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Abstract
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81. Introduction

This note is based on a series of lectures given by the author during 1998—
2003 years concerning the interrelations between the saturation properties of
the Littlewood—-Richardson numbers and their several generalizations, parabolic
g-Kostant partition functions and parabolic Kostka polynomials.

In spite of the title “An invitation to the Generalized Saturation Con-
jecture”, we will state a big amount of conjectures (about 30) and problems
(about 15) revolving around a very mysterious behavior of the coefficients, and
the leading term especially, of a parabolic Kostka polynomial.

Remember that, by definition, a function f : Q C Z"™ — 7Z satisfies the
saturation property (on the set ), if the following condition holds:

f(Nw) # 0 for some integer N > 1 and w € €, then also f(w) # 0.

For example, any homogeneous function f on the set €2, i.e. that satisfying
the condition f(Nw) = N® f(w) for some a € R, Vw € Q and all integers
N > 1, possesses the saturation property; a subset (2 C Z"™ is called saturated
if its characteristic function has the saturation property.

To be more specific, let us introduce the numbers a(A, p||n), b(A, p||n),
c(A, plln) and d(A, p||n) which will play an important role in our paper. Namely,
let A be a partition and p, and n be compositions such that |A\| = |u| and
1(p) < |nl, see Section 2.1 for explanation of notation. Let Ky, (q) be the cor-
responding parabolic Kostka polynomial. If K,,(q) # 0, the numbers above
are defined from the decomposition

Koun(q) = b\, pl|m) g1 4o d(X, pl|m) gl

where we assume that b(A, p||n) # 0 and d(\, pln) # 0, and a(X, ul|n)

(X, pl|m).-
If K.un(q) = 0, we put by definition a(X, u||n) = b(A, ||ln) = (A, p||n)

d(A, plln) = 0.

IN

(") We expect that d(X, p||n) > 0, and Ky,,(q) # 0 if and only if A—p €
Y, In other words, we expect that K, (q) # 0, if and only if Kg ;) (A—p) > 0,
see Section 6, Positivity and Non-vanishing conjectures.

() We regard the numbers d(A, it||n) as a generalization of the Littlewood—
Richardson coefficients, see comments after Theorem 1.4, and Section 5.2, (1°)
for explanations.

Problem 1.1.  Find combinatorial and/or algebro—geometric interpre-
tations of the numbers d(\, pl|n).
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Remark 1.2. We expect that for given A\, 4 and 7 there exists a rational
convex polytope AK’ u such that the number of integer points inside of Ai L 18
equal to d(\, p||n).

One of our main observations is that the saturation property of the leading
coefficient d(A, p||n), i.e. that

(&) d(NX,Nulln) # 0 for some integer N > 1 if and only if d(\, p||n) # 0,

is an easy consequence (but not conversely !) of the statement that the
maximal degree c(A, p1||n) of ¢ in a parabolic Kostka polynomial Ky,,(q) is a
homogeneous degree 1 function of A and . In other words, we pose the following
conjecture:

Conjecture 1.3 (Generalized Saturation Conjecture).

Let A be a partition, p and 7 be compositions such that |A] = |u| and
U(p) < |n|. Then the coefficient c(\, u||n) is a homogeneous piecewise linear
function of A and . In particular,

c(NX, Nplln) = Ne(A, pln)

for any positive integer V.

Here ll(p) denotes the fake length of a composition u, see Section 2.1 for
the definition.

We would like to note here that, in general, the Generalized Saturation
Conjecture (GSC for short) is false for the numbers a(A, i||n), see Examples 4.6.

(K) However, we expect that if p is a partition, then the GSC does hold
for the numbers a(A, u||n).

Conjecture 1.3 is obvious for the Kostka—Foulkes polynomials, since in this
case

(P =n(p) —n(\) = Y min(ui, ) — > min(Ai, A))

1<i<I<1(p) 1<i<j<I(N)

is easily seen to be a homogeneous piecewise linear function of A and u. However,
it seems a difficult problem to prove the GSC in general case, especially to
find an explicit piecewise linear formula for the numbers ¢(A, p||n).

Now let us explain briefly a connection between our Generalized Saturation
Conjecture and the Saturation Theorem by A. Knutson and T. Tao [43], see
also [4, 9, 14, 65] for other proofs.
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Theorem 1.4 (Saturation Theorem [43]).
Let A\, v and v be partitions such that |\| + |u| = |v|. Then
C%;N# # 0 for some integer N > 1 if and only if c§ , # 0.

Here cf , denotes the Littlewood-Richardson number (LR-number for
short) corresponding to the partitions A, 4 and v, see Section 2.4 for details.

Now we are going to explain how the Saturation Theorem follows from the
GSC.

First of all, we observe that cf , = b(A, R) for some partition A and a
dominant sequence of rectangular shape partitions R, see Section 2 for the
definition of a dominant sequence of partitions. Namely, for given partitions
A= (A1,...,A), p and v such that || + |u| = |v|, define partition

A= (1 + A, 0+ Aoy + Ay 1),

and a dominan/t rearrangement R of the sequence of rectangular shape parti-
tions R = {(ui‘l), v}. Then

(%) a(AR) > 2135#1 vj — |pl, and a(A, R) = Z1§jgm vj — |p| if and
only if ¢§ , > 1; in addition, b(A,R) = cX ,.» see Section 5.2 for details.

In other words, the constant term of the polynomial

K () = g"m1202 ) K (g)

is equal to the Littlewood—Richardson number ¢ L See Sections 5.2 and 6.8
where some results and conjectures about the polynomials K¥ H(q) and their
generalizations K p 4(q), and Ko ama
The next step is to apply the Duality Theorem for parabolic Kostka poly-

(¢), are presented.

nomials K r(q) corresponding to a dominant sequence of rectangular shape
partitions R, see Section 4, (4.37), Duality Theorem. As a corollary, we see that
the coefficients a(A, R) and ¢(A, R) satisfy the GSC' simultaneously. Hence, it
follows from our Theorem 1.5 that

(&) a(nA,nR) =na(A, R) for any integer n > 1.

Finally, let us deduce the Saturation Theorem from the above considera-
tions. Indeed, assume that C%;N‘u # 0, then

Na(A,R) =a(NA,NR) =N | > vi—ul |,
1<j<p1
and therefore, a(A,R) = ZlSjSMV

% — |p|. The last equality means that
5,70
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In fact, our arguments show that in the particular case under consideration,
the Generalized Saturation Conjecture is equivalent to the Saturation Theorem.
However, our main point is that, conjecturally, the GSC is still valid for any
partition A and compositions u, and 7.

Theorem 1.5 (Saturation Theorem for the numbers c()\, R)).
Let X be a partition and R be a dominant sequence of rectangular shape

partitions. Then
(%) c¢(NX,NR)= Nec(\ R) for any integer N > 1.

Our proof of Theorem 1.5 is based on an explicit homogeneous piecewise
linear formula for the Lascoux—Schiitzenberger statistics charge, obtained by
A. Berenstein and A.N.K., see [36, 38] and a fermionic formula for the parabolic
Kostka polynomials K r(g) corresponding to a dominant sequence of rectan-
gular shape partitions R, see e.g. Section 5.1, (5°). The proof is rather technical
and long. We assume to present it in a separate publication.

One of our main results, see Section 4, in support of the GSC' in general
case is:

Theorem 1.6 (Rationality theorem for parabolic Kostka polyno-
mials, I).
The formal power series

Z Kn)\mu,n(q)tn

n>0

s a rational function in q and t of the form

P,\pn (qv t)/Q)\/_m(qa t)v

where Pyun(q,t) and Qxun(g,t) are mutually prime polynomials in ¢ and t with
integer coefficients, Px.y(0,0) = 1.

Moreover,

() the denominator Q. has the following form

Quunla.t) = [[(1 - 1),
jeJ
where J := Jyur 15 a finite set of non—negative integer numbers, not necessarily
distinct,
(o) Pruy(1,t) = (1 — t)*Omm Py (t), where t(\, pu,m) € Zso, and
Py (t) is a polynomial with non—negative integer coefficients.
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Problem 1.7.  Find combinatorial and algebro-geometric interpreta-

tions of the set Jxu, and the polynomial Jx,uy,(q) = ZjeJA,m q.

Corollary 1.8 (Polynomiality theorem for parabolic Kostka num-
bers).

Let X be a partition and p,n be compositions such that |\| = |p| and ll(p) <
[n|. Then there exists a polynomial K, () with rational coefficients such that
for all integers N > 1

]CA#’U(N) = KNA,Np,n(l)-

Corollary 1.9 (Polynomiality theorems for Kostka and LR-
numbers).

(i) Let X be a partition and p be a composition of the same size, then the
Kostka number Kyx nu(1) is a polynomial in N with rational coefficients.

(ii) Let A\, u and v be partitions, then the Littlewood—Richardson number
C%KWM s a polynomial in N with rational coefficients.

See Section 4, Theorem 4.14 and Corollary 4.15. We also give a multivari-
able generalization of Theorem 1.6, see Theorem 4.17.

We want to emphasize here that the polynomiality property of the func-
tions N — Knyxwnun(l) and N — C%KN# is an easy consequence of our
Theorem 1.6, but not conversely: one has to check that the (irredundant)
denominator Qx,,(g,t) doesn’t have factors of the form (1 — ¢*t!) with [ €
Zs1.

Conjecture 1.10.  If p is a partition, then the polynomial Cy,,(t) has
non—negative rational coefficients.

See Section 6, Conjecture 6.10, (#), for more general conjectures concern-
ing the numbers d(A, pl|n).

We would like to remark that the GSC does not follow immediately from
Theorem 1.6, see Section 6, Rationality Conjecture, for details.

The polynomials P, (g, t) may have negative coefficients, and rather dif-
ficult to compute. For example, we don’t know the explicit formula for poly-
nomial Pgs) (112y,(112)(q,t). We expect that the polynomials Py, (g,t) should
have nice algebraic and algebro—geometric interpretations.

Our proof of Theorem 1.6 is a pure algebraic and is based on the study of
the parabolic ¢-Kostant partition functions, see Section 3.

Corollary 1.9,(i), has been proved independently by W. Baldoni—Silva and
M.Vergne [2], S. Billey, V. Guillemin and E. Rassart [8], ... . Corollary 1.9,(ii),
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has been proved independently by A Knutson (unpublished), H. Derksen and
J. Weyman [15], E. Rassart [61], ... .

The main subject of investigation of our paper is the study of interre-
lations between the saturation properties of the LR-numbers and their gen-
eralizations, and the leading coefficient of the parabolic Kostka polynomi-
als.

The paper does not contain complete proofs of the main theorems. Our
goal is different. The primary purpose of this note is to collect together
several results, conjectures and examples revolving around a mysterious be-
havior of the initial and the leading terms of a parabolic Kostka polyno-
mial.

Let us say a few words about the content of our paper.

In Section 2 we collect together a few definitions and notation which will
be frequently used in the subsequent Sections.

In Section 2.1 we remember the definitions of partitions and compositions
and some operations over them. We would like to point out here some non-—
standard conventions about partitions and compositions used in our paper.
We will denote by A = (A1,..., ) a (proper) partition, so that if A # @, then
Ar # 0. We always use 1 to denote a composition without zero components.
Contrary, we will use pu to denote a composition or partition with zero compo-
nents and zeroes at the end allowed. A typical example is u = (0,2,0,1,3,0,0).
Thus, according to our conventions, the compositions (0), (0,0), ... are different
and different from the empty composition (.

In Sections 2.2 and 2.3 we recall the definitions of Kostka—Foulkes and
skew Kostka—Foulkes polynomials. For more details, see [10, 16, 29, 35, 41, 42].

In Section 2.4 we remember the definition of the Littlewood—Richardson
numbers and state the Saturation Theorem, which has been proved by A. Knut-
son and T. Tao [43].

We refer the reader to interesting and clearly written papers by W. Fulton
[20, 21] for detailed account to the so—called Horn problem and its connections
with the Saturation Theorem.

In Section 2.5 we study the saturation properties of the internal product
structural constants g.g, and those of the plethysm ay, w It is well-known
that the LR-numbers ¢ , are a special case of the internal product structural
constants gng~, and in turn, the numbers g.3 are a special case of the plethysm
structural constants aj y;,, see Remark 2.13. However, based on examples we
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arrived at the conclusion that, in the general case, both the numbers g.3, and
ay, w do not satisfy the saturation property.

("H) Nevertheless, we expect that

e the numbers ay v, satisfy a weak form of Saturation Conjecture, i.e. for
any finite dimensional gl,,-module W there exists a polynomial pw (t) (pw (t) =
t 77) such that for all partitions = and p one has

if ayT, w > pw (N), then a, i # 0.

e for an interesting family of polynomials Lgy ﬁ(q) a certain analog of the
GSC does hold, see Conjecture 2.22.

It seems an interesting problem to study whether or not the GSC' is
valid for polynomials M ;W(q) which are defined via the decomposition of the
plethysm W o s,:

(Wos,)(X) =Y MJw(a) Pr(X,q),

where X = (z1,...,2,), and P;(X,q) stands for the Hall-Littlewood polyno-
mials.

In Section 2.5 we also state several results about polynomials L, ;(¢) and
give a few examples supporting our conjectures.

In Section 2.6 we define the extended Littlewood—Richardson numbers as
well as the level [ extended L R-numbers. The latter are a natural generalization
of the restricted L R-numbers.

("H) We expect that Saturation Theorem, the strong ¢-log concavity and
Fomin-Fulton-Li-Poon’s conjectures I and II are still valid for the level I ex-
tended LR-numbers.

In Section 3 we study some algebraic properties of the parabolic ¢g-Kostant
partition function Kg(,) (7| ¢), mainly in a connection with the saturation prop-
erties of the latter. For polynomials Kg,) (| ¢) we prove an analog of the GSC,
Rationality and Polynomiality theorems, and a new recurrence relation. Our
proof of Rationality theorem is based on the following simple observation:

Lemma 1.11. Let R(X,q) € Q [¢][X*'] be a rational function in q
and X = (21, ... xF). Let

R(X,q)= > An(gX™

mez”

be a Laurent series expansion of R(X,q).



1156 ANaTOL N. KIRILLOV

Let ay,...,a € Z" be fized, then

Ny Ny,
E ANyar -+ Nar (@) 10T
(N17-~~7Nk)€Z§0

s a rational function in q and x4, ... , Tg.

In Section 3 we also study the parabolic Kostant partition function Kg,)
() as a function of 7, see Theorems 3.23 and 3.25.

A detailed treatment of the properties of the parabolic ¢-Kostant and
Kostant partition functions lies at the heart of the approach to the GSC and to
the study of parabolic Kostka polynomials, presented in this paper. However,
making an effort to keep the paper in a reasonable size, we do not intend to con-
sider in Section 3, and decided to postpone for subsequent publications, many
very interesting aspects of the theory of parabolic Kostant partition function

Kom)(7) := Ko@) (7] @)lq=1 such as

(i) The special values of parabolic Kostant partition function, see
[2, 34, 35, 68];
(ii) Connections with the flow polytopes, see [2, 68];
(iii) Connections with the Orlik—Solomon and Gelfand—Varchenko
algebras, [37];
(iv) A g-analog of the generalized Kostant partition function, see [68].

In Section 4 we study, mainly, the “saturation properties” of parabolic
Kostka polynomials. Many examples, results and conjectures concerning with
the parabolic Kostka polynomials, have been already considered in our paper
[35]. For the reader’s convenience, in the present paper we remember some ba-
sic properties of the parabolic Kostka polynomials K,,(g), and give a sketch
of proofs of Rationality and Polynomiality theorems for the latter, see Theo-
rems 4.14 and 4.17, and Corollaries 4.15, 4.18 and 4.19.

In the case when u and 71 correspond to a dominant sequence of rectangular
shape partitions R, we have obtained the following result:

Theorem 1.12 (Polynomiality theorem for the numbers b(\, R)).

Let \ be a partition and R be a dominant sequence of rectangular shape
partitions, then

(&) O(NA,NR) is a polynomial in N with rational coefficients.
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Our proof of Theorem 1.6 is a largely algebraic, whereas that of Theo-
rem 1.12 is based on a fermionic formula for the parabolic Kostka polynomials
K r(q)

(H) We expect that if p is a partition, then b(NX, Npu||n) is a polyno-
mial in N with non—negative rational coefficients, see Section 6, Polynomiality
conjecture, for a more detailed statement.

However, in general, b( N\, N pu||n) becomes a polynomial in N only starting
from big enough N, see Section 6, Conjecture 6.10, (¢ 44), and Remark 6.16.

In Section 4 we also study some natural multivariable analogues of Theo-
rem 1.6, and Corollaries 1.7 and 1.8. In particular, we give a sketch of proof of

a theorem that for any sequences of partitions (), ... A\(*¥) and compositions
pM o %) the formal power series
N N
Z KNI)\(1>+"'+N1«>\(’“)7N1u(1)+--~+Nku(’“),n(Q) R

(N1, ,Nk)EZE,

is a rational function in ¢ and x1,... , 2, which has the denominator of some
special form, see Section 4, Theorem 4.17.
However, in general, if k£ > 2, the functions

(N1 e ey NE) = KNy @) 4ot NA®) Ny gD et Ny (1), and

Niv® oo Ny )
(N1,... Ni) — ENYAD et N AR N (D) e N (R

are only piecewise polynomial functions on the set {(Ny,...,Ny) € Z%,}, see
Example 4.23. -

We want to emphasize here that the special form of the denominator of the
rational function Z(th Ny)ezk, KN1/\(1)+"'+N1¢>\““)7N1M(1>+"'+Nku(k)7n(1)’ see
Theorem 4.17, (&), is (in our opinion) a key fact to explain a piecewise polyno-
miality of the “mixed” Kostka numbers K )44 N ®) Ny ) 4o N k) (1)
and “mixed” Littlewood—Richardson coefficients.

(H) Nevertheless, we expect that in the case of parabolic Kostant’s par-
tition functions, the function (ni,...,nx) — Ke@y(niy1 + - + npy) is a
polynomial one on the whole set {(n1,...,n;) € Z%,}.

It is well-known that the Kostka-Foulkes number K ap (1) counts the num-
ber of integral points in some rational convex polytope, the so-called Gelfand-
Tsetlin polytope GT'(A, ). In this connection we would like to pose the follow-
ing question (cf with mized lattice point enumerator theorem for integer convex
polytopes by P.McMullen [54], or Example 4.23) :

Question 1.13.  Let Aq,..., A, € Q% be rational convex polytopes, and
L:7%— Z>o be a continuous piecewise linear function.
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Under what assumptions on L and polytopes A1, ..., Ay the denomina-
tor of rational function

Z Z qL(a) xivl kak

(Nl""’Nk)EZgO aE(N1A1+~»-+NkAk)ﬁZd

has only the factors of the form (1 - q“ffj)xJ), where J C [1,... k], x5 :=
[lc;zj, and a(J] are some non-negative integers?

In Section 4, Remark 4.24, we state some preliminary results about the
behavior of the parabolic Kostka number K, (1) considered as a function of
A and p on “the space of parameters” Z, = {(\,p) € Z%, x Z%, | A1 >
-+ > Ay, A — p € Yy} Based on the properties of the paral;olic Kostant par-
tition function, see Section 3, Theorem 3.25, one can show that on the set Z,
the parabolic Kostka number K, (1) is a continuous piecewise polynomial
function in Ay,..., A, and pg, ..., p,. The main problem about the function
(A, ) = Kxun(1l) we are interested in, is to describe “the dominant chamber”
for the latter function, i.e. to describe the maximal domain Z,7+ T in the set
Z5={(\p) € Zy | A — p €Y.} such that Kxun(Wl g+ = Ko (A — p).

In Section 4 we also introduce the parabolic Hall-Littlewood polynomials
Q.,(X;q), and state the rationality theorem for the latter, see Remark 4.35.
Details and proofs will appear in a separate publication. Finally, we note
that for the Kostka-Macdonald polynomials K ,,(g,t), see [53], Chapter VI,
Section 8, for the definition, the generating function

Z)\,}L(Q7t)‘r) = Z Kn)\,nu(Qa t) z"

n>0

is a formal power series, which is not, in general, a rational function in ¢, ¢
and .

It seems a very interesting problem to study the properties of the function
Zxu(q,t, ), especially in connections with the characters of affine Lie algebras
of type A and the Virasoro algebra.

In Section 5 we collect together several examples which might help to illu-
minate a mysterious nature of the leading term of a parabolic Kostka polyno-
mial. See the Contents of Section 5 for exposing with the list of these examples.
In particular, we show that the one dimensional sums (1D-sums for short) which
frequently appear in Statistical Mechanics, see e.g. [22, 46] and the literature
quoted therein, are a special case of the parabolic Kostka polynomials K., (q)
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corresponding to a rectangular shape partition A, see Section 5.5 for details.
In Section 5.1 we give, among other things, a few comments about the Merris
conjecture, and in Section 5.4 that about the L R-numbers cg‘m 5.

In Section 6 we state a few conjectures about the coefficients a(\, p||n),
b, nl|m), (A, 1lln) and d(A, p|ln). In particular, we expect, see Conjec-
tures 6.14, 6.17 and 6.23, that

e (The generalized Fulton conjecture)

If d(n\,npln) =1 for some integer n > 1, then d(NX, Nulln) =1 for all
N € Z21~

e (Generalized d(\, u||n) = 2 conjecture)

If d(n\, nu|ln) = n+ 1 for some integer n > 1, then d(NA, Nuljn) = N +1
for all N € Z>,.

o (Generalized d(, i||n) = 3 conjecture)

(i) If d(nA,nuln) =2n+1 for some integer n > 2, then d(N\, Nu|n) =
2N +1for all N € Z>q;

(i) T d(nA nplln) = (” .

9 ) for some integer n > 2, then d(NA,

N+2
Nulln) = < ;r ) for all N € Zs,.
These two cases exhaust the all possibilities when d(\, p||n) = 3.
e (¢-Log concavity conjecture)
Let A be a partition and R be a dominant sequence of rectangular shape
partitions, then for any integer n > 1,

(Knxnr(2)? > K- m-1r(@) Kmntia i r(@)-

See Section 6.7, Conjecture 6.17, for a more general and detailed statement of
the latter conjecture.

e (The generalized Fomin-Fulton-Li-Poon’s conjecture I, cf [60],
Conjecture 1, [18], Conjecture 2.7)

Kfi(l)w ’g(k),e(Q) 2 KZ;u),,,_ ,A(k)ﬂ(q)'

e (The generalized Fomin-Fulton-Li-Poon’s conjecture II, cf [18],
Conjecture 5.1)*

K% g-o(q) > K4 5 olq)

1 As we learned from the referee, the extension of the original Fomin-Fulton-Li-Poon conjec-
ture II, [18],Conjecture 5.1, to the case of skew diagrams was also stated by F. Bergeron,
R. Biagnoli and M. Rosas, see e.g. [6, 7]; see also [55]. The paper [7] contains, among
other things, many interesting results in support of the FFLP-conjecture.
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See Section 6.8, Conjecture 6.24, for the explanation of notation we have used,
further details and more conjectures.

In the case of the L R-numbers the Fulton conjecture has been proved in
[44].

Some special cases of the Fomin-Fulton-Li-Poon conjecture II have been
proved in [18].

Problem 1.14.  When does the number d(X, u||n) equal to 17

Finally, we would like to remark that our approach to the GSC is purely al-
gebraic and combinatorial. It seems a very interesting problem to find an
algebro—geometric explanation of a still experimental observation that the co-
efficient ¢(\, p]|n) is a homogeneous piecewise linear function of A and p. In this
connection we would like to pose the following questions:

Question 1.15 (Parabolic Kostka polynomials and semi-inva-
riants of quivers).
Let X be a partition and p, and n be compositions such that |\ = |u| and

W(p) < In.
Does there exist a quiver Q, dimensional vector § and GL(Q, B8)-weight o
such that

dim SI(Q, B)ne = d(n, nuln)
for all integersn > 1 7

Here SI(Q, (), stands for the weight o subspace of the ring of semi-
invariants

SI(Q,8) = Q [Rep(Q, B)]H @7,

See [14] and [15], and the literature quoted therein, for more details about
the ring of semi—invariants of a quiver. It seems a very interesting problem
to find an interpretation of the numbers c(A, ul|n) and d(A, pl|n) in terms of
quivers.

Question 1.16 (A g¢-analog of dimSI(Q,5)).
Does there exist a natural filtration

{02.7:0C.7:1C...}

on the ring of semi—invariants SI(Q, ) such that for a special quiver QQ =
Thnn and a special dimensional vector 3, see [14], Section 3,

> dim(F/F1) ¢ =K ,(0) ?

j>1
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Here cf\yﬂ(q) denotes the q-analog of the LR-numbers, see e.g. [11, 49]; for the

»

meaning of the symbol “=", see Section 1.1.

We would like to end this Introduction by the following remark. Through-
out the paper we use the term Conjecture to mean a statement for which we
do not have a proof, but which we have checked on a big body of examples
(except for Conjectures from Section 6.9). On the other hand, we use an ex-
pression “We expect that ...” to mean a statement which we believe is bound
to be true, but for which we don’t have the extensive supporting evidence. Of
course, not all plausible conjectures and reasonable guesses prove to be true.
For example, see Remark 4.22.

8§1.1. Notation

Throughout the paper we follow Macdonald’s book [53] as for notation
related to the theory of symmetric functions, and Stanley’s book [67] as for
notation related to Combinatorics. Below we give a list of some special notation
which we will frequently use.

1) If P(q) and Q(q) are polynomials in g, the symbol P(q) = Q(q) means
that the ratio P(q)/Q(q) is a power of g.

2) If a, ko, . .. , ky, are (non—negative) integers, the symbol ¢*(ko, ... , km)
stands for the polynomial Y27 k;q*+7.

3) We use the capital Latin letters A, B,C,... to denote the skew dia-
grams/shapes, and the small or capital Greek letters «, 3,7, A, u, A, M, ... to
denote either partitions or compositions.

4) Let m = (m,1,"M,2,--- ,M,p) and 72 be compositions, we say that 7, is
a subdivision of 1y, if there exists a sequence of partitions x(), 1 < j < p, such
that [u9)] = ; and 9y = (u), ..., u®)).

5) Let P1(q) and P2(q) be polynomials with real coefficients. By definition,
the inequality P;j(q) > P»(q) means that the difference Pi(q) — P2(q) is a
polynomial with non—negative real coefficients.

§2. Basic Definitions and Notation
§2.1. Compositions and partitions
A composition

(2.1) = (p1s p2, s )



1162 ANaTOL N. KIRILLOV

is a sequence of non-negative integers. The number r in (2.1) is called the
fake length of the composition p, and denoted by ll(n). In the sequel, it
will be convenient for us to distinguish between two such sequences which
differ only by a string of zeros at the end. Thus, for example, we regard

(2,0,1),(2,0,1,0),(2,0,1,0,0),..., as different compositions. The size of a
composition p is defined to be |u| = py + -+ + iy
By definition, a composition A = (A1, Ae,...,\,) is called partition, if

additionally it satisfies the following condition:
(2.2) M >d > >0, > 0.

The non-zero A; in (2.2) are called the parts of A. The number of parts is
the length of A\, denoted by I(\). Thus, we have I[(A) < lI(\) := p. As in the
case of compositions, we distinguish between two sequences (2.2) if they differ
only by a string of zeros at the end. If |A\| = n we say that A is a partition of
n. Denote by P, the set of all partitions of n.

A partition A = (A1, A2 ..., Ap) is called properif A, # 0.

The dominance partial ordering “>" on the set of compositions of the same

size m, or that of partitions P, is defined as follows:

A > if and only if
M+ +N>pur+--+p; forall o> 1.

The conjugate of a partition A = (A1,...,A,) is the partition A = (A,
Xy, ... ), where X, = #{j|\; > i}. In particular, A] = [()\) and A\ = I(X).
For each partition A = (A1, Ag,... , A\p) we define
P
n(N)=> (i-Dhi= Y min(\,X\).
i=1 1<i<j<p
The concatenation p * v of two compositions p = (u1, o - .., 1) and
v=(v1,vs,...,Vs) is defined to be the composition
(23) .UJ*V:(,U‘M,U‘QV"aﬂT7V13V27"'7VS)'

For any compositions p and v we define p + v to be the sum of the sequences
wand v

(2.4) (B +v)i=pi +vi

Thus, for example, nu = (npy, npg, ... Ny ).
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Definition 2.1. We say that a sequence of partitions g = (u(l),u@),
., ") is a dominant one, if the concatenation pu * p(® % ... % u(" is a
partition.

Definition 2.2. Let u = (u1,p2,...,4y) and 1 = (71,72,... ,7p) be
compositions, we say that the composition p is compatible with # if the all
compositions

(25) :U’(Z) = (:u”f]l+"'+7h‘71+17 s 7,U/7]1+“'+7h‘)7 1<i<p

appear to be partitions (possibly with zeros at the end), where by definition
we put 19 := 0.

In other words, the composition p is the concatenation of partitions p(?,

1 < i < p. Conversely, if a composition u is the concatenation of partitions

p®, 1 < i< p, then the composition 1 can be reconstructed from that p as
follows:

n= (ll(,u(l))7 ll(,u(2))7 o ,ll(,u(p))),

§2.2. Kostka—Foulkes polynomials

In Sections 2.2 till that 2.6 we will assume that all partitions which will
appear, are proper.

Definition 2.3. The Kostka—Foulkes polynomials are defined as the
matrix elements of the transition matrix

K(q) = M(s, P)
from the Schur functions sy (z) to the Hall-Littlewood functions P, (x; g):

(2.6) sa(@) =Y Kau(q) Pulw; q)-

It is well known, see e.g. [53], Chapter I, that if A and p are partitions,
then

e K),(¢q) # 0 if and only if X > p with respect to the dominance partial
ordering “>" on the set of partitions.

o If X > p, Ky,(q) is a monic of degree n(u) — n(A) polynomial with
non—negative integer coefficients. This result is due to A. Lascoux and M.-
P. Schiitzenberger [48].
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o If [(1) = n, then

(2.7) Kau(g) =Y (=)' K, (w(A+0) — p—6] q),
weX,

where I(w) denotes the length of a permutation w € ¥,,, § := 6, = (n—1,n —
2,...,1,0), and for any v € Z™,|y| = 0, K,,(v| ¢) stands for a g-analog of
the Kostant partition function K,(v), see e.g. [53], Chapter III, Section 6,
Example 4, or Section 3 of the present paper.

Theorem 2.4.  Let \ and u be partitions of the same size. There exists
a polynomial £ ,,(t) with rational coefficients such that for any integer N > 1
one has

Expu(N) = Knanpu(l).

Corollary 2.5.  The Ehrhart polynomial €y ,,(t) of the Gelfand-Tsetlin
polytope GT(A, 1) is a polynomial, even though the polytope GT (A, p) itself
does not necessary appear to be an integral one.

For a definition of the Gelfand-Tsetlin polytope see, e.g. [8, 36] or [12].
For a definition and basic properties of the Ehrhart polynomial of a convex
integral polytope see, e.g. [67] or [24].

Theorem 2.4 and Corollary 2.5 are a particular case of a more general
result, see Section 4, Corollary 4.15.

We refer the reader to a paper [12] which contains a rich information
about vertices of Gelfand—Tsetlin’s polytopes. In particular, one can find in
[12] several examples of Gelfand—Tsetlin’s polytopes with some non-integral

vertices.

Conjecture 2.6. Let A and p be (proper) partitions of the same size,
then the Ehrhart polynomial £y ,,(t) has non—negative rational coefficients.

We remark that Conjecture 2.6 is a special case of Polynomiality Conjec-
ture from Section 6.

Polynomiality of the function N — Ky n,(1) has been proved inde-
pendently by several authors: W. Baldoni-Silva and M. Vergne [2], S. Billey,
V. Guillemin and E. Rassart [8],....

Problem 2.7.  Find a fermionic, i.e. a positive linear combination of
products of powers of t and t-binomial coefficients, formula for the polynomials

Exnplt).
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This problem should be a very difficult one, however, since, for example,
the polynomial

Enm),((n—1)m,1m) (1)

coincides with the Ehrhart polynomial of the Birkhoff polytope B,, of doubly
stochastic matrices, see [35], Section 7.5. We refer the reader to a paper by
M. Beck and D. Pixton [3] and the literature quoted therein, for a further
information about the Ehrhart polynomials (for n < 9) and the volumes (for
n < 10) of the Birkhoff polytope B,,.

The (normalized) leading coefficient of Ehrhart’s polynomial £x,(t) is equal
to the (normalized) volume of Gelfand—Tsetlin’s polytope GT'(\, i), and is
known in the literature, see e.g. [23, 59|, as a continuous analog of the weight
multiplicity dim Vy (p).

Finally, we would like to note that in general, the Ehrhart polynomial of a
convex integral polytope may have negative coefficients. The famous example is
the Reeve tetrahedron, see e.g. [35], Example 7.34, 6, and the literature quoted
therein.

§2.3. Skew Kostka—Foulkes polynomials
Let A, p and v be partitions, A D p, and |A| = |u| + |v|.

Definition 2.8. The skew Kostka-Foulkes polynomials K\, ,(q) are
defined as the transition coefficients from the skew Schur functions sy, (z) to
the Hall-Littlewood functions P, (z;q):

(2.8) sau(@) =D K (@) Po(39).

It is clear that
K)\\;L,V(q) = Zci;ﬂ—K‘n'u(q)v

where the coefficients ¢}, = Mult[V, : V,, ® V;] stand for the Littlewood-
Richardson numbers.

Let us remark that

(2.9) Enup(@) =) ¢
T

summed over all semistandard skew tableaux T of shape A\ p and weight v,
where ¢(T") denotes the charge of a skew tableau T
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In the case ¢ = (), the formula (2.9) is due to A. Lascoux and M.-P.
Schiitzenberger [48]. See also [10], Chapter II, for an extended exposition of
[48]. We refer the reader to [53], Chapter III, Section 6, for the definition of
the Lascoux—Schiitzenberger statistics charge on the set of semistandard Young
tableaux.

We will use also the cocharge version of the skew Kostka—Foulkes polyno-
mials:

(2.10) Fk\u,u(q) = Zcf‘mfﬂ#(q),

where K,(q) = ¢"" Kx.(a7").
(#) We will see in Section 5.1, example 3°, that the skew Kostka-Foulkes
polynomials are some special cases of the parabolic Kostka polynomials.

§2.4. Littlewood—Richardson numbers and Saturation Theorem

The Littlewood—Richardson numbers SWE LR-numbers for short, are de-
fined as the structural constants of the multiplication of Schur functions. More
specifically, let A and p be partitions, then

(2.11) Sasu = D X S0

or equivalently,
S\u = ZCK,MS)\.
A
We have ¢, = 0 unless [v| = [A| +[u| and v D A, p. A pure combinatorial way
to compute the L R-numbers is given by the celebrated Littlewood—Richardson
rule, see e.g. [53], Chapter I, Section 9.
Saturation Theorem (A. Knutson and T. Tao [43])

C%KWH # 0 for some integer N > 1 if and only if ¢§ , # 0.

We refer the reader to interesting and nice written papers by W. Fulton
[20, 21] and A. Zelevinsky [74] for detailed account to an origin of Saturation
Congecture (now a theorem by A. Knutson and T. Tao) and its connections
with the so-called Horn Problem.

§2.5. Internal product of Schur functions, and polynomials Lg’ 5(a)

The irreducible characters x* of the symmetric group ¥, are indexed in
a natural way by partitions A of n. If w € %,,, then define p(w) to be the
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partition of n whose parts are the cycle lengths of w. For any partition A of m
of length [, define the power—sum symmetric function

PXx = DXy ---Pxp»

where p,(z) = > x}. For brevity write p, := py(w). The Schur functions sy
and power-sums p,, are related by a famous result of Frobenius

1 A
(2.12) = 3 P whp
weX,
For a pair of partitions « and 3, || = |3] = n, let us define the internal product

54 * 53 of Schur functions s, and sg:
1 o 5
(213) Saxsp = 30 XN @
WEDy,

It is well-known, see e.g. [53], Chapter I, Section 7, that
Sq ¥ S(n) = Sqay Sa ¥ S(ln) = Sa/,

where o denotes the conjugate partition to a.
Let «, 8,7 be partitions of a natural number n > 1, consider the following
numbers

(214) Gosy = 1 30 X w)x” (W) (w).
weX,

The numbers g, coincide with the structural constants for multiplication of
the characters xy® of the symmetric group X,:

(2.15) xx? = Zgag,yx“’.
Bt

Hence, gog, are non-negative integers. It is clear that

(2.16) S * 8g = Zgaﬁ'ysw
v

Remark 2.9.  More generally, let A and B be two skew diagrams and -y
be a partition all of the same cardinality n. Define the coefficients g4 g, and
the internal product s * sg of skew Schur functions s4 and sg as follows. Let
x? and xZ be the characters of representations of the symmetric group %,
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which correspond to the skew diagrams A and B. The numbers g4 5. are
defined via the decomposition

XX = gans X7
¥
The internal product of the skew Schur functions s 4 and sg is defined as follows

SA*Sp = E JA,B,y S~-
2l

Finally, let C' be one more skew diagram, define the number g4 p ¢ to be equal
to (sa * sp,sc), where ( ,) denotes the Redfield-Hall scalar product on the
ring of symmetric functions, see [53], Chapter I, Section 4.

Remark 2.10. It is one of the most fundamental open problems in Com-
binatorics and Representation Theory of the symmetric group that to find a
combinatorial rule for description of the numbers gqg-.

Theorem 2.11.  Let «, 3 and ~y be partitions of the same size n.
(%) If gapy # 0, then gna,ng,ny # 0 for any integer N > 1.

Remark 2.12. The converse statement, i.e. if gnya,ng,ny 7# 0 for some
integer N > 2, then gngy # 0, the so-called saturation property of the
structural constants g.gy, is not true in general if n > 7, even under the
additional assumption that partitions «, 3,y and their conjugate ones o/, 3,7/,
all have at least two different parts. For example,

9(6,1),(4,1%),(3,3,1) = 0, but g122) (8,.28),6,6,2) = 1, 9(5,2).(4,3),4,13) = 0, but
9(10,4),(8,6),(8,23) = 1,

9(6,12),(6,12),(4,3,1) = 0, but g12 22y (12,22),(8,6,2) = 1, 9(6.2),(6,12),(4,22) = 0,

but g(12,4),(12,22),(8,42) = 1.

On the other hand,

9(3,1,1),(3,2),(2,13) = 1 and 9(6,2,2),(6,4),(4,23) = 2, 9(2,1),(2,1),(13) = 1 and
9(4,2),(4,2),(22) = 1,

9(2,2),(2,2),(2,2) = 1 and 9(4,4),(4,4),(4,4) = 1, 9(2,2),(2,2),(14) = 1 and
9(4,4),(4,4),(24) = 1.

(K) However, we expect that the formal power series

Z INa, NNy 1Y
N>1

is a rational function of ¢t (with the only possible pole at ¢t =1 77?).
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Remark 2.13 (Plethysm structural constants).

Fix integer numbers k£ and n > 2, and a finite dimensional representation
W of the Lie algebra gl,,. The k-th tensor power W®* of the gl,-module W
has a natural structure of ¥ x gl,-module, where ¥; denotes the symmetric
group of order k!. Let

(2.17) W =3 "ar y "V,

M,

be the decomposition of the module W®* into irreducible %, x gl,,-submodules.
Here p is a partition of size k, and S* stands for the irreducible representation
of the symmetric group 3 which corresponds to the partition u; 7 is a partition
of length at most n and V,. denotes the irreducible gl,,-module with the highest
weight .

If W =V, is the irreducible gl,,-module with the highest weight A, then
the numbers af , := aj] y, coincide with the structural constants of yet another
multiplication, called plethysm, in the ring of symmetric functions A:

_ T
5308, = E al,, Sr-
s

Note, that the plethysm is an associative, but not commutative operation.

It is well-known, see e.g. [69], that if & and 3 are partitions of the same
size k such that I(a) =7, () = s and n > r + s, and furthermore, W = gl,, is
the adjoint representation, and

7T:(]€+0417... ,k‘—f—Oé»,-,k‘... ,k,k—ﬁs,... ,k—ﬁl),
——
then
aj g, = [5" ® Ve : gl*] = gapy

Hence, the inner product structure constants g.sy, and therefore the LR-
numbers, are certain special cases of the plethysm structural constants ay w-

Conjecture 2.14.  Let p and 7, I(7) < n, be partitions such that u has
at least two different parts. Let W be a finite dimensional gl,,-module.
If aj, y, # 0, then G%Z,W # 0, for any integer N > 1.

("H) Moreover, we expect that if Ny and Ny are integers such that Ny >
Ny, then
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N17T N2 3
ANy w = Aoy o and the formal power series
E a’N/,L W
N>1

is a rational function of ¢t (with the only possible pole at ¢t =1 77?).

(%) We want to emphasize that the plethysm structural constants ay w
do not satisfy the so-called saturation property, i.e. it’s not true, in general,
that if G%Z’W # 0 for some integer N > 2, then aj ;, # 0.

Using the tables of plethysms from [1 ] we have checked that

(6,42,25) (3,22,15) (4°,2%) (2°1%
G2,2),42) = 1, but 2,2),21) = 0, a39), (4,2) = =1, but Qo 2) (2,1) = 0.
(X)) Based on several examples, we expect that if a2 w = 2, then
ayw # 0.

On the other hand, Conjecture 2.14 is not true if a partition yx has a form
(1%). For example,
g (44211
o) (1,1, = L buta
=1.

(8,8,4,2,2)
(2,1,1),(2,2,2)

(4,3,3,1,1)
(2,1,1),(1,1,1

(8,6,6,2,2)

=0,a (2,1,1),(2,2,2)

):0,buta

Question 2.15.  Could it be true that for any finite dimensional gl,,-
module W there exists a polynomial pw (t) (pw(t) = t ?9) such that for all
partitions m and p one has

if axgw = pw(N), then af, y # 0.

(®) It is one of the most fundamental problems of Algebraic Combina-
torics, Representation Theory, Theory of Invariants, ... that to find a combi-
natorial rule for description of the numbers ay w-

|

Definition 2.16.  The polynomials Lgﬁ (¢q) are defined via the decom-
position of the internal product of Schur functions s, * sg(z) in terms of the
Hall-Littlewood functions:

(2.18) Sa * 55(x ZL ).

In a similar fashion one can define the polynomials L ;(q), where A and
B are skew diagrams and p is a partition:

SA*SB ZL ;/,IQ)
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Examples 2.17.
(i) Take n =4, a = (3,1) and 8 = (2,2).
Then the all non—zero polynomials L(3 1,2.2) (q) are:

(3,1) (2,2) (2,1,1) )

L(31)(22)( ) 1’ L(31)(22)( ) q, L(31)(22)( ) 1—|—q—i—q7
1

LE3,1)),(2,2) (@) =4q(1,1,2,1,1).

(ii) Take n =6 and o = 5 = (3,2, 1), then

L9 =1, LD (@) =2 +q. LD (9) = (3.2,1),
L<4*“><q> (4 5,2,1> (1+q)(4,1,1),
(q) (4,9,12,11,5,2,1) = (1 +¢)(4,5,7,4,1,1),
L(“ (@) =(1+q)? 1+¢*)? (2,3,0,1).

(iii) Take n =6, a = (4,2) and 8 = (3,2,1), then
Loy @ =1 Ll (@) =2+a Ly (@) = (2:3,1), L5 (@) = (1.21),

L (@) = (14 )1+ g+ ¢)(2,1,1), LEZY(g)
(1+9)*(1+q+¢*)(2,0,1),
(1+¢?Q+q+¢)(1+q+¢*)(1,1,0,1).

L35 ()

(iv) Take n = 6, a = (4,2) and 8 = (23). Then

LY (@) =¢. L8 (@) = ¢, L3V (@) =1+ g+ ¢,

L2210 (g) = (3,2,3,1,1), L4 (g) = (1,1,1)(1,0,2,1,2,0,1),

a7

6
LEX{;(Q) =(1,0,1,1,0,1) K, 16)(q).

Hereafter we shell use the notation f(cw(q) to denote the polynomial
qn(u)—n(a) Kau(q_l)-

Remark 2.18. It is not true in general that if «, 8, u are partition and
o > pu, then the ratio LY 5(1)/Kq, (1) € Z.
For example, take o = 3 = (6,2,1) and p = (3,3,2,1). Then

Lgﬂ(q) = (2,17,44,63,64,48,29,15,6,2,1), I?ayﬂ(q) =(1,2,2,1)

and LY 5(1) = 291, LY 4(—1) = 1.
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We see that K,_,(q) is not a(Lngixiisor of L}, 5(q), and the ratio LY, 5(1)/Ka,,
(1) ¢ Z. Note that LY 4(0) = (330, 1) = 2 and degL¥ 5(g) = 10 = n(y) in a
good agreement with Conjecture 2.23.

It follows from (2.6) and (2.16) that

(2.19) ng(Q) = ZQaﬁ'yK'm(Q)~

Thus, the polynomials Lgﬁ(q) have non—negative integer coefficients, and

Lgﬁ(o) = Yapp-

It follows from (2.18) that the number Lf ;(1) is equal to (sa * sg, hy),
where ( ,) denotes the Redfield-Hall scalar product on the ring of symmetric
functions, see [53]. In other words,

sa(®@) * s5(2) =Y _ Ly 5(1)my(2),

where m,,(x) denotes the monomial symmetric function corresponding to par-
tition p. Therefore, the numbers L} ;(1) and L'} 5(1) can be defined for any
composition .

Remark 2.19.  There is a well-known connection between the structural
constants gog, and the numbers L7 ;(1). Namely, let A, B and C =T \ vy
be skew diagrams such that the partition I' has the length at most n, and
|A| = |B| = |C|. Then

gasc= Y (1) L§%7 (1),
wWEX,
where wo C stands for the composition w(I'+d,) —vy—9d,, and 6, = (n—1,n—

2,...,1,0).

The polynomials Lgﬁ(q) can be considered as a generalization of the
Kostka—Foulkes polynomials. Indeed, if partition § consists of one part, § =
(n), then

ng(Q) = Koc,u(Q)v Lgﬁl(Q) = Ka',u(Q)-

Proposition 2.20. Let o, B and pp = (1 > -+ > w,) be partitions of
the same size n. Then

(2.20) Lk 5(1) = ZK% (VK5 . (1),
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where the sum runs over sequences of partitions p = (u), ... ,,u(’")) such that
1| = pa, T<a<r.

Corollary 2.21.  If p = (r,1%) is a hook partition, then

(2.21) LY 5 Z Koaa, as)(1) Kp\a, 19)(1),
[Al=r

where the sum runs over all partitions A of size r, A C aN .

In particular, L( (1) = fof8, where f* denotes the number of standard
Young tableaux of shape a. More generally [35],

(2.22) L3D(@) = Kpra(@,0) Ko, n) (@) = Kars(a,0) K, (a),

where

KQ,B(Q) = qn(ﬁ)—n(a) Ka,@(q_l)7 Ka,@(Qa Q) = Ka,B(Q7t)|t:qa

and K,p(q,t) stands for the double Kostka polynomial introduced by I. Mac-
donald [53], Chapter VI, (8.11).

Problem 2.22.  Find a g—analog of the equality (2.21) .

Conjecture 2.23 (Saturation conjecture for polynomials Lgﬂ (q))-

Let «, 8 and p be partitions of the same size such that Lgﬂ (q) # 0. Then

(#) For any integer N > 1,

e max degL%i np(@) = N maxdegLl 5(q);

o If partition p either has at least two different parts, or p has a rectangular
shape, but p is different from the both partitions o and (3, and their conjugate
ones o and ', then

min degL%i ~p(@) = N mindegLy, 5(q).

(#4) maxdegLl, 5(q ) n(p) — (a ﬂ) where A(«, 3) stands for the min
degKa,5(¢,q), ie

Ko p(q,q9) = B(a, )¢+ higher degree terms.

(644¢) (Saturation conjecture for polynomials K, 3(q,q))

For any integer N > 1, A(Na, NG) =N A(a, B).
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Examples 2.24. (i) Take n = 3,

@2 _
=1 Ligy),en@ =1,

(3) _ B
Liyen(@=1 Lisus@=1
L3 an@=1+a+d +4°
2,1),2,)\9) = q+q +q°,
3
LEi,z),(4,2)(Q) =142q¢+4¢+3¢+3¢" +¢" +,
(2,1) _ (4,2) . 9
L(2 1),(211)((]) =l+g L(4,2),(4,2)(q) =24+q+q.
5y()
(9)

£

—q+¢, L) —(1,1,2,1,1
(2,1),(1%) q _Q+q ’ (4,2),(23)(Q) _( s Ly &y by )

(ii) Take n =4,

(2,2) B (4,4) B
L(3a1),(2,2) ((]) =4q, L(6,2),(4’4) (99 =1+ (]27

(2,1,1) . 9 (42,2) B
L3y (@ =1+ 0+ L i@ =(1,2,3,1,1),

Lt —q¢(1,1,2,1,1), L?) = ¢%(2,2,6,5,7,4,4,1,1
(371),(272)((1)—(] y 4y 4, 1, )a (672),(474)((])—(] (7 y 0,0, (4,4, 1, )

The latter example shows that for the numbers g3, an obvious generalization
of the Fulton conjecture, see Section 6, is false.

Conjecture 2.25 (Rationality conjecture for polynomials Lgyﬂ(q)).
Let a, 8 and p be partitions of the same size. The generating function

Z L%g,Nﬁ(Q) tN

N>0

is a rational function of ¢ and ¢.

Problem 2.26.  Give a combinatorial interpretation of the integer num-
bers LY 5(—1).

Problem 2.27.  Find a fermionic type formula for the polynomials
ng (q) which extends that for the Kostka—Foulkes polynomials, see Section 5.1,
Theorem 5.3.
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§2.6. Extended and restricted Littlewood—Richardson numbers

(1°) (Extended Littlewood—Richardson numbers)

Let A, p and v be partitions such that |[A| + || > |v|. Choose an integer
number N such that N > Ny := max(|A| + A1, |s| + p1, |v| + v1), and consider
partitions

aN = (N_ |/\‘7A)7 ﬁN = (N_ |/’L|7/’4)7 IN = (N_ ‘V|’V)'

It is clear that |an| = |OBn]| = |yn] = N.
According to results by F. Murnaghan [57], Y. Dvir [17] and E. Vallejo
[70], if N > Ny, then the number g, gy,vn does not depend on N.

Definition 2.28.  The extended Littlewood-Richardson number CY
is defined to be equal to the stable value of the numbers gxy gy, yn-

More generally, the following statement is true:

Proposition 2.29.  The sequence of polynomials {Lljzvv,,@N(Q)}NZI is

stabilized to the polynomial LK,U(Q)v i.e. if integer N is big enough, then the
polynomial LZ‘IZVV_ﬂN (q) does not depend on N and equal to LY . (q). The latter
is a polynomial with non—negative integer coefficients, and EKM(O) =C5 .

According to another result by Y. Dvir [17], the numbers CY , can be
considered as a generalization of the LR-numbers cf ,.

Proposition 2.30 (Y. Dvir [17]). If |\ +|u| = |v|, then the number CY ,
coincides with the Littlewood—Richardson number cX .
Examples 2.31. (i) Take A = u = (2, 1), then

(3.2,1) _ (3:21) _
Ol =an =2

CEMD 6, CEED =5, GEMY _4, o8 =,
(2,2) _ (3,1) _ (2,1,1) _ (2,1) _
CML =6, CA,“ = Cx,u =9, CA,“ =9.

(ii) Take A = (2,1) and p = (3,1), then

ol =13, Y =9.

Problem 2.32.  Find a combinatorial rule for calculating the extended
LR-numbers Ciu which extends the Littlewood—Richardson rule.
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Conjecture 2.33 (Saturation conjecture for extended LR-
numbers).
C%K’Nu # 0 for some integer N > 1 if and only if C% , # 0.

(2°) (Restricted Littlewood—Richardson numbers, cf. [26], Exer-
cise 13.35)

Fix positive integers [ and n > 2. Denote by X,, ; the affine reflection group
on R™ generated by the reflection

so=(xn+lxa,... ,&p_1,21 —1)
and the symmetric group >,,.

Definition 2.34 (Restricted Littlewood—Richardson numbers).
Let A, p and v be partitions such that |A| + || = |v|. Define the level
restricted Littlewood-Richardson number ¢ M[l] as follows

K= > (=1)eper,

WES,,
where wo v denotes the composition w(v +d,) —d,, and 6, = (n—1,...,1,0).
It is well-known that
0< ] <2< =

In a similar fashion one can define the level | extended Littlewood—Richardson
numbers CY  [I].

Conjecture 2.35 (Saturation conjecture for the level | extended
LR-numbers).

Let A, ¢t and v be partitions such that |[A| + || > |v|. Then

CJJ\\;K,N;L [[] # 0 for some integer N > 1 if and only if CY ,[I] # 0.

Conjecture 2.36 (Polynomiality conjecture for level [ extended
LR-numbers).

Let A, ¢t and v be partitions such that |A| + || > |v|. Then

Cﬁ;’ ~, 0] is a polynomial in N with non—negative rational coefficients.

(&) Moreover, the formal power series

Z C%K,Nu [l] tN

N>0
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is a rational function in ¢ of the form
v,l r(\,u,v, v,l _ v,l
P)\”u,(t)/(l - t) (op l)+17 PA,/_L(O) - 1) P)\”u,(]‘) 7é 07

where (A, p, v,1) € Z>¢ and P:L(t) is a polynomial with non—negative integer
coeflicients.

83. Parabolic Kostant Partition Function and its g-analog
83.1. Definitions: algebraic and combinatorial

Let n = (m,m2, ... ,1p) be a composition, n, > 0, |n| = n. Denote by ®(n)
the set of ordered pairs (i, j) € Z? such that

(3.23) 1<i<m+--+n.<j<n
for some r, 1 < r < p. For example, if n = (1"), then
®(n) ={(i,j) € L1 < i <j<n}.

Definition 3.1.  Let v = (y1,72,... ,7n) € Z™ be a sequence of integers
such that |y| = 0, define a parabolic q-Kostant partition function Kg, (7| q)
via the decomposition

(3.24) I G—gzi/z) ™ =) Kew(il 927,

(i,5)€®(n)

where the sum runs over the all sequences v = (71,72, ... , ) € Z™ such that
7] = 0.

Definition 3.2.  Let Ky, () denote the parabolic Kostant partition
function, that is to say, the value of the polynomial K¢ (7| ¢) at ¢ := 1.

Remark 3.3 (Combinatorial definition of ¢-Kostant partitionfunction).
One can give an equivalent pure combinatorial definition of the parabolic
g-Kostant partition function Kg ;) (7| ) as follows.
Let 7 be a composition, |n| = n. Denote by SM,(v) the set of all skew—
symmetric integer matrices M = (m; j)1<i j<n such that
(i) mi; >0, if1<i<j<n;
(ii) m;; =0, if rp_1 <@ < j <1y for some k, 1 < k < p, where ry, := ngk nj,
and rg := 0;
(iii) D27, mi; =i, for all 4,1 <i <n.
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For each M € SM,(v) we define the magnitude of M, denoted by ||M|],
to be the sum >, ;- ;,, m; ;. Then

(3.25) Koyl ) =>_¢™,

where the sum runs over all matrices M € SM, (7).
Therefore, Kg(, () = Card [SM, (7).

Remark 3.4 (Generalized ¢-Kostant partition function [68]).
Let ¥ C ®(1™) be a subset, following [68] one can define the generalized
Kostant partition function Ky () and its g-analog Kx (7| ¢), from the decom-

H (1 —qaxifz;)” ZKZ 7l @)z

(i,5)€X

position

where the sum runs over all sequences v € Z™ such that |y| = 0. Moreover, by
definition, Kz (y) = Ks(7] ¢)lg=1-

Equivalently,
Kx(v] q) Zq”M !

where the sum runs over the set of n by n skew—symmetric matrices M = (m; ;)
such that

(i) m; >0if 1 <@ <j<n,

(i) may = 0 (1,) ¢ 2,

(ili) >2;mi; =i for alli, 1 <i <n.

(#) Most of our results about the parabolic g-Kostant partition function
Ka@p) (7] q), including, for example, Theorems 3.17, 3.20, 3.23, 3.25, 3.30 and
3.31, with a small modifications, are still valid for the function Kx(v| ¢). Since
we don’t use the generalized Kostant partition function in the present paper,
we leave this interesting subject for subsequent publications.

§3.2. Elementary properties, and explicit formulas for [(n) < 4

Using the above combinatorial definition of the function K¢, (7| ), one
can describe some elementary, but useful, properties of the latter.

Proposition 3.5. (i) Letn;, ¢ = 1, 2, be two compositions and y; € Y, ,
i =1, 2, then

Ka(nysn) (11 *72] @) = Ko@) (1] @) Ko, (12| 9)-
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(ii) Let n be a composition and v € Yy, then

(3.26) Koy (v @) = Koy (=7 | a),

where for any composition 8 = (B4, ... ,Br—1, Br) the symbol ? stands for the
composition (B, Br—1,--- ,51)-

(iil) Let m1 and n2 be compositions such that 1y is a subdivision of 1, so
that n1 > ns. Then

K@(’I’]l)(Q) S K<I>('r]2) (q)

See Section 1, Notation, for the definition when a composition 7, is a
subdivision of that n;. We remark that the last statement is false if one assumes
only that n; > ne with respect to the dominance partial ordering on the set of
compositions, see example below.

Example 3.6. Take v = (3,0,—1,—1,0,—1), then (2,3,1) > (2,2,2),
but
K222 (v q) = @ +2q < Kooz 1)(vl q) = ¢ +3q"

On the other hand, Ko(21,1,2)(7| ¢) = ¢°(1,3,2,1) > Kg(2,2.2) (7] q).

Proposition 3.7 (Recurrence relation for parabolic ¢-Kostant
partition function).

Let n = (m,...,mp) be a composition of size n, v € Y,. Define n =
(M- s Mry_y). Then

(3.27) Komy(yl @) =q ™ ZKb(ﬁ) (=B s Yrpr = Brpa | @),
B

where the sum runs over 8 € Zg”o_l such that |8] = —vn.

The next proposition describes several particular cases of Theorem 3.31
below, namely, the cases when a parabolic ¢g-Kostant partition function admits
an explicit simple expression.

Proposition 3.8 (Explicit formulas for [(n) < 4).
(1) Letn = (m1,m2) be a two component composition and v € Y,,. Let us introduce
integer vectors A = (Y1,... .Yy ) and = (Vo 41, - , —Ym+4ns). Then X and
w are compositions of the same size, and

(3.28) Koy @) = [Paul ¢,
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where Py, denotes the set of transportation matrices of type (X\; ), i.e. the set
of L(AN) by I(n) matrices with non-negative integer entries, and the row sums
i, and the column sums ;.

(i) Let n = (13) and v € Y(13), i.e. 71 >0 and y1 + 2 > 0. Then

Kausy(v] ¢9) =«

max(y1,71+72) [ min(’yla T+ 72)
1

q

(i) Let n = (n1,m2,73) be a three component composition of sizen, and v € Y,
belongs to the dominant chamber. Then

m
(3.29) Koy (vl @) = [ Balvs + m2im2),
j=1

where for n >k
(3.30)
n—k +k—1 '
By(n; k) = Z (J J ) ¢ =1/(k = 1)1(0/0¢)*[(¢" " = ¢")/(1 = @)].

(iv) Let n = (1,12,7m3,m4) be a four component composition of size n, n =
1, and v € Yn+ belongs to the dominant chamber. Then

n2+1
Komy(Wl @) =q¢ Z By(B1 + m33ms3) H By (B + 75 +n33m3)d™,
B Jj=2

where the sum runs over all vectors 3 € Z’fo'H such that |8 = 1.

In particular, if (y1,v2,v3,74) € Y(Jll), r.e. y1 > 0,72 >0 and y3 > 0, then

K (y1,72,73,74)
2

_ +2 ; +1—-25
=q Ya q Y1 5 [Vi + Z q2] B! ) ]]
q g 2i<m q
2ot 1-4 [re+1-j
— g In J 1 - 2 -
o 3o | )
J=1 q q

Therefore, if (y1,72,7v3,74) € Y(Jll), then Ko@) (71,72,73,71) =

T +3 Y1+ 2

We remark that Bg(n;{)|q=1 = "

l
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Remark 3.9. Tt is well-known, see e.g. [67], [13] and the literature quoted
therein, that on the set of transportation matrices of size n by m, the function
|Pxu| is a continuous piecewise polynomial function in Aq,...,
Ams 41y« -+« 5 fm Of degree (n—1)(m — 1).

Question 3.10. It follows from the above Proposition and the formula
(5.41) from Section 5.1, that if N is big enough integer such that vy = v +
Ny, 4n, is a partition, and if we put by definition Ay = Ny, and uy =
N (5771 + (7727 e ,772))7 then

—_———
S
‘,PA”| = CKJA\IMMN'

(&) Is it true that if N is a big enough integer, then

Poula) = X% (@)

where cKﬁu(q) denotes the g-analog of the LR-numbers, introduced C. Carre and
B. Leclerc, and A. Lascoux, B. Leclerc and J.-Y. Thibon, see e.g. [47]?

For the definition of polynomials Py ,(g) see Section 5.4, (5.48).

83.3. Non—vanishing, Degree and Saturation theorems

It is clear from the very definition that Kg;) (7] ¢) is a polynomial in ¢
with non-negative integer coefficients. For example, if n = (1™), the function
Kg@ny(v| q) coincides with the g-analog K, (7| ¢) of the Kostant partition
function K, (v), see e.g [2]. Tt is not difficult to see [35] that

K, (v ] q) #0if and only if v € Y,,, where

k n
Yn:={(71,“-,%)GZ”IZ%ZO, 1<k<n, Z%:O}-

i=1 i=1
Our next goal is to generalize this result to the case of the parabolic g¢-
Kostant partition function Kg(,) (y| ¢) corresponding to an arbitrary compo-
sition 7.

Definition 3.11.  Letn = (11,...,7,) be a composition of size n, denote
by Y, the set of sequences (y1,...,7,) € Z", |y| = 0, such that for each integer
k,0 < k <p—1, the following inequalities are valid:

Tk
Z% + Z Yo >0 for all subsets Qp C e+ 1,...,06 + Ngt1),
j=1 a€Qy,

where rj := ngk n;, if k> 1, and ¢ := 0; by definition, we put ng := 0.
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In particular, we have v1 > 0,... , v, >0, and v, _, 41 <0,... , 7, <0.

Definition 3.12.  Denote by yn+ the dominant chamber in the set Y,
i.e. the subset of Y, consisting of all vectors v = (v1,...,7vn) such that v >
>y >0,

(#) We want to stress that if v € Yn+’ thenv, ,11=---=7_1=0,and
Yn < 0.

Theorem 3.13 (Non-vanishing and Degree Theorem for parabolic
g¢-Kostant partition function).
Let n = (m,...,mp) be a composition of size n, and v € Z™ such that
|v| = 0. Then
Kowmy(vl @) #0, if and only if ~ € Y,. Moreover,

p—1

(3.31) deg Kop(Vl @)=Y 0=k [ D

1 Jj=rr—1+1

=~
Il

Remember that ry, = > .. n; if k> 1, and ro = 0.

Example 3.14. Take v = (2,1,0,—1,0,—1,—-1) and n = (1,2,2,1,1).
Using formula (3.31), let us compute the degree of the parabolic g-Kostant
partition function Kg () (7| ¢). Namely,

deg Koopy(vl @) =2+ 2+1)+(2+1-1)+(2+1-1-1)=38. In fact,

Komy(vl q) = 3(3,21,52,65,42,13).

If v € Y,, so that Ko, (7] ¢) # 0, we denote by r(7, n)g*" its leading
term. For example,

n—1

7“(’7, (171)) =1, 8(77 (1n)) = Z(n - i)’Yia

i=1
r((3,0,—1,-1,0,-1),(2,3,1)) = 3, s((3,0,—-1,—-1,0,-1),(2,3,1)) = 4.

In general, the number 7(y,7) can be equal to any positive integer. As
for the number s(v,7), it follows from Theorem 3.15 that s(v,1) = (7, da)),
where dg(;) denotes the vector with components (6g(y))i =p — Kk if 11 <i <
re, k=1,...,p.

Moreover, the numbers s(v,n) satisfy the so-called saturation property.

Corollary 3.15 (Saturation theorem for parabolic Kostant parti-
tion functions).
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For any positive number N we have

s(Nv,n) = Ns(v,m).

Conjecture 3.16 (Unimodality conjecture for parabolic Kostant
partition functions).

Let 1 be a composition of size n, and v € Z™ such that |y| = 0. Then,
Kg(y) (7] ) is a unimodal polynomial in the variable g.

§3.4. Rationality and polynomiality theorems

Theorem 3.17 (Rationality theorem for parabolic Kostant parti-
tion function, I).
Let ) be a composition and v € Y,. Then

Z K@(n) (n’Y‘ Q)tn = PTI’Y(qv t)/QW’Y((L t)a
n>0

where Py (q,t) and Qyy(q,t) are mutually prime polynomials in q and t with
integer coefficients, Py, (0,0) = 1.

Moreover,

(&) the denominator Q. has the following form:

Qua(a,t) = T[(1 = o’ 1),
jeJ
where J 1= Jy is a finite set of non-negative integer numbers, not necessarily
distinct;
(%) Py (L,8) = (1= 80 P (1), Py (1) # 0, where t(1,7) € Zso,
and P, (t) is a polynomial with non-negative integer coefficients.

(%) We expect that if v; and v, belong to the set Y;, and v1 > 7, i.e.
Dj<k Vi = D i<k V2.5, VE > 1, then

P77’Y2 (t) - PTI’Yl (t) > 0.

In other words, the latter difference is a polynomial with non—negative coeffi-
cients.

Corollary 3.18 (Polynomiality theorem for parabolic Kostant
partition function).

Let n be a composition and v € Y,. There exists a polynomial K, (t)
with rational coefficients such that for any integer number N > 1, K, (N) =

K‘i’(n)(NV)~
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Conjecture 3.19.  The polynomials K, (t) have non—negative ratio-
nal coeflicients.

Theorem 3.20 (Rationality theorem for parabolic Kostant parti-
tion function, IT).
Let 1 be a composition and v1, ...,y € Y,. Then the generating function

Z Ko@) (N1y1 + -+ Nl ) xileg’“
(N1,... \Ny)€ZE

is a rational function in q and the variables Xy = (x1,...,x) of the form

P((LX/C)/Q((LXk)v where P = P’Yl7~--7’)’kﬂ7(Qan) and Q((LX/C) = Q717--~7"/k177
(q, X1) are mutually prime polynomials in q and X with integer coefficients,

P(0,0) = 1.
(&) Moreover, the denominator Q(q, Xy) has the following structure:

Q(QvXk) = H H (1 - qaw I'W)v
0£W C{1,... .k} aw€Jw
where xw = [[,cp i, and for each non-empty subset W C {1,...  k}, Jw
denotes a certain set, depending on W and 1, . .. , vk, of non—negative integers,
not necessarily distinct.

() We expect that if W = {b},1 <b < k, then Jw = J,, ,.

Corollary 3.21 (Piecewise polynomiality theorem for parabolic
Kostant partition function).

Let ) be a composition and 1, ... ,vx € Yy. There exists a piecewise poly-
nomial function K(ti,... ,tr) =Ky, .. 4 (t1,...  tx) with rational coefficients
such that for any non-negative integer numbers Ny, ..., Ni, K(Ny,...,Ng) =
Ko N1y + -+ + Neyw)-

(F) We expect that the restriction of the function IC(¢y, ... ,t;) on “the
dominant chamber” N := {(N7; > Ny > --- > Ng) € Z’%O} is a polynomial
with non—negative rational coefficients.

Example 3.22. Take v = (2,1,0,-1,—1,-1), 72 = (1,1,—1,—1) and
n= (15) Then Q'yl,’m(lvxay) =(1- 1’)7(1 - y)47 and

Py, ~,(1,z,y)=(1,26,71,26) 4+ (1, -57,—223, -93)y
+(0, 33,224, 115)y — (0, 8,66, 50)>.

Therefore, in our example the function (n,m) — Kgs)(n(2,1, -1, -1, -1) +
m(1,1,—1,—1)) is a polynomial one on the whole set {(n,m) € Z%,}.
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(M0X) We expect that in fact the function (ni,...,nx) — K@) (nim +
-+ + ng7y,) is a polynomial one on the whole set {(n1,...,ng) € Z’;O}, cf
mized lattice point enumerator theorem by P. McMullen [54].

§3.5. Parabolic Kostant partition function Kg(, (7) as function of v

In this Section we state a few theorems, problems and one conjecture about
behavior of the parabolic Kostant partition function Kg,)(7), considered as a
function of 7, on the set Y.

Theorem 3.23 (Polynomial expression for the restriction of the
parabolic Kostant partition function Ky, (7) on the dominant cham-

ber Y,t).
Let n = (m,...,mp), p > 3, np # 0, be a composition, consider vector
l=(li,l2y. .. s lp,_,), where l; = Z?;;H N ifre—1 <4 <1, 1 <k<p—2. Let

ﬁ: (7717 s ,771:—2)- If’y S YW+’ then

(3.32)  Kamp(y) = ZK¢(ﬁ)(ﬁ1 —l,yee By =y ) H <7j ;_lj> ,
3 J

Jj=1

where the sum runs over 3 € ZZy* such that |B| = |I| = di<icj<p1 MiNj-
Corollary 3.24.  Being restricted on the dominant chamber Yn+’ the
function F,(v) := Kg;)(v) is a polynomial in vi,...,7,,_, of degree |I| =

Di<icj<pMiNj — Mp(n —np) with rational coefficients.

Theorem 3.25 (Piecewise polynomiality theorem for function
v — Ko@) (7))-

On the set Y, the function v — F, () := Kg(, () s a continuous piece-
wise polynomial function of degree Zl<i<j<p nim; —n+ 1.

We see that if ), > 1, then the dominant chamber Y;r is strictly contained
in some maximal polynomiality domains of the function F,.

Problem 3.26.  Count the number and describe a structure of the poly-
nomiality domains of the function F,.

Conjecture 3.27.  Restriction of the function [I|! F,, on the dominant
chamber Yn+7 denoted by F,f , is a polynomial in 71, ... ,,_, with non—nega-
tive integer coefficients.
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Problem 3.28.  Find a combinatorial interpretation of the coefficients
of the polynomial F,.

83.6. Reconstruction theorem

The leading term [I|! G, (v) of the polynomial F,"(7), i.e. the degree ||
homogeneous part of F,7+ (7), admits the following description.

Definition 3.29.  For any composition n = (n1, ... ,7p), such that n, >
0 and p > 3, define the operator

D, = II  (0/0v—a/0v),

1<ism<j<rp—2

acting on the quotient ring of the ring of polynomials Q [y1,...,7vn] by the
ideal generated by the sum v + - + ,.

Let v = (y1,.-- ,Vn) € Z™, |y] = 0.

Theorem 3.30 (Characterization of polynomials G, (7)).

The polynomials Gy, (7y) are uniquely determined by the following properties
(i) Gy(7) is a homogeneous polynomial of degree |l| =32, <, i<, 1 MMy,
(ii) DnGn(V) = ;"1:1(7%_1/771771!) G(nz,»--mp)(%wl’ M),

(iif) Gy () = 1.

Theorem 3.31 (Reconstruction Theorem).
Let Gy(vy) = Y5 bn(B) TT;27 ij /B;!, summed over 3 € ZZ5* such that
|8l = |l|. Then

Fy) =Y 0 ] (’“’ ;_lj)
] J

j=1
Corollary 3.32.  Let [ be the vector defined in Theorem 3.23, then
by(B) = Ko@) (8 —1).
In particular, G, () is a polynomial with non—negative rational coefficients.

Finally, we state a result which is a refinement of Proposition 3.7, and
gives partly a g-analog of the recurrence relation (3.32).
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Theorem 3.33 (A ¢-analog of Theorem 3.23).
Let n = (m,...,Mp), p > 3, mp # 0, be a composition. Define 7 =
(Vs s Yrps 05 ,0) and = (1, ... s, _y). If vy €Y., then
——

Np—2

Kol 0 = a7 EsKew® — Bl 0) I1525° Bo(B; + mp-137mp-1)
Hjl:é,g,.:,-l By(vj + Bj + p—15Mp—1),
where the sum runs over vectors 3 € Z;”O’Z’ such that |5] = Z;‘:ls V4, and
polynomials By(n; k) are defined in Proposition 3.8, formula (3.30).

Remark 3.34.  The “classical” case n = (1) and ¢ = 1, which corre-
sponds to the Kostant partition function K, (), has been studied by F. Berezin
and I.M Gelfand [5], B. Kostant [45], B.V. Lidskii [50], [51], D. Peterson,
AN. K. [34], [35], A. Postnikov and R. Stanley [68], W. Baldoni-Silva and
M. Vergne [2], S. Billey, V. Guillemin and E. Rassart [8], J. De Loera and
B. Sturmfels [13], ... . In particular, if n = (1™) and ¢ = 1, Theorem 3.19 has
been proved by B.V. Lidskii [50] in 1984, and by D. Peterson (unpublished).
The case of arbitrary n and ¢ has been studied by the author (unpublished,
but see [35]). The case of generalized Kostant partition functions and ¢ = 1
has been studied by A. Postnikov and R. Stanley (unpublished, but see [68]).

84. Parabolic Kostka Polynomials: Definition and Basic Properties

Definition 4.1 ([35], [41]).  Let A be a partition and p and 1 be compo-
sitions such that |A\| = |u|, |n| =n and li(1) < n. Define the parabolic Kostka
polynomial K ,,(q) as follows:

(4.33) Kaun(@) = ) (=)' Ko (w(A+8) — p = 6] q),

wWEX,
where § :=d, = (n—1,n—2,...,1,0).

If a composition g is compatible with 7 and corresponds to the seq-
uence of partitions (possibly with zeros at the end) p = (u™, @, ... u(),
we will denote the parabolic Kostka polynomial Ky,,(¢) by Kx, n(gq) or
Ky (w2, ’#m)(q). If a sequence of partitions g = (u(1)7 e ,u(r)) consists
of only rectangular shape partitions p(® = (ule) := Roy, 1 < a <7, we wil
write R = (R1, Ra, ..., R,) instead of mu, and K r(q) instead of Ky .(q).

Let us elucidate Definition 4.1 by a simple, but interesting example.

Example 4.2. Take A = (6,2,2,2), u = (2°) and n = (2%). There are
4 contributions to the RHS(4,33), namely,

Kxun(q0) = Koy (| @) — Kooy (2] @) — Ko@) (93] @) + Koy (14l ),
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where v1 = A — = (4,0,0,0,—2,-2), 2 = (4,0,0,0, -3, 1), v3 = (4,0, —1,
1,-2,-2) and 74 = (4,0,—-1,1,-3,—1). It is not difficult to see that Kg)
(ml q) = ¢*(1,4,10,12,9), Kouy(2l ) = ¢*(1,4,7,10,8), Kou)(1sl @) =
¢°(2,7,10,7) and Koyl q) = ¢°(2,5,8,6). Hence, Kyuy(q) = ¢° and
deg Kxun(q) = 6 < deg Koy (A — pf @) = 8.

Remark 4.3.  Using in Definition 4.1 the g-analog Kx (| ¢) of the gener-
alized Kostant partition function, see Section 3.1, Remark 3.4, one can define
the “generalized” Kostka polynomials Ky,x(v| ¢). They form an interesting
family of polynomials to study.

Theorem 4.4 ([64]). Let A be a partition, and p be a composition com-
patible with n. Then

(4.34) K, I‘(l) = KN(#(U,#(”W- ”u(r))(l) = Mult[VA : ®?:1V#(i)]7

i.e. K/\,(uu)’ll(z),_“M(T))(l) is equal to the multiplicity of the irreducible highest
weight A gl(n)—module V) in the tensor product of irreducible highest weight
1) representations Vi, 1 <i<r, of the Lie algebra gl(n).

In the case when all partitions x(?) have rectangular shapes, Theorem 4.4
has been proved in [28].

Remark 4.5. We expect that K,,(1) > 0 for any partition A and com-
positions p and 7. It seems a challenge problem to find a combinatorial and/or
representation-theoretic interpretations of the numbers K, (1) and Ky, (—1)
for general A, p and 7. In particular,

(%) When does the number K} ,,(1) equal to 17

Examples 4.6.  In these examples we will use notation Py, (¢, %), @xun
(g,t) and Jy,y(q), which will be explained in Theorem 4.14.

(i) Take A = (3,2,1), u = (2,2,2) and n = (13). Then K, (q) = Kx.(q) =
g+ ¢%, and

Z Kﬂ&wm(q) t" = (1- qt)_l(l - q2t)_1~
n>0

(ii) Take the same )\, but u = (0,2,2,2) and n = (1*). Then

K)\,u,n(q) = q3(_17 _17 07 17 27 1)> KQA,QM,”](Q) q5(17 07 _27 _4-7 _47 _17 07 37
3,4,2,1).
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Moreover,
Pym(q,t) =1—¢%(1,3,2, 1)t + -+ ¢*(-1,1,1,0,-1,-1) ",

8
Q)\HU(Q7t):(1_q 1_(] H 1_(1] t JAM(Q):q2(172=1717172=1)7

see Theorem 4.14, (#), for the definition of polynomials Jx,(q).

(iii) Take again A = (3,2,1), but u = (0,2,0,2,2) and n = (1,2,1,1).
Then Ky,n(q) = (1,0,—4 — 3,2,4,2), Koy oun(q) = q’(3,5,6,—3,—13,—17,
—11,3,9,12,6, 3). Moreover,

Pyun(q,t) =1—¢*(1,2,6,5,0,=2)t +--- +¢°(1,-1,-2,1,2) t'?,

9
Q/\,un qa H 1_(]] t ) J/\,un(Q) = q3(272a2a27272a2)'

(iv) Take the same A = (3,2,1), but u = (0,2,0,2,0,2) and n = (1,2,2,1). Then
K)\/“’I(q) = q4(17 2,-8,-6,8, 5)7 KQ)\,Q;L,T](q) = _q7 - 2q8 +eee 22(]17 + 12q18'
Moreover, Py, (q,t) = 1—¢%(2,3,2,11,10, -4, —2) t+---+¢*3%(1, -1, -2, 1,2)
22 and Jyu,(q) = ¢3(2,4,4,3,4,4,3). In other words,

Qaim(a: 1) = 1=t (1=g*'t)* (1 —¢’)* (1= ¢°t)* (1 —¢"t)* (1= ¢*t)* (1 — ¢°1)°.

(&%) We would like to remark that the reasons for the equality below are
elusive.

q* P3,2,1),(0,2,0,2,2),(1,2,1,1) (@, )12 = P(3,2,1),(0,2,0,2,0,2),(1,2,2,1) (@ 1) [¢22.

(#) These examples show that for general A, u and 7, the polynomials
Kun(¢q) may have negative coefficients, the numbers a(A, p||n) may be nega-
tive and may not be a homogeneous function in n, and those b(A, u||n) may not
satisfy the (generalized) Fulton conjecture.

Our nearest goal is to describe several cases when the polynomials K., (q)
have only non—negative coefficients. However, we want to point out that there
are many other cases when the all coefficients of a parabolic Kostka polynomial
are non—negative.

Example 4.7. Take A = (6,3,2,1), u = (2,1,2,1,2,1,2,1) and n =
(2%). Then Ky.,(q) = ¢''(4,18,24,14,4). It is interesting to compare the
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polynomial Ky,,(q) with the g-analog of the LR-numbers C//)“) u(”(q) in-

troduced by C. Carre, A. Lascoux, B. Leclerc and J.-Y. Thibon, see e.g. [47].
6,3,2,

Namely, one can show that CE271)7(;?1),(271)7(271)(q) =q%(2,7,12,15,14,9,4,1).

Proposition 4.8.  Let \ be a partition and p = (p™, ... 1)) be a
sequence of partitions.
If inequalities 1(u) > 1(X\) holds for all i, then

(4.35) Ky, u(q) = Mult[Vy : @_,V, ).

Proposition 4.9.  Let X\ be a partition and p = (M(l),u(2)) be a domi-
nant sequence of partitions. Then

. A
(4.36) K, ulg) = CL(Z)#@)'

See Introduction, Section 1.1, for the explanation of the meaning of the
symbol “=".

Positivity Theorem ([29], [42]). Let A be a partition, and p = (u),
R, ..., R.) be a sequence of (proper) partitions such that

(a) (Ra,...,R;) is a dominant sequence of rectangular shape partitions,

(b) either 1I(u™M) > 1(N),

or A O uV) and the complement A \ puY s a disjoint union of partitions
AD N @),

Then the parabolic Kostka polynomial Ky (,,) g, r,)(q) has non-negative
integer coefficients.

Conjecture 4.10 (Positivity conjecture for parabolic Kostka poly-
nomials, cf [32], [41]).

Let A be a partition and g = (2™, u®, ..., u(")) be a sequence of (proper)
partitions such that (u(2)7 . ,u(T)) is a dominant sequence of partitions. As-
sume that

either A O 1) and the complement A\ pM) is a disjoint union of partitions
MDD A@ AP or (™M) > 1(N).

Then

K, u(q) €N g].

(F) In particular, we expect [32], [41] that if A and p are partitions and
71 is a composition, then
Kxun(q) € N [g].
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Remark 4.11.  According to (4.34) and Conjecture 4.10, if p is a (pro-
per) partition, then the parabolic Kostka polynomials K, (q) may be consid-
ered as a g—analog of the tensor product multiplicities. Another g—analog of the
tensor product multiplicities has been introduced by C. Carre and B. Leclerc
[11], and A. Lascoux, B. Leclerc and J.-Y. Thibon [47]. Formulas (4.35) and
(4.36) show that in general these two g—analogs are different. However, it was
conjectured in [32], Conjecture 6.5 and in [41], Conjecture 5, that, in fact,
these two g—analogs coincide in the case when a partition p and a composition
7 correspond to a dominant sequence of rectangular shape partitions.

Duality Theorem ([33, 41]). Let A be a partition, and R be a dominant
sequence of rectangular shape partitions, R = ((ple))r _,. Denote by R’ a dom-
inant rearrangement of the sequence of rectangular shape partitions ((nt=))"_,
obtained by transposing each of the rectangular in R. Then

(4.37) Kypi(g) = "B Kyr(g™h),

where n(R) = Z min (g, pp) min(ne, 7).
1<a<b<p
Note that the left hand side of (4.37) is computed in gi(m), where m =
> g is the total number of columns in the rectangles of R, whereas the right
hand side of (4.37) is computed in gl(n), where n = > 7, is the total number
of rows in the rectangles of R.

Corollary 4.12.  We have
(i) a(A\,R) = n(R) — ¢(N, R'),
(ii) b(\, R) = d(N, R')

Conjecture 4.13. Let A and u be partitions, and 7 and 72 be compo-
sitions such that 7, is a subdivision of 7. Then

Kum, (q) < Kxpns ()

We remark that Conjecture 4.13 is false if one assumes only that 1 > 12
with respect to the dominance partial ordering on the set of compositions, see
Example 3.6.

Theorem 4.14 (Rationality theorem for parabolic Kostka poly-
nomials, I).
The formal power series

Z Knk,nu,n(‘])tn

n>0
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s a rational function in q and t of the form

Pk/“? (qa t)/Q)\/LT]((L t)a

where Pyuy(q,t) and Qxun(q,t) are mutually prime polynomials in g and t with
integer coefficients and Px,u,(0,0) = 1.

Moreover,

(&) the denominator Qx.y, has the following form:

QAMW(Qat) = H(l - qj t),

Jje€J

where J := Jyuy 15 a finite set of non—negative integer numbers, not necessarily
distinct,

() P (1,8) = (1=8)!Cm) Py (0), where t(A j1,1m) € Za, Pyn(1) #
0, and Py,,(t) is a polynomial with non—negative integer coefficients.

(#) It is convenient to depict the set Jy,, in the polynomial Jy,,(¢) =
EjEJ,\uT, qj :

(F) We expect that if u; and po are partitions such that py > po with
respect to the dominance partial ordering, see e.g. Section 2.1, then

PA,#z,n(t) - PA,ul,n(t) =0,
i.e. the latter difference is a polynomial with non—negative coefficients.

Corollary 4.15 (Polynomiality theorem for parabolic Kostka
numbers).

Let X be a partition, and p and n be compositions such that A — p € Y.
There exists a polynomial ICy,, () with rational coefficients such that

() for any integer number N > 1, Ky (N) = Kna,npy(1).

Conjecture 4.16.  If p is a partition and 7 is a composition, then the
polynomial K., (t) has non—negative rational coefficients.

Theorem 4.14 is a corollary of the corresponding theorem for para-
bolic Kostant’s partition function (Theorem 3.17) . In Section 6, Rationality
Conjecture, we state a few conjectures about the structure of the numerator

P)\,Lm(% t)'
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Theorem 4.17 (Rationality theorem for parabolic Kostka poly-
nomials, IT).

Let XA = (A ... AR be a sequence of partitions, p = (u™), ..., u®)) be
a sequence of compositions and 1 be a composition such that |IN9)| = |u9)| and
(W) < |n| for all 1 < j < k. Then the generating function

ni Nk
E Knl)\(l)+"'+”k)\(’°>,nlu(1)+-~+nku("'>,n(Q) Ty ... Ty
(nl,...,nk)EZ’go
is a rational function in q and the variables Xy = (x1,...,xx) of the form

P(Q7Xk)/Q(Q7Xk)a where P(Q7Xk) = P)\, M’T](qﬂ Xk) and Q((LX/C) = Q A, p,n
(¢, Xk) are mutually prime polynomials in ¢ and Xy, with integer coefficients,

P(0,0) = 1.
(&%) Moreover, the denominator Q(q, Xy) has the following structure:

Q. xx) = ]I I a=a™ aw),

0£WC{1,... .k} aweJw

where xw = [[;cw ®i, and for each non-empty subset W C {1,... ,k}, Jw
denotes a certain set, depending on W and A, m,n, of non-negative integer
numbers, not necessarily distinct.

(X) We expect that in general, all the sets Jy, 0 # W C {1,... ,k}, are
non trivial, i.e. each contain at least one positive element.

Corollary 4.18 (Piecewise polynomiality theorem for parabolic
Kostka numbers).

Let XA = (XD ... AF)Y) be a sequence of partitions, p = (u™), ..., u®)) be
a sequence of compositions and 1 be a compositions such that |\ | = [u9)| and
() < |n| for all 1 < j < k. There exists a piecewise polynomial function
K(ti, ... te) == Kx, pn(ti, ... ,v) with rational coefficients such that for any
non-negative integer numbers Ny, ... , N,

K(N1, o s Ni) = Knya@ g NoA® Ny D oot N ) (1)

("H) We expect that if all p® o u®) are partitions, then the restriction
of the function K x, 5, (t1,... ,t;) on “the dominant chamber” Ny := {(N; >
Ny > -+ > Ng) € Z;O} is a polynomial with non—negative rational coeffi-
cients.
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Corollary 4.19 (Piecewise polynomiality theorem for LR-
numbers).

Let A = 0D o XE) p= (u®, .0 u®)y andw = (v, vH)
be three sequences of partitions. There exists a piecewise polynomial function

LRY “(th ..., k) such that for any non-negative integers Ni,... , Ny,
v N4 N
LR A, I.L(N17 oo ,Nk) - CN1A(1>+~--+Nk/\(k>,Nl,u(l)+-~+Nk,u(k>'

("X) We expect that the restriction of the function LR Y ,(t1,... ,1x) on
“the dominant chamber” N := {(N1 > Ng > --- > Nj,) € Zgo} is a polynomial
with non—megative rational coeflicients.

Problem 4.20.  Describe the polynomiality domains of the function

NivW oo Ny o)
(N1, s Ny) — ENIAD oo NG A Ny D) oo Ny ()

Examples 4.21. (i) Take A = (5,3,3,2), 0 = (3,3,3,2,1,1) and
n = (1°).

One can check that

Kyun(q) = Kxu(g) = ¢3(3,5,8,6,5,2,1), Pyuy(q,t) = 1+ ¢*(3,5,4,3,1)
t—q"(1,3,2,1,0,1,3,3,2,1) t> — ¢*%(2,9, 14, 18,18,20,17,14,8,4,1,1) t3 4 ¢'©
(3,6,10,17,28, 35, 39,36, 30,24,19, 11,5, 1)t* — ¢*'(—1,0,4, 3, 6,6, 13, 16, 16, 10,
5,1, 1)t —¢%5(1,2,7,10,16, 19,22, 23,23,20, 17, 10,6, 4, 1)t + ¢33(1,4, 8, 14, 17,
20,23,23,19,16,6,1)t" — ¢*°(—1,—-1,1,4,6,7,3) t8 — ¢*® (1 4+ q+ ¢*)2 ¢,

I (@) = ¢3(3,2,3,2,2,1,1). In other words,

Qain(a:t) = A=¢* > (1—¢* 1)*(1—¢° )>(1—¢° 1)*(1—¢" t)*(1—¢* 1) (1—¢° ).

Therefore, the dimension of the Gelfand—Tsetlin polytope GT' (A, i) is equal
to 9, and

> Kpamu() "= (1421t +78 £+ 64 5+ 9 t*) /(1 — )",
n>0
D Kpamu(=1) 7= (1= 3t + 66> — 4> + £*) /(1 — £2)*(1 + 1).

n>0

(ii) Take A = (3,2,1) and p = n = (1°). Then K,,(q) = ¢*(1,2,2,3,3,
2,2,1), Paun(g,t) = 14¢°(1,2,2, 1, 1)t + ¢'*(1,2,5,4,6,4,3,1, 1)t*+ ¢*°(1, 1, 1,
0, ]-7 _2a _17 _2a _17 _1)t3 - q29(2a 2,47474; 3,37 ]-)t4 - q37(17 ]-7 2; 1, 27 ]-7 1)t57

J)\,un(q) = q4(17 27 1; 1, ]-7 ]-7 1) 1)
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Therefore, the dimension of the Gelfand—Tsetlin polytope GT' (), p) is equal to
7, and

> Knn(1) 7= (148 ¢ 435 2 4+ 32 5 4+ 9. £1) /(1 — )%,
n>0

S Koamu(—1) 17 = (145 62 +3 ¢4 /(1 - 12),
n>0
Remark 4.22.  We see that in both examples Jx,;,(q) < Kxuy(g), and the
initial and the leading terms of the polynomials Jx,,(q) and K),n,(g) are the
same. These observations may be mnot true if p is an arbitrary composition,
eg. if A=(3,2,1),0=1(0,2,0,2,0,2) and nn = (1,2,2,1), then
Kyun(q) = ¢*(1,2,-8,—6,8,5), but Jy.,(q) = ¢3(2,4,4,3,4,4,3), see Ex-
amples 4.6.
(#) It was the surprising and unexpected thing for the author to find that
even though p and n are partitions, the above inequality

Inun(@) < Kxun(q)
may be wrong. For example, take A = (2,2,2,1,1) and pu = n = (1%). Then

K@) =4¢%(1,1,2,2,3,3,4,3,3,2,2,1,1), but Jy,,(q)
=¢°(1,1,2,3,2,2,2,1,1,1,1,1,1).

Furthermore, one can show that P2 2211y 15),(18)(¢, 1) =

1+¢5(=1,1,2,2,2, 1, 1)t + - + ¢17(1,1,2,2,2,1, 1, = 1)t13 + ¢130¢14,

see Section 5.4 for more details about the polynomials Pok 1n) (126+n) (125+n)
(¢, 1)

(") However, we expect that if pu is a partition, then the initial and the
leading terms of the polynomials Jx,,(q) and Ky,,(¢q) are the same.

("H) Moreover, we expect that if p is an arbitrary composition, then

jmax = max{j ‘ ] € J)\/“’I} = C()\,,UH?]) and #{-7 € J)\HU | -7 = jmax} S
d(X, u||n), see Section 6.4, Rationality conjecture, for more detailed statements.

Examples 4.23. (1) Take AV = (3,2,1), A\® = (2,2), u™ = (19),
p? = (1*) and n = (1°). Then one can check that

Qq, 2, y) = Q.2.1),19),19) (¢, 2) Q2,2),(14),14) (2, ) (1 — ¢ zy) (1 — ¢®xy),

where Q(3,2,1),(16),(16)(¢, ) = (1 — ¢°) H;;(l — ¢’z), see Example 4.20, (ii),
and
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Q2.2).04.00 (¢, y) = (1 = ¢*y)(1 — ¢*y), Pa2).a4.04(¢,y) = 1.

The expression for P(q, z,y) is rather long, so we give here only the formula
for its value at ¢ = 1. Namely,

P(1,2,y) = [1+82+3522 + 3223 + 92 + (62 — 442% — 11823 — 812* — 182°)y

+ (=322 4+ 4023 + 1432* + 662° + 925)y? — (162* + 4827 + 2125)y3)(1 — z).

Let us remark that in our case Q(1,z,y) = (1 — 2)°(1 — y)?(1 — 2y)?, and
because of the well-known identity

k

(1—331...:Ck)_1H(1—:cj)_1 = Z min(nq, ... ,ng)cit . oxpk,

j=1 (nl,...,nk)el’go

this example shows that the Kostka number K, (3.2, 1)4m(2,2),(n6)+(m*)(1) con-
sidered as a function of n and m on the set {(n,m) € Z2,}, has at least two
different polynomiality region, namely, “the dominant chamber” N = {(n,m) |
n > m} and that {(n,m) | n < m}. Moreover, since

_ n(6,5,4,3,2,1)+m(4,3,2,1)
Kn(372,1)+m(272),(n6)+(m4)(1) = Cn(5,4,3,2,1)+m(3,2,1),n(3,2,1) +m(2,2)

we see that if

AD = (321),A\® = (2,2), 4™ = (5,4,3,2,1),u® = (3,2,1),vV) =
(6,5,4,3,2,1) and v(® = (4,3,2,1), then

(%) the Littlewood-Richardson number C:i:iiiizg\((?),w(l> @) considered
as a function of n and m on the set {(n,m) € Z%,}, has the same (at least)
two different polynomiality regions.

(2) Now take A = (3,2,1), \® = (2,2,1), u™ = (1%), u® = (1°) and
n = (1°). Then one can check that

Q(¢:7,y) = Q3.2,1),(15),010)(¢: T) Q2,2,1),15),15) (2, ¥),

where Q(2,2,1),15),1% (¢,%) = (1 = ®y)(1 — ’y)(1 — ¢*y) (1 — ¢°y)(1 — ¢°y).
Therefore, in this case the function (n,m) — Ky(3.2,1)4m(2,2,1),n(16)+m(15),5
(1) is a polynomial function in n and m on the whole set {(n,m) € Z%O}.

It seems interesting to compare the above-described examples with the
following result by P. McMullen [54]:

Let Aq,...,A, C R? be integer convex polytopes, and t1,... ,t; € N*,
Given any integer polytope I' C R?, denote by N(T') := #(I' N Z%).

(#)Mixed lattice point enumerator theorem (P. McMullen, [54])
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N(t1A1 + -+ - + ¢ Ag) is a polynomial in ¢y,... ,t; with rational coeffi-
cients of total degree at most d. Moreover, the terms of degree d are given by
Vol(t1 A1+ - -+t Ay ), the so-called mized volume of the polytopes Ay, ..., Ag.

In other words, the generating function Z(nl,... i)zt N(niAy + -+

npAg)x™ .. xp* is a rational function in x4, . .. , ), with the (irredundant) de-
nominator of the form [];_, (1—x;)% for some non-negative integers ai, ... , a.

Remark 4.24 (Parabolic Kostka number Ky, (1) as a function of A and p).

Let i be a composition, /() = p. It follows from Theorem 3.25 that on the
set
Zy={(\p) €ZLy x L5 [ A1 > X > > Ay, A—p €Yy}

the function (A, ) — Kxuy(1) is a continuous piecewise polynomial function
Kn(A ) in Avy ooy An, gy oo i of degree 35y o i mimy —n+ 1.

It is a challenge problem to describe the polynomiality domains of the
function (A, ) — Kxup(1), and find the corresponding polynomials /C,) (A, ).
In the case n = (1™) a partial solution to this problem has been done by
B.V. Lidskii [51]. To the best of our knowledge, if n > 4, an explicit description
of the polynomiality domains of the function (A, pt) — Kx,y(1) is not known.

Examples 4.25. (i) Take n = 3, so that A = (Ay > Ay > A3 > 0) and
= (p1, 2, u3). If u is a partition, then

N)\”u + 1

K u(q) = qa()\’”) [ 1

where

a(A, 1) = max{A; — p1, A1+ Ao — 1 — pa, A1+ 2Xe — 2p1 — p2, 20 + A3 —
2u1 — pat,

N)\# = IniIl{Al — )\2, )\2 — )\3, )\1 — M1, )\1 + )\2 — Q1 — [1,2}

(%) In particular, we see that a(A,p) is a homogeneous piecewise linear
function in Aq, Az, A3 and pq, fio.

Now let us define “the dominant chamber”

Z(T”’F) ={(\p) € Zusy [ A3 Spa < Ao < <A A — A+ Az < g

If v is a partition, then

- A —p+1
K}\M(q”Z:{;) = K¢(13)(A7u| q) — q)\1+)\2 H1— M2 [ 1 Ml

1




1198 ANaTOL N. KIRILLOV

(%) One can check that the domain Z‘g? is the maximal one among do-
mains D such that Kgsy(A, p)|p =1+ A — 1.

(ii) Take n = 4. In this case we don’t have a complete description of the
polynomiality domains of the function (A, ) — Ky.n(1). Instead, we are
going to describe “the dominant chamber” Z,‘," * for the latter function, i.e. the
maximal domain D in the set

Zf i ={(\p) € Zy | X = p € Y, } such that Ky,.,y(1)|p = Ky(\, p)p =
Koy (A = p)-

Proposition 4.26.  Assume that n = (1*), and consider the sets

Wi = {0\ 1) € Zay [ i > mis1,i=1,2,3; 2up > o + As}, and

W2 =\ 1) € Zhay | i = migr,i=1,2,3;
200 < Ap 4+ A3, AL+ A3 < g+ polt

Then

max(A; + A3 — 1 — p2,0) + 2
Kan s mlym = Koo (A = p) = < Ar+ 2 3M H2,0) ) :
Kan s wlye = Koy (A = p).
Proposition 4.27.  We have

Zaj) ={(\p) € Zasy | s > miy1,i=1,2,3; A+ A3 < py + pa},

and furthermore, K/\u(q)‘zﬁ = Ko@) (A —pl ).
(14

Problem 4.28.  Describe explicitly “the dominant chamber” Z* in
general case.

At the end of this Remark we would like to say a few words about the
Littlewood-Richardson numbers ¢ , considered as a function of A\, u and v. To
start with, let us consider the following set:

Zn::{(Ale’7V) GZSE% | A1 Z 2)\717//61 Z Z,un,
> o A [l = o)

The next Proposition is an easy corollary of Theorem 3.25.

Proposition 4.29.  The Littlewood—Richardson number c5 , is a con-
tinuous piecewise polynomial function in A1, ..., Ap, U1y« 5 fbns Y1y .. yVy ON
the set Z,,.
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Problem 4.30.  Describe “the dominant chamber” for the function
A\ pyv) — 5 o e the mazimal domain D,, C Z, such that the restriction
X ulp,. is a polynomial with non-negative rational coefficients.

Problem 4.31.  Generalize the results obtained by B.V. Lidskii [51]
for the function (A, p) — Kx.(1), to the case of the function (X, p,v)
— |

Remark 4.32. 1t is not difficult to see that Rationality Theorems 4.14
and 4.17, Polynomiality Theorem (Corollary 4.15) and Corollary 4.18, are still
valid for the level [ restricted parabolic Kostka numbers Ky) (1) and the level

un
[ restricted parabolic Kostka polynomials K f\gn(q) Remember that the latter
can be defined as follows
1
(4.38) K@ = 3~ (=)™ Ky oun(0)-

wEEn,l

See Section 2.6 for a explanation of notation we have used.

Remark 4.33. In Section 4 we have studied a behavior of the parabolic
Kostka polynomials Ky x nu,(q) as a function of n. We always have assumed
that a composition 7 is fixed. Here we would like to discuss briefly what happens
if a composition 7 is also varied. A naive way to vary 7, say to consider
nmn, gives rise to a trivial result. We suggest the following way. In order to
start, we need one definition, namely, let g = (u1, u2,...) be a composition.
Define

,u<n> :(/141,... y M1, 2y - - 7#’27"')'

Let us remark that (nu) = pi™.
Theorem 4.34. There exists the limit

. [SONTPCH) _
lim g I K (671) = Xy ()

n—oo

which is a formal power series in q.

(X) We expect that if p is a partition, then the formal power series
X>un(q) has non—negative integer coefficients. For example,

Xs2,00,a00(0) = [[(1-¢") >

n>1
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However, we would like to remark that the limit

. _ (n) || (m)
nlgr;oq a(nA,u'™ Int") Ko ptnr o (@)
does not exist in general.
Finally, it looks as an interesting problem to study the generating func-
tions

Z Ky ny yimy pim (@) " and Z Ky n) iy (@) £
n>0 n>0

(F) We expect that the latter generating function is a rational function in ¢
and .

Remark 4.35 (Parabolic Hall-Littlewood polynomials @, ,(X;q)).
Let 1 and 7 be compositions such that || > (), and X = (z1,... ,z,) be
the set of variables. Define the modified parabolic Hall-Littlewood polynomials
(X q) as follows:

ZK/\M sx(X),

and the parabolic Hall-Littlewood polynomial @, ,,(X;¢q) using the plethystic
transformation:

Qun(X;q) =Q, ,(X(1—q);9).

Theorem 4.36 (Rationality theorem for parabolic Hall-Little-
wood polynomials).

The generating function Y, <o Quun(Xiq) t
X.

™ is a rational function in q,t and

In particular, the generating function >~ - sna(X) ¢ for Schur functions
is a rational function in t and X.

On the other hand, the generating function for the double Kostka polyno-
mials

Z)\,}L Q>t LL’ ZKn)\ ny Qa
n>0

is a formal power series in ¢, t and x which, in general, cannot be equal to any
rational function.
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§5. Parabolic Kostka Polynomials: Examples
§5.1. Parabolic Kostka and Kostka—Foulkes polynomials

1Y [Kostka—Foulkes and parabolic Kostka polynomials]
Let A be a partition and R = (Ry, Ra,...,R,) be a dominant sequence of
rectangular shape partitions.

(i) Let R, be the single row (u,) for all a, and p = (u1,pu2,...) is a
partition of length at most n. Then

(5.39) Kar(q) = Kxu(q),

i.e. Kxr(q) coincides with the Kostka-Foulkes polynomial K, (q).
(ii) Let R, be the single column (17+) for all a, and n = (11,792, ...). Then

(5.40) Kxr(q) = Ky (q),

the cocharge Kostka—Foulkes polynomial, where A is the conjugate of the par-
tition A\, and nT is the partition obtained by sorting the parts of n into weakly
decreasing order. Formula (5.40) follows from that (5.39) and Duality Theorem
for parabolic Kostka polynomials.

20 [Parabolic Kostka polynomials and Kostant partition function)]

Let v € Z™, |y| = 0, N be an integer such that N + n(y; — v;41) > 0 for
all 1 <4 < n, where we put 7,41 = 0 . Consider partitions Ay = N(n,n —
1,...,2,1)+~v, uy = N(n,n—1,...,2,1) and composition 7, |n| = n. Then

(5.41) Kamy(1] @) = Ky pw n(@)-

3° [ Skew Kostka—Foulkes and parabolic Kostka polynomials]
Let A D p be partitions, {(A\) = n, and » be a sequence of partitions.
Define pg = (1,0, ...,0)). Then
——

n—1I(p)

K)\\,u,, V(q) = K)\,(;Lg, V)(Q)

If i is a rectangular shape partition and R is a dominant sequence of rectangular
shape partitions, then

Ky ur(@) = K (ury+ (@) = K (uo.5)(0),

where (11, R)T denotes a dominant rearrangement of the sequence of rectangular
shape partitions (u, R).
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Example 5.1. Let A and p be partitions, u C A, [A\ p| = N, and the

complement A\ g = [[A® is a disjoint union of partitions AV, |A()| = n,,
i=1,...,s. Then K\, q~(q)=

. N
N
K i ny
q lj[l PNONG! /)((J) lm,--- 7”51
g q

n (i)r 5
= ¢V TN T Hao (0) = K i) (@)
=1

where for any partition A\, Hy(q) denotes the hook polynomial corresponding
to A, see e.g. [53], p.45.

In particular, if n > m, then K(n,m),(n,lm)(q) . [n] .
m
q

Example 5.2. Let A and u be partitions, ¢ C A, |A\\ p| = I, and the
complement A\ g = [[A® is a disjoint union of partitions A, |A()| = n;,
i=1,...,s. Define partitions A = (NI + ||, A) and g = (I, ). Then

N
O
q

We would like to emphasize that, in general, the parabolic Kostka polyno-

S

Kz =1

i=1

mial K (., »(q) is different from the skew Kostka-Foulkes polynomial K\, ,

(9)-
For example, take A = (2,2), 4 = (1) and R = (3). Then K\, r(q) =

Ky (uo.r) (@) = 0, but Ky (,,r)(q) = —1+q.
4° [Principal specialization of skew Schur functions]

Let A D u be partitions, |A\ p| = r, and N > 1 be an integer number.
Then

S)\\/_L(17Q7~ .. 7qN_1) = K(NT, MN\(r, ), (Ty. .. ,T)(Q)
N
If o = (), then
N—1y ® « |N
(5.42) sx(L,g,--- " ) =K, n, ory...,m(@) = [/\,1 :
N+1 q

The second equality in (5.42) together with the fermionic formula (5.44) for
the Kostka—Foulkes polynomials, is a crucial step in a combinatorial proof of

unimodality of the generalized ¢-Gaussian coefficients [])\\7] , see [30] for details.
q
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Example 5.3 (A g-analogue of Merris’ conjecture, cf [56], [33]).

Let A and p be partitions such that A > )\ with respect to the dominance
partial ordering, see Section 2.1. Then

e a(A, 1) = a(N, p).

¢ (g-Analogue of Merris’ conjecture)

K)\,/J(Q) > CI"(A/)_”(A)KX,# (q)-

Question. If the above inequality is true, what is the case of equality?
For example, the equality holds for any partition X if p = (1"). It’s not
difficult to see that the equality also holds if

A= (n, m, 171—2) and w= (271—1+[m/2],€m)

for some positive integers n > m and m < 4. Here ,, = 0 or 1 according to
the parity of m.

Question. Could it be true that these two examples are the only infinite
families of partitions X\ and p such that X 2 X' and Ky, = Ky ,?
(H) Moreover, we expect that the difference

Kxu(q) — ") 7" N Ky L(g)

is a unimodal polynomial (with non-negative integer coefficients). In particu-
lar,
(H) we expect that if A > N, then for any positive integer N the differ-

N1 pn=n | N
A N
q q

is a unimodal polynomial (with non-negative integer coefficients).

ence

50 [ Fermionic formula for polynomials K r(q) ]

Let A be a partition and R = ((u))’_; be a sequence of rectangular

shape partitions such that
A= 1Ral = 3 pata:

Definition 5.4. A configuration of type (\; R) is a sequence of parti-
tions v = (v, v3) . .) such that

=30 =D pamax(ng — k,0) = =YX+ Y gt min(k, 1)
j>k a>1 i<k a>1

for each k£ > 1.
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Note that if & > I()\) and k > 7, for all a, then v(*) is empty. So that each
configuration contains only a finite number of partitions. In the sequel (except
Corollary 5.7) we make the convention that ©(°) is the empty partition.

For a partition p define the number @, (u) = p} + - - - + p,, which is equal
to the number of cells in the first n columns of u.

The vacancy numbers Py(bk)(u) = ék)(u; R) of a configuration v of type

(A\; R) are defined by

PP W) = Qu(™ V) =2Qu (™) + Qu(w™) + Y min(pua, n)dy, &

a>1
for k,n > 1, where 6; ; is the Kronecker delta.
Definition 5.5. A configuration v of type (); R) is called admissible, if
P(v;R) >0 forall k,n>1.

We denote by C(); R) the set of all admissible configurations of type (\; R),
and call a vacancy number P,Sk)(u; R) essential, if m,,(v®)) > 0.
Finally, for a configuration v of type (X; R) let us define its charge

(k=1) _ (k) _ .
RS <an 2+, 001, — K)6 (1o >>7

2

_ aglkfl) — oz%k)
c(v) = Z 9 )

kn>1

and cocharge

where o) = (v’ denotes the size of the n—th column of the k-th partition
v*) of the configuration v; thus, a(o) = 0,Vn > 1. For any real number x € R
we put f(x) =1,if x > 0, and 0(x) =0, if x < 0.

Theorem 5.6 (Fermionic formula for parabolic Kostka polynomi-
als [33, 42]).

Let \ be a partition and R be a dominant sequence of rectangular shape
partitions. Then

(v n (v; R) + my, (v
64 Kanlo =0 ] Dy
kn>1 q
summed over all admissible configurations v of type (\; R); my,(\) denotes the

number of parts of the partition A\ of size n.
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Corollary 5.7 (Fermionic formula for Kostka—Foulkes polynomials [29]).
Let A and p be partitions of the same size. Then

(5.44) Kxu(g ch 2]

kn>1

PP (v, 1) + m, (v®)
mn(y(k)) ,

summed over all sequences of partztwns v={vW v@ } such that

hd |V(k | = Zj>k Aj, k=

o P (v, p) = Qn(u(k—l)) —2Qu(V®)) + Qu(v**+V) > 0 for all k,n > 1,
where by definition we put 10 = y;

pk=1Y (k)Y
(5.45) e c(v)i= > <( )n2 ( )">.

k,n>1

§5.2. Parabolic Kostka polynomials and Littlewood—Richardson
numbers

(19) Let A, u, v be partitions, |v| = |A| + |u|, {(A) = p, [(1) = s. Consider
partition
)\: (>\1+M1,... ,)\1+/J,S,)\1,>\27... >>\p)
and a dominant rearrangement R of the sequence of rectangular shape parti-
tions R = {v U (A\])}. Then

(5.46) Ks #(q) = qa(im{cgu R R D)
where S denotes the Littlewood—Richardson number, i.e. Sy = Mult
Vo : VAV, N
Furthermore, a()\, R) > Z v — |X|, and af (M R) Z v — |A| if and
J<A1 7<)\

only if ¢§ , # 0.
In other words, if a(), R) = Z vi — |Al, then ¢§ , # 0, and

J<h
the coeflicient b(X7 E) is equal to the Littlewood-Richardson number
v

(

17
C)\;L -

/\yl\./

(k) Moreover, K5 7(1) is equal to the number #|Tab® (A, v)| of semi-
standard domino tableaux of the shape A®) and content v, where A is a
unique partition such that
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o 2-core(A?)) = 0,

o 2-quotient(A)) = (A, u).

The partition A®) := A®)(X, 1) can be constructed, see e.g. [18], as follows:
I(N),1(w)), then

AP\ )+ (2r2r —1,...,2,1)
=AM +2r—1,... 2 +2(r—k)+1,... , 2\ +1)
X U (2u1 427, ..., 205 + 2(r — §), 21, + 2).

Take an integer r > max(

Remember, [53], p.6, that if A and p are partitions, then A U u denotes the
partition whose parts are those of A and p, arranged in descending order.

Example 5.8. Take A = p = (2,1) and v = (3,2,1). Then X\ =
(4,3,2,1), R=(3,(2,2),2,1) and Kxﬁ(q) =¢?(2,3,1). More generally,

S K sam@ " =1—*)/(1—g*)*(1 - ¢"t)*(1 — ¢°t).
n>0
It is easy to see that a(X, R) = 3 = |v| — |u| and b(X, R) = 2 = s
Furthermore, A := A®) = (4,4,2,2), and the spin polynomial [11], and
the charge-spin polynomial K}, (g,t) [35] are equal to:

S e = 362 4 285, KY (q,1)
TETab®) (A,v)

_ Z qcharge(T) tSPin(T) — qgt(l + qt)(l +1+ qt)'
TeTab(2) (A,v)

Thus, ¢ ,(t) = K}, (¢,t)|2 =t + t?, where cX ,(t) denotes the LLT t-analog
of the LR-number c§ ,

(29) More generally, let A\ D u be partitions such that the complement
A\ 1 is a disjoint union of partitions AV, ..., A®) and I(x) = m. Let v be a
partition, define composition 7 = (u, /) and partition 7 = (m, 1/). Then

(5.47) Kypn(q) = qa()\,u,u)(ci(l)““ R qn(y),n()\u)),_,,,n()\w)))7

where

Cz(l) A(p) = Mult[VV . V)\(l) X VA(p):I

.....

denotes the (multiple) Littlewood-Richardson coefficient, and a(\,p,v)
€ Zzo.
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(%) Moreover, Kyp,(1) = #[Tab® (AP v)| is equal to the number of
semistandard p-rim hook tableaux of shape A®) and content v, where A®) is a
unique partition such that

o p-core(AP) = ().

e p-quotient(AP) = (AW AR AP,

Similar to the case p = 2, the partition A®) can be constructed as follows:

Take an integer r > max(I(A(M), ... I(A()), then

A(p) + (p?",p?" - 1,' .. 32a 1) = U£=1(p)\(1k)
pr—1) + ko oA £l — ) koA k).

We refer the reader to [53], Chapter I, Section 1, Example 8, for definitions
of the p-core and p-quotient of a partition A, and [47] for the definition of
semistandard p-rim hook tableaux (domino tableaux in the case p = 2).

(#) Note also, that the order of parts in the definition of composition 7 is
important.

(3°) Let A=A\ Xand B = M \ u be skew diagrams and v be a partition.
Define partitions

@ = (MM 4+ M)« M, =N+ M), 5= (MM ) p)

and composition
B = (M + ) % 1, 0M5714) x ).

Assume that |A| + |B| = |v|, Then
(W) Kapy(q) = ¢! Koy (q) = ¢ {¢) p + higher degree terms in g}.

Therefore, a(a, B|n) > v, and a(«, B|n) = [v| if and only if ¢’} 5 # 0. In this
case

b(aa 5””) = CZ;X,B = <3ASBv SV>’

where b(a, 3||n) denotes the initial coefficient of the polynomial K,g,(q), see
Definition 6.1, s 4 and sp denote the skew Schur functions corresponding to the
skew diagrams A and B, and (e, e), denotes the scalar product (the so—called
Redfield-Hall scalar product) on the ring of symmetric functions, see e.g. [53],
Chapter I, Section 4.

We don’t know any “nice” combinatorial interpretation of the numbers
Kapy(1) or Kogy(—1).

For a nice combinatorial description of the numbers ¢} g in terms of “pic-
tures”, see [73].
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See also Section 6.8 for a slightly different exposition of connections be-
tween the Littlewood—Richardson numbers and the parabolic Kostka polyno-
mials.

§5.3. MacMahon polytope and rectangular Narayana numbers [35]

Take A = (n+k,n,n—1,...,2)and p= N = (n,n,n—1,n—2,...,2, 1%).
If n > k > 1, then for any positive integer N

e a(N\ Np) = (2k — 1)N;
k—1n—k+1

g BUN+E-1) N+it+j-1
o b(NA, Np) = dimVg, = 0 = H H T

In other words, b(NX, Npu) is equal to the number of (weak) plane parti-
tions of rectangular shape ((n — k + 1)¥~1) whose parts do not exceed N, see
e.g. [53], [67]. It is well-known, see e.g. [35], [67], that the number b(NX, Ny) is
equal also to the number ¢(9My_1 ,—k+1; N) of rational points x in the MacMa-
hon polytope M1 n—k+1 such that the points Nx have integer coordinates.
The generating function for the numbers b(n\, nu) has the following form

(k—2)(n—k)
> b(nA, np)t" = > N(k—Ln—k+ 15 | /Q—t)kD0=ktDF
n>0 7=0

where N(k,n;7), 0 < j < (k—1)(n—1), denote the rectangular Narayana num-
bers. For definition of the rectangular Narayana numbers and the MacMahon
polytope, see [35], Section 2, Exercise 1.

For the reader’s convenience, we display the numbers b(N A, Nu) for small val-
ues of k and N.

If k =1, then J(NA, Nu) = 1 for all integer numbers N > 1.

If k = 2, then b(NA, Nji) = <N +£ - 1) .

n
If N =1, then b(\, 1) =
sthen b(A,p) = |~
kE—1 k-1
Thus, the number b(2, 2y) is equal to the Narayana number Nj_1 1.
Note also, that

IszQ,thenb(QA,QMz%( " ”“).

b(NA, Np) = KNk, 1n-++1), N (1) (1).
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More generally, see e.g. [30],

k—1n—k+1 1 . N+Z+] 1 AN N
KN(k 1n—k+1) N(l“ H H —giti- i 4 ,
q

i=1 =

where « is a rectangular shape partition ((k — 1) ~*+1).
In particular, Ky 1n-r+1y,n1n)(q) is a symmetric and unimodal polynomial
in q.

This example and many others, suggests the following

Problem 5.9.  Define a g-analog of the numbers d(\, p||n), in partic-
ular the numbers b(\, R), which generalizes the gq-analog of the LR—numbers
introduced by A. Lascoux, B. Leclerc and J.-Y. Thibon, see e.g. [49].

§5.4. Gelfand—Tsetlin’s polytope GT((2%,17), (12k+n))

Let A = (2%,1), & > 0, be a two-column partition, and u = 7 =
(12k+7) . In this Section we are going to study in more details the polynomials
Pin(q,t) := Paun(q,t), Pen(t) == Prun(1,t), Jin(q) := Jauy(q), as well as the
Gelfand-Tsetlin polytope GTj , := GT (A, ).

We refer the reader to [12, 35, 38, 67], vol.2, for the definition and basic
properties of the Gelfand—Tsetlin polytope GT'(\, ) corresponding to a parti-
tion A\ and composition pu.

First of all, let us remember [35] the formula for the dimension of Gelfand—
Tsetlin’s polytope GT(A, 1), namely, if A and p are partitions, [(A) = r, I(u) =
s, then

dimGTOu ) = (- Vs 1) — 7] =3 (N N
) = 9 2 5 ,
where A, := #{j | A\; > i}.
In particular, dim GTj , = n(2k — 1) + (k — 1)2.

Proposition 5.10. (1) deg, Py ,(t) = dmGTy,, +1 -k —n = (k —
1)(2n + k — 2);

(2) Prn(g,t) = (=1)%mgtrntn Py (g~ 1),

where aj , = (Zjeka, j) —dim GTy ,, — 1, and by, and cy are certain
non-negative integers.

In particular, Py, (t) is a symmetric polynomial (with non-negative coef-
ficients).
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(&) We will say that a polynomial P(q,t) is a reciprocal one if it satisfies
the following condition:

P(g,t) = (=1)* ¢" t° P(q",t ")
for some non—negative integers a, b and c.

Examples 5.11. (i) Take k = 4,n = 0, then dimGTy o = 9, K),(q) =
J470(q) = (14(17 0, 1, 1, 27 1, 2, 1, 2, 1, 1, O, 1), and aso = 4, b470 = 1127 C40 = 10.
Moreover,

Pyo(t) = 14 4t + 317 + 40t + 31¢* + 4¢° + ¢5.

In particular, the normalized volume of Gelfand-Tsetlin’s polytope G4 is
equal to

112=2%.7.

It seems interesting to compare the above formulae with the corresponding
formulae for the Gelfand—T'setlin polytope corresponding to the conjugate parti-
tion X = (4,4) and the same g and 7). It’s not difficult to see that dim GT'((4, 4),
(18)) =5, Jiaa),(18),a%) (q) = {12,14,15,16, 18,20, 24}, Py 415,15 (t) = (1,8,
22,8,1) and Py 4 (18),(1%)(¢, 1) is a reciprocal polynomial. In particular, the
normalized volume of the polytope GT'((4,4), (1%)) is equal to 40.

(11) Take k = 3, n = 2, then dim GT372 = 14, as o = 10,1)3,2 = 130,0372 =
14, Js2(q) = ¢*(1,1,2,3,2,2,2,1,1,1,1,1,1), but K25 12y (15)(q) = ¢°(1,1,2,2,
3,3,4,3,3,2,2,1,1). Therefore, the difference K23 12y, (15)(q) — J3,2(q) is a poly-
nomial with one negative coefficient. Moreover,

Pso(t) =1 + 13t + 225¢* + 1350t
+4088t* + 5768t° + 4088t° + 1350t7 + 225¢% + 13t 4 ¢1°.

Therefore, the normalized volume of Gelfand-Tsetlin’s polytope G153 » is equal
to 17112 =23 .3 .23 - 31.

On the other hand, for the conjugate partition A’ = (5, 3) we have dim GT
((5,3),(18)) = 6, Jss).a5.05 = {13,14,15,16,17,18,19,22,23,25} and
P5.3),018),1%)(t) = (1,21, 105, 98, 20), and therefore, the polynomial P(5 3) (18),(1%)
(g,t) does not satisfy the condition (2) of Proposition 5.7.

(iii) Take k =5, n = 0, then dim GT5 ¢ = 16, and

P5 o(t) = (1,25,718,8059, 43679, 116840, 161912, 116840,
43679, 8059, 718,25, 1).

In particular, the normalized volume of Gelfand-Tsetlin’s polytope GT5
is equal to
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500556 = 22 -3-7-59-101.

Note that dim GT((5,5), (110)) =1, P(5’5)7(110)’(110)(t) = (1, 34,295,565,
2957 34, 1), and J(5’5)’(110)’(110) (q) = {20, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40}.

In particular, the normalized volume of the polytope GT((5,5), (119)) is
equal to 1225 = 352. One can check that Pis5),(110),110) (¢, ) is a reciprocal
polynomial.

(%) It is interesting to note that the polytopes GT'((n*),(1%")) and
GT((n*=1,n —1),(1*"~1)) have the same (normalized) volumes and the same
h-polynomials, i.e.

P(nk)’(lkn)y(lkn)(t) = P(nk71’n,1)7(1kn71)1(1kn71)(t).

However, the polynomials P(,x) (1kn), (15n) (g,t) and Plpk—1 n_1),(1kn—1),(1kn-1)
(g, t) are different.

For example, P(3,3)7(16),(16)(q, t) = 1+q10t+q20 t2, but P(372)7(15)7(15)(q, t) =
1— 20 43,

Moreover, J(373)7(16)7(16) = {6, 8, 9, 12}, but J(372),(15)7(15) = {4, 5, 6, 7, 8}

(#) It seems an interesting problem to find under what assumptions on A,
w and 7 the polynomial Py, (g, t) is a reciprocal one, i.e. satisfies the condition
(2) of Proposition 5.7. One necessary condition is clear: Pj,,(t) have to be a
symmetric polynomial.

(H) We expect that the latter condition is also sufficient.

For example, the polynomials Pk 1ny, (1254, (12540 (g, t) are reciprocal; we
expect that polynomials P,y 1nky 1nk)(g,t) are also reciprocal. However,
there are plenty of other cases. For example,

Plusa) 21,2121, (0 t) =1+ ¢°(=3,2) t — 3¢ (1,-1,1) #* 4+ 3¢'°(1,1,
1, —2)t3 +3¢%3(=2,1,1,1) t* — 3¢%°(1, —1,1) t° — ¢36(=2,3) t® + ¢*% ¢7.

We have also J(432),(2,1,2,1,2,1),23)(¢) = 3¢°(1,1,1).

(%) On the other hand, we expect that the polynomials P, i (1n+k),(1n+k)
(g,t) are reciprocal if and only if k =0,1,n — 1, n.

In the case k = 2 we can say more:
Proposition 5.12. (1) deg, P2, (q,t) = 2n, deg, P2,(q,t) = 2n(n +
2) " Py (g ) = Ponla,t);
(3) Prn(g,t) is a polynomial with non—negative integer coefficients;
)

(4) Py, (1,1) = C, Cpy1. In other words, the (normalized) volume of
the Gelfand-Tsetlin polytope G5, is equal to the product of two consecutive



1212 ANaTOL N. KIRILLOV

Catalan numbers Cy, and Chp41;
(5) Jan(q) =¢*(1,1,2,...,2,1,...,1), and
——

——
n—1 n+2

K22 1n),(1n+4)(q) — J2,n(q) = ¢° [g] -
q

We end this Section by discussion of some properties of the Littlewood—
Richardson coeflicients cg‘mén, where 0, = (n — 1,n —2,...,1,0) denotes the
staircase partition of height n — 1.

Denote by x(n,m) the maximal value of the LR-number c(’;\m 5, » Where A
runs over all partitions such that [(A) < m. Let vy, n(r) denote the number
of partitions A, I(A) < m, such that cg‘m 5, = 1. It is well-known (theorem by
Kostant) that v, ,(1) = 2771

(") We expect that if n < m < 2n — 2, then v,, , (1) = 3m " /2m=2n+1,

Problem 5.13. It is not difficult to see that vy, n(k(n,n)) =1, i.e. there
exists a unique partition A := Amaz, L(A) < m, with the mazimal value of the
Littlewood—Richardson coefficient cg‘" 5

Question. How does this unique partition \pqe look like ¢

(X)) We expect that if n =2k + 1,k > 1, then

Amax = Bk + [(k+1)/2) = 1,3k — 1,3k — 2,... . k+1,[k/2] + 1).

85.5. One dimensional sums and parabolic Kostka polynomials

(&) Polynomials Py, (¢) and their interpretations [32]

In this Example we summarize different interpretations and some prop-
erties of an interesting family of polynomials Py, (¢) which frequently appear
in Combinatorics, Algebraic Geometry, Representation Theory, Statistical Me-
chanics, ... .

Definition 5.14.  The polynomials Py, (¢q) are defined as the transi-
tion coefficients between the modified Hall-Littlewood polynomials and the
monomial symmetric functions

(5.48) QNXn;q) =Y Paulg)mu(Xa).
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In other words,

(5.49) Paula) = ZKW(DKU (q)-

n

To put this another way, the polynomial Py, (g) is a g-analog of the multiplicity
of weight X in the tensor product ®;V,,,.

The polynomials P, (¢) admit the following interpretations:
(19) [Inhomogeneous unrestricted one dimensional sum with
“special boundary conditions”]

(5.50) Prula) = "0 > g,

meEPxp,

summed over the set Py, of all transportation matrices m of type (A; pt), i.e. the
set of all matrices of non—negative integers with row sums \; and column sums
1j; E(m) stands for the value of the energy function E(p) of the path p which
corresponds to the transportation matrix m under a natural identification, see
[32], of the set of paths P, (bmax, A) with that of transportation matrices Py,,.
We refer the reader to [46], or [32] Subsection 3.1, Example 1°, for a definition
of the set of paths Py (bmax; A).

(2%) [Generating function of a generalized mahonian statistics ¢
on the set of transportation matrices P),,]

Prulg) =" D g#m.

mePx,

For the definition and examples of generalized mahonian statistics see [32]. For
example, the energy function F(m) defines a generalized mahonian statistics
on the set of transportation matrices.

(3°) [The Poincare polynomial of the partial flag variety 7, /C]
(5.51) Prula) =Y "N~ dim Hy; (7 Z).
>0
This result is due to R. Hotta and N. Shimomura [25].
(4°) [The number of F,—rational points of the partial flag variety
Fi/Fq]
7 q

(5.52) " VPt = Fp(Fy).
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(5%) [The number of chains of subgroups]
{e}gH(l) CH®cCc...cH™ cqg

in a finite abelian p-group G of type ), such that each subgroup H
has order prit—THi

(5.53) ax(S;p) = p"MPaulp™),

where S = S(u) = (p1, 1 + p2, o s 1+ p2 + - + pim), and 1(p) = m + 1.
For more details, proofs and an interesting history of this result, see e.g [10].

(6°) [String function of affine Demazure’s module V,,(IA}) corre-
sponding to the element w = rp,_17pp—2... 7427417 Oof the affine
‘Weyl group W(Agllzl)]

(5.54) P(ZL)“ Zdlmv (ZAL);/, nsq"
n>0

This result has been obtained in [46], where one can find necessary definitions,

proofs and further details.

(0)
(7°) [Generalized t—supernomial coefficients [ ] and {t—multi-
1

t
nomial coefficients 7 ()\; u)]

(0)
A ~ _
(5.55) ] = Z K Kpa(t) = ¢ Z KBy (t 1)7
H t n n
(5.56) TO N ) =t~ Py, (8),

for some known constant Ep;y,.
The coeflicients (5.55) and (5.56) are natural generalizations of those intro-
duced by A. Schilling and S.O. Warnaar in the case [(1) = 2, see [31, 62, 63, 71].

(8°) [Fermionic expression for polynomials Py, (q)]
Let A be a partition and g be a composition, {(x) = n, then

(k+1) (k)

65 Paul) = Y HH[” <(”,€))>+1]7
1

q

{v} k=11i>1

summed over all flags of partitions v = {0 = v(© c v c ... c v = )},
such that |V(k)| =py 4+ pp, 1 <k <n,and

n-l S A (ON,
c({u}>=ZZ<( e )’)~
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See [32], Sections 3 and 4, and [22] , where further details and applications of
the fermionic formula (5.57) can be found.

In particular, the fermionic formula (5.57) gives an explicit expression for
the number |.7-'/1\(Fq)| of rational points of the partial flag variety .7-';‘ over the
finite field F,.

Problem 5.15.  Deduce the fermionic formula (5.57) from the Lefschetz
fixed points formula, applied to the Frobenius automorphism of the variety .7-"2.

(99) [Truncated form or finitization of the characters and branch-
ing functions of (some) integrable representations of the affine Lie
algebra of type Afjll}

The observation that certain special limits of polynomials Py, (¢) and
Kostka—Foulkes polynomials may play an important role in the representation
theory of affine Lie algebras originally was made in [31]. It was observed in
[31], that the character formula for the level 1 vacuum representation V' (Ag) of
the affine Lie algebra of type Agl_)l (see, e.g., [26], Chapter 13) can be obtained
as an appropriate limit NV — oo of the modified Hall-Littlewood polynomials

’(1 N)(Xn; q). The proof was based on the following well-known formula

' N
P = g™ ,
(IN)H(q) I |Ju’la"' 7”71](1

see [31], (2.28).

The latter observation about a connection between the character
ch(V(Ap)) and modified Hall-Littlewood polynomials Q’(lN)(Xn;q)7 immedi-
ately implies that the level 1 branching functions bﬁ\\" (¢) can be obtained as an
appropriate limit Ay — oo of the “normalized” Kostka—Foulkes polynomials
q_ANK/\M(lN)(q). We refer the reader to [26], Chapter 12, for definitions and
basic properties of the branching functions bﬁ(q) corresponding to an integrable
representation V(A) of an affine Lie algebra.

It was conjectured in [31], Conjecture 4, that the similar result should be
valid for the branching functions bf\\(q) corresponding to the integrable highest
weight A irreducible representation V' (A) of the affine Lie algebra sl (n). This
conjecture has been proved in [31] in the following cases: sl(n) and A = A,
sl(2) and A = IAg, and sl(n) and A = 2A,. It had not been long before
A. Nakayashiki and Y. Yamada [58] proved this conjecture in the case si(n)
and A = IA;, 0 < i < n—1. See also [39] for another proof of the result
by A. Nakayashiki and Y. Yamada in the case i = 0. The general case has
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been investigated in [22]. It happened that in general the so—called thermody-
namical Bethe ansatz limit of Kostka—Foulkes polynomials gives the branching
function of a certain reducible integrable representation of sAl(n), see details in
22].

(s &) [Parabolic Kostka polynomials and 1D sums]

Let A, p be partitions, |A| = |u|, and n, N be natural numbers such that
IA)=r<n, l(n) =s<n,and N > A; + p;. Define partitions ay = (N™)
and

By =N =X, N —=X_1,... ,N = Xy, g, pio, ooy is)-

Theorem 5.16 (Algebraic version of the Robinson-Schensted-
Knuth correspondence).
Let A\, p,n, N,an and By be as above. Then

1) KO&NﬂN (Q) < KO&N+15N+1 (Q);

(5.58) i) If N>|A, then Kaypy(q) =Y Ky(q)Kyu(q)-
n

Theorem 5.17 (Algebraic version of the dual Robinson-Schen-
sted-Knuth correspondence).

Let A\, p be partitions, |N| = |u|, I(A) = r < n, N > A\. Define the
rectangular shape partition an = (n”) and dominant sequence of rectangular
shape partitions Ry = {p, (1N =), ..., (1N=21)}. Then

i) Koy Ry (q) < K(MN+1RN+1(Q);

(5.59) i) If N>|M, then Koyry(q) =Y K@) Kyu(q).
n

In particular, the following numbers

Ky ((n-1yv 13 (1) = (K am)(1))?
AEN, (M) <n
are equal to the number of permutations w € ¥ such that the all increasing

subsequences in w have the length at most n.

Theorem 5.18 (1D sums and parabolic Kostka polynomials).
(i) Let X and p be partitions of the same size n. Define partition ay =

(N™) and sequence of compositions
By = (N =2 0770 (N = Aeg, 077, (N = AL, 0770, o).

Then
KO(N: By (Q) = ZK ,)\(I)KW,M(Q) = Pu,)\(q)-
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(ii) Keep notation of the previous item, but define
ﬁg\?) = (N - >\’r’> N — )"I“fb e aN - )\17 (,ula O(T_l))7 sy (,U/S, O(T_l)))'

Then
~(q) = ZKn«\(Q)Kmu(l) = Pau(@)-

QaN, By
n

Example 5.19. Take n = 6, A = (2,2,2) and p = (2,2,1,1). One
can take N 6. Then ag = (6,6,6), pg = ((él) ,(4),(4), (2), (2), (1), (1)),
B

Bs = ((4,0,0),(4,0 )(400)()()()()) = ((4),(4),(4),(2,0,0),
(2,0,0), ( 0,0),(1,0,0)), and

Z Ky (@) Ky (@) =4q7(1,1,3,3,5,4,6,3,3,2,1,0,1) = Kag. u(q),

Z K”]a)\ q K 1) = q13(17 47 8a 9) 77 37 1) = K ~(0) (Q)

g, Pg
ZK,M K@) =¢%(3,6,9,7,5,2,1) = Koy, 5, (9)-

Conjecture 5.20 (Summation formulas for parabolic Kostka poly-
nomials).

(i) Let p = (u(@ := (u\™, ..., p{))r_, and » be two sequences of par-
titions such that |p| = [v|. Take n:= Y. _ 7, and N > |p|, and define the
sequence of partitions g := (7, 7=, ... 7™M), where

A = (N = ), N = N = ),

Then
Knmy, (@, (g ZKA w(D) KX, »(q).

(ii) Define the sequence of partitions g, = (,uéa) = (,uga), e ,M%‘z), ON=ma)yy |

and in a similar way that »y. Then

K(nm), (&, vo) (4 ZKA w(KN, (1),

K(Nw),( g, »)(0) = ZKA, p(DEx o(q).
A

8§6. Parabolic Kostka Polynomials: Conjectures

We keep notation of Section 2. Thus, A is a partition, p and n are com-
positions such that |\| = |u|, |n| = n, and U(p) < n. Let Ky,y,(¢g) denote the
parabolic Kostka polynomial as defined in Section 4.
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Definition 6.1.  Let A, p and 7 be as above, and assume that K,,(q) #
0. Introduce non-zero numbers b(A, p||n) and d(A, u||n), and integer numbers
a(A, plln) and ¢(\, pl|n) via the decomposition

(6.60)  Kxuy(a) = b\, pllm)g* ™I 4 d(A, ) g1

If Kyp(q) = 0. we put by definition, a(X.ulln) = b plln) = e(Aplln) =
d(A ulln) = 0.

If a composition p is the concatenation of partitions ™), u ... 1" we
will use notation a(A, @) := a(A, ||n), b(A,m) = b(A, u||n). If compositions p
and 7 correspond to a (dominant) sequence of rectangular shape partitions R,
we will write a(\, R) instead of a(\, p||n), b(A, R) instead of b(\, p||n), and so

on.
8§6.1. Non-vanishing conjecture

Conjecture 6.2.  Let A be a partition, p and 1 be a composition, Il(p) <
n| = n. Then
K/\un(q) #0, if and only if A — p € Y;,.

(#) Moreover, Kxun(q) < Ko (A — 1l 0),
and the equality is attained on a certain polyhedral domain D, in “the space
of parameters” Z, = {(A\,p) € ZL, X Z%, [ A1 > -+ > Ay, A —p € Yy ).

86.2. Positivity conjecture

Conjecture 6.3. Let A be a partition and u, and 1 be compositions
such that |A| = |u|, l(x) < |n| . Then

d(A; plln) = 0.

Remark 6.4. It may happen that the all coefficients of a parabolic
Kostka polynomial K ,(q), except that d(\,m), are negative. For example,
take A = (2,2) and g = ((0), (1,0), (1,0),(1),(1)). Then

Ko@) = —¢™ 1 [n+ Z(Qn —2k+1)g"| + (n+1)%¢%".
k=1

Note, that in our example b(n\,nu) = —n, a(nA, ng) = Tn—1, ¢(nA, np) = 8n,
dnA,np) = (n+1)2, Kpanp(1) =n+ 1, Kpxnp(—1) = (n+ 1)%, and

> Koanu(@) t" = (1= ¢* (143 g — ¢*)t +3¢"¢% — ¢*¢%) /(1 - ¢"t)*(1 - ¢°t)°.
n>0
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On the other hand,

n+1
1

2n

K(2n,2n),(n,n,n,n) (Q) =4q

86.3. Generalized saturation conjecture for parabolic Kostka
polynomials

Conjecture 6.5 (#) (Generalized Saturation Conjecture).
Let A\ be a partition, and p and 1 be compositions, then for any integer
N2>1

(6.61) c(NX, Npln) = Ne(X, plin).

(#4) Let A and g be partitions and 7 be a composition, then for any integer
N>1
a(NA, Nplln) = N a(X, ulln)

(44 4) More generally, let A, A2 A(5) be a sequence of partitions, 1 be
a composition and g™, 1@ ... 1) be a sequence of compositions such that
IAND| = |u0) | and 11(u9)) < |n| for all j. Let N, p1, pa, . .. , ps be positive integer
numbers.

For each i,1 < i < N, define partitions

(6.62) 2= [ S pA@D + N —i | N[ and @)
j>1

[ Spn® - N =i | N
§>1

Assume that [A\(?)| = |i@)| for all j. Then

> i D, 1Dy =3 0O, 5D ).
=1

i=1

=z

() If X and p are partitions, then we expect the similar conjecture for
the numbers a(\, p||n).

Remember that for any real number x the symbol [z] denotes the integer
part of x.
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Remark 6.6. It is not true in general that the inequality
(6.63) deg Koy (w(A +0) — p— 0] q) < deg Koy (A — ] q)

holds for any permutation w € ¥,,, w # id, as it happens in the case n = (1),
see Example 4.2. If it would be so, the Generalized Saturation Conjecture would
follow easily from Saturation Theorem for the parabolic ¢-Kostant partition
function, see Corollary 3.14. It is also not true in general that

(6.64) c(A, plln) = deg Kxun(q) = deg Koy (A — 1| q),

even if u is a dominant sequence of rectangular shape partitions of the same
length which is compatible with 7, see Example 4.2. In fact, it looks a difficult
problem to find an explicit formula for the numbers ¢(A, p||n).

(X) However, we expect the validity of the following inequality

(6.65) K (q) < Koy (A =l 9),

and if X is a partition and R = (R, := (u¥)?_,) is a dominant sequence of
rectangular shape partitions of the same length k, then d(\, R) = 1.

("X) By duality, we expect that if R = (R, := (k"*)P_,) is a sequence of
rectangular shape partitions of the same width k, then b(\, R) = 1.

§6.4. Rationality conjecture

Conjecture 6.7. Let A be a partition, and g and 7 be compositions
such that A — 1 € Y}, and (according to Theorem 4.14)

o ano Kn)\,nu,n(Q) "= P)\un(% t)/QApﬂ?(Qv t)>
where Py,,(q,t) and Qxun(g,t) are mutually prime polynomials with integer
coefficients, Py,,(0,0) =1,

L lem(%t) = HjeJ (1 - qj t)nj
for some finite set of integers J := Jxup = {Jmin = J1 < J2 <+ < Js = Jmaz}
and a set of non-negative integers {n;};cs.

(#) Lot Prug(a,8) = Yo Piy(0) 15, P (a) = 1, and (i Py (q) #0)

Py (@) = BrAum)g® O - 4 G (Agam) g ).

Then, for all k£ > 0 such that Piﬁ)n(q) # 0, the following inequalities

Yk ()\/an) S kjmax
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have to be valid. Moreover, if the equality is attained for some value of k, then
for the corresponding value of k one should have §;(Apn) > 0.

(¢#) If X and p are partitions, then additionally, for all & > 0 such that
(q) # 0, the following inequalities

P >(\m7

(675 ()‘/“7) Z kjmin

have to be valid, and if the equality is attained for some k, then for the corre-
sponding value of k one should have S (Aun) > 0.

It follows from Remark 4.22, (#), that the polynomial Pﬁ)n(q) may have neg-
ative integer coefficients.

It is easily seen that Rationality Conjecture, item (i), implies both Posi-
tivity and Generalized Saturation Conjectures. Rationality Conjecture, item,
(ii), implies the item (ii) of Conjecture 6.5.

Question 6.8.  Does there exist a “nice” combinatorial interpretation of
the set J := Jx.n and the exponents {n;};cs which have appeared in Rationality
Conjecture ?

Examples 6.9. For the reader’s convenience, we list below a few ex-
amples of the set Jy .

(1) J3.3,2.1),21,2.1.21),28) = 13%,4%,5%,6%}, deg, Paun(q,t) = 8.

(ll) J(4 2,2,1),(2,1,2,1,2,1),(23) = {44 56 63} degt P)\M(q, ) = 10.

(ii) J(5,4,2,1),(3.24,1),(28) = {4,5%, 6%, 7°}, deg; Pauy(q,t) = 5.

(iv) J(5,4,2,1),(3.24,1),(2.12,2) = {4 5%,6°,7%,8%,9%}, deg, Pauy(g,t) = 9.

(V) J(Q 2),(04,1,3),(16) — {5 6 7 8 92 10 11 12 13 15 17} degt P/\/“?(q’ )
=12.

(Vl) J(474’2’2)’(26)’(16) = {4, 6, 83, 10,12, 14, 16}, degt P,\,m(q, t) =7
and Py,4,2,2),(26),(16)(q, t) is a reciprocal polynomial.

(vii) .](4’3’2’1)’(25)’(15) ={3,4,5,6,7,8,9,10}, deg, P)\Wl(q7 t)==6
and Ji43,2,1),(25),(15) (¢, t) is a reciprocal polynomial.

(vili) Jia,3,2,1),(110),(25) = {10,11%,12%,132 142 152,16, 17}, deg, Pxuy(q,t)
= 8§, but P(473’211),(110)7(25)(q,t) is not a reciprocal polynomial.

(ix) Jes),amy,am1y = {25,26,27,28,29,30,31, 33,34, 35,37,40, 41, 43,
45,50},
deg; Pxun(q,t) = 16 and P 5),(111),(111)(¢, t) is a reciprocal polynomial.

(X) J(2471)’(19)7(19)(q) = q4(1, 1, 1, 27 3, 2, 2, 2, 3, 2, 2, 2, 1, 1, 1, 1, 1), K(2471)7(19)
(q) — J(2471)’(19)7(19)(q) = qg(l, 2, 27 1, 2, 2, 1, 2, 1), degt PAM(% t) = 23, and
Pia1 1y,(19),(19)(q, t) is a reciprocal polynomial.
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(K) We expect that if 1; and 7y are two compositions such that 7, is a
subdivision of 1, then Jy 4., € Jx 1u.n.-

86.5. Polynomiality conjecture

Conjecture 6.10. (¢) Let A be a partition, p and 1 be compositions.
Then d(NA, Nulln) is a polynomial in N with non-negative rational coeffi-
cients of the following form:

there exist a non-negative integer D and a sequence of non-negative inte-

gers
ho =1,h1,... ,hp(# 0) such that

D

N+D—k

d(NA,Nuln)Zth( 5 )
k=0

(#4) Let X be a partition, u and 1 be compositions, and
qc(nA’nulln)KnA,nu,n(q_l) = Zd/\un(k§n) 7",
k>0

so that dy,,(0; N) = d(NX, Nu||n).
Then for a fixed k > 0, there exists a polynomial with rational coefficients

Dg\li)n (t) of degree depending only on A, 11 and 7, but not k, such that if N > k,
then dy,., (k; N) = D) (N).

Hence, there exists the limit

lim qc(nknu”n)KnA,nu,n (qil)/d(n/\v n#||77)~

n—oo

(0)

(F) Moreover, we expect that Dy,

(t) and D(Alu)n(t) have non—negative co-
efficients.

(#64) Let )\ and p be partitions, and

Kunnpn(a) = a0 8N by (kin) ¢* 3
k>0

so that by, (0; N) = b(NA, Nu|n).
Then for a fixed k& > 0, there exists a polynomial with rational coefficients

Bg\]ft)n (t) of degree depending only on A, p and 7, but not k, such that if N > k,
then by, (k; N) = By;)n(N)‘

Hence, there exists the limit

lim g~ aMAmelm g o (g)/b(n, npl|n).

n—oo
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("K) Moreover, we expect that B (t) and BY

A ,\M](t) have non—negative coef-

ficients.

(0064) Let {()\a,u(a))}fgl be a collection of pairs (g, u(*)), where for
all @, 1 < a <7, )\, is a partition and x(® is a composition of the fake length
at most n. Let n be a composition of size n. Then, there exists a piecewise
polynomial function M(t4, ... ,t,) with rational coefficients such that for each
r-tuples of non-negative integers (nq,...,n,) one has

M(ny, ... n.) =dmiA + -+ np A, napr + - npp|n).

(%) Moreover, we expect that if all compositions u(*) ’s are in fact partitions,
then the restriction of M(ty,... ,t,) on “the dominant chamber” {(n; >--- >
n,) € Z%,} is a polynomial wit non—negative rational coefficients.

Let us note that Polynomiality Conjecture, items (¢)—(444), follow from
Rationality Conjecture, except the statements about non—negativity.

Example 6.11. Take A = (5,3,3,2), u = (3,3,3,2,1,1) and n = (1°).
Based on formulas from Example 4.17 (i), one can find that

lim ¢ M (@) /(A nplln) = (1 — q) 51 +¢) 2

n—oo

Remark 6.12.  Even in the case when g is a dominant sequence of rect-
angular shape partitions, the sequence (hg,h1,...,hp) does not necessarily
turn out to be unimodal. For example, take A = (5,4,3,2,1), u = (2,2,2) and
v=1(6,5,4,3,2,1). It is not difficult to compute the corresponding Littlewood—
Richardson numbers:

ny n+4 n+2
C"Mw—K(n<272,2>,n<16>>(1)_< 4 )*( 4 >

=(n+1)(n+2)(n®+3n+6)/12.

Hence, in this case D = 2 and (hg, k1, he) = (1,0,1). It is not difficult to check
that

> Kneayaae(@t" = (1+¢7 1) /(1-¢*)(1-¢°t)(1— %) (1—q"t) (1 - ¢°t).
n>0

We see that in our example pY

1
A/tn(q) = 0. We can show that P((Qf)’(ls)’(ls)(q) =0

as well.
(X) However, we expect that if n > 5, then P((zlg),(12n),(12n)(‘J) #0.

For example, P((Z?Q)’(lm)’(lm)(q) =¢10(=1,1,1,2,2,2,2,3,1,2,1).
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Eg’i’§7g’?31()222) = 5 is equal to the third Catalan

number C'5. More generally, one can show that

Let us observe that ¢

(2n,2n—1,... ,2,1) . 1 2n\
Clan 1,2 2. 21),(2m) = Eeam),a2my(1) = n+1 < ) -

n

is equal to the n-th Catalan number.

For definition of unimodal sequences/polynomials see e.g. [66], where one
can find a big variety of examples of unimodal sequences which frequently
appear in Algebra, Combinatorics and Geometry.

Remark 6.13.  In the particular case when b(A,R) = cX ,.» see Section
5.2, the fact that the function f{ (N) := C%K’NM is a polynomial in N with
rational coefficients follows from Polynomiality Theorem for parabolic Kostka
polynomials, see Corollary 4.15, and has been proved independently by the
several authors: A. Knutson (unpublished), H. Derksen and J. Weyman [15],
E. Rassart [61], ... .

We would like to state separately two particular cases of Conjecture 6.10.

§6.6. The generalized Fulton, d(\, p||n) =2 and d(\, pljn) =3
conjectures

Conjecture 6.14 () (The generalized Fulton conjecture).

If d(kX, kplln) = 1 for some positive integer k, then d(NX, Nu|ln) = 1 for
all positive integers V.

(0#) If d(A, p||n) = 2, then d(NA, Npulln) = N + 1 for all positive integers
N.

If d(\, pnl|n) = 3, we expect that there are only two possibilities:

either d(NA, Nplln) = 2N +1, or d(NA, Nplln) = <N;r2> .

(F) Therefore, we expect that the cases d(NA, Nuln) = <N+2>

1 <k <3, do not occur. For example, we don’t know whether or not there
exist a partition A and a dominant sequence of rectangular shape partitions R
such that d(\, R) = 3, but d(2\,2R) > 7.
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Remark 6.15.  In the case when the numbers b(\, R) coincide with the
Littlewood—Richardson numbers, see Section 5.2, the Fulton conjecture has
been proved by A. Knutson, T. Tao and C. Woodward [44].

Remark 6.16.  If pu is a composition, but not a partition, then Conjec-
ture 6.14 (#) is not, in general, valid for the numbers b(A, u||n). For exam-
ple, take A = (3,2,1) and p = ((0),(2,0),(2),(2)), see Examples 4.6. Then
a(A,p) = 3,6(\,p) = 1, but a(2\,2m) = 7,b(2)\,2p) = 3 and a(3\,3p) =
8,0(3\,3p) = —1. In fact, if n > 3, then a(n\, n) = 3n—1,b(nA\,np) =2 —n.
On the other hand, ¢(n\, ng) = 9n and d(n\, np) = n+1,¥n > 1. In particular,
we see that b(NA, Nu) becomes a polynomial in N only starting from N = 3.

86.7. ¢-Log concavity and P—positivity conjectures
Conjecture 6.17 (¢-Log concavity and P—positivity conjectures).

(#) (¢-Log concavity conjecture for parabolic Kostka polynomi-
als)
(a) Let A and p be partitions and n be a composition. Consider the
. A
function gn(q) == 93" (¢) = Kna,Npun(q). Then

(9n(2))* = gn-1(q) gn+1(q).

(") Moreover, we expect that if a composition 7 is a subdivision of that 7,
then

A Ane A A A A
(g™ (@))* — gN (a) gn' T2 () > (g8 ™ () — g™ (q) g (q) > 0.

(b) More generally, let (MA@ 0 A and p™ ... ul®) be two se-
quences of partitions, and 7 be a composition such that |AU)| = |[uU)| and
() < In,1 < j < s. Let N, p1,pa,...,ps be positive integer numbers.
Assume that |X(j)\ = || for all j. Then

S

N
H(Kx<j>7u<j),n(‘1))p" < H K56 50 0 (@)-
i=1 =1

See Conjecture 6.5, (444),(6.62), for the explanation of notation A0 and
71
atv,

(%K) In particular, we expect that if A\ := (A 4 ... + A\())/N and p :=
(™ 4 -+ 4+ p(®)) /N are partitions, then

H Ky u) (@) < (K (@)™
j=1
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(c) (Strong ¢-log concavity conjecture for parabolic Kostka poly-
nomials)
Let I > k > r > 1 be integers, A, u and 7 be as in Conjecture 6.17 (a),

gn(q) = Kn)\,np,n(q)- Then

(@) 91(q) = gk—r (@) g1 (q)-

(K) Moreover, we expect that the difference gx(q)g:1(¢) — gr—r(¢)g14+-(q) is a
unimodal polynomial.

(#4) (P-positivity conjecture for parabolic Kostka numbers)

Let « D (8 be partitions, [(«) = r. Consider the following polynomial:

ga\ﬁ(Q) = 92<Z(Q) = det(gai—ﬁj—i-'rj(q>)1§i,j§r~

Then gq\5(1) > 0. Equivalently, {g])‘V“ (1)} n>1 is a Pdlya frequency sequence.

Remark 6.18.  If r > 3, then it’s not true, in general, that all the co-
efficients of polynomial g,\s(q) are non-negative. For example, take A =
(4,3,2,1), R = ((2,2),(2),(2),(1,1)) and o = (2,2,2). Then g¢,(q) = 4¢** +
28(]23 4+t 7q34 _ q35.

We want to state some special cases of Conjecture 6.17 in its own right.

Conjecture 6.19 (#) (The generalized Okounkov conjecture, I).
Let A be a partition and R be a dominant sequence of rectangular shape
partitions. Then

(B(NA,NR))2 > b((N — A, (N — 1)R) b((N + D)\, (N + 1)R).

(#4) More generally, let A and p be partitions, and 1 be a composition,
then the power series

B(t) = 3" b(n, nplln)#"

n>0

is a P-series.

Remind that a power series B(t) = > 5,bnt" is called a P-series, if
det(by,—i4+;) > 0 for any partition .
(044) Let A p1, v be partitions, then

(6.66) tpt1)/2 [+ /2) 2 Caoee

For a more general conjecture, see Section 6.8.
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In the case then (A + p)/2 is a partition, Conjecture 6.19, (¢44¢), was
stated by A. Okounkov [60], Section 2.5. More generally,

(%) we expect that for a sequence of partitions A1), ... A\(P)| the differ-
ence of products of Schur functions

p p

(6.67) 1L sis, a0+o-nm = [T 5200
k=1 j=1

is a Schur or s-positive, i.e.the latter difference can be written as a linear
combination of Schur functions with non—negative (integer) coefficients, cf
Conjecture 6.23 (¢).

In the case of the Littlewood-Richardson numbers Conjecture 6.18, (¢),
was stated by A. Okounkov [60].

Remark 6.20.  The log-concavity of numbers

dim VI = 5,(1,...,1) = <”,> ,
—— A
which can be in a natural way identified with certain numbers b(\, R) for some
partitions A and dominant sequences of rectangular shape partitions R, see e.g.
[30], has been proved by A. Okounkov [59].

The g-log-concavity of the generalized ¢-Gaussian coefficients for general
partition A has been proved by A. Okounkov [59], and earlier for some special
cases, by L. Butler, C. Krattenthaller, B. Sagan and others. In fact, A. Ok-
ounkov has proved more fine result, namely, that not only the dimension of
an irreducible representation (or its ¢-dimension), but the whole skew Schur
function is log-concave.

(H) We expect, that the modified parabolic skew Hall-Littlewood func-
tion is g-log-concave as well.

86.8. The generalized Fomin-Fulton-Li-Poon conjectures

Let A=A\ Xand B = M\ u be skew diagrams and v be a partition. Let
6 be a composition such that I(v) < |6|. Define partitions

a=a(A,B) = (M) + A, M), = (A + M{,0)

and the composition 8 = B(A, B) := ((MlAll) + A, p, OM1=11 1)),
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One can prove that the ratio

K4 po(@) = q " Kapy(q)

is in fact a polynomial in ¢ with non—negative integer coeflicients.

More generally, cf Section 5.2, let A = AW\ XD AF) = AR)\ \(*)
be a k-tuples of skew diagrams, v and 6 be compositions such that lI(v) < |6].
Define new partitions a = a(A™M, ..., A®)) and g = B(AD), ..., A®) in the
following way:

if Y e M AW <J<Vicr A(i),, for some 1 <r <k,

then «aj = ZZ rt1 A( —|—A(T , By = Zl 41 A(l —|—)\(T)
where we put by definition, A(®) = X\(©) = ). In addition, define = (Zi:ll Agi)l
+A0 0).

One can prove that the ratio

(6.68) KZ(l),_,,,A(k)ﬂ(Q) = qily‘Kaﬁn(Q)

is a polynomial in ¢ with non—negative integer coefficients.
The main intention of this Section is to state a few results, examples and
conjectures about the latter polynomials.

Proposition 6.21.  If 6 = (1*1), then

(%) K50 4 0(0) =y ams

where CA<1) AW = (S401) - -S4m0, 8y). Remember, that s i) denotes the
skew Schur functwn corresponding to the skew diagram A® | and (,) denotes
the scalar product (the so—called Redfield—Hall scalar product) on the ring of
symmetric functions, see e.g. [53], Chapter I, Section 4.

In particular, if \ = X2 = 0, then KA(1> A, 0(0) is equal to the LR-
number cA(1)7A(2).

(b)) If N = ... = XB) = () then the number Ko . A<k),0(1) is equal
to the number of semistandard k-rim hook tableaux of content v and a certain
shape, see details in Section 5.2.

Conjecture 6.22 (Strong ¢-log concavity conjecture for polyno-
mials K, A<k>,0(q»'

{KmAU) A (@) }m>1 is a strong g-log concave sequence.

In partlcular,

(KWTZ@ mA(’“)ﬂ(q))Q

(mJFl)V (m—1)v
2 Kiminyam,.. (m+1)A<k>,9( )K(m 1AM, A.,(mfl)A(k),G(q)'
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Now we are going to state a generalization of the Fomin-Fulton-Li-Poon
conjectures I and II, concerning the LR-numbers ¢!} g, see [18, 60]. To start
with, we need a bit more notation from the papers quoted above.

(#) For an ordered k-tuples (A, ... A)) of partitions with the same
number of components p, let v = U?zl)\m = (71> > - > Yp) be the
decreasing rearrangement of the )\Ej )1 s, 1 <j <k, 1<i<p.Define partitions

XD = (1, Yk Ve 2bs - - - s Vitp—1k ) L < J < k.

Now suppose that (A1 = AW\ XD AR = AR\ X\(K)) i an ordered
k-tuples of skew diagrams and € is a composition. Construct a new ordered
k-tuples (A, ... A®) from the k-tuples (A, ... A®) and XD ... A*)
from the k-tuples (A ... A)). Tt is easy to see that A0 ¢ /~\(7),Vj. Finally,
define A = AD\ XD, 1 <j<kandij= (ch) + Z§22 ng),G).

It is useful to consider the following modification of the above construc-
tion. Namely, for any an ordered k-tuples ()\(1), . ,)\(k)) of partitions with
the same number of components, define a new ordered k-tuples of partitions
()\T(l),... ,)\T(k)) = (()T(T)’)', e ,()7"“/)’)’). In a similar way, for an ordered
k-tuples (AM ... A®)) of skew diagrams one can define a new an ordered
k-tuples of skew diagrams (AT(l), . ,AT(k)).

Remember that for any partition A the symbol X’ stands for the conjugate
of the partition .

(##) For an ordered pair (A, p) of partitions with the same number of
components, define a new ordered pair (A*, u*) as follows:

Ne=Ne—k+#{jlu; =7 = M =k}, p;=p;— 5+ 1+ 3N — k> p;— 5}

One can show, see [18], that A* and p* are partitions and |[\*|+|p*| = |A| +|pl-

Now suppose that A = A\ A\, B = M \ p are two skew shapes and 6 is a
composition. Construct 2 A* and M* from the pair (A, M), and \* and p* from
the pair (A, ). It is not difficult to see that A* C A* and pu* C M*. Finally,
define A* = A*\ \*, B* = M* \ p* and n* = (\] + M7, 0).

Similarly to the previous case (#), for an ordered pair (A, u) of partitions,
construct a new ordered pair of partitions (A}, u¥) == ((N)*)’, ((1)*)"), and
for an ordered pair (A, B) of skew diagrams define a new pair of skew diagrams
(A BY).

2As we learned from the referee, a similar construction was also considered by F. Bergeron,
R. Biagnoli and M. Rosas, see e.g. [6, 7], or [55].
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(%) One can show, cf [18], Section 5.1, that

(6.69)
if (A*, B*) = (A, B), then (A*, B*) = o(A, B); ((A)*,(B)*) =0 (A, B),

where o denotes the twist o(X,Y) = (¥, X). 3

Let us remark that the transformation (A, u) — (A, p*) = (A, p)* is
not one-to-one in general, e.g. ((4,4),(5,3,1))* = ((5,4),(4,2,1))* = ((4,3),
(5,4,1))*.

(MMB) For an ordered k-tuples (A, ... A®)) of partitions with the
same number of components p, define a new ordered k-tuples of partitions
(AT, -+ [AFIT]), cf (6.65), as follows:

k
<Z A 4k —j) Jk

s=1

(I =

,1<j<k 1<i<p.

Now suppose that (A = AW\ XD AK) = AR\ XR) is an ordered
k-tuples of skew diagrams and 6 is a composition. Construct in an obvious way
a new ordered k-tuples of skew diagrams ([A™M],---,[A®)]) from the k-tuples
(AM . AP and that (A ... AR and put n = ()\gl) + Z?» Aﬁj), 0).

By analogy with the case (&), for any an ordered k-tuples (A(, ... A(%))
of partitions with the same number of components, define a new ordered k-
tuples of partitions

) = (Y ().

In a similar way, for an ordered k-tuples (A, ... A®¥)) of skew diagrams

one can define a new ordered k-tuples of skew diagrams (A#(l), e ,A#(k)).

Theorem 6.23.  For an ordered k-tuples of skew diagrams (A(l), ey
A®)Y we have the following equalities:
(6.70)  (JAMT,... (a0 =i o Aty @m L Aw)
—a# W A,
Conjecture 6.24 (¢) (The generalized Fomin-Fulton-Li-Poon
conjecture I, cf [18, 60], and (6.66)).

Let AV, ..., A®) be skew diagrams, 6 be a composition and v be a par-
tition. Then

(6.71) Kz%(l),-»- 1g(k)79(q) 2 K‘Z(l),“, ,A(’“),G(q)'

3As it was pointed by the referee, the equalities (6.69) was also proved by F. Bergeron,
R. Biagnoli and M.Rosas, see e.g. [6, 7].
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Equivalently,
v 14
Ky, ramne(@) = Koy am (@)
3 v v v 1
In particular, oy, A® > A, amr Cararme > A am-

() We see that the generalized Fomin-Fulton-Li-Poon conjecture I, (6.71),
is equivalent to our conjecture (6.67), which in turn, is a generalization of that
(6.66). As it was mentioned, in the case when (A + u)/2 is a partition, the
conjecture (6.66) was stated by A. Okounkov, [60].

(#4) (The generalized Fomin-Fulton-Li-Poon conjecture II, cf
[18])*
Let A, B,A, M, \, x and 6 be as in (#é), then

K% p-o(q@) = K4 polq)-

] v 17 174 v
In particular, ¢%. g. > ¢4 g, s s = ¢ p-

(644) (The generalized Okounkov conjecture IT)

Let (A®M, ... A®)) be an ordered k-tuples of skew diagrams, v be a parti-
tion and 6 be a composition. Let pq, ... , pr be non—negative rational numbers,
p1+ -+ pr = 1. Define A = Z?lekﬂ,iﬂ- AU) 1 < i < k. Assume that
the all AV, ... A® are skew diagrams. Then

Ko, 4w o(@) = K3y aw 6(9)-

In particular, CZS(U,... A 2 CAt) A

Examples 6.25. We elucidate Conjecture 6.23 in the case k = 2. To
simplify notation we will write A, B, A, M, X and p instead of A1) AR A
AP 2D and A?) correspondingly.

(i) Take A = (5,1),M = (4,3,1),v = (6,5,2,1),0 = (1*) and A = pu = 0.
It is easy to check that

(Ka M) =((5,3,1), (4, 1)) = (A#,M#); (A*vM*) = ((47 1)’ (5737 1));

([A+MT,[A+ M])=((5,2,1),(4,2)) = (AT, MT)?

(A*, M*) = ((4,2),(5,2,1)) and 1 = (4, 1%).

Using the fermionic formula (5.44) for Kostka-Foulkes polynomials, one
can find that

4As it was pointed by the referee, a generalization of the original Fomin—Fulton-Li-Poon
conjecture II, [18], Conjecture 5.1, to the case of skew diagrams has been stated also by
F. Bergeron, R. Biagnoli and M. Rosas, see e.g. [6, 7]; see also [55].
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K/’(*,M*,G(Q) = K%yﬁﬁ(q) = (35 11) 18; 17; 11; 47 1)v KFAJrM], [A+M]’0(q) =

(3,12,19,18,11,4,1),

KX aro(a) = (1,6,12,14,10,4,1).

Therefore, the difference K/K\ 1\79(’1) — K} ar0(q) is equal to (2,5,6,3,1).

Similar computations show that if we take 6; = (12,2), then (with n; =
ﬁl = (45 12a 2))

KXo g 0,(@) = K% = (q) = (3,9,13,10,5,1), KX 4, (q) = (1,5,9,9,5,1)

A,M,0,
and

Kiyian, a0, (@ = (3,10,14,11,5,1).

(i) Take A = (5,5,2,2)\(3,1), B = (1,1)\(1), v = (5,3,2,1) and 6 = (1%).
It is easy to check that

(A4, B) = ((5,2,1)\ (3,1),(5,2,1) \

44 B = (43N, 220

1L\ (3,1);

([A+ B, [A+B)) = (3,3,1,1)\ (2,1),(3,3,1,1)\ (2)) = (41, BY).

Using the fermionic formula (5.44) for Kostka—Foulkes polynomials, one
can find that

K% pe o(q) = (33,82,86,53,21,6,1), KV p1 (asp.0(0) = (12,20,14,

5, 1),

Kgé 0( q) = (20,86, 139, 131,86,43,17,5,1), Kzi731’9(q) = (22,56, 61, 40,

17,5, 1)

KZ!,B,O(q) =(4,9,9,4,1).

Similar computations show that if we take n; = (1,2, 1), then

I(,Ifx*,B*,e1 (q) = (33,64,41,9), KZ},B,GI (@) =(4,7,3)), KFA-{-B], [A+B],0, (q)

= (127 157 5)’

K% 5, (a) = (20,73,87,49,13,1), K¥%; 1. » () = (22,45,32,9).

(1)) = (A%, BF);
\(2,1)); (A%, BY) = ((2,2, )\ (1), (5.4,

These examples show that, probably, there are no simple relationships be-
tween polynomials K. . »(q), K% 5 e(q), K% pig(@) and K{ gy 4y pp0(0)-

(K) However, based on examples we expect that max{cA*7B*,c/~\ M} >
C[4+B), [A+B]

(F) We expect that if §; and 2 are compositions such that 6, is a sub-
division of 61, see Section 1, Notation, then

Kz<1)7__, Ak 0, (Q) - Z(l)r,,,A(z«),ez(Q)

2 KZ@) IONH (Q) - KZ(D,_,, JAR) 9y ((J) >0,
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KZ!*,M*,OQ (q) — KZ&,B,az (Q)

> K4 g, (@) — K4 g (q) >0,

ZI,M1792 (q) — KZ&,B,az (9)

> K4: pig, (@) — K4 po, (0) 20,
KFA(U],_“ ,[Afc)],ez(Q) - Kf:;(m,_“ LAY 0, (9)

Ao, (@) = Klw 4w 0,(2) 20,
A, 40,0, (@) = Koy am 0,(9)
> K5 am g, (@) =K o) 4w ,(0) 2 0.

Remark 6.26.  We expect that Conjecture 6.3 (Positivity), Conjec-

ture 6.5 (Saturation), Conjecture 6.7 (Rationality), Conjecture 6.10 (Poly-
nomiality), Conjecture 6.17 (¢-Log concavity and P-positivity), Conjec-

yeus

ture 6.24 (Generalized Fomin-Fulton-Li-Poon’s conjectures I and II)
are still valid for the level [-restricted parabolic Kostka polynomials K y;in (q),
see Remark 4.28 for the definition of the latter.

86.9. Miscellany

Conjecture 6.27 (Rationality conjecture for the LLT g-analog of
LR-numbers).

Let A, p and v be partitions, and X H(q) stands for the g-analog of Little-
wood-Richardson numbers defined in [11], [47]. Then

Do (@)t =Py (0, 6)/QX (1),

n>0

where Pf\’#(q,t) and Qi7u(q,t) are mutually prime polynomials with integer
coefficients. Moreover,

Q@) =] =g ™
i€l
for some finite set of integers I = I} o and a set of positive integers n;, i € I.

(") We expect the similar conjecture for the parabolic Kazhdan-Lusztig
polynomials, see e.g. [49] for the definition of the latter.

Conjecture 6.28 (Saturation conjecture for the structural con-
stants of the multiplication of the Schubert polynomials).

For eachn > 1, let »(n) denote the set of all permutations w such that the
code of w has length at most n. Denote by %(°°) the union U1 »m),
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If w e (") and N > 1 is an integer, define the permutation Nsw € LV
to be a unique permutation with the code (Ncy,...,Ney), where (c1,...,¢p)
is the code of w.

For each w € X(™ denote by &, € P, := Z[x1, ... ,x,] the corresponding
Schubert polynomial. It is well-known that the &,,, w € (™, form a Z-basis
of P,.

Finally, if u,v are permutations which belong to the infinite symmetric
group X(°) denote by Cy» the structural constants for the multiplication of
Schubert polynomials:

G, Gy= Y ¥, B,
weRn ()
Then
() CNIY Nwp 7 0 for some integer N > 1 if and only if ¢, # 0.

(F) We expect that the formal power series

§ : N xw N
CN*u,N*u 3
N>1

is a rational function in ¢ (with the only possible pole at t = 1 ??). In other
words, the function N — C%IZ},N*U is a polynomial in N with rational (non—

negative 7?7) coefficients.

Problem 6.29 (Generalized saturation problem for Kazhdan—
Lusztig’s polynomials).
Let u,w € %, be two permutations, denote by

Pu,w(q) =14+ d(u,w) qC(u,w), d(u,w) 7é 0;

the corresponding Kazhdan—Lusztig polynomial [27].

(&%) Prove (or disprove) that

(1) e(N#u,N*w)=N c(u,w) for any positive integer N

(2) d(N xu, N *w) =1 for some positive integer N if and only if d(u,w)
=1.

The similar Problem can be stated for the Kazhdan—Lusztig polynomials
corresponding to the affine symmetric group.

However, we didn’t extensively test Conjecture 6.27 and Problem 6.28 on
a computer.
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We want to end this Section by the following question and problem:

Question 6.30 (A g-analog of the structural constants cy ).
Does there exist a natural q-analog c;; ,(q) € N [q] of the structural con-
stants c;;

W o 80 that ¢y, = ¢ (1), which for the grassmannian permutations u,
v and w coincides with the g-analog ciEZ;7A(U)(q) of the LR-numbers?

Here A\(w) denotes the shape of a permutation w, see [52] for a detailed
account to the theory of Schubert polynomials. As for a definition of the q-

analog cX ,(q) of the LR-numbers, see e.g. [11, 47].

Problem 6.31 (Define the polynomials ciu(q) through the geom-
etry of Schubert varieties).

Let n > m be fized positive integers, and A\, p and v be three partitions
such that max(I(A\),1(un),l(v)) < m, max(Ai,p1,v1) <n, and ||+ |u| = |v|.

It is well-known that the LR-number cf , counts the number of (isolated)
points in the triple intersection &\ N &, N &« of the Schubert varieties Gy,
S, and &,« in the Grassmannian variety G(m,n + m), see e.g. [19] for the
explanations of omitted notation, definitions and details.

(&) Find a geometric way to attach to each intersection point x € Gy N
S, NS, an integer number c(x) such that the generating function

Z qc(m)

2€G,nG,nG, -

coincides with the LLT g-analog cX ,(q) of the Littlewood—Richardson number
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