {0, 1}V for all i ∈ {0} ∪ B. Thus, the problem
is easier than the general case of the M�-concave intersection problem. In fact,
Murota [24, 27] gave an algorithm for maximizing the sum of two M�-concave
set functions, whose time complexity is polynomial in |V |.

§8. Generalized Stable Marriage Models

Eguchi and Fujishige [6] proposed a generalized stable marriage model
based on discrete convex analysis, and Eguchi, Fujishige and Tamura [7] extend
it so that indifference on preferences and multiple partnerships are allowed. We
call the model of [7] the EFT-model. In this section, we introduce the EFT-
model.

Let M and W denote two disjoint sets of agents and E be a finite set.
In the model, utilities of M and W over E are respectively described by M�-
concave functions fM , fW : ZE → R ∪ {−∞}. Furthermore, we assume that
fM and fW satisfy the following assumption.
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(A) Effective domains domfM and domfW are bounded and hereditary, and
have the common minimum point 0,

where heredity means that 0 ≤ x1 ≤ x2 ∈ domfM (resp. domfW ) implies
x1 ∈ domfM (resp. domfW ). The heredity of effective domains implies that
each agent can arbitrarily decrease the multiplicity of partnerships without
any agreement of the partner, similarly as in other two-sided matching market
models.

Let z be an integral vector such that

domfM ∪ domfW ⊆ {y ∈ ZE | 0 ≤ y ≤ z}.(8.1)

Taking conditions (4.3)∼(4.5) into account, we say that x ∈ domfM ∩ domfW

is an fMfW -stable solution if there exist zM , zW ∈ ZE such that

z = zM ∨ zW ,(8.2)

x ∈ arg max{fM (y) | y ≤ zM},(8.3)

x ∈ arg max{fW (y) | y ≤ zW }.(8.4)

Condition (8.2) replaces the upper bound vector 1 in (4.3) by z. Since functions
in (4.1) and (4.2) are M�-concave, the model includes the stable marriage model
as a special case. For the case where fM and fW are defined by (4.1) and (4.2),
conditions (8.2), (8.3) and (8.4) claim that there is no pair in E whose members
prefer each other to their partners matched in x or to being alone in x.

Eguchi, Fujishige and Tamura showed the existence of an fMfW -stable
solution.

Theorem 8.1 [7]. For any M�-concave functions fM , fW : ZE → R ∪
{−∞} satisfying (A), the EFT-model always has an fMfW -stable solution.

Theorem 8.1 can be shown constructively by a generalization of the Gale-
Shapley algorithm [16] as follows. To describe the algorithm, we assume that
we are initially given xM , xW ∈ ZE and zM , zW ∈ ZE satisfying (8.2) and the
following:

xM ∈ arg max{fM (y) | y ≤ zM},(8.5)

xW ∈ arg max{fW (y) | y ≤ zW ∨ xM},(8.6)

xW ≤ xM .(8.7)

We can easily compute such initial vectors by setting zM = z, zW = 0, and by
finding xM and xW such that

xM ∈ arg max{fM (y) | y ≤ zM},
xW ∈ arg max{fW (y) | y ≤ xM}.
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The algorithm is described as follows.

Algorithm G GS (fM , fW , xM , xW , zM , zW )

Input: M�-concave functions fM , fW and xM , xW , zM , zW satisfying (8.2),
(8.5), (8.6), (8.7).

Step 1. Find an element xM in arg max{fM (y) | xW ≤ y ≤ zM}.

Step 2. Find an element xW in arg max{fW (y) | y ≤ xM}.

Step 3. For all e∈E with xM (e)>xW (e), set zM (e) := xW (e), zW (e) := z(e).

Step 4. If xM = xW then output (xM , xW , zM , zW ∨ xM ). Else go to Step 1.

It should be noted here that because of Assumption (A), xM and xW are
well-defined within the effective domains and that algorithm G GS terminates
after at most

∑
e∈E z(e) iterations, because

∑
e∈E zM (e) is strictly decreased

in each iteration. We finally give an outline of a proof of Theorem 8.1.

Outline of Proof of Theorem 8.1. Let x
(i)
M , x

(i)
W , z

(i)
M , and z

(i)
W be xM , xW ,

zM , and zW obtained after the ith iteration in G GS for i = 1, 2, · · · , t, where
t is the last to get the outputs. By Lemma 3.3, we can show that for all
i = 1, · · · , t

x
(i+1)
M ∈ arg max

{
fM (y)

∣∣∣ y ≤ z
(i)
M

}
,

x
(i)
W ∈ arg max

{
fW (y)

∣∣∣ y ≤ z
(i)
W ∨ x

(i)
M

}
.

Thus we have for i = t

x
(t)
M ∈ arg max

{
fM (y)

∣∣∣ y ≤ z
(t)
M

}
,

x
(t)
W ∈ arg max

{
fW (y)

∣∣∣ y ≤ z
(t)
W ∨ x

(t)
M

}
,

x
(t)
M = x

(t)
W .

By the way of modifying zM , zW , and xM we have

z
(t)
M ∨

(
z
(t)
W ∨ x

(t)
M

)
= z.

This is an outline of the proof of Theorem 8.1.
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§9. A Generalized Hybridization

Fujishige and Tamura [14] proposed a generalized hybridization of the sta-
ble marriage model and the assignment model, by extending the idea of Eriksson
and Karlander [8] and the models in [6, 7].

In this model, utilities (in monetary terms) of M and W are respectively
described by M�-concave functions fM , fW : ZE → R ∪ {−∞} satisfying As-
sumption (A), and, in addition, E is partitioned into two subsets F (the set
of flexible elements) and R (the set of rigid elements). In the hybrid model
due to Eriksson and Karlander [8], M and W are, respectively, partitioned into
{MF , MR} and {WF , WR}, and we have F = MF ×WF and R = E \F , where
E = M × W .

Let z be an integral vector satisfying (8.1). For a vector d on E and
S ⊆ E, we assume that d|S denotes the restriction of d on S. We say that
x ∈ domfM ∩domfW is an fMfW -stable solution with respect to (F, R) if there
exist p ∈ RE and zM , zW ∈ ZR such that

p|R = 0,(9.1)

z|R = zM ∨ zW ,(9.2)

x ∈ arg max{fM [+p](y) | y|R ≤ zM},(9.3)

x ∈ arg max{fW [−p](y) | y|R ≤ zW }.(9.4)

Condition (9.1) states that there are no side payments for all rigid elements.
Obviously, if E = R then our model includes the Eguchi-Fujishige-Tamura
model, and if E = F then it includes the assignment model because functions
in (4.1) and (4.2) are M�-concave (see also (4.6) and (4.7)).

The main result of [14] is the following.

Theorem 9.1 [14]. For any M�-concave functions fM , fW : ZE → R∪
{−∞} satisfying (A) and for any partition (F, R) of E, there always exists an
fMfW -stable solution with respect to (F, R).

In [14], Theorem 9.1 is shown constructively by combining algorithm G GS
in Section 8 and a successive shortest path algorithm for maximizing fM + fW ,
which is a modified version of that in [23].

§10. Concluding Remarks

We finally discuss open problems.
Algorithm G GS in Section 8 solves the maximization problem of an M�-

concave function in each iteration. As we mentioned in Section 2, it is known
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that a maximizer of an M�-concave function f on E can be found in polynomial
time in n and log L, where n = |E| and L = max{||x − y||∞ | x, y ∈ domf}.
Since G GS terminates after at most

∑
e∈E z(e) iterations, the time complexity

of G GS is O(poly(n) · L), where L = ||z||∞. Unfortunately, there exist a
series of examples in which G GS requires numbers of iterations proportional
to L. For the special case where fM and fW are linear on rectangular effective
domains, Bäıou and Balinski [2] showed that an fMfW -stable solution of the
EFT-model can be found in polynomial time in n. However, it is open whether
an fMfW -stable solution for the general case can be found in polynomial time
in n and log L.

Open Problem 1. Develop a polynomial time algorithm for finding an
fMfW -stable solution of the EFT-model.

We note that the problem of checking whether a given point x ∈ domfM ∩
domfW is fMfW -stable in the EFT-model can be solved in O(n2) time by using
the following local criterion.

Lemma 10.1 [7]. A point x ∈ domfM ∩ domfW is fMfW -stable in the
EFT-model if and only if it satisfies the following conditions:

for each e ∈ E, fM (x) ≥ fM (x − χe) and fW (x) ≥ fW (x − χe),

for each e ∈ E, fM (x) ≥ fM (x + χe − χe′) (∀e′ ∈ E ∪ {0}) or

fW (x) ≥ fW (x + χe − χe′′) (∀e′′ ∈ E ∪ {0}).

Since the model in Section 9 (the FT-model) is an extension of the EFT-
model, we also propose the next open problem.

Open Problem 2. Develop a polynomial time algorithm for finding an
fMfW -stable solution with respect to an arbitrary partition (F, R) of E.

We note that for the case where fM and fW are integer-valued functions
and E = F , we can find an fMfW -stable solution with respect to partition
(E, ∅) efficiently, because the problem can be transformed to the M�-concave
intersection problem.

The stability of the FT-model seems to be rather technical. We hope that
there exist a natural common generalization of the stable marriage model and
the assignment model, which also includes the FT-model as a special case.

Open Problem 3. Propose a natural model including the stable mar-
riage model, the assignment model and the FT-model.
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