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Abstract

We report about some results, interesting examples, problems and conjectures
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§1. Introduction

This note is based on a series of lectures given by the author during 1998–
2003 years concerning the interrelations between the saturation properties of
the Littlewood–Richardson numbers and their several generalizations, parabolic
q-Kostant partition functions and parabolic Kostka polynomials.

In spite of the title “An invitation to the Generalized Saturation Con-
jecture”, we will state a big amount of conjectures (about 30) and problems
(about 15) revolving around a very mysterious behavior of the coefficients, and
the leading term especially, of a parabolic Kostka polynomial.

Remember that, by definition, a function f : Ω ⊂ Zn → Z satisfies the
saturation property (on the set Ω), if the following condition holds:

f(Nω) �= 0 for some integer N ≥ 1 and ω ∈ Ω, then also f(ω) �= 0.

For example, any homogeneous function f on the set Ω, i.e. that satisfying
the condition f(Nω) = Nα f(ω) for some α ∈ R, ∀ω ∈ Ω and all integers
N ≥ 1, possesses the saturation property; a subset Ω ⊂ Zn is called saturated
if its characteristic function has the saturation property.

To be more specific, let us introduce the numbers a(λ, µ‖η), b(λ, µ‖η),
c(λ, µ‖η) and d(λ, µ‖η) which will play an important role in our paper. Namely,
let λ be a partition and µ, and η be compositions such that |λ| = |µ| and
ll(µ) ≤ |η|, see Section 2.1 for explanation of notation. Let Kλµη(q) be the cor-
responding parabolic Kostka polynomial. If Kλµη(q) �= 0, the numbers above
are defined from the decomposition

Kλµη(q) = b(λ, µ‖η) qa(λ,µ‖η) + · · · + d(λ, µ‖η) qc(λ,µ‖η),

where we assume that b(λ, µ‖η) �= 0 and d(λ, µ‖η) �= 0, and a(λ, µ‖η) ≤
c(λ, µ‖η).

If Kλµη(q) = 0, we put by definition a(λ, µ‖η) = b(λ, µ‖η) = c(λ, µ‖η) =
d(λ, µ‖η) = 0.

(�) We expect that d(λ, µ‖η) ≥ 0, and Kλµη(q) �= 0 if and only if λ−µ ∈
Yη. In other words, we expect that Kλµη(q) �= 0, if and only if KΦ(η)(λ−µ) > 0,

see Section 6, Positivity and Non-vanishing conjectures.
(♣) We regard the numbers d(λ, µ‖η) as a generalization of the Littlewood–

Richardson coefficients, see comments after Theorem 1.4, and Section 5.2, (10)
for explanations.

Problem 1.1. Find combinatorial and/or algebro–geometric interpre-
tations of the numbers d(λ, µ‖η).
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Remark 1.2. We expect that for given λ, µ and η there exists a rational
convex polytope ∆η

λ,µ such that the number of integer points inside of ∆η
λ,µ is

equal to d(λ, µ‖η).

One of our main observations is that the saturation property of the leading
coefficient d(λ, µ‖η), i.e. that

(♣) d(Nλ, Nµ‖η) �= 0 for some integer N ≥ 1 if and only if d(λ, µ‖η) �= 0,

is an easy consequence (but not conversely !) of the statement that the
maximal degree c(λ, µ‖η) of q in a parabolic Kostka polynomial Kλµη(q) is a
homogeneous degree 1 function of λ and µ. In other words, we pose the following
conjecture:

Conjecture 1.3 (Generalized Saturation Conjecture).
Let λ be a partition, µ and η be compositions such that |λ| = |µ| and

ll(µ) ≤ |η|. Then the coefficient c(λ, µ‖η) is a homogeneous piecewise linear
function of λ and µ. In particular,

c(Nλ, Nµ‖η) = Nc(λ, µ‖η)

for any positive integer N .

Here ll(µ) denotes the fake length of a composition µ, see Section 2.1 for
the definition.

We would like to note here that, in general, the Generalized Saturation
Conjecture (GSC for short) is false for the numbers a(λ, µ‖η), see Examples 4.6.

(�) However, we expect that if µ is a partition, then the GSC does hold
for the numbers a(λ, µ‖η).

Conjecture 1.3 is obvious for the Kostka–Foulkes polynomials, since in this
case

c(λ, µ‖(1|λ|)) = n(µ) − n(λ) =
∑

1≤i<l≤l(µ)

min(µi, µj) −
∑

1≤i<j≤l(λ)

min(λi, λj)

is easily seen to be a homogeneous piecewise linear function of λ and µ. However,
it seems a difficult problem to prove the GSC in general case, especially to
find an explicit piecewise linear formula for the numbers c(λ, µ‖η).

Now let us explain briefly a connection between our Generalized Saturation
Conjecture and the Saturation Theorem by A. Knutson and T. Tao [43], see
also [4, 9, 14, 65] for other proofs.
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Theorem 1.4 (Saturation Theorem [43]).
Let λ, µ and ν be partitions such that |λ| + |µ| = |ν|. Then
cNν
Nλ,Nµ �= 0 for some integer N ≥ 1 if and only if cν

λ,µ �= 0.

Here cν
λ,µ denotes the Littlewood–Richardson number (LR-number for

short) corresponding to the partitions λ, µ and ν, see Section 2.4 for details.
Now we are going to explain how the Saturation Theorem follows from the

GSC.
First of all, we observe that cν

λ,µ = b(Λ, R) for some partition Λ and a
dominant sequence of rectangular shape partitions R, see Section 2 for the
definition of a dominant sequence of partitions. Namely, for given partitions
λ = (λ1, . . . , λr), µ and ν such that |λ| + |µ| = |ν|, define partition

Λ = (µ1 + λ1, µ1 + λ2, . . . , µ1 + λr, µ),

and a dominant rearrangement R of the sequence of rectangular shape parti-
tions R̃ = {(µλ′

1
1 ), ν}. Then

(♣) a(Λ, R) ≥
∑

1≤j≤µ1
ν′

j − |µ|, and a(Λ, R) =
∑

1≤j≤µ1
ν′

j − |µ| if and
only if cν

λ,µ ≥ 1; in addition, b(Λ, R) = cν
λ,µ, see Section 5.2 for details.

In other words, the constant term of the polynomial

Kν
λ,µ(q) := q(|µ|−

∑
1≤j≤µ1

ν′
j) Kλ,R(q)

is equal to the Littlewood–Richardson number cν
λ,µ. See Sections 5.2 and 6.8

where some results and conjectures about the polynomials Kν
λ,µ(q) and their

generalizations Kν
A,B,θ(q), and Kν

A(1),... ,A(k),θ
(q), are presented.

The next step is to apply the Duality Theorem for parabolic Kostka poly-
nomials Kλ,R(q) corresponding to a dominant sequence of rectangular shape
partitions R, see Section 4, (4.37), Duality Theorem. As a corollary, we see that
the coefficients a(Λ, R) and c(Λ, R) satisfy the GSC simultaneously. Hence, it
follows from our Theorem 1.5 that

(♣) a(nΛ, nR) = na(Λ, R) for any integer n ≥ 1.

Finally, let us deduce the Saturation Theorem from the above considera-
tions. Indeed, assume that cNν

Nλ,Nµ �= 0, then

Na(Λ, R) = a(NΛ, NR) = N

 ∑
1≤j≤µ1

ν′
j − |µ|

 ,

and therefore, a(Λ, R) =
∑

1≤j≤µ1
ν′

j − |µ|. The last equality means that
cν
λ,µ �= 0.
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In fact, our arguments show that in the particular case under consideration,
the Generalized Saturation Conjecture is equivalent to the Saturation Theorem.
However, our main point is that, conjecturally, the GSC is still valid for any
partition λ and compositions µ, and η.

Theorem 1.5 (Saturation Theorem for the numbers c(λ, R)).
Let λ be a partition and R be a dominant sequence of rectangular shape

partitions. Then
(♣) c(Nλ, NR) = Nc(λ, R) for any integer N ≥ 1.

Our proof of Theorem 1.5 is based on an explicit homogeneous piecewise
linear formula for the Lascoux–Schützenberger statistics charge, obtained by
A. Berenstein and A.N.K., see [36, 38] and a fermionic formula for the parabolic
Kostka polynomials Kλ,R(q) corresponding to a dominant sequence of rectan-
gular shape partitions R, see e.g. Section 5.1, (50). The proof is rather technical
and long. We assume to present it in a separate publication.

One of our main results, see Section 4, in support of the GSC in general
case is:

Theorem 1.6 (Rationality theorem for parabolic Kostka polyno-
mials, I).

The formal power series ∑
n≥0

Knλ,nµ,η(q)tn

is a rational function in q and t of the form

Pλµη(q, t)/Qλµη(q, t),

where Pλµη(q, t) and Qλµη(q, t) are mutually prime polynomials in q and t with
integer coefficients, Pλµη(0, 0) = 1.

Moreover,
(♣) the denominator Qλµη has the following form

Qλµη(q, t) =
∏
j∈J

(1 − qj t),

where J := Jλµη is a finite set of non–negative integer numbers, not necessarily
distinct;

(♣♣) Pλµη(1, t) = (1 − t)t(λ,µ,η) Pλµη(t), where t(λ, µ, η) ∈ Z≥0, and
Pλµη(t) is a polynomial with non–negative integer coefficients.



�

�

�

�

�

�

�

�

Generalized Saturation Conjecture 1153

Problem 1.7. Find combinatorial and algebro-geometric interpreta-
tions of the set Jλµη and the polynomial Jλµη(q) =

∑
j∈Jλµη

qj .

Corollary 1.8 (Polynomiality theorem for parabolic Kostka num-
bers).

Let λ be a partition and µ, η be compositions such that |λ| = |µ| and ll(µ) ≤
|η|. Then there exists a polynomial Kλµη(t) with rational coefficients such that
for all integers N ≥ 1

Kλµη(N) = KNλ,Nµ,η(1).

Corollary 1.9 (Polynomiality theorems for Kostka and LR-
numbers).

(i) Let λ be a partition and µ be a composition of the same size, then the
Kostka number KNλ,Nµ(1) is a polynomial in N with rational coefficients.

(ii) Let λ, µ and ν be partitions, then the Littlewood–Richardson number
cNν
Nλ,Nµ is a polynomial in N with rational coefficients.

See Section 4, Theorem 4.14 and Corollary 4.15. We also give a multivari-
able generalization of Theorem 1.6, see Theorem 4.17.

We want to emphasize here that the polynomiality property of the func-
tions N → KNλ,Nµ,η(1) and N → cNν

Nλ,Nµ is an easy consequence of our
Theorem 1.6, but not conversely: one has to check that the (irredundant)
denominator Qλµη(q, t) doesn’t have factors of the form (1 − qktl) with l ∈
Z>1.

Conjecture 1.10. If µ is a partition, then the polynomial Kλµη(t) has
non–negative rational coefficients.

See Section 6, Conjecture 6.10, (�), for more general conjectures concern-
ing the numbers d(λ, µ‖η).

We would like to remark that the GSC does not follow immediately from
Theorem 1.6, see Section 6, Rationality Conjecture, for details.

The polynomials Pλµη(q, t) may have negative coefficients, and rather dif-
ficult to compute. For example, we don’t know the explicit formula for poly-
nomial P(26),(112),(112)(q, t). We expect that the polynomials Pλµη(q, t) should
have nice algebraic and algebro–geometric interpretations.

Our proof of Theorem 1.6 is a pure algebraic and is based on the study of
the parabolic q-Kostant partition functions, see Section 3.

Corollary 1.9,(i), has been proved independently by W. Baldoni–Silva and
M.Vergne [2], S. Billey, V. Guillemin and E. Rassart [8], ... . Corollary 1.9,(ii),
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has been proved independently by A Knutson (unpublished), H. Derksen and
J. Weyman [15], E. Rassart [61], ... .

The main subject of investigation of our paper is the study of interre-
lations between the saturation properties of the LR-numbers and their gen-
eralizations, and the leading coefficient of the parabolic Kostka polynomi-
als.

The paper does not contain complete proofs of the main theorems. Our
goal is different. The primary purpose of this note is to collect together
several results, conjectures and examples revolving around a mysterious be-
havior of the initial and the leading terms of a parabolic Kostka polyno-
mial.

Let us say a few words about the content of our paper.
In Section 2 we collect together a few definitions and notation which will

be frequently used in the subsequent Sections.
In Section 2.1 we remember the definitions of partitions and compositions

and some operations over them. We would like to point out here some non–
standard conventions about partitions and compositions used in our paper.
We will denote by λ = (λ1, . . . , λr) a (proper) partition, so that if λ �= ∅, then
λr �= 0. We always use η to denote a composition without zero components.
Contrary, we will use µ to denote a composition or partition with zero compo-
nents and zeroes at the end allowed. A typical example is µ = (0, 2, 0, 1, 3, 0, 0).
Thus, according to our conventions, the compositions (0), (0, 0), . . . are different
and different from the empty composition ∅.

In Sections 2.2 and 2.3 we recall the definitions of Kostka–Foulkes and
skew Kostka–Foulkes polynomials. For more details, see [10, 16, 29, 35, 41, 42].

In Section 2.4 we remember the definition of the Littlewood–Richardson
numbers and state the Saturation Theorem, which has been proved by A. Knut-
son and T. Tao [43].

We refer the reader to interesting and clearly written papers by W. Fulton
[20, 21] for detailed account to the so–called Horn problem and its connections
with the Saturation Theorem.

In Section 2.5 we study the saturation properties of the internal product
structural constants gαβγ and those of the plethysm aπ

µ,W . It is well–known
that the LR-numbers cν

λ,µ are a special case of the internal product structural
constants gαβγ , and in turn, the numbers gαβγ are a special case of the plethysm
structural constants aπ

µ,W , see Remark 2.13. However, based on examples we
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arrived at the conclusion that, in the general case, both the numbers gαβγ and
aπ

µ,W do not satisfy the saturation property.
(�) Nevertheless, we expect that
• the numbers aπ

µ,W satisfy a weak form of Saturation Conjecture, i.e. for
any finite dimensional gln-module W there exists a polynomial pW (t) (pW (t) =
t ??) such that for all partitions π and µ one has

if aNπ
Nµ,W ≥ pW (N), then aπ

µ,W �= 0.

• for an interesting family of polynomials Lµ
α,β(q) a certain analog of the

GSC does hold, see Conjecture 2.22.
It seems an interesting problem to study whether or not the GSC is

valid for polynomials Mπ
µ,W (q) which are defined via the decomposition of the

plethysm W ◦ sµ:

(W ◦ sµ)(X) =
∑

π

Mπ
µ,W (q) Pπ(X, q),

where X = (x1, . . . , xn), and Pπ(X, q) stands for the Hall–Littlewood polyno-
mials.

In Section 2.5 we also state several results about polynomials Lµ
α,β(q) and

give a few examples supporting our conjectures.
In Section 2.6 we define the extended Littlewood–Richardson numbers as

well as the level l extended LR-numbers. The latter are a natural generalization
of the restricted LR-numbers.

(�) We expect that Saturation Theorem, the strong q-log concavity and
Fomin-Fulton-Li-Poon’s conjectures I and II are still valid for the level l ex-
tended LR-numbers.

In Section 3 we study some algebraic properties of the parabolic q-Kostant
partition function KΦ(η)(γ| q), mainly in a connection with the saturation prop-
erties of the latter. For polynomials KΦ(η)(γ| q) we prove an analog of the GSC,

Rationality and Polynomiality theorems, and a new recurrence relation. Our
proof of Rationality theorem is based on the following simple observation:

Lemma 1.11. Let R(X, q) ∈ Q [q][[X±1]] be a rational function in q
and X = (x±1

1 , . . . , x±1
n ). Let

R(X, q) =
∑

m∈Zn

Am(q)Xm

be a Laurent series expansion of R(X, q).
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Let a1, . . . , ak ∈ Zn be fixed, then

∑
(N1,... ,Nk)∈Zk

≥0

AN1a1+···+Nkak
(q) xN1

1 . . . xNk

k

is a rational function in q and x1, . . . , xk.

In Section 3 we also study the parabolic Kostant partition function KΦ(η)

(γ) as a function of γ, see Theorems 3.23 and 3.25.
A detailed treatment of the properties of the parabolic q-Kostant and

Kostant partition functions lies at the heart of the approach to the GSC and to
the study of parabolic Kostka polynomials, presented in this paper. However,
making an effort to keep the paper in a reasonable size, we do not intend to con-
sider in Section 3, and decided to postpone for subsequent publications, many
very interesting aspects of the theory of parabolic Kostant partition function
KΦ(η)(γ) := KΦ(η)(γ| q)|q=1 such as

(i) The special values of parabolic Kostant partition function, see
[2, 34, 35, 68];

(ii) Connections with the flow polytopes, see [2, 68];
(iii) Connections with the Orlik–Solomon and Gelfand–Varchenko

algebras, [37];
(iv) A q-analog of the generalized Kostant partition function, see [68].

In Section 4 we study, mainly, the “saturation properties” of parabolic
Kostka polynomials. Many examples, results and conjectures concerning with
the parabolic Kostka polynomials, have been already considered in our paper
[35]. For the reader’s convenience, in the present paper we remember some ba-
sic properties of the parabolic Kostka polynomials Kλµη(q), and give a sketch
of proofs of Rationality and Polynomiality theorems for the latter, see Theo-
rems 4.14 and 4.17, and Corollaries 4.15, 4.18 and 4.19.

In the case when µ and η correspond to a dominant sequence of rectangular
shape partitions R, we have obtained the following result:

Theorem 1.12 (Polynomiality theorem for the numbers b(λ, R)).
Let λ be a partition and R be a dominant sequence of rectangular shape

partitions, then
(♣) b(Nλ, NR) is a polynomial in N with rational coefficients.
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Our proof of Theorem 1.6 is a largely algebraic, whereas that of Theo-
rem 1.12 is based on a fermionic formula for the parabolic Kostka polynomials
Kλ,R(q).

(�) We expect that if µ is a partition, then b(Nλ, Nµ‖η) is a polyno-
mial in N with non–negative rational coefficients, see Section 6, Polynomiality
conjecture, for a more detailed statement.

However, in general, b(Nλ, Nµ‖η) becomes a polynomial in N only starting
from big enough N, see Section 6, Conjecture 6.10, (���), and Remark 6.16.

In Section 4 we also study some natural multivariable analogues of Theo-
rem 1.6, and Corollaries 1.7 and 1.8. In particular, we give a sketch of proof of
a theorem that for any sequences of partitions λ(1), . . . , λ(k) and compositions
µ(1), . . . , µ(k) the formal power series∑

(N1,... ,Nk)∈Zk
≥0

KN1λ(1)+···+Nkλ(k),N1µ(1)+···+Nkµ(k),η(q) xN1
1 . . . xNk

k

is a rational function in q and x1, . . . , xk, which has the denominator of some
special form, see Section 4, Theorem 4.17.

However, in general, if k ≥ 2, the functions

(N1, . . . , Nk) → KN1λ(1)+···+Nkλ(k),N1µ(1)+···+Nkµ(k),η(1), and

(N1, . . . , Nk) → cN1ν(1)+···+Nkν(k)

N1λ(1)+···+Nkλ(k),N1µ(1)+···+Nkµ(k)

are only piecewise polynomial functions on the set {(N1, . . . , Nk) ∈ Zk
≥0}, see

Example 4.23.
We want to emphasize here that the special form of the denominator of the

rational function
∑

(N1,... ,Nk)∈Zk
≥0

KN1λ(1)+···+Nkλ(k),N1µ(1)+···+Nkµ(k),η(1), see
Theorem 4.17, (♣), is (in our opinion) a key fact to explain a piecewise polyno-
miality of the “mixed” Kostka numbers KN1λ(1)+···+Nkλ(k),N1µ(1)+···+Nkµ(k),η(1)
and “mixed” Littlewood–Richardson coefficients.

(�) Nevertheless, we expect that in the case of parabolic Kostant’s par-
tition functions, the function (n1, . . . , nk) → KΦ(η)(n1γ1 + · · · + nkγk) is a
polynomial one on the whole set {(n1, . . . , nk) ∈ Zk

≥0}.
It is well-known that the Kostka–Foulkes number Kλµ(1) counts the num-

ber of integral points in some rational convex polytope, the so-called Gelfand–
Tsetlin polytope GT (λ, µ). In this connection we would like to pose the follow-
ing question (cf with mixed lattice point enumerator theorem for integer convex
polytopes by P.McMullen [54], or Example 4.23) :

Question 1.13. Let ∆1, . . . , ∆k ∈ Qd be rational convex polytopes, and
L : Zd → Z≥0 be a continuous piecewise linear function.
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Under what assumptions on L and polytopes ∆1, . . . , ∆k the denomina-
tor of rational function

∑
(N1,... ,Nk)∈Zk

≥0

 ∑
a∈(N1∆1+···+Nk∆k)∩Zd

qL(a)

xN1
1 . . . xNk

k

has only the factors of the form (1 − qa
(j)
J xJ), where J ⊂ [1, . . . , k], xJ :=∏

j∈J xj , and a
(j)
J are some non–negative integers?

In Section 4, Remark 4.24, we state some preliminary results about the
behavior of the parabolic Kostka number Kλµη(1) considered as a function of
λ and µ on “the space of parameters” Zη = {(λ, µ) ∈ Zn

≥0 × Zn
≥0 | λ1 ≥

· · · ≥ λn, λ − µ ∈ Yη}. Based on the properties of the parabolic Kostant par-
tition function, see Section 3, Theorem 3.25, one can show that on the set Zη

the parabolic Kostka number Kλµη(1) is a continuous piecewise polynomial
function in λ1, . . . , λn and µ1, . . . , µn. The main problem about the function
(λ, µ) → Kλµη(1) we are interested in, is to describe “the dominant chamber”
for the latter function, i.e. to describe the maximal domain Z++

η in the set
Z+

η := {(λ, µ) ∈ Zη | λ − µ ∈ Y +
η } such that Kλµη(1)|Z++

η
= KΦ(η)(λ − µ).

In Section 4 we also introduce the parabolic Hall–Littlewood polynomials
Qµ,η(X; q), and state the rationality theorem for the latter, see Remark 4.35.
Details and proofs will appear in a separate publication. Finally, we note
that for the Kostka–Macdonald polynomials Kλ,µ(q, t), see [53], Chapter VI,
Section 8, for the definition, the generating function

Zλ,µ(q, t, x) :=
∑
n≥0

Knλ,nµ(q, t) xn

is a formal power series, which is not, in general, a rational function in q, t

and x.

It seems a very interesting problem to study the properties of the function
Zλ,µ(q, t, x), especially in connections with the characters of affine Lie algebras
of type A and the Virasoro algebra.

In Section 5 we collect together several examples which might help to illu-
minate a mysterious nature of the leading term of a parabolic Kostka polyno-
mial. See the Contents of Section 5 for exposing with the list of these examples.
In particular, we show that the one dimensional sums (1D-sums for short) which
frequently appear in Statistical Mechanics, see e.g. [22, 46] and the literature
quoted therein, are a special case of the parabolic Kostka polynomials Kλµη(q)
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corresponding to a rectangular shape partition λ, see Section 5.5 for details.
In Section 5.1 we give, among other things, a few comments about the Merris
conjecture, and in Section 5.4 that about the LR-numbers cλ

δn,δn
.

In Section 6 we state a few conjectures about the coefficients a(λ, µ‖η),
b(λ, µ‖η), c(λ, µ‖η) and d(λ, µ‖η). In particular, we expect, see Conjec-
tures 6.14, 6.17 and 6.23, that

• (The generalized Fulton conjecture)
If d(nλ, nµ‖η) = 1 for some integer n ≥ 1, then d(Nλ, Nµ‖η) = 1 for all

N ∈ Z≥1.

• (Generalized d(λ, µ‖η) = 2 conjecture)
If d(nλ, nµ‖η) = n + 1 for some integer n ≥ 1, then d(Nλ, Nµ‖η) = N + 1

for all N ∈ Z≥1.

• (Generalized d(λ, µ‖η) = 3 conjecture)
(i) If d(nλ, nµ‖η) = 2n + 1 for some integer n ≥ 2, then d(Nλ, Nµ‖η) =

2N + 1 for all N ∈ Z≥1;

(ii) If d(nλ, nµ‖η) =

(
n + 2

2

)
for some integer n ≥ 2, then d(Nλ,

Nµ‖η) =

(
N + 2

2

)
for all N ∈ Z≥1.

These two cases exhaust the all possibilities when d(λ, µ‖η) = 3.

• (q-Log concavity conjecture)
Let λ be a partition and R be a dominant sequence of rectangular shape

partitions, then for any integer n ≥ 1,

(Knλ,nR(q))2 ≥ K(n−1)λ,(n−1)R(q) K(n+1)λ,(n+1)R(q).

See Section 6.7, Conjecture 6.17, for a more general and detailed statement of
the latter conjecture.

• (The generalized Fomin-Fulton-Li-Poon’s conjecture I, cf [60],
Conjecture 1, [18], Conjecture 2.7)

Kν
Ã(1),... ,Ã(k),θ

(q) ≥ Kν
A(1),... ,A(k),θ(q).

• (The generalized Fomin-Fulton-Li-Poon’s conjecture II, cf [18],
Conjecture 5.1)1

Kν
A∗,B∗,θ(q) ≥ Kν

A,B,θ(q).

1As we learned from the referee, the extension of the original Fomin-Fulton-Li-Poon conjec-
ture II, [18],Conjecture 5.1, to the case of skew diagrams was also stated by F. Bergeron,
R. Biagnoli and M. Rosas, see e.g. [6, 7]; see also [55]. The paper [7] contains, among
other things, many interesting results in support of the FFLP-conjecture.
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See Section 6.8, Conjecture 6.24, for the explanation of notation we have used,
further details and more conjectures.

In the case of the LR-numbers the Fulton conjecture has been proved in
[44].

Some special cases of the Fomin-Fulton-Li-Poon conjecture II have been
proved in [18].

Problem 1.14. When does the number d(λ, µ‖η) equal to 1?

Finally, we would like to remark that our approach to the GSC is purely al-
gebraic and combinatorial. It seems a very interesting problem to find an
algebro–geometric explanation of a still experimental observation that the co-
efficient c(λ, µ‖η) is a homogeneous piecewise linear function of λ and µ. In this
connection we would like to pose the following questions:

Question 1.15 (Parabolic Kostka polynomials and semi–inva-
riants of quivers).

Let λ be a partition and µ, and η be compositions such that |λ| = |µ| and
ll(µ) ≤ |η|.

Does there exist a quiver Q, dimensional vector β and GL(Q, β)-weight σ

such that
dim SI(Q, β)nσ = d(nλ, nµ‖η)

for all integers n ≥ 1 ?

Here SI(Q, β)σ stands for the weight σ subspace of the ring of semi–
invariants

SI(Q, β) := Q [Rep(Q, β)]SL(Q,β).

See [14] and [15], and the literature quoted therein, for more details about
the ring of semi–invariants of a quiver. It seems a very interesting problem
to find an interpretation of the numbers c(λ, µ‖η) and d(λ, µ‖η) in terms of
quivers.

Question 1.16 (A q-analog of dimSI(Q, β)).
Does there exist a natural filtration

{0 = F0 ⊂ F1 ⊂ . . . }

on the ring of semi–invariants SI(Q, β) such that for a special quiver Q =
Tn,n,n and a special dimensional vector β, see [14], Section 3,∑

j≥1

dim(Fj/Fj−1) qj •== cν
λ,µ(q) ?
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Here cν
λ,µ(q) denotes the q-analog of the LR-numbers, see e.g. [11, 49]; for the

meaning of the symbol “ •==”, see Section 1.1.

We would like to end this Introduction by the following remark. Through-
out the paper we use the term Conjecture to mean a statement for which we
do not have a proof, but which we have checked on a big body of examples
(except for Conjectures from Section 6.9). On the other hand, we use an ex-
pression “We expect that ...” to mean a statement which we believe is bound
to be true, but for which we don’t have the extensive supporting evidence. Of
course, not all plausible conjectures and reasonable guesses prove to be true.
For example, see Remark 4.22.

§1.1. Notation

Throughout the paper we follow Macdonald’s book [53] as for notation
related to the theory of symmetric functions, and Stanley’s book [67] as for
notation related to Combinatorics. Below we give a list of some special notation
which we will frequently use.

1) If P (q) and Q(q) are polynomials in q, the symbol P (q) •== Q(q) means
that the ratio P (q)/Q(q) is a power of q.

2) If a, k0, . . . , km are (non–negative) integers, the symbol qa(k0, . . . , km)
stands for the polynomial

∑m
j=0 kjq

a+j .
3) We use the capital Latin letters A, B, C, . . . to denote the skew dia-

grams/shapes, and the small or capital Greek letters α, β, γ, λ, µ,Λ, M, . . . to
denote either partitions or compositions.

4) Let η1 = (η1,1, η1,2, . . . , η1,p) and η2 be compositions, we say that η2 is
a subdivision of η1, if there exists a sequence of partitions µ(j), 1 ≤ j ≤ p, such
that |µ(j)| = η1,j and η2 = (µ(1), . . . , µ(p)).

5) Let P1(q) and P2(q) be polynomials with real coefficients. By definition,
the inequality P1(q) ≥ P2(q) means that the difference P1(q) − P2(q) is a
polynomial with non–negative real coefficients.

§2. Basic Definitions and Notation

§2.1. Compositions and partitions

A composition

µ = (µ1, µ2, . . . , µr)(2.1)
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is a sequence of non-negative integers. The number r in (2.1) is called the
fake length of the composition µ, and denoted by ll(µ). In the sequel, it
will be convenient for us to distinguish between two such sequences which
differ only by a string of zeros at the end. Thus, for example, we regard
(2, 0, 1), (2, 0, 1, 0), (2, 0, 1, 0, 0), . . . , as different compositions. The size of a
composition µ is defined to be |µ| = µ1 + · · · + µr.

By definition, a composition λ = (λ1, λ2, . . . , λp) is called partition, if
additionally it satisfies the following condition:

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.(2.2)

The non-zero λi in (2.2) are called the parts of λ. The number of parts is
the length of λ, denoted by l(λ). Thus, we have l(λ) ≤ ll(λ) := p. As in the
case of compositions, we distinguish between two sequences (2.2) if they differ
only by a string of zeros at the end. If |λ| = n we say that λ is a partition of
n. Denote by Pn the set of all partitions of n.

A partition λ = (λ1, λ2 . . . , λp) is called proper if λp �= 0.
The dominance partial ordering “≥” on the set of compositions of the same

size n, or that of partitions Pn, is defined as follows:

λ ≥ µ if and only if

λ1 + · · · + λi ≥ µ1 + · · · + µi for all i ≥ 1.

The conjugate of a partition λ = (λ1, . . . , λp) is the partition λ′ = (λ′
1,

λ′
2, . . . ), where λ′

i = #{j|λj ≥ i}. In particular, λ′
1 = l(λ) and λ1 = l(λ′).

For each partition λ = (λ1, λ2, . . . , λp) we define

n(λ) =
p∑

i=1

(i − 1)λi =
∑

1≤i<j≤p

min(λi, λj).

The concatenation µ ∗ ν of two compositions µ = (µ1, µ2 . . . , µr) and
ν = (ν1, ν2, . . . , νs) is defined to be the composition

µ ∗ ν = (µ1, µ2, . . . , µr, ν1, ν2, . . . , νs).(2.3)

For any compositions µ and ν we define µ + ν to be the sum of the sequences
µ and ν :

(µ + ν)i = µi + νi.(2.4)

Thus, for example, nµ = (nµ1, nµ2, . . . , nµr).
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Definition 2.1. We say that a sequence of partitions µµµµµµµµµµµµµµµµ = (µ(1), µ(2),

. . . , µ(r)) is a dominant one, if the concatenation µ(1) ∗ µ(2) ∗ · · · ∗ µ(r) is a
partition.

Definition 2.2. Let µ = (µ1, µ2, . . . , µr) and η = (η1, η2, . . . , ηp) be
compositions, we say that the composition µ is compatible with η if the all
compositions

µ(i) = (µη1+···+ηi−1+1, . . . , µη1+···+ηi
), 1 ≤ i ≤ p(2.5)

appear to be partitions (possibly with zeros at the end), where by definition
we put η0 := 0.

In other words, the composition µ is the concatenation of partitions µ(i),

1 ≤ i ≤ p. Conversely, if a composition µ is the concatenation of partitions
µ(i), 1 ≤ i ≤ p, then the composition η can be reconstructed from that µ as
follows:

η = (ll(µ(1)), ll(µ(2)), . . . , ll(µ(p))).

§2.2. Kostka–Foulkes polynomials

In Sections 2.2 till that 2.6 we will assume that all partitions which will
appear, are proper.

Definition 2.3. The Kostka–Foulkes polynomials are defined as the
matrix elements of the transition matrix

K(q) = M(s, P )

from the Schur functions sλ(x) to the Hall–Littlewood functions Pµ(x; q):

sλ(x) =
∑

µ

Kλµ(q)Pµ(x; q).(2.6)

It is well known, see e.g. [53], Chapter I, that if λ and µ are partitions,
then

• Kλµ(q) �= 0 if and only if λ ≥ µ with respect to the dominance partial
ordering “≥” on the set of partitions.

• If λ ≥ µ, Kλµ(q) is a monic of degree n(µ) − n(λ) polynomial with
non–negative integer coefficients. This result is due to A. Lascoux and M.-
P. Schützenberger [48].
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• If l(µ) = n, then

Kλµ(q) :=
∑

w∈Σn

(−1)l(w)Kn(w(λ + δ) − µ − δ| q),(2.7)

where l(w) denotes the length of a permutation w ∈ Σn, δ := δn = (n − 1, n −
2, . . . , 1, 0), and for any γ ∈ Zn, |γ| = 0, Kn(γ| q) stands for a q-analog of
the Kostant partition function Kn(γ), see e.g. [53], Chapter III, Section 6,
Example 4, or Section 3 of the present paper.

Theorem 2.4. Let λ and µ be partitions of the same size. There exists
a polynomial Eλ,µ(t) with rational coefficients such that for any integer N ≥ 1
one has

Eλ,µ(N) = KNλ,Nµ(1).

Corollary 2.5. The Ehrhart polynomial Eλ,µ(t) of the Gelfand–Tsetlin
polytope GT (λ, µ) is a polynomial, even though the polytope GT (λ, µ) itself
does not necessary appear to be an integral one.

For a definition of the Gelfand-Tsetlin polytope see, e.g. [8, 36] or [12].
For a definition and basic properties of the Ehrhart polynomial of a convex
integral polytope see, e.g. [67] or [24].

Theorem 2.4 and Corollary 2.5 are a particular case of a more general
result, see Section 4, Corollary 4.15.

We refer the reader to a paper [12] which contains a rich information
about vertices of Gelfand–Tsetlin’s polytopes. In particular, one can find in
[12] several examples of Gelfand–Tsetlin’s polytopes with some non-integral
vertices.

Conjecture 2.6. Let λ and µ be (proper) partitions of the same size,
then the Ehrhart polynomial Eλ,µ(t) has non–negative rational coefficients.

We remark that Conjecture 2.6 is a special case of Polynomiality Conjec-
ture from Section 6.

Polynomiality of the function N −→ KNλ,Nµ(1) has been proved inde-
pendently by several authors: W. Baldoni-Silva and M. Vergne [2], S. Billey,
V. Guillemin and E. Rassart [8],. . . .

Problem 2.7. Find a fermionic, i.e. a positive linear combination of
products of powers of t and t-binomial coefficients, formula for the polynomials
Eλµ(t).
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This problem should be a very difficult one, however, since, for example,
the polynomial

E(nn),((n−1)n,1n)(t)

coincides with the Ehrhart polynomial of the Birkhoff polytope Bn of doubly
stochastic matrices, see [35], Section 7.5. We refer the reader to a paper by
M. Beck and D. Pixton [3] and the literature quoted therein, for a further
information about the Ehrhart polynomials (for n ≤ 9) and the volumes (for
n ≤ 10) of the Birkhoff polytope Bn.

The (normalized) leading coefficient of Ehrhart’s polynomial Eλµ(t) is equal
to the (normalized) volume of Gelfand–Tsetlin’s polytope GT (λ, µ), and is
known in the literature, see e.g. [23, 59], as a continuous analog of the weight
multiplicity dim Vλ(µ).

Finally, we would like to note that in general, the Ehrhart polynomial of a
convex integral polytope may have negative coefficients. The famous example is
the Reeve tetrahedron, see e.g. [35], Example 7.34, 6, and the literature quoted
therein.

§2.3. Skew Kostka–Foulkes polynomials

Let λ, µ and ν be partitions, λ ⊃ µ, and |λ| = |µ| + |ν|.

Definition 2.8. The skew Kostka–Foulkes polynomials Kλ\µ,ν(q) are
defined as the transition coefficients from the skew Schur functions sλ\µ(x) to
the Hall–Littlewood functions Pν(x; q):

sλ\µ(x) =
∑

ν

Kλ\µ,ν(q)Pν(x; q).(2.8)

It is clear that
Kλ\µ,ν(q) =

∑
π

cλ
µπKπν(q),

where the coefficients cν
µπ = Mult[Vν : Vµ ⊗ Vπ] stand for the Littlewood–

Richardson numbers.
Let us remark that

Kλ\µ,ν(q) =
∑
T

qc(T )(2.9)

summed over all semistandard skew tableaux T of shape λ \ µ and weight ν,
where c(T ) denotes the charge of a skew tableau T .



�

�

�

�

�

�

�

�

1166 Anatol N. Kirillov

In the case µ = ∅, the formula (2.9) is due to A. Lascoux and M.-P.
Schützenberger [48]. See also [10], Chapter II, for an extended exposition of
[48]. We refer the reader to [53], Chapter III, Section 6, for the definition of
the Lascoux–Schützenberger statistics charge on the set of semistandard Young
tableaux.

We will use also the cocharge version of the skew Kostka–Foulkes polyno-
mials:

Kλ\µ,ν(q) =
∑

π

cλ
µπKπµ(q),(2.10)

where Kλµ(q) = qn(µ)Kλµ(q−1).
(♠) We will see in Section 5.1, example 30, that the skew Kostka-Foulkes

polynomials are some special cases of the parabolic Kostka polynomials.

§2.4. Littlewood–Richardson numbers and Saturation Theorem

The Littlewood–Richardson numbers cν
λ,µ, LR-numbers for short, are de-

fined as the structural constants of the multiplication of Schur functions. More
specifically, let λ and µ be partitions, then

sλsµ =
∑

ν

cν
λ,µsν ,(2.11)

or equivalently,
sν\µ =

∑
λ

cν
λ,µsλ.

We have cν
λ,µ = 0 unless |ν| = |λ|+ |µ| and ν ⊃ λ, µ. A pure combinatorial way

to compute the LR-numbers is given by the celebrated Littlewood–Richardson
rule, see e.g. [53], Chapter I, Section 9.
Saturation Theorem (A. Knutson and T. Tao [43])

cNν
Nλ,Nµ �= 0 for some integer N ≥ 1 if and only if cν

λ,µ �= 0.

We refer the reader to interesting and nice written papers by W. Fulton
[20, 21] and A. Zelevinsky [74] for detailed account to an origin of Saturation
Conjecture (now a theorem by A. Knutson and T. Tao) and its connections
with the so-called Horn Problem.

§2.5. Internal product of Schur functions, and polynomials Lµ
α,β(q)

The irreducible characters χλ of the symmetric group Σn are indexed in
a natural way by partitions λ of n. If w ∈ Σn, then define ρ(w) to be the
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partition of n whose parts are the cycle lengths of w. For any partition λ of m

of length l, define the power–sum symmetric function

pλ = pλ1 . . . pλl
,

where pn(x) =
∑

xn
i . For brevity write pw := pρ(w). The Schur functions sλ

and power–sums pµ are related by a famous result of Frobenius

sλ =
1
n!

∑
w∈Σn

χλ(w)pw.(2.12)

For a pair of partitions α and β, |α| = |β| = n, let us define the internal product
sα ∗ sβ of Schur functions sα and sβ:

sα ∗ sβ =
1
n!

∑
w∈Σn

χα(w)χβ(w)pw.(2.13)

It is well–known, see e.g. [53], Chapter I, Section 7, that

sα ∗ s(n) = sα, sα ∗ s(1n) = sα′ ,

where α′ denotes the conjugate partition to α.
Let α, β, γ be partitions of a natural number n ≥ 1, consider the following

numbers

gαβγ =
1
n!

∑
w∈Σn

χα(w)χβ(w)χγ(w).(2.14)

The numbers gαβγ coincide with the structural constants for multiplication of
the characters χα of the symmetric group Σn:

χαχβ =
∑

γ

gαβγχγ .(2.15)

Hence, gαβγ are non–negative integers. It is clear that

sα ∗ sβ =
∑

γ

gαβγsγ .(2.16)

Remark 2.9. More generally, let A and B be two skew diagrams and γ

be a partition all of the same cardinality n. Define the coefficients gA,B,γ and
the internal product sA ∗ sB of skew Schur functions sA and sB as follows. Let
χA and χB be the characters of representations of the symmetric group Σn
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which correspond to the skew diagrams A and B. The numbers gA,B,γ are
defined via the decomposition

χA χB =
∑

γ

gA,B,γ χγ .

The internal product of the skew Schur functions sA and sB is defined as follows

sA ∗ sB =
∑

γ

gA,B,γ sγ .

Finally, let C be one more skew diagram, define the number gA,B,C to be equal
to 〈sA ∗ sB, sC〉, where 〈 , 〉 denotes the Redfield–Hall scalar product on the
ring of symmetric functions, see [53], Chapter I, Section 4.

Remark 2.10. It is one of the most fundamental open problems in Com-
binatorics and Representation Theory of the symmetric group that to find a
combinatorial rule for description of the numbers gαβγ .

Theorem 2.11. Let α, β and γ be partitions of the same size n.

(♣) If gαβγ �= 0, then gNα,Nβ,Nγ �= 0 for any integer N ≥ 1.

Remark 2.12. The converse statement, i.e. if gNα,Nβ,Nγ �= 0 for some
integer N ≥ 2, then gαβγ �= 0, the so-called saturation property of the
structural constants gαβγ , is not true in general if n ≥ 7, even under the
additional assumption that partitions α, β, γ and their conjugate ones α′, β′, γ′,
all have at least two different parts. For example,

g(6,1),(4,13),(3,3,1) = 0, but g(12,2),(8,23),(6,6,2) ≥ 1, g(5,2),(4,3),(4,13) = 0, but
g(10,4),(8,6),(8,23) ≥ 1,

g(6,12),(6,12),(4,3,1) = 0, but g(12,22),(12,22),(8,6,2) ≥ 1, g(6,2),(6,12),(4,22) = 0,

but g(12,4),(12,22),(8,42) ≥ 1.

On the other hand,
g(3,1,1),(3,2),(2,13) = 1 and g(6,2,2),(6,4),(4,23) = 2, g(2,1),(2,1),(13) = 1 and

g(4,2),(4,2),(23) = 1,

g(2,2),(2,2),(2,2) = 1 and g(4,4),(4,4),(4,4) = 1, g(2,2),(2,2),(14) = 1 and
g(4,4),(4,4),(24) = 1.

(�) However, we expect that the formal power series∑
N≥1

gNα,Nβ,Nγ tN

is a rational function of t (with the only possible pole at t = 1 ??).
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Remark 2.13 (Plethysm structural constants).
Fix integer numbers k and n ≥ 2, and a finite dimensional representation

W of the Lie algebra gln. The k-th tensor power W⊗k of the gln-module W

has a natural structure of Σk × gln-module, where Σk denotes the symmetric
group of order k!. Let

W⊗k =
∑
µ,π

aπ
µ,W Sµ ⊗ Vπ(2.17)

be the decomposition of the module W⊗k into irreducible Σk×gln-submodules.
Here µ is a partition of size k, and Sµ stands for the irreducible representation
of the symmetric group Σk which corresponds to the partition µ; π is a partition
of length at most n and Vπ denotes the irreducible gln-module with the highest
weight π.

If W = Vλ is the irreducible gln-module with the highest weight λ, then
the numbers aπ

λ,µ := aπ
µ,Vλ

coincide with the structural constants of yet another
multiplication, called plethysm, in the ring of symmetric functions Λ:

sλ ◦ sµ =
∑

π

aπ
λ,µ sπ.

Note, that the plethysm is an associative, but not commutative operation.
It is well-known, see e.g. [69], that if α and β are partitions of the same

size k such that l(α) = r, l(β) = s and n ≥ r + s, and furthermore, W = gln is
the adjoint representation, and

π = (k + α1, . . . , k + αr, k . . . , k︸ ︷︷ ︸
n−r−s

, k − βs, . . . , k − β1),

then

aπ
µ,gln := [Sµ ⊗ Vπ : gl⊗k

n ] = gαβµ.

Hence, the inner product structure constants gαβγ , and therefore the LR-
numbers, are certain special cases of the plethysm structural constants aπ

µ,W .

Conjecture 2.14. Let µ and π, l(π) ≤ n, be partitions such that µ has
at least two different parts. Let W be a finite dimensional gln-module.

If aπ
µ,W �= 0, then aNπ

Nµ,W �= 0, for any integer N ≥ 1.

(�) Moreover, we expect that if N1 and N2 are integers such that N1 ≥
N2, then
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aN1π
N1µ,W ≥ aN2π

N2µ,W , and the formal power series

∑
N≥1

aNπ
Nµ,W tN

is a rational function of t (with the only possible pole at t = 1 ??).
(♣) We want to emphasize that the plethysm structural constants aπ

µ,W

do not satisfy the so-called saturation property, i.e. it’s not true, in general,
that if aNπ

Nµ,W �= 0 for some integer N ≥ 2, then aπ
µ,W �= 0.

Using the tables of plethysms from [1], we have checked that
a
(6,42,25)
(2,2),(4,2) = 1, but a

(3,22,15)
(2,2),(2,1) = 0, a

(45,22)
(2,2),(4,2) = 1, but a

(25,12)
(2,2),(2,1) = 0.

(�) Based on several examples, we expect that if a2π
2µ,W ≥ 2, then

aπ
µ,W �= 0.

On the other hand, Conjecture 2.14 is not true if a partition µ has a form
(1k). For example,

a
(4,4,2,1,1)
(2,1,1),(1,1,1) = 1, but a

(8,8,4,2,2)
(2,1,1),(2,2,2) = 0, a

(4,3,3,1,1)
(2,1,1),(1,1,1) = 0, but a

(8,6,6,2,2)
(2,1,1),(2,2,2)

= 1.

Question 2.15. Could it be true that for any finite dimensional gln-
module W there exists a polynomial pW (t) (pW (t) = t ??) such that for all
partitions π and µ one has

if aNπ
Nµ,W ≥ pW (N), then aπ

µ,W �= 0.

(♠) It is one of the most fundamental problems of Algebraic Combina-
torics, Representation Theory, Theory of Invariants, ... that to find a combi-
natorial rule for description of the numbers aπ

µ,W .

Definition 2.16. The polynomials Lµ
αβ(q) are defined via the decom-

position of the internal product of Schur functions sα ∗ sβ(x) in terms of the
Hall–Littlewood functions:

sα ∗ sβ(x) =
∑

µ

Lµ
αβ(q)Pµ(x; q).(2.18)

In a similar fashion one can define the polynomials Lµ
A,B(q), where A and

B are skew diagrams and µ is a partition:

sA ∗ sB(x) =
∑

µ

Lµ
A,B(q) Pµ(x; q).
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Examples 2.17.
(i) Take n = 4, α = (3, 1) and β = (2, 2).
Then the all non–zero polynomials Lµ

(3,1),(2,2)(q) are:

L
(3,1)
(3,1),(2,2)(q) = 1, L

(2,2)
(3,1),(2,2)(q) = q, L

(2,1,1)
(3,1),(2,2)(q) = 1 + q + q2,

L
(14)
(3,1),(2,2)(q) = q(1, 1, 2, 1, 1).

(ii) Take n = 6 and α = β = (3, 2, 1), then

L
(6)
α,β(q) = 1, L

(5,1)
α,β (q) = 2 + q, L

(4,2)
α,β (q) = (3, 2, 1),

L
(4,1,1)
α,β (q) = (4, 5, 2, 1) = (1 + q)(4, 1, 1),

L
(3,13)
α,β (q) = (4, 9, 12, 11, 5, 2, 1) = (1 + q)(4, 5, 7, 4, 1, 1),

L
(2,14)
α,β (q) = (1 + q)2 (1 + q2)2 (2, 3, 0, 1).

(iii) Take n = 6, α = (4, 2) and β = (3, 2, 1), then

L
(5,1)
α,β (q) = 1, L

(4,2)
α,β (q) = 2 + q, L

(4,1,1)
α,β (q) = (2, 3, 1), L

(3,3)
α,β (q) = (1, 2, 1),

L
(3,13)
α,β (q) = (1 + q)(1 + q + q2)(2, 1, 1), L

(2,2,1,1)
α,β (q)

= (1 + q)2(1 + q + q2)(2, 0, 1),

L
(2,14)
α,β (q) = (1 + q)2(1 + q + q2)(1 + q + q2)(1, 1, 0, 1).

(iv) Take n = 6, α = (4, 2) and β = (23). Then

L
(4,1,1)
α,β (q) = q, L

(3,3)
α,β (q) = q, L

(3,2,1)
α,β (q) = 1 + q + q2,

L
(2,2,1,1)
α,β (q) = q(3, 2, 3, 1, 1), L(2,14)

α,β (q) = (1, 1, 1)(1, 0, 2, 1, 2, 0, 1),

L
(16)
α,β (q) = (1, 0, 1, 1, 0, 1) K̃α,(16)(q).

Hereafter we shell use the notation K̃α,µ(q) to denote the polynomial
qn(µ)−n(α) Kα,µ(q−1).

Remark 2.18. It is not true in general that if α, β, µ are partition and
α ≥ µ, then the ratio Lµ

α,β(1)/Kα,µ(1) ∈ Z.
For example, take α = β = (6, 2, 1) and µ = (3, 3, 2, 1). Then

Lµ
α,β(q) = (2, 17, 44, 63, 64, 48, 29, 15, 6, 2, 1), K̃α,µ(q) = (1, 2, 2, 1)

and Lµ
α,β(1) = 291, Lµ

α,β(−1) = 1.
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We see that K̃α,µ(q) is not a divisor of Lµ
α,β(q), and the ratio Lµ

α,β(1)/Kα,µ

(1) /∈ Z. Note that Lµ
α,β(0) = c

(3,2,1)
(2,1),(2,1) = 2 and degLµ

α,β(q) = 10 = n(µ) in a
good agreement with Conjecture 2.23.

It follows from (2.6) and (2.16) that

Lµ
αβ(q) =

∑
γ

gαβγKγµ(q).(2.19)

Thus, the polynomials Lµ
αβ(q) have non–negative integer coefficients, and

Lµ
αβ(0) = gαβµ.

It follows from (2.18) that the number Lµ
α,β(1) is equal to 〈sα ∗ sβ, hµ〉,

where 〈 , 〉 denotes the Redfield–Hall scalar product on the ring of symmetric
functions, see [53]. In other words,

sα(x) ∗ sβ(x) =
∑

µ

Lµ
α,β(1)mµ(x),

where mµ(x) denotes the monomial symmetric function corresponding to par-
tition µ. Therefore, the numbers Lµ

α,β(1) and Lµ
A,B(1) can be defined for any

composition µ.

Remark 2.19. There is a well-known connection between the structural
constants gαβγ and the numbers Lµ

α,β(1). Namely, let A, B and C = Γ \ γ

be skew diagrams such that the partition Γ has the length at most n, and
|A| = |B| = |C|. Then

gA,B,C =
∑

w∈Σn

(−1)l(w) Lw◦ C
A,B (1),

where w ◦C stands for the composition w(Γ+δn)−γ−δn, and δn = (n−1, n−
2, . . . , 1, 0).

The polynomials Lµ
αβ(q) can be considered as a generalization of the

Kostka–Foulkes polynomials. Indeed, if partition β consists of one part, β =
(n), then

Lµ
αβ(q) = Kα,µ(q), Lµ

αβ′(q) = Kα′,µ(q).

Proposition 2.20. Let α, β and µ = (µ1 ≥ · · · ≥ µr) be partitions of
the same size n. Then

Lµ
α,β(1) =

∑
µµµµ

Kα, µµµµ(1)Kβ, µµµµ(1),(2.20)
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where the sum runs over sequences of partitions µµµµµµµµµµµµµµµµ = (µ(1), . . . , µ(r)) such that
|µ(a)| = µa, 1 ≤ a ≤ r.

Corollary 2.21. If µ = (r, 1s) is a hook partition, then

Lµ
α,β(1) =

∑
|λ|=r

Kα\λ, (1s)(1) Kβ\λ, (1s)(1),(2.21)

where the sum runs over all partitions λ of size r, λ ⊂ α ∩ β.

In particular, L
(1n)
αβ (1) = fαfβ , where fα denotes the number of standard

Young tableaux of shape α. More generally [35],

L
(1n)
αβ (q) = Kβ′α(q, q)K̃α,(1n)(q) = Kα′β(q, q)K̃β,(1n)(q),(2.22)

where

K̃α,β(q) := qn(β)−n(α) Kαβ(q−1), Kαβ(q, q) := Kαβ(q, t)|t=q,

and Kαβ(q, t) stands for the double Kostka polynomial introduced by I. Mac-
donald [53], Chapter VI, (8.11).

Problem 2.22. Find a q–analog of the equality (2.21) .

Conjecture 2.23 (Saturation conjecture for polynomials Lµ
α,β(q)).

Let α, β and µ be partitions of the same size such that Lµ
α,β(q) �= 0. Then

(�) For any integer N ≥ 1,

• max degLNµ
Nα, Nβ(q) = N max degLµ

α,β(q);
• If partition µ either has at least two different parts, or µ has a rectangular

shape, but µ is different from the both partitions α and β, and their conjugate
ones α′ and β′, then

min degLNµ
Nα, Nβ(q) = N min degLµ

α,β(q).
(��) max degLµ

α,β(q) = n(µ) − A(α, β), where A(α, β) stands for the min
degKα,β(q, q), i.e.

Kα,β(q, q) = B(α, β)qA(α,β)+ higher degree terms.
(���) (Saturation conjecture for polynomials Kα,β(q, q))
For any integer N ≥ 1, A(Nα, Nβ) = N A(α, β).
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Examples 2.24. (i) Take n = 3,

L
(3)
(2,1),(2,1)(q) = 1, L

(6)
(4,2),(4,2)(q) = 1,

L
(13)
(2,1),(2,1)(q) = 1 + q + q2 + q3,

L
(23)
(4,2),(4,2)(q) = 1 + 2 q + 4 q2 + 3 q3 + 3 q4 + q5 + q6,

L
(2,1)
(2,1),(2,1)(q) = 1 + q, L

(4,2)
(4,2),(4,2)(q) = 2 + q + q2.

L
(2,1)
(2,1),(13)(q) = 1, L

(4,2)
(4,2),(23)(q) = 1,

L
(13)
(2,1),(13)(q) = q + q2, L

(23)
(4,2),(23)(q) = (1, 1, 2, 1, 1).

(ii) Take n = 4,

L
(2,2)
(3,1),(2,2)(q) = q, L

(4,4)
(6,2),(4,4)(q) = 1 + q2,

L
(2,1,1)
(3,1),(2,2)(q) = 1 + q + q2, L

(4,2,2)
(6,2),(4,4)(q) = (1, 2, 3, 1, 1),

L
(14)
(3,1),(2,2)(q) = q(1, 1, 2, 1, 1), L

(24)
(6,2),(4,4)(q) = q2(2, 2, 6, 5, 7, 4, 4, 1, 1).

The latter example shows that for the numbers gαβγ an obvious generalization
of the Fulton conjecture, see Section 6, is false.

Conjecture 2.25 (Rationality conjecture for polynomials Lµ
α,β(q)).

Let α, β and µ be partitions of the same size. The generating function∑
N≥0

LNµ
Nα,Nβ(q) tN

is a rational function of q and t.

Problem 2.26. Give a combinatorial interpretation of the integer num-
bers Lµ

α,β(−1).

Problem 2.27. Find a fermionic type formula for the polynomials
L

(µ)
αβ (q) which extends that for the Kostka–Foulkes polynomials, see Section 5.1,

Theorem 5.3.
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§2.6. Extended and restricted Littlewood–Richardson numbers

(10) (Extended Littlewood–Richardson numbers)
Let λ, µ and ν be partitions such that |λ| + |µ| ≥ |ν|. Choose an integer

number N such that N ≥ N0 := max(|λ| + λ1, |µ| + µ1, |ν| + ν1), and consider
partitions

αN := (N − |λ|, λ), βN := (N − |µ|, µ), γN := (N − |ν|, ν).

It is clear that |αN | = |βN | = |γN | = N .
According to results by F. Murnaghan [57], Y. Dvir [17] and E. Vallejo

[70], if N ≥ N0, then the number gλN ,βN ,γN
does not depend on N .

Definition 2.28. The extended Littlewood–Richardson number Cν
λ,µ

is defined to be equal to the stable value of the numbers gλN ,βN ,γN
.

More generally, the following statement is true:

Proposition 2.29. The sequence of polynomials {LγN

αN ,βN
(q)}N≥1 is

stabilized to the polynomial Lν
λ,µ(q), i.e. if integer N is big enough, then the

polynomial LγN

αN ,βN
(q) does not depend on N and equal to Lν

λ,µ(q). The latter
is a polynomial with non–negative integer coefficients, and Lν

λ,µ(0) = Cν
λ,µ.

According to another result by Y. Dvir [17], the numbers Cν
λ,µ can be

considered as a generalization of the LR-numbers cν
λ,µ.

Proposition 2.30 (Y. Dvir [17]). If |λ|+ |µ| = |ν|, then the number Cν
λ,µ

coincides with the Littlewood–Richardson number cν
λ,µ.

Examples 2.31. (i) Take λ = µ = (2, 1), then

C
(3,2,1)
λ,µ = c

(3,2,1)
λ,µ = 2,

C
(3,1,1)
λ,µ = 6, C

(2,2,1)
λ,µ = 5, C

(2,1,1,1)
λ,µ = 4, C

(3,2)
λ,µ = 5,

C
(2,2)
λ,µ = 6, C

(3,1)
λ,µ = C

(2,1,1)
λ,µ = 9, C

(2,1)
λ,µ = 9.

(ii) Take λ = (2, 1) and µ = (3, 1), then

C
(3,1)
λ,µ = 13, C

(2,1)
λ,µ = 9.

Problem 2.32. Find a combinatorial rule for calculating the extended
LR-numbers Cν

λ,µ which extends the Littlewood–Richardson rule.
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Conjecture 2.33 (Saturation conjecture for extended LR-
numbers).

CNν
Nλ,Nµ �= 0 for some integer N ≥ 1 if and only if Cν

λ,µ �= 0.

(20) (Restricted Littlewood–Richardson numbers, cf. [26], Exer-
cise 13.35)

Fix positive integers l and n ≥ 2. Denote by Σn,l the affine reflection group
on Rn generated by the reflection

s0 = (xn + l, x2, . . . , xn−1, x1 − l)

and the symmetric group Σn.

Definition 2.34 (Restricted Littlewood–Richardson numbers).
Let λ, µ and ν be partitions such that |λ| + |µ| = |ν|. Define the level l

restricted Littlewood–Richardson number cν
λ,µ[l] as follows

cν
λ,µ[l] =

∑
w∈Σn,l

(−1)l(w)cw◦ν
λ,µ ,

where w ◦ ν denotes the composition w(ν + δn)− δn, and δn = (n− 1, . . . , 1, 0).

It is well–known that

0 ≤ cν
λ,µ[1] ≤ cν

λ,µ[2] ≤ · · · = cν
λ,µ.

In a similar fashion one can define the level l extended Littlewood–Richardson
numbers Cν

λ,µ[l].

Conjecture 2.35 (Saturation conjecture for the level l extended
LR-numbers).

Let λ, µ and ν be partitions such that |λ| + |µ| ≥ |ν|. Then
CNν

Nλ,Nµ[l] �= 0 for some integer N ≥ 1 if and only if Cν
λ,µ[l] �= 0.

Conjecture 2.36 (Polynomiality conjecture for level l extended
LR-numbers).

Let λ, µ and ν be partitions such that |λ| + |µ| ≥ |ν|. Then
CNν

Nλ,Nµ[l] is a polynomial in N with non–negative rational coefficients.
(♣) Moreover, the formal power series∑

N≥0

CNν
Nλ,Nµ[l] tN
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is a rational function in t of the form

P ν,l
λ,µ(t)/(1 − t)r(λ,µ,ν,l)+1, P ν,l

λ,µ(0) = 1, P ν,l
λ,µ(1) �= 0,

where r(λ, µ, ν, l) ∈ Z≥0 and P ν,l
λ,µ(t) is a polynomial with non–negative integer

coefficients.

§3. Parabolic Kostant Partition Function and its q-analog

§3.1. Definitions: algebraic and combinatorial

Let η = (η1, η2, . . . , ηp) be a composition, ηp > 0, |η| = n. Denote by Φ(η)
the set of ordered pairs (i, j) ∈ Z2 such that

1 ≤ i ≤ η1 + · · · + ηr < j ≤ n(3.23)

for some r, 1 ≤ r ≤ p. For example, if η = (1n), then

Φ(η) = {(i, j) ∈ Z2|1 ≤ i < j ≤ n}.

Definition 3.1. Let γ = (γ1, γ2, . . . , γn) ∈ Zn be a sequence of integers
such that |γ| = 0, define a parabolic q-Kostant partition function KΦ(η)(γ| q)
via the decomposition∏

(i,j)∈Φ(η)

(1 − qxi/xj)−1 =
∑

γ

KΦ(η)(γ| q)xγ ,(3.24)

where the sum runs over the all sequences γ = (γ1, γ2, . . . , γn) ∈ Zn such that
|γ| = 0.

Definition 3.2. Let KΦ(η)(γ) denote the parabolic Kostant partition
function, that is to say, the value of the polynomial KΦ(η)(γ| q) at q := 1.

Remark 3.3 (Combinatorial definition of q-Kostant partitionfunction).
One can give an equivalent pure combinatorial definition of the parabolic

q-Kostant partition function KΦ(η)(γ| q) as follows.
Let η be a composition, |η| = n. Denote by SMη(γ) the set of all skew–

symmetric integer matrices M = (mi,j)1≤i,j≤n such that
(i) mi,j ≥ 0, if 1 ≤ i ≤ j ≤ n ;
(ii) mi,j = 0, if rk−1 < i ≤ j ≤ rk for some k, 1 ≤ k ≤ p, where rk :=

∑
j≤k ηj ,

and r0 := 0;
(iii)

∑n
j=1 mi,j = γi, for all i, 1 ≤ i ≤ n.
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For each M ∈ SMη(γ) we define the magnitude of M, denoted by ||M ||,
to be the sum

∑
1≤i≤j≤n mi,j . Then

KΦ(η)(γ| q) =
∑

q||M ||,(3.25)

where the sum runs over all matrices M ∈ SMη(γ).

Therefore, KΦ(η)(γ) = Card |SMη(γ)|.

Remark 3.4 (Generalized q-Kostant partition function [68]).
Let Σ ⊆ Φ(n) be a subset, following [68] one can define the generalized

Kostant partition function KΣ(γ) and its q-analog KΣ(γ| q), from the decom-
position ∏

(i,j)∈Σ

(1 − q xi/xj)−1 =
∑

γ

KΣ(γ| q)xγ ,

where the sum runs over all sequences γ ∈ Zn such that |γ| = 0. Moreover, by
definition, KΣ(γ) = KΣ(γ| q)|q=1.

Equivalently,
KΣ(γ| q) =

∑
M

q||M ||,

where the sum runs over the set of n by n skew–symmetric matrices M = (mi,j)
such that

(i) mi,j ≥ 0 if 1 < i ≤ j ≤ n,

(ii) mi,j = 0 if (i, j) /∈ Σ,

(iii)
∑

j mi,j = γi for all i, 1 ≤ i ≤ n.

(♠) Most of our results about the parabolic q-Kostant partition function
KΦ(η)(γ| q), including, for example, Theorems 3.17, 3.20, 3.23, 3.25, 3.30 and
3.31, with a small modifications, are still valid for the function KΣ(γ| q). Since
we don’t use the generalized Kostant partition function in the present paper,
we leave this interesting subject for subsequent publications.

§3.2. Elementary properties, and explicit formulas for l(η) ≤ 4

Using the above combinatorial definition of the function KΦ(η)(γ| q), one
can describe some elementary, but useful, properties of the latter.

Proposition 3.5. (i) Let ηi, i = 1, 2, be two compositions and γi ∈ Yηi
,

i = 1, 2, then

KΦ(η1∗η2)(γ1 ∗ γ2| q) = KΦ(η1)(γ1| q) KΦ(η2)(γ2| q).
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(ii) Let η be a composition and γ ∈ Yη, then

KΦ(η)(γ| q) = KΦ(←−η ) (−←−γ | q) ,(3.26)

where for any composition β = (β1, . . . , βr−1, βr) the symbol ←−β stands for the
composition (βr, βr−1, . . . , β1).

(iii) Let η1 and η2 be compositions such that η2 is a subdivision of η1, so
that η1 ≥ η2. Then

KΦ(η1)(q) ≤ KΦ(η2)(q).

See Section 1, Notation, for the definition when a composition η2 is a
subdivision of that η1. We remark that the last statement is false if one assumes
only that η1 ≥ η2 with respect to the dominance partial ordering on the set of
compositions, see example below.

Example 3.6. Take γ = (3, 0,−1,−1, 0,−1), then (2, 3, 1) ≥ (2, 2, 2),
but

KΦ(2,2,2)(γ| q) = q3 + 2 q4 ≤ KΦ(2,3,1)(γ| q) = q3 + 3 q4.

On the other hand, KΦ(2,1,1,2)(γ| q) = q3(1, 3, 2, 1) ≥ KΦ(2,2,2)(γ| q).

Proposition 3.7 (Recurrence relation for parabolic q-Kostant
partition function).

Let η = (η1, . . . , ηp) be a composition of size n, γ ∈ Yη. Define η̃ =
(η1, . . . , ηrp−1). Then

KΦ(η)(γ| q) = q−γn

∑
β

KΦ(η̃)(γ1 − β1, . . . , γrp−1 − βrp−1 | q),(3.27)

where the sum runs over β ∈ Z
rp−1
≥0 such that |β| = −γn.

The next proposition describes several particular cases of Theorem 3.31
below, namely, the cases when a parabolic q-Kostant partition function admits
an explicit simple expression.

Proposition 3.8 (Explicit formulas for l(η) ≤ 4).
(i) Let η = (η1, η2) be a two component composition and γ ∈ Yη. Let us introduce
integer vectors λ = (γ1, . . . , γη1) and µ = (−γη1+1, . . . ,−γη1+η2). Then λ and
µ are compositions of the same size, and

KΦ(η)(γ| q) = |Pλµ| q|λ|,(3.28)
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where Pλµ denotes the set of transportation matrices of type (λ; µ), i.e. the set
of l(λ) by l(µ) matrices with non–negative integer entries, and the row sums
λi, and the column sums µj .

(ii) Let η = (13) and γ ∈ Y(13), i.e. γ1 ≥ 0 and γ1 + γ2 ≥ 0. Then

K(13)(γ| q) = qmax(γ1,γ1+γ2)

[
min(γ1, γ1 + γ2)

1

]
q

.

(iii) Let η = (η1, η2, η3) be a three component composition of size n, and γ ∈ Y +
η

belongs to the dominant chamber. Then

KΦ(η)(γ| q) = q−γn

η1∏
j=1

Bq(γj + η2; η2),(3.29)

where for n ≥ k

Bq(n; k) =
n−k∑
j=0

(
 + k − 1



)
qj = 1/(k − 1)!(∂/∂q)k−1[(qk−1 − qn)/(1 − q)].

(3.30)

(iv) Let η = (1, η2, η3, η4) be a four component composition of size n, η1 =
1, and γ ∈ Y +

η belongs to the dominant chamber. Then

KΦ(η)(γ| q) = q−γn

∑
β

Bq(β1 + η3; η3)
η2+1∏
j=2

Bq(βj + γj + η3; η3)qβj ,

where the sum runs over all vectors β ∈ Zη2+1
≥0 such that |β| = γ1.

In particular, if (γ1, γ2, γ3, γ4) ∈ Y +
(14), i.e. γ1 ≥ 0, γ2 ≥ 0 and γ3 ≥ 0, then

KΦ(14)(γ1, γ2, γ3, γ4)

= q−γ4

 q

[
γ1 + 2

2

]
q

[
γ2

1

]
q

+
∑

2j≤γ1

q2j

[γ1 + 1 − 2j

1

]
q

2


= q−γn

γ1∑
j=1

qj

[
γ1 + 1 − j

1

]
q

[
γ2 + 1 − j

1

]
q

.

Therefore, if (γ1, γ2, γ3, γ4) ∈ Y +
(14), then KΦ(14)(γ1, γ2, γ3, γ4) =(

γ1 + 3
3

)
+ γ2

(
γ1 + 2

2

)
.

We remark that Bq(n; l)|q=1 =

(
n

l

)
.
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Remark 3.9. It is well-known, see e.g. [67], [13] and the literature quoted
therein, that on the set of transportation matrices of size n by m, the function
|Pλµ| is a continuous piecewise polynomial function in λ1, . . . ,

λn, µ1, . . . , µm of degree (n − 1)(m − 1).

Question 3.10. It follows from the above Proposition and the formula
(5.41) from Section 5.1, that if N is big enough integer such that νN := γ +
Nδη1+η2 is a partition, and if we put by definition λN := Nδη2 and µN :=
N (δη1 + (η2, . . . , η2︸ ︷︷ ︸

η1

)), then

|Pλµ| = cνN

λN ,µN
.

(♣) Is it true that if N is a big enough integer, then

Pλµ(q) •== cνN

λN , µN
(q),

where cν
λ,µ(q) denotes the q-analog of the LR-numbers, introduced C. Carre and

B. Leclerc, and A. Lascoux, B. Leclerc and J.-Y. Thibon, see e.g. [47]?

For the definition of polynomials Pλ,µ(q) see Section 5.4, (5.48).

§3.3. Non–vanishing, Degree and Saturation theorems

It is clear from the very definition that KΦ(η)(γ| q) is a polynomial in q

with non-negative integer coefficients. For example, if η = (1n), the function
KΦ(1n)(γ| q) coincides with the q-analog Kn(γ| q) of the Kostant partition
function Kn(γ), see e.g [2]. It is not difficult to see [35] that

Kn(γ | q) �= 0 if and only if γ ∈ Yn, where

Yn :=

{
(γ1, . . . , γn) ∈ Zn|

k∑
i=1

γi ≥ 0, 1 ≤ k ≤ n,
n∑

i=1

γi = 0

}
.

Our next goal is to generalize this result to the case of the parabolic q-
Kostant partition function KΦ(η)(γ| q) corresponding to an arbitrary compo-
sition η.

Definition 3.11. Let η = (η1, . . . , ηp) be a composition of size n, denote
by Yη the set of sequences (γ1, . . . , γn) ∈ Zn, |γ| = 0, such that for each integer
k, 0 ≤ k ≤ p − 1, the following inequalities are valid:

rk∑
j=1

γj +
∑

a∈Ωk

γa ≥ 0 for all subsets Ωk ⊆ [ηk + 1, . . . , ηk + ηk+1],

where rk :=
∑

j≤k ηj , if k ≥ 1, and r0 := 0; by definition, we put η0 := 0.
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In particular, we have γ1 ≥ 0, . . . , γη1 ≥ 0, and γrp−1+1 ≤ 0, . . . , γn ≤ 0.

Definition 3.12. Denote by Y +
η the dominant chamber in the set Yη,

i.e. the subset of Yη consisting of all vectors γ = (γ1, . . . , γn) such that γ1 ≥
· · · ≥ γn−1 ≥ 0.

(♠) We want to stress that if γ ∈ Y +
η , then γrp−1+1 = · · · = γn−1 = 0, and

γn ≤ 0.

Theorem 3.13 (Non-vanishing and Degree Theorem for parabolic
q-Kostant partition function).

Let η = (η1, . . . , ηp) be a composition of size n, and γ ∈ Zn such that
|γ| = 0. Then

KΦ(η)(γ| q) �= 0, if and only if γ ∈ Yη. Moreover,

deg KΦ(η)(γ| q) =
p−1∑
k=1

(p − k)

 rk∑
j=rk−1+1

γj

 .(3.31)

Remember that rk =
∑

j≤k ηj if k ≥ 1, and r0 = 0.

Example 3.14. Take γ = (2, 1, 0,−1, 0,−1,−1) and η = (1, 2, 2, 1, 1).
Using formula (3.31), let us compute the degree of the parabolic q-Kostant
partition function KΦ(η)(γ| q). Namely,

deg KΦ(η)(γ| q) = 2 + (2 + 1) + (2 + 1 − 1) + (2 + 1 − 1 − 1) = 8. In fact,
KΦ(η)(γ| q) = q3(3, 21, 52, 65, 42, 13).

If γ ∈ Yη, so that KΦ(η)(γ| q) �= 0, we denote by r(γ, η)qs(γ,η) its leading
term. For example,

r(γ, (1n)) = 1, s(γ, (1n)) =
n−1∑
i=1

(n − i)γi,

r((3, 0,−1,−1, 0,−1), (2, 3, 1)) = 3, s((3, 0,−1,−1, 0,−1), (2, 3, 1)) = 4.

In general, the number r(γ, η) can be equal to any positive integer. As
for the number s(γ, η), it follows from Theorem 3.15 that s(γ, η) = (γ, δΦ(η)),
where δΦ(η) denotes the vector with components (δΦ(η))i = p − k if rk−1 < i ≤
rk, k = 1, . . . , p.

Moreover, the numbers s(γ, η) satisfy the so-called saturation property.

Corollary 3.15 (Saturation theorem for parabolic Kostant parti-
tion functions).
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For any positive number N we have

s(Nγ, η) = Ns(γ, η).

Conjecture 3.16 (Unimodality conjecture for parabolic Kostant
partition functions).

Let η be a composition of size n, and γ ∈ Zn such that |γ| = 0. Then,
KΦ(η)(γ| q) is a unimodal polynomial in the variable q.

§3.4. Rationality and polynomiality theorems

Theorem 3.17 (Rationality theorem for parabolic Kostant parti-
tion function, I).

Let η be a composition and γ ∈ Yη. Then∑
n≥0

KΦ(η)(nγ| q)tn = Pηγ(q, t)/Qηγ(q, t),

where Pηγ(q, t) and Qηγ(q, t) are mutually prime polynomials in q and t with
integer coefficients, Pηγ(0, 0) = 1.

Moreover,
(♣) the denominator Qηγ has the following form:

Qηγ(q, t) =
∏
j∈J

(1 − qj t),

where J := Jηγ is a finite set of non–negative integer numbers, not necessarily
distinct;

(♣♣) Pηγ(1, t) = (1 − t)t(η,γ) Pηγ(t), Pηγ(1) �= 0, where t(η, γ) ∈ Z≥0,

and Pηγ(t) is a polynomial with non–negative integer coefficients.

(�) We expect that if γ1 and γ2 belong to the set Yη, and γ1 ≥ γ2, i.e.∑
j≤k γ1,j ≥

∑
j≤k γ2,j , ∀k ≥ 1, then

Pηγ2(t) − Pηγ1(t) ≥ 0.

In other words, the latter difference is a polynomial with non–negative coeffi-
cients.

Corollary 3.18 (Polynomiality theorem for parabolic Kostant
partition function).

Let η be a composition and γ ∈ Yη. There exists a polynomial Kηγ(t)
with rational coefficients such that for any integer number N ≥ 1, Kηγ(N) =
KΦ(η)(Nγ).
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Conjecture 3.19. The polynomials Kηγ(t) have non–negative ratio-
nal coefficients.

Theorem 3.20 (Rationality theorem for parabolic Kostant parti-
tion function, II).

Let η be a composition and γ1, . . . , γk ∈ Yη. Then the generating function∑
(N1,... ,Nk)∈Z

k
≥0

KΦ(η)(N1γ1 + · · · + Nkγk| q) xN1
1 . . . xNk

k

is a rational function in q and the variables Xk = (x1, . . . , xk) of the form
P (q, Xk)/Q(q, Xk), where P := Pγ1,... ,γk,η(q, Xk) and Q(q, Xk) := Qγ1,... ,γk,η

(q, Xk) are mutually prime polynomials in q and Xk with integer coefficients,
P (0, 0) = 1.

(♣) Moreover, the denominator Q(q, Xk) has the following structure:

Q(q, Xk) =
∏

∅�=W⊂{1,... ,k}

∏
aW ∈JW

(1 − qaW xW ),

where xW :=
∏

i∈W xi, and for each non–empty subset W ⊂ {1, . . . , k}, JW

denotes a certain set, depending on W and γ1, . . . , γk, of non–negative integers,
not necessarily distinct.

(�) We expect that if W = {b}, 1 ≤ b ≤ k, then JW = Jγb,η.

Corollary 3.21 (Piecewise polynomiality theorem for parabolic
Kostant partition function).

Let η be a composition and γ1, . . . , γk ∈ Yη. There exists a piecewise poly-
nomial function K(t1, . . . , tk) := Kγ1,... ,γk

(t1, . . . , tk) with rational coefficients
such that for any non–negative integer numbers N1, . . . , Nk, K(N1, . . . , Nk) =
KΦ(η)(N1γ1 + · · · + Nkγk).

(�) We expect that the restriction of the function K(t1, . . . , tk) on “the
dominant chamber” Nk := {(N1 ≥ N2 ≥ · · · ≥ Nk) ∈ Zk

≥0} is a polynomial
with non–negative rational coefficients.

Example 3.22. Take γ1 = (2, 1, 0,−1,−1,−1), γ2 = (1, 1,−1,−1) and
η = (15). Then Qγ1,γ2(1, x, y) = (1 − x)7(1 − y)4, and

Pγ1,γ2(1, x, y) = (1, 26, 71, 26) + (1,−57,−223,−93)y

+(0, 33, 224, 115)y2 − (0, 8, 66, 50)y3.

Therefore, in our example the function (n, m) → KΦ(15)(n(2, 1,−1,−1,−1) +
m(1, 1,−1,−1)) is a polynomial one on the whole set {(n, m) ∈ Z2

≥0}.
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(��) We expect that in fact the function (n1, . . . , nk) → KΦ(η)(n1γ1 +
· · · + nkγk) is a polynomial one on the whole set {(n1, . . . , nk) ∈ Zk

≥0}, cf
mixed lattice point enumerator theorem by P. McMullen [54].

§3.5. Parabolic Kostant partition function KΦ(η)(γ) as function of γ

In this Section we state a few theorems, problems and one conjecture about
behavior of the parabolic Kostant partition function KΦ(η)(γ), considered as a
function of γ, on the set Yη.

Theorem 3.23 (Polynomial expression for the restriction of the
parabolic Kostant partition function KΦ(η)(γ) on the dominant cham-
ber Y +

η ).
Let η = (η1, . . . , ηp), p ≥ 3, ηp �= 0, be a composition, consider vector

l = (l1, l2, . . . , lrp−2), where li =
∑p−1

j=k+1 ηj if rk−1 < i ≤ rk, 1 ≤ k ≤ p− 2. Let
η̂ = (η1, . . . , ηp−2). If γ ∈ Y +

η , then

KΦ(η)(γ) =
∑

β

KΦ(η̂)(β1 − l1, . . . , βrp−2 − lrp−2)
rp−2∏
j=1

(
γj + lj

βj

)
,(3.32)

where the sum runs over β ∈ Z
rp−2
≥0 such that |β| = |l| =

∑
1≤i<j≤p−1 ηiηj .

Corollary 3.24. Being restricted on the dominant chamber Y +
η , the

function Fη(γ) := KΦ(η)(γ) is a polynomial in γ1, . . . , γrp−2 of degree |l| =∑
1≤i<j≤p ηiηj − ηp(n − ηp) with rational coefficients.

Theorem 3.25 (Piecewise polynomiality theorem for function
γ −→ KΦ(η)(γ)).

On the set Yη the function γ −→ Fη(γ) := KΦ(η)(γ) is a continuous piece-
wise polynomial function of degree

∑
1≤i<j≤p ηiηj − n + 1.

We see that if ηp > 1, then the dominant chamber Y +
η is strictly contained

in some maximal polynomiality domains of the function Fη.

Problem 3.26. Count the number and describe a structure of the poly-
nomiality domains of the function Fη.

Conjecture 3.27. Restriction of the function |l|! Fη on the dominant
chamber Y +

η , denoted by F+
η , is a polynomial in γ1, . . . , γrp−2 with non–nega-

tive integer coefficients.
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Problem 3.28. Find a combinatorial interpretation of the coefficients
of the polynomial F+

η .

§3.6. Reconstruction theorem

The leading term |l|! Gη(γ) of the polynomial F+
η (γ), i.e. the degree |l|

homogeneous part of F+
η (γ), admits the following description.

Definition 3.29. For any composition η = (η1, . . . , ηp), such that ηp >

0 and p ≥ 3, define the operator

Dη =
∏

1≤i≤η1<j≤rp−2

(∂/∂γi − ∂/∂γj),

acting on the quotient ring of the ring of polynomials Q [γ1, . . . , γn] by the
ideal generated by the sum γ1 + · · · + γn.

Let γ = (γ1, . . . , γn) ∈ Zn, |γ| = 0.

Theorem 3.30 (Characterization of polynomials Gη(γ)).
The polynomials Gη(γ) are uniquely determined by the following properties
(i) Gη(γ) is a homogeneous polynomial of degree |l| =

∑
1≤i<j≤p−1 ηiηj ,

(ii) DηGη(γ) =
∏η1

j=1(γ
ηp−1
j /ηp−1!) G(η2,... ,ηp)(γη1+1, . . . , γn),

(iii) Gη1,η2(γ) = 1.

Theorem 3.31 (Reconstruction Theorem).
Let Gη(γ) =

∑
β bη(β)

∏rp−2
j=1 γ

βj

j /βj !, summed over β ∈ Z
rp−2
≥0 such that

|β| = |l|. Then

Fη(γ) =
∑

β

bη(β)
rp−2∏
j=1

(
γj + lj

βj

)
.

Corollary 3.32. Let l be the vector defined in Theorem 3.23, then

bη(β) = KΦ(η)(β − l).

In particular, Gη(γ) is a polynomial with non–negative rational coefficients.

Finally, we state a result which is a refinement of Proposition 3.7, and
gives partly a q-analog of the recurrence relation (3.32).
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Theorem 3.33 (A q-analog of Theorem 3.23).
Let η = (η1, . . . , ηp), p ≥ 3, ηp �= 0, be a composition. Define γ̂ =

(γ1, . . . , γrp−3 0, . . . , 0︸ ︷︷ ︸
ηp−2

) and η̂ = (η1, . . . , ηrp−2). If γ ∈ Y +
η , then

KΦ(η)(γ| q) = q−γn
∑

β KΦ(η̂)(γ̂ − β| q)
∏rp−3

j=1 Bq(βj + ηp−1; ηp−1)∏rp−2
j=rp−3+1 Bq(γj + βj + ηp−1; ηp−1),

where the sum runs over vectors β ∈ Z
rp−2
≥0 such that |β| =

∑rp−3
j=1 γj , and

polynomials Bq(n; k) are defined in Proposition 3.8, formula (3.30).

Remark 3.34. The “classical” case η = (1n) and q = 1, which corre-
sponds to the Kostant partition function Kn(γ), has been studied by F. Berezin
and I.M Gelfand [5], B. Kostant [45], B.V. Lidskii [50], [51], D. Peterson,
A.N. K. [34], [35], A. Postnikov and R. Stanley [68], W. Baldoni-Silva and
M. Vergne [2], S. Billey, V. Guillemin and E. Rassart [8], J. De Loera and
B. Sturmfels [13], ... . In particular, if η = (1n) and q = 1, Theorem 3.19 has
been proved by B.V. Lidskii [50] in 1984, and by D. Peterson (unpublished).
The case of arbitrary η and q has been studied by the author (unpublished,
but see [35]). The case of generalized Kostant partition functions and q = 1
has been studied by A. Postnikov and R. Stanley (unpublished, but see [68]).

§4. Parabolic Kostka Polynomials: Definition and Basic Properties

Definition 4.1 ([35], [41]). Let λ be a partition and µ and η be compo-
sitions such that |λ| = |µ|, |η| = n and ll(µ) ≤ n. Define the parabolic Kostka
polynomial Kλµη(q) as follows:

Kλµη(q) :=
∑

w∈Σn

(−1)l(w)KΦ(η)(w(λ + δ) − µ − δ| q),(4.33)

where δ := δn = (n − 1, n − 2, . . . , 1, 0).

If a composition µ is compatible with η and corresponds to the seq-
uence of partitions (possibly with zeros at the end) µµµµµµµµµµµµµµµµ = (µ(1), µ(2), . . . , µ(r)),
we will denote the parabolic Kostka polynomial Kλµη(q) by Kλ, µµµµ(q) or
Kλ,(µ(1),µ(2),... ,µ(r))(q). If a sequence of partitions µµµµµµµµµµµµµµµµ = (µ(1), . . . , µ(r)) consists
of only rectangular shape partitions µ(a) = (µηa

a ) := Ra, 1 ≤ a ≤ r, we will
write R = (R1, R2, . . . , Rr) instead of µµµµµµµµµµµµµµµµ , and Kλ,R(q) instead of Kλ, µµµµ(q).

Let us elucidate Definition 4.1 by a simple, but interesting example.

Example 4.2. Take λ = (6, 2, 2, 2), µ = (26) and η = (23). There are
4 contributions to the RHS(4,33), namely,

Kλµη(q) = KΦ(η)(γ1| q) − KΦ(η)(γ2| q) − KΦ(η)(γ3| q) + KΦ(η)(γ4| q),
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where γ1 = λ − µ = (4, 0, 0, 0,−2,−2), γ2 = (4, 0, 0, 0,−3,−1), γ3 = (4, 0,−1,

1,−2,−2) and γ4 = (4, 0,−1, 1,−3,−1). It is not difficult to see that KΦ(η)

(γ1| q) = q4(1, 4, 10, 12, 9), KΦ(η)(γ2| q) = q4(1, 4, 7, 10, 8), KΦ(η)(γ3| q) =
q5(2, 7, 10, 7) and KΦ(η)(γ4| q) = q5(2, 5, 8, 6). Hence, Kλµη(q) = q6, and
deg Kλµη(q) = 6 < deg KΦ(η)(λ − µ| q) = 8.

Remark 4.3. Using in Definition 4.1 the q-analog KΣ(γ| q) of the gener-
alized Kostant partition function, see Section 3.1, Remark 3.4, one can define
the “generalized” Kostka polynomials KλµΣ(γ| q). They form an interesting
family of polynomials to study.

Theorem 4.4 ([64]). Let λ be a partition, and µ be a composition com-
patible with η. Then

Kλ, µµµµ(1) := Kλ,(µ(1),µ(2),... ,µ(r))(1) = Mult[Vλ : ⊗r
i=1Vµ(i) ],(4.34)

i.e. Kλ,(µ(1),µ(2),... ,µ(r))(1) is equal to the multiplicity of the irreducible highest
weight λ gl(n)–module Vλ in the tensor product of irreducible highest weight
µ(i) representations Vµ(i) , 1 ≤ i ≤ r, of the Lie algebra gl(n).

In the case when all partitions µ(i) have rectangular shapes, Theorem 4.4
has been proved in [28].

Remark 4.5. We expect that Kλµη(1) ≥ 0 for any partition λ and com-
positions µ and η. It seems a challenge problem to find a combinatorial and/or
representation-theoretic interpretations of the numbers Kλµη(1) and Kλµη(−1)
for general λ, µ and η. In particular,

(♣) When does the number Kλµη(1) equal to 1?

Examples 4.6. In these examples we will use notation Pλµη(q, t), Qλµη

(q, t) and Jλµη(q), which will be explained in Theorem 4.14.
(i) Take λ = (3, 2, 1), µ = (2, 2, 2) and η = (13). Then Kλµη(q) = Kλµ(q) =

q + q2, and ∑
n≥0

Knλ,nµ,η(q) tn = (1 − qt)−1(1 − q2t)−1.

(ii) Take the same λ, but µ = (0, 2, 2, 2) and η = (14). Then
Kλµη(q) = q3(−1,−1, 0, 1, 2, 1), K2λ,2µ,η(q) = q5(1, 0,−2,−4,−4,−1, 0, 3,

3, 4, 2, 1).
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Moreover,

Pλµη(q, t) = 1 − q2(1, 3, 2, 1)t + · · · + q33(−1, 1, 1, 0,−1,−1) t7,

Qλµη(q, t) = (1 − q3t)(1 − q7t)
8∏

j=2

(1 − qj t), Jλµη(q) = q2(1, 2, 1, 1, 1, 2, 1),

see Theorem 4.14, (♠), for the definition of polynomials Jλµη(q).

(iii) Take again λ = (3, 2, 1), but µ = (0, 2, 0, 2, 2) and η = (1, 2, 1, 1).
Then Kλµη(q) = q3(1, 0,−4 − 3, 2, 4, 2), K2λ,2µ,η(q) = q7(3, 5, 6,−3,−13,−17,

−11, 3, 9, 12, 6, 3). Moreover,

Pλµη(q, t) = 1 − q3(1, 2, 6, 5, 0,−2)t + · · · + q70(1,−1,−2, 1, 2) t12,

Qλµη(q, t) =
9∏

j=3

(1 − qj t)2, Jλµη(q) = q3(2, 2, 2, 2, 2, 2, 2).

(iv) Take the same λ = (3, 2, 1), but µ = (0, 2, 0, 2, 0, 2) and η = (1, 2, 2, 1). Then
Kλµη(q) = q4(1, 2,−8,−6, 8, 5), K2λ,2µ,η(q) = −q7 − 2q8 + · · · + 22q17 + 12q18.

Moreover, Pλµη(q, t) = 1−q3(2, 3, 2, 11, 10,−4,−2) t+ · · ·+q132(1,−1,−2, 1, 2)
t22, and Jλµη(q) = q3(2, 4, 4, 3, 4, 4, 3). In other words,

Qλµη(q, t) = (1−q3t)2(1−q4t)4(1−q5t)4(1−q6t)3(1−q7t)4(1−q8t)4(1−q9t)3.

(♣) We would like to remark that the reasons for the equality below are
elusive.

q62 P(3,2,1),(0,2,0,2,2),(1,2,1,1)(q, t)|t12 = P(3,2,1),(0,2,0,2,0,2),(1,2,2,1)(q, t)|t22 .

(♠) These examples show that for general λ, µ and η, the polynomials
Kλµη(q) may have negative coefficients, the numbers a(λ, µ‖η) may be nega-
tive and may not be a homogeneous function in n, and those b(λ, µ‖η) may not
satisfy the (generalized) Fulton conjecture.

Our nearest goal is to describe several cases when the polynomials Kλµη(q)
have only non–negative coefficients. However, we want to point out that there
are many other cases when the all coefficients of a parabolic Kostka polynomial
are non–negative.

Example 4.7. Take λ = (6, 3, 2, 1), µ = (2, 1, 2, 1, 2, 1, 2, 1) and η =
(24). Then Kλµη(q) = q11(4, 18, 24, 14, 4). It is interesting to compare the
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polynomial Kλµη(q) with the q-analog of the LR-numbers cλ
µ(1),... ,µ(r)(q) in-

troduced by C. Carre, A. Lascoux, B. Leclerc and J.-Y. Thibon, see e.g. [47].
Namely, one can show that c

(6,3,2,1)
(2,1),(2,1),(2,1),(2,1)(q) = q8(2, 7, 12, 15, 14, 9, 4, 1).

Proposition 4.8. Let λ be a partition and µµµµµµµµµµµµµµµµ = (µ(1), . . . , µ(r)) be a
sequence of partitions.
If inequalities ll(µ(i)) ≥ l(λ) holds for all i, then

Kλ, µµµµ(q) •== Mult[Vλ : ⊗r
i=1Vµ(i) ].(4.35)

Proposition 4.9. Let λ be a partition and µµµµµµµµµµµµµµµµ = (µ(1), µ(2)) be a domi-
nant sequence of partitions. Then

Kλ, µµµµ(q) •== c
(λ)

µ(1),µ(2) .(4.36)

See Introduction, Section 1.1, for the explanation of the meaning of the
symbol “ •==”.

Positivity Theorem ([29], [42]). Let λ be a partition, and µµµµµµµµµµµµµµµµ = (µ(1),

R2, . . . , Rr) be a sequence of (proper) partitions such that
(a) (R2, . . . , Rr) is a dominant sequence of rectangular shape partitions,
(b) either ll(µ(1)) ≥ l(λ),
or λ ⊃ µ(1) and the complement λ \ µ(1) is a disjoint union of partitions

λ(1), λ(2), . . . , λ(p).
Then the parabolic Kostka polynomial Kλ,(µ(1),R2,... ,Rr)(q) has non-negative

integer coefficients.

Conjecture 4.10 (Positivity conjecture for parabolic Kostka poly-
nomials, cf [32], [41]).

Let λ be a partition and µµµµµµµµµµµµµµµµ = (µ(1), µ(2), . . . , µ(r)) be a sequence of (proper)
partitions such that (µ(2), . . . , µ(r)) is a dominant sequence of partitions. As-
sume that

either λ ⊃ µ(1) and the complement λ\µ(1) is a disjoint union of partitions
λ(1), λ(2), . . . , λ(p), or ll(µ(1)) ≥ l(λ).

Then
Kλ, µµµµ(q) ∈ N [q].

(�) In particular, we expect [32], [41] that if λ and µ are partitions and
η is a composition, then

Kλµη(q) ∈ N [q].
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Remark 4.11. According to (4.34) and Conjecture 4.10, if µ is a (pro-
per) partition, then the parabolic Kostka polynomials Kλµη(q) may be consid-
ered as a q–analog of the tensor product multiplicities. Another q–analog of the
tensor product multiplicities has been introduced by C. Carre and B. Leclerc
[11], and A. Lascoux, B. Leclerc and J.-Y. Thibon [47]. Formulas (4.35) and
(4.36) show that in general these two q–analogs are different. However, it was
conjectured in [32], Conjecture 6.5 and in [41], Conjecture 5, that, in fact,
these two q–analogs coincide in the case when a partition µ and a composition
η correspond to a dominant sequence of rectangular shape partitions.

Duality Theorem ([33, 41]). Let λ be a partition, and R be a dominant
sequence of rectangular shape partitions, R = ((µηa

a ))r
a=1. Denote by R′ a dom-

inant rearrangement of the sequence of rectangular shape partitions ((ηµa
a ))r

a=1

obtained by transposing each of the rectangular in R. Then

Kλ′R′(q) = qn(R)KλR(q−1),(4.37)

where n(R) =
∑

1≤a<b≤p

min(µa, µb) min(ηa, ηb).

Note that the left hand side of (4.37) is computed in gl(m), where m =∑
µa is the total number of columns in the rectangles of R, whereas the right

hand side of (4.37) is computed in gl(n), where n =
∑

ηa is the total number
of rows in the rectangles of R.

Corollary 4.12. We have
(i) a(λ, R) = n(R) − c(λ′, R′),
(ii) b(λ, R) = d(λ′, R′)

Conjecture 4.13. Let λ and µ be partitions, and η1 and η2 be compo-
sitions such that η2 is a subdivision of η1. Then

Kλµη1(q) ≤ Kλµη2(q).

We remark that Conjecture 4.13 is false if one assumes only that η1 ≥ η2

with respect to the dominance partial ordering on the set of compositions, see
Example 3.6.

Theorem 4.14 (Rationality theorem for parabolic Kostka poly-
nomials, I).

The formal power series ∑
n≥0

Knλ,nµ,η(q)tn
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is a rational function in q and t of the form

Pλµη(q, t)/Qλµη(q, t),

where Pλµη(q, t) and Qλµη(q, t) are mutually prime polynomials in q and t with
integer coefficients and Pλµη(0, 0) = 1.

Moreover,
(♣) the denominator Qλµη has the following form:

Qλµη(q, t) =
∏
j∈J

(1 − qj t),

where J := Jλµη is a finite set of non–negative integer numbers, not necessarily
distinct;

(♣♣) Pλµη(1, t) = (1−t)t(λ,µ,η) Pλµη(t), where t(λ, µ, η) ∈ Z≥0, Pλµη(1) �=
0, and Pλµη(t) is a polynomial with non–negative integer coefficients.

(♠) It is convenient to depict the set Jλµη in the polynomial Jλµη(q) =∑
j∈Jλµη

qj .

(�) We expect that if µ1 and µ2 are partitions such that µ1 ≥ µ2 with
respect to the dominance partial ordering, see e.g. Section 2.1, then

Pλ,µ2,η(t) − Pλ,µ1,η(t) ≥ 0,

i.e. the latter difference is a polynomial with non–negative coefficients.

Corollary 4.15 (Polynomiality theorem for parabolic Kostka
numbers).

Let λ be a partition, and µ and η be compositions such that λ − µ ∈ Yη.

There exists a polynomial Kηµη(t) with rational coefficients such that
(♣) for any integer number N ≥ 1, Kηµη(N) = KNλ,Nµ,η(1).

Conjecture 4.16. If µ is a partition and η is a composition, then the
polynomial Kηµη(t) has non–negative rational coefficients.

Theorem 4.14 is a corollary of the corresponding theorem for para-
bolic Kostant’s partition function (Theorem 3.17) . In Section 6, Rationality
Conjecture, we state a few conjectures about the structure of the numerator
Pλµη(q, t).
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Theorem 4.17 (Rationality theorem for parabolic Kostka poly-
nomials, II).

Let λλλλλλλλλλλλλλλλ = (λ(1), . . . , λ(k)) be a sequence of partitions, µµµµµµµµµµµµµµµµ = (µ(1), . . . , µ(k)) be
a sequence of compositions and η be a composition such that |λ(j)| = |µ(j)| and
ll(µ(j)) ≤ |η| for all 1 ≤ j ≤ k. Then the generating function∑

(n1,... ,nk)∈Zk
≥0

Kn1λ(1)+···+nkλ(k),n1µ(1)+···+nkµ(k),η(q) xn1
1 . . . xnk

k

is a rational function in q and the variables Xk := (x1, . . . , xk) of the form
P (q, Xk)/Q(q, Xk), where P (q, Xk) := P λλλλ, µµµµ,η(q, Xk) and Q(q, Xk) := Q λλλλ, µµµµ,η

(q, Xk) are mutually prime polynomials in q and Xk with integer coefficients,
P (0, 0) = 1.

(♣) Moreover, the denominator Q(q, Xk) has the following structure:

Q(q, Xk) =
∏

∅�=W⊂{1,... ,k}

∏
aW ∈JW

(1 − qaW xW ),

where xW :=
∏

i∈W xi, and for each non–empty subset W ⊂ {1, . . . , k}, JW

denotes a certain set, depending on W and λλλλλλλλλλλλλλλλ, µµµµµµµµµµµµµµµµ, η, of non–negative integer
numbers, not necessarily distinct.

(�) We expect that in general, all the sets JW , ∅ �= W ⊂ {1, . . . , k}, are
non trivial, i.e. each contain at least one positive element.

Corollary 4.18 (Piecewise polynomiality theorem for parabolic
Kostka numbers).

Let λλλλλλλλλλλλλλλλ = (λ(1), . . . , λ(k)) be a sequence of partitions, µµµµµµµµµµµµµµµµ = (µ(1), . . . , µ(k)) be
a sequence of compositions and η be a compositions such that |λ(j)| = |µ(j)| and
ll(µ(j)) ≤ |η| for all 1 ≤ j ≤ k. There exists a piecewise polynomial function
K(t1, . . . , tk) := Kλλλλ, µµµµ,η(t1, . . . , γk) with rational coefficients such that for any
non–negative integer numbers N1, . . . , Nk,

K(N1, . . . , Nk) = KN1λ(1)+···+Nkλ(k),N1µ(1)+···+Nkµ(k),η(1).

(�) We expect that if all µ(1), . . . , µ(k) are partitions, then the restriction
of the function K λλλλ, µµµµ,η(t1, . . . , tk) on “the dominant chamber” Nk := {(N1 ≥
N2 ≥ · · · ≥ Nk) ∈ Zk

≥0} is a polynomial with non–negative rational coeffi-
cients.
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Corollary 4.19 (Piecewise polynomiality theorem for LR-
numbers).

Let λλλλλλλλλλλλλλλλ = (λ(1), . . . , λ(k)), µµµµµµµµµµµµµµµµ = (µ(1), . . . , µ(k)) and νννννννννννννννν = (ν(1), . . . , ν(k))
be three sequences of partitions. There exists a piecewise polynomial function
LR νννν

λλλλ, µµµµ(t1, . . . , tk) such that for any non–negative integers N1, . . . , Nk,

LR νννν
λλλλ, µµµµ(N1, . . . , Nk) = cN1ν(1)+···+Nkν(k)

N1λ(1)+···+Nkλ(k),N1µ(1)+···+Nkµ(k) .

(�) We expect that the restriction of the function LR νννν
λλλλ,µµµµ(t1, . . . , tk) on

“the dominant chamber” Nk := {(N1 ≥ N2 ≥ · · · ≥ Nk) ∈ Zk
≥0} is a polynomial

with non–negative rational coefficients.

Problem 4.20. Describe the polynomiality domains of the function

(N1, . . . , Nk) → cN1ν(1)+···+Nkν(k)

N1λ(1)+···+Nkλ(k),N1µ(1)+···+Nkµ(k) .

Examples 4.21. (i) Take λ = (5, 3, 3, 2), µ = (3, 3, 3, 2, 1, 1) and
η = (16).

One can check that
Kλµη(q) = Kλµ(q) = q3(3, 5, 8, 6, 5, 2, 1), Pλµη(q, t) = 1 + q4(3, 5, 4, 3, 1)

t− q7(1, 3, 2, 1, 0, 1, 3, 3, 2, 1) t2 − q12(2, 9, 14, 18, 18, 20, 17, 14, 8, 4, 1, 1) t3 + q16

(3, 6, 10, 17, 28, 35, 39, 36, 30, 24, 19, 11, 5, 1)t4− q21(−1, 0, 4, 3, 6, 6, 13, 16, 16, 10,

5, 1, 1)t5 − q26(1, 2, 7, 10, 16, 19, 22, 23, 23, 20, 17, 10, 6, 4, 1)t6 + q33(1, 4, 8, 14, 17,

20, 23, 23, 19, 16, 6, 1)t7 − q40(−1,−1, 1, 4, 6, 7, 3) t8 − q48 (1 + q + q2)2 t9,

Jλµη(q) = q3(3, 2, 3, 2, 2, 1, 1). In other words,

Qλµη(q, t) = (1−q3 t)3(1−q4 t)2(1−q5 t)3(1−q6 t)2(1−q7 t)2(1−q8 t)(1−q9 t).

Therefore, the dimension of the Gelfand–Tsetlin polytope GT (λ, µ) is equal
to 9, and∑

n≥0

Knλ,nµ(1) tn = (1 + 21 t + 78 t2 + 64 t3 + 9 t4)/(1 − t)10,

∑
n≥0

Knλ,nµ(−1) tn = (1 − 3t + 6t2 − 4t3 + t4)/(1 − t2)4(1 + t).

(ii) Take λ = (3, 2, 1) and µ = η = (16). Then Kλµ(q) = q4(1, 2, 2, 3, 3,

2, 2, 1), Pλµη(q, t) = 1+q6(1, 2, 2, 1, 1)t + q12(1, 2, 5, 4, 6, 4, 3, 1, 1)t2+ q20(1, 1, 1,

0, 1,−2,−1,−2,−1,−1)t3 − q29(2, 2, 4, 4, 4, 3, 3, 1)t4 − q37(1, 1, 2, 1, 2, 1, 1)t5,

Jλµη(q) = q4(1, 2, 1, 1, 1, 1, 1, 1).
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Therefore, the dimension of the Gelfand–Tsetlin polytope GT (λ, µ) is equal to
7, and ∑

n≥0

Knλ,nµ(1) tn = (1 + 8 t + 35 t2 + 32 t3 + 9 t4)/(1 − t)8,

∑
n≥0

Knλ,nµ(−1) tn = (1 + 5 t2 + 3 t4)/(1 − t2)4.

Remark 4.22. We see that in both examples Jλµη(q) ≤ Kλµη(q), and the
initial and the leading terms of the polynomials Jλµη(q) and Kλµη(q) are the
same. These observations may be not true if µ is an arbitrary composition,
e.g. if λ = (3, 2, 1), µ = (0, 2, 0, 2, 0, 2) and η = (1, 2, 2, 1), then

Kλµη(q) = q4(1, 2,−8,−6, 8, 5), but Jλµη(q) = q3(2, 4, 4, 3, 4, 4, 3), see Ex-
amples 4.6.

(♠) It was the surprising and unexpected thing for the author to find that
even though µ and η are partitions, the above inequality

Jλµη(q) ≤ Kλµη(q)

may be wrong. For example, take λ = (2, 2, 2, 1, 1) and µ = η = (18). Then

Kλµη(q) = q3(1, 1, 2,2, 3, 3, 4, 3, 3, 2, 2, 1, 1), but Jλµη(q)

= q3(1, 1, 2,3, 2, 2, 2, 1, 1, 1, 1, 1, 1).

Furthermore, one can show that P(2,2,2,1,1),(18),(18)(q, t) =
1 + q6(−1, 1, 2, 2, 2, 1, 1)t + · · · + q117(1, 1, 2, 2, 2, 1, 1,−1)t13 + q130t14,

see Section 5.4 for more details about the polynomials P(2k,1n),(12k+n),(12k+n)

(q, t).

(�) However, we expect that if µ is a partition, then the initial and the
leading terms of the polynomials Jλµη(q) and Kλµη(q) are the same.

(�) Moreover, we expect that if µ is an arbitrary composition, then
jmax := max{j | j ∈ Jλµη} = c(λ, µ‖η) and #{j ∈ Jλµη | j = jmax} ≤

d(λ, µ‖η), see Section 6.4, Rationality conjecture, for more detailed statements.

Examples 4.23. (1) Take λ(1) = (3, 2, 1), λ(2) = (2, 2), µ(1) = (16),
µ(2) = (14) and η = (16). Then one can check that

Q(q, x, y) = Q(3,2,1),(16),(16)(q, x) Q(2,2),(14),(14)(q, y)(1 − q7xy)(1 − q8xy),

where Q(3,2,1),(16),(16)(q, x) = (1 − q5x)
∏11

j=4(1 − qjx), see Example 4.20, (ii),
and
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Q(2,2),(14),(14)(q, y) = (1 − q2y)(1 − q4y), P(2,2),(14),(14)(q, y) = 1.

The expression for P (q, x, y) is rather long, so we give here only the formula
for its value at q = 1. Namely,

P (1, x, y) = [1+8x+35x2+32x3+9x4+(6x−44x2−118x3−81x4−18x5)y
+ (−3x2 + 40x3 + 143x4 + 66x5 + 9x6)y2 − (16x4 + 48x5 + 21x6)y3](1−x).
Let us remark that in our case Q(1, x, y) = (1− x)9(1− y)2(1− xy)2, and

because of the well-known identity

(1 − x1 . . . xk)−1
k∏

j=1

(1 − xj)−1 =
∑

(n1,... ,nk)∈Zk
≥0

min(n1, . . . , nk)xn1
1 . . . xnk

k ,

this example shows that the Kostka number Kn(3,2,1)+m(2,2),(n6)+(m4)(1) con-
sidered as a function of n and m on the set {(n, m) ∈ Z2

≥0}, has at least two
different polynomiality region, namely, “the dominant chamber” N2 = {(n, m) |
n ≥ m} and that {(n, m) | n ≤ m}. Moreover, since

Kn(3,2,1)+m(2,2),(n6)+(m4)(1) = c
n(6,5,4,3,2,1)+m(4,3,2,1)
n(5,4,3,2,1)+m(3,2,1),n(3,2,1)+m(2,2) ,

we see that if
λ(1) = (3, 2, 1), λ(2) = (2, 2), µ(1) = (5, 4, 3, 2, 1), µ(2) = (3, 2, 1), ν(1) =

(6, 5, 4, 3, 2, 1) and ν(2) = (4, 3, 2, 1), then
(♣) the Littlewood–Richardson number cnν(1)+mν(2)

nλ(1)+mλ(2),nµ(1)+mµ(2) considered
as a function of n and m on the set {(n, m) ∈ Z2

≥0}, has the same (at least)
two different polynomiality regions.

(2) Now take λ(1) = (3, 2, 1), λ(2) = (2, 2, 1), µ(1) = (16), µ(2) = (15) and
η = (16). Then one can check that

Q(q, x, y) = Q(3,2,1),(16),(16)(q, x) Q(2,2,1),(15),(15)(q, y),

where Q(2,2,1),(15),(15)(q, y) = (1 − q2y)(1 − q3y)(1 − q4y)(1 − q5y)(1 − q6y).
Therefore, in this case the function (n, m) → Kn(3,2,1)+m(2,2,1),n(16)+m(15),η

(1) is a polynomial function in n and m on the whole set {(n, m) ∈ Z2
≥0}.

It seems interesting to compare the above-described examples with the
following result by P. McMullen [54]:

Let ∆1, . . . , ∆k ⊂ Rd be integer convex polytopes, and t1, . . . , tk ∈ Nk.

Given any integer polytope Γ ⊂ Rd, denote by N(Γ) := #(Γ ∩ Zd).

(♠)Mixed lattice point enumerator theorem (P. McMullen, [54])
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N(t1∆1 + · · · + tk∆k) is a polynomial in t1, . . . , tk with rational coeffi-
cients of total degree at most d. Moreover, the terms of degree d are given by
Vol(t1∆1+· · ·+tk∆k), the so-called mixed volume of the polytopes ∆1, . . . , ∆k.

In other words, the generating function
∑

(n1,... ,nk)∈Zk
≥0

N(n1∆1 + · · · +
nk∆k)xn1 . . . xnk

k is a rational function in x1, . . . , xk with the (irredundant) de-
nominator of the form

∏k
j=1(1−xj)aj for some non–negative integers a1, . . . , ak.

Remark 4.24 (Parabolic Kostka number Kλµη(1) as a function of λ and µ).

Let η be a composition, l(η) = p. It follows from Theorem 3.25 that on the
set

Zη = {(λ, µ) ∈ Zn
≥0 × Zn

≥0 | λ1 ≥ λ2 ≥ · · · ≥ λn, λ − µ ∈ Yη}

the function (λ, µ) −→ Kλµη(1) is a continuous piecewise polynomial function
Kη(λ, µ) in λ1, . . . , λn, µ1, . . . , µn of degree

∑
1≤i<j≤p ηiηj − n + 1.

It is a challenge problem to describe the polynomiality domains of the
function (λ, µ) −→ Kλµη(1), and find the corresponding polynomials Kη(λ, µ).
In the case η = (1n) a partial solution to this problem has been done by
B.V. Lidskii [51]. To the best of our knowledge, if n ≥ 4, an explicit description
of the polynomiality domains of the function (λ, µ) −→ Kλµη(1) is not known.

Examples 4.25. (i) Take n = 3, so that λ = (λ1 ≥ λ2 ≥ λ3 ≥ 0) and
µ = (µ1, µ2, µ3). If µ is a partition, then

Kλ,µ(q) = qa(λ,µ)

[
Nλ,µ + 1

1

]
q

,

where
a(λ, µ) = max{λ1 − µ1, λ1 + λ2 − µ1 − µ2, λ1 + 2λ2 − 2µ1 − µ2, 2λ1 + λ3 −

2µ1 − µ2},
Nλµ = min{λ1 − λ2, λ2 − λ3, λ1 − µ1, λ1 + λ2 − µ1 − µ2}.
(♣) In particular, we see that a(λ, µ) is a homogeneous piecewise linear

function in λ1, λ2, λ3 and µ1, µ2.

Now let us define “the dominant chamber”

Z++
(13) = {(λ, µ) ∈ Z(13) | λ3 ≤ µ2 ≤ λ2 ≤ µ1 ≤ λ1, λ1 − λ2 + λ3 ≤ µ1}.

If µ is a partition, then

Kλµ(q)|Z++
(13)

= KΦ(13)(λ − µ| q) = qλ1+λ2−µ1−µ2

[
λ1 − µ1 + 1

1

]
q

.
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(♣) One can check that the domain Z++
(13) is the maximal one among do-

mains D such that K(13)(λ, µ)|D = 1 + λ1 − µ1.

(ii) Take n = 4. In this case we don’t have a complete description of the
polynomiality domains of the function (λ, µ) −→ Kλµη(1). Instead, we are
going to describe “the dominant chamber” Z++

η for the latter function, i.e. the
maximal domain D in the set

Z+
η := {(λ, µ) ∈ Zη | λ − µ ∈ Y +

η } such that Kλµη(1)|D = Kη(λ, µ)|D =
KΦ(η)(λ − µ).

Proposition 4.26. Assume that η = (14), and consider the sets

W
(1)
4 = {(λ, µ) ∈ Z+

(14) | µi ≥ mi+1, i = 1, 2, 3; 2µ2 ≥ λ2 + λ3}, and

W
(2)
4 = {(λ, µ) ∈ Z+

(14) | µi ≥ mi+1, i = 1, 2, 3;

2µ2 ≤ λ2 + λ3, λ1 + λ3 ≤ µ1 + µ2}.

Then

K(14)(λ, µ)|
W

(1)
4

= KΦ(14)(λ − µ) −
(

max(λ1 + λ3 − µ1 − µ2, 0) + 2
3

)
,

K(14)(λ, µ)|
W

(2)
4

= KΦ(14)(λ − µ).

Proposition 4.27. We have

Z++
(14) = {(λ, µ) ∈ Z(14) | µi ≥ mi+1, i = 1, 2, 3; λ1 + λ3 ≤ µ1 + µ2},

and furthermore, Kλµ(q)|Z++
(14)

= KΦ(14)(λ − µ| q).

Problem 4.28. Describe explicitly “the dominant chamber” Z++
η in

general case.

At the end of this Remark we would like to say a few words about the
Littlewood–Richardson numbers cν

λ,µ considered as a function of λ, µ and ν. To
start with, let us consider the following set:

Zn :=
{
(λ, µ, ν) ∈ Z3n

≥0 | λ1 ≥ · · · ≥ λn, µ1 ≥ · · · ≥ µn,

ν1 ≥ · · · ≥ νn, |λ| + |µ| = |ν| }.

The next Proposition is an easy corollary of Theorem 3.25.

Proposition 4.29. The Littlewood–Richardson number cν
λ,µ is a con-

tinuous piecewise polynomial function in λ1, . . . , λn, µ1, . . . , µn, ν1, . . . , νn on
the set Zn.
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Problem 4.30. Describe “the dominant chamber” for the function
(λ, µ, ν) → cν

λ,µ, i.e. the maximal domain Dn ⊂ Zn such that the restriction
cν
λ,µ|Dn

is a polynomial with non–negative rational coefficients.

Problem 4.31. Generalize the results obtained by B.V. Lidskii [51]
for the function (λ, µ) → Kλµ(1), to the case of the function (λ, µ, ν)
→ cν

λ,µ.

Remark 4.32. It is not difficult to see that Rationality Theorems 4.14
and 4.17, Polynomiality Theorem (Corollary 4.15) and Corollary 4.18, are still
valid for the level l restricted parabolic Kostka numbers K

(l)
λµη(1) and the level

l restricted parabolic Kostka polynomials K
(l)
λµη(q). Remember that the latter

can be defined as follows

K
(l)
λµη(q) =

∑
w∈Σn,l

(−1)l(w) Kλ,w◦µ,η(q).(4.38)

See Section 2.6 for a explanation of notation we have used.

Remark 4.33. In Section 4 we have studied a behavior of the parabolic
Kostka polynomials Knλ,nµ,η(q) as a function of n. We always have assumed
that a composition η is fixed. Here we would like to discuss briefly what happens
if a composition η is also varied. A naive way to vary η, say to consider
nη, gives rise to a trivial result. We suggest the following way. In order to
start, we need one definition, namely, let µ = (µ1, µ2, . . . ) be a composition.
Define

µ〈n〉 = (µ1, . . . , µ1︸ ︷︷ ︸
n

, µ2, . . . , µ2︸ ︷︷ ︸
n

, . . . ).

Let us remark that (nµ)′ = µ〈n〉.

Theorem 4.34. There exists the limit

lim
n→∞

qc(nλ,µ〈n〉‖η〈n〉) Knλ,µ〈n〉,η〈n〉(q−1) := Xλµη(q),

which is a formal power series in q.

(�) We expect that if µ is a partition, then the formal power series
Xλµη(q) has non–negative integer coefficients. For example,

X(3,2,1),(16),(16)(q) =
∏
n≥1

(1 − qn)−2.
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However, we would like to remark that the limit

lim
n→∞

q−a(nλ,µ〈n〉‖η〈n〉) Knλ,µ〈n〉,η〈n〉(q)

does not exist in general.
Finally, it looks as an interesting problem to study the generating func-

tions ∑
n≥0

Kλ〈n〉,µ〈n〉,η〈n〉(q) tn and
∑
n≥0

Kλ〈n〉,µ〈n〉,nη(q) tn.

(�) We expect that the latter generating function is a rational function in q

and t.

Remark 4.35 (Parabolic Hall–Littlewood polynomials Qµ,η(X; q)).
Let µ and η be compositions such that |η| ≥ ll(µ), and X = (x1, . . . , xn) be

the set of variables. Define the modified parabolic Hall–Littlewood polynomials
Q′

µ,η(X; q) as follows:

Q′
µ,η(X; q) =

∑
λ

Kλµη(q) sλ(X),

and the parabolic Hall–Littlewood polynomial Qµ,η(X; q) using the plethystic
transformation:

Qµ,η(X; q) = Q′
µ,η(X(1 − q); q).

Theorem 4.36 (Rationality theorem for parabolic Hall–Little-
wood polynomials).
The generating function

∑
n≥0 Qnµ,η(X; q) tn is a rational function in q, t and

X.

In particular, the generating function
∑

n≥0 snλ(X) tn for Schur functions
is a rational function in t and X.

On the other hand, the generating function for the double Kostka polyno-
mials

Zλ,µ(q, t, x) :=
∑
n≥0

Knλ,nµ(q, t) xn

is a formal power series in q, t and x which, in general, cannot be equal to any
rational function.
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§5. Parabolic Kostka Polynomials: Examples

§5.1. Parabolic Kostka and Kostka–Foulkes polynomials

10 [Kostka–Foulkes and parabolic Kostka polynomials]
Let λ be a partition and R = (R1, R2, . . . , Rr) be a dominant sequence of
rectangular shape partitions.

(i) Let Ra be the single row (µa) for all a, and µ := (µ1, µ2, . . . ) is a
partition of length at most n. Then

KλR(q) = Kλµ(q),(5.39)

i.e. KλR(q) coincides with the Kostka–Foulkes polynomial Kλµ(q).
(ii) Let Ra be the single column (1ηa) for all a, and η = (η1, η2, . . . ). Then

KλR(q) = Kλ′η+(q),(5.40)

the cocharge Kostka–Foulkes polynomial, where λ′ is the conjugate of the par-
tition λ, and η+ is the partition obtained by sorting the parts of η into weakly
decreasing order. Formula (5.40) follows from that (5.39) and Duality Theorem
for parabolic Kostka polynomials.

20 [Parabolic Kostka polynomials and Kostant partition function]
Let γ ∈ Zn, |γ| = 0, N be an integer such that N + n(γi − γi+1) ≥ 0 for

all 1 ≤ i ≤ n, where we put γn+1 = 0 . Consider partitions λN = N(n, n −
1, . . . , 2, 1) + γ, µN = N(n, n − 1, . . . , 2, 1) and composition η, |η| = n. Then

KΦ(η)(γ| q) = KλN ,µN ,η(q).(5.41)

30 [ Skew Kostka–Foulkes and parabolic Kostka polynomials]
Let λ ⊃ µ be partitions, l(λ) = n, and νννννννννννννννν be a sequence of partitions.
Define µ0 = (µ, 0, . . . , 0︸ ︷︷ ︸

n−l(µ)

)). Then

Kλ\µ, νννν (q) •== Kλ,(µ0, νννν)(q).

If µ is a rectangular shape partition and R is a dominant sequence of rectangular
shape partitions, then

Kλ\µ,R(q) •== Kλ,(µ,R)+(q) •== Kλ,(µ0,R)(q),

where (µ, R)+ denotes a dominant rearrangement of the sequence of rectangular
shape partitions (µ, R).
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Example 5.1. Let λ and µ be partitions, µ ⊂ λ, |λ \ µ| = N, and the
complement λ \ µ =

∐
λ(i) is a disjoint union of partitions λ(i), |λ(i)| = ni,

i = 1, . . . , s. Then Kλ\µ,(1N )(q)=

qN
s∏

i=1

Kλ(i),(1ni )(q)

[
N

n1, . . . , ns

]
q

= qN+
∑

n(λ(i)′)[N ]!/
s∏

i=1

Hλ(i)(q) = Kλ,(µ,1N )(q),

where for any partition λ, Hλ(q) denotes the hook polynomial corresponding
to λ, see e.g. [53], p.45.

In particular, if n ≥ m, then K(n,m),(n,1m)(q)
•==

[
n

m

]
q

.

Example 5.2. Let λ and µ be partitions, µ ⊂ λ, |λ \ µ| = l, and the
complement λ \ µ =

∐
λ(i) is a disjoint union of partitions λ(i), |λ(i)| = ni,

i = 1, . . . , s. Define partitions λ̃ = (Nl + |µ|, λ) and µ̃ = (l, µ). Then

Kλ̃\µ̃,(lN )

•==
s∏

i=1

[
N

λ(i)′

]
q

.

We would like to emphasize that, in general, the parabolic Kostka polyno-
mial Kλ,(µ, νννν)(q) is different from the skew Kostka–Foulkes polynomial Kλ\µ, νννν

(q).
For example, take λ = (2, 2), µ = (1) and R = (3). Then Kλ\µ,R(q) =

Kλ,(µ0,R)(q) = 0, but Kλ,(µ,R)(q) = −1 + q.

40 [Principal specialization of skew Schur functions]
Let λ ⊃ µ be partitions, |λ \ µ| = r, and N ≥ 1 be an integer number.

Then
sλ\µ(1, q, . . . , qN−1) •== K(Nr, λ)\(r, µ), (r, . . . , r︸ ︷︷ ︸

N

)(q).

If µ = ∅, then

sλ(1, q, . . . , qN−1) •== K(N|λ|, λ), (r, . . . , r︸ ︷︷ ︸
N+1

)(q)
•==

[
N

λ′

]
q

.(5.42)

The second equality in (5.42) together with the fermionic formula (5.44) for
the Kostka–Foulkes polynomials, is a crucial step in a combinatorial proof of

unimodality of the generalized q-Gaussian coefficients

[
N

λ

]
q

, see [30] for details.
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Example 5.3 (A q-analogue of Merris’ conjecture, cf [56], [33]).
Let λ and µ be partitions such that λ ≥ λ′ with respect to the dominance

partial ordering, see Section 2.1. Then
• a(λ, µ) ≥ a(λ′, µ).
• (q-Analogue of Merris’ conjecture)

Kλ,µ(q) ≥ qn(λ′)−n(λ)Kλ′,µ(q).

Question. If the above inequality is true, what is the case of equality?
For example, the equality holds for any partition λ if µ = (1n). It’s not

difficult to see that the equality also holds if

λ = (n, m, 1n−2) and µ = (2n−1+[m/2], εm)

for some positive integers n ≥ m and m ≤ 4. Here εm = 0 or 1 according to
the parity of m.

Question. Could it be true that these two examples are the only infinite
families of partitions λ and µ such that λ � λ′ and Kλ,µ = Kλ′,µ?

(�) Moreover, we expect that the difference

Kλ,µ(q) − qn(λ′)−n(λ)Kλ′,µ(q)

is a unimodal polynomial (with non-negative integer coefficients). In particu-
lar,

(�) we expect that if λ ≥ λ′, then for any positive integer N the differ-
ence [

N

λ

]
q

− qn(λ′)−n(λ)

[
N

λ′

]
q

is a unimodal polynomial (with non-negative integer coefficients).
50 [ Fermionic formula for polynomials Kλ,R(q) ]
Let λ be a partition and R = ((µηa

a ))p
a=1 be a sequence of rectangular

shape partitions such that

|λ| =
∑

a

|Ra| =
∑

a

µaηa.

Definition 5.4. A configuration of type (λ; R) is a sequence of parti-
tions ν = (ν(1), ν(2), . . . ) such that

|ν(k)| =
∑
j>k

λj −
∑
a≥1

µa max(ηa − k, 0) = −
∑
j≤k

λj +
∑
a≥1

µa min(k, ηa)

for each k ≥ 1.
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Note that if k ≥ l(λ) and k ≥ ηa for all a, then ν(k) is empty. So that each
configuration contains only a finite number of partitions. In the sequel (except
Corollary 5.7) we make the convention that ν(0) is the empty partition.

For a partition µ define the number Qn(µ) = µ′
1 + · · ·+ µ′

n, which is equal
to the number of cells in the first n columns of µ.

The vacancy numbers P
(k)
n (ν) := P

(k)
n (ν; R) of a configuration ν of type

(λ; R) are defined by

P (k)
n (ν) = Qn(ν(k−1)) − 2Qn(ν(k)) + Qn(ν(k+1)) +

∑
a≥1

min(µa, n)δηa,k

for k, n ≥ 1, where δi,j is the Kronecker delta.

Definition 5.5. A configuration ν of type (λ; R) is called admissible, if

P (k)
n (ν; R) ≥ 0 for all k, n ≥ 1.

We denote by C(λ; R) the set of all admissible configurations of type (λ; R),
and call a vacancy number P

(k)
n (ν; R) essential, if mn(ν(k)) > 0.

Finally, for a configuration ν of type (λ; R) let us define its charge

c(ν) =
∑

k,n≥1

(
α

(k−1)
n − α

(k)
n +

∑
a θ(ηa − k)θ(µa − n)
2

)
,

and cocharge

c(ν) =
∑

k,n≥1

(
α

(k−1)
n − α

(k)
n

2

)
,

where α
(k)
n = (ν(k))′n denotes the size of the n–th column of the k–th partition

ν(k) of the configuration ν; thus, α
(0)
n = 0, ∀n ≥ 1. For any real number x ∈ R

we put θ(x) = 1, if x ≥ 0, and θ(x) = 0, if x < 0.

Theorem 5.6 (Fermionic formula for parabolic Kostka polynomi-
als [33, 42]).

Let λ be a partition and R be a dominant sequence of rectangular shape
partitions. Then

KλR(q) =
∑

ν

qc(ν)
∏

k,n≥1

[
P

(k)
n (ν; R) + mn(ν(k))

mn(ν(k))

]
q

(5.43)

summed over all admissible configurations ν of type (λ; R); mn(λ) denotes the
number of parts of the partition λ of size n.
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Corollary 5.7 (Fermionic formula for Kostka–Foulkes polynomials [29]).
Let λ and µ be partitions of the same size. Then

Kλµ(q) =
∑

ν

qc(ν)
∏

k,n≥1

[
P

(k)
n (ν, µ) + mn(ν(k))

mn(ν(k))

]
q

(5.44)

summed over all sequences of partitions ν = {ν(1), ν(2), . . . } such that
• |ν(k)| =

∑
j>k λj, k = 1, 2, . . . ;

• P
(k)
n (ν, µ) := Qn(ν(k−1)) − 2Qn(ν(k)) + Qn(ν(k+1)) ≥ 0 for all k, n ≥ 1,

where by definition we put ν(0) = µ;

• c(ν) :=
∑

k,n≥1

(
(ν(k−1))′n − (ν(k))′n

2

)
.(5.45)

§5.2. Parabolic Kostka polynomials and Littlewood–Richardson
numbers

(10) Let λ, µ, ν be partitions, |ν| = |λ| + |µ|, l(λ) = p, l(µ) = s. Consider
partition

λ̃ = (λ1 + µ1, . . . , λ1 + µs, λ1, λ2, . . . , λp)

and a dominant rearrangement R̃ of the sequence of rectangular shape parti-
tions R = {ν ∪ (λs

1)}. Then

Kλ̃,R̃(q) = qa(λ̃,R̃){cν
λµ + · · · + qn(ν)−n(λ)−n(µ)},(5.46)

where cν
λµ denotes the Littlewood–Richardson number, i.e. cν

λµ = Mult
[Vν : Vλ ⊗ Vµ].

Furthermore, a(λ̃, R̃) ≥
∑
j≤λ1

ν′
j − |λ|, and a(λ̃, R̃) =

∑
j≤λ1

ν′
j − |λ| if and

only if cν
λ,µ �= 0.

In other words, if a(λ̃, R̃) =
∑
j≤λ1

ν′
j − |λ|, then cν

λ,µ �= 0, and

(♣) the coefficient b(λ̃, R̃) is equal to the Littlewood-Richardson number
cν
λµ = cλ̃

(λs
1), ν .

(♣♣) Moreover, Kλ̃,R̃(1) is equal to the number #|Tab(2)(Λ(2), ν)| of semi-
standard domino tableaux of the shape Λ(2) and content ν, where Λ(2) is a
unique partition such that
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• 2-core(Λ(2)) = ∅,
• 2-quotient(Λ(2)) = (λ, µ).
The partition Λ(2) := Λ(2)(λ, µ) can be constructed, see e.g. [18], as follows:
Take an integer r ≥ max(l(λ), l(µ)), then

Λ(2)(λ, µ) + (2r, 2r − 1, . . . , 2, 1)

= (2λ1 + 2r − 1, . . . , 2λk + 2(r − k) + 1, . . . , 2λr + 1)

× ∪ (2µ1 + 2r, . . . , 2µj + 2(r − j), 2µr + 2).

Remember, [53], p.6, that if λ and µ are partitions, then λ ∪ µ denotes the
partition whose parts are those of λ and µ, arranged in descending order.

Example 5.8. Take λ = µ = (2, 1) and ν = (3, 2, 1). Then λ̃ =
(4, 3, 2, 1), R̃ = (3, (2, 2), 2, 1) and Kλ̃,R̃(q) = q2(2, 3, 1). More generally,∑

n≥0

Knλ̃,nR̃(q) tn = (1 − q8t2)/(1 − q3t)2(1 − q4t)3(1 − q5t).

It is easy to see that a(λ̃, R̃) = 3 = |ν| − |µ| and b(λ̃, R̃) = 2 = cν
λ,µ.

Furthermore, Λ := Λ(2) = (4, 4, 2, 2), and the spin polynomial [11], and
the charge-spin polynomial Kν

λµ(q, t) [35] are equal to:∑
T∈Tab(2)(Λ,ν)

tspin(T ) = t + 3t2 + 2t3, Kν
λµ(q, t)

=
∑

T∈Tab(2)(Λ,ν)

qcharge(T ) tspin(T ) = q3t(1 + qt)(1 + t + qt).

Thus, cν
λ,µ(t) = Kν

λµ(q, t)|q3 = t + t2, where cν
λ,µ(t) denotes the LLT t-analog

of the LR-number cν
λ,µ.

(20) More generally, let λ ⊃ µ be partitions such that the complement
λ \ µ is a disjoint union of partitions λ(1), . . . , λ(p), and l(µ) = m. Let ν be a
partition, define composition ν̃ = (µ, ν) and partition η = (m, 1|ν|). Then

Kλν̃η(q) = qa(λ,µ,ν)(cν
λ(1),... ,λ(p) + · · · + qn(ν)−n(λ(1))−···−n(λ(p))),(5.47)

where
cν
λ(1),... ,λ(p) := Mult[Vν : Vλ(1) ⊗ · · · ⊗ Vλ(p) ]

denotes the (multiple) Littlewood–Richardson coefficient, and a(λ, µ, ν)
∈ Z≥0.
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(♣) Moreover, Kλν̃η(1) = #|Tab(p)(Λ(p), ν)| is equal to the number of
semistandard p-rim hook tableaux of shape Λ(p) and content ν, where Λ(p) is a
unique partition such that

• p-core(Λ(p)) = ∅.
• p-quotient(Λ(p)) = (λ(1), λ(2), . . . , λ(p)).
Similar to the case p = 2, the partition Λ(p) can be constructed as follows:
Take an integer r ≥ max(l(λ(1)), . . . , l(λ(p))), then

Λ(p) + (pr, pr − 1, . . . , 2, 1) = ∪p
k=1(pλ

(k)
1

+ p(r − 1) + k, . . . , pλ
(k)
j + p(r − j) + k, . . . , pλ(k)

r + k).

We refer the reader to [53], Chapter I, Section 1, Example 8, for definitions
of the p-core and p-quotient of a partition Λ, and [47] for the definition of
semistandard p-rim hook tableaux (domino tableaux in the case p = 2).

(♠) Note also, that the order of parts in the definition of composition ν̃ is
important.
(30) Let A = Λ \ λ and B = M \ µ be skew diagrams and ν be a partition.
Define partitions

α = ((MΛ′
1

1 ) + Λ) ∗ M, η = (Λ′
1 + M ′

1, 1
|ν|), γ = ((MΛ′

1
1 + λ) ∗ µ)

and composition
β = (((MΛ′

1
1 + λ) ∗ µ, 0M ′

1−µ′
1) ∗ ν).

Assume that |A| + |B| = |ν|, Then

(♠) Kαβη(q) = q|ν| Kα\γ,ν(q) = q|ν| {cν
A,B + higher degree terms in q}.

Therefore, a(α, β‖η) ≥ |ν|, and a(α, β‖η) = |ν| if and only if cν
A,B �= 0. In this

case
b(α, β‖η) = cν

A,B = 〈sAsB, sν〉,

where b(α, β‖η) denotes the initial coefficient of the polynomial Kαβη(q), see
Definition 6.1, sA and sB denote the skew Schur functions corresponding to the
skew diagrams A and B, and 〈•, •〉, denotes the scalar product (the so–called
Redfield–Hall scalar product) on the ring of symmetric functions, see e.g. [53],
Chapter I, Section 4.

We don’t know any “nice” combinatorial interpretation of the numbers
Kαβη(1) or Kαβη(−1).

For a nice combinatorial description of the numbers cν
A,B in terms of “pic-

tures”, see [73].
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See also Section 6.8 for a slightly different exposition of connections be-
tween the Littlewood–Richardson numbers and the parabolic Kostka polyno-
mials.

§5.3. MacMahon polytope and rectangular Narayana numbers [35]

Take λ = (n+k, n, n−1, . . . , 2) and µ = λ′ = (n, n, n−1, n−2, . . . , 2, 1k).
If n ≥ k ≥ 1, then for any positive integer N

• a(Nλ, Nµ) = (2k − 1)N ;

• b(Nλ, Nµ) = dimV
gl(N+k−1)

((n−k+1)k−1)
=

k−1∏
i=1

n−k+1∏
j=1

N + i + j − 1
i + j − 1

.

In other words, b(Nλ, Nµ) is equal to the number of (weak) plane parti-
tions of rectangular shape ((n − k + 1)k−1) whose parts do not exceed N, see
e.g. [53], [67]. It is well-known, see e.g. [35], [67], that the number b(Nλ, Nµ) is
equal also to the number i(Mk−1,n−k+1; N) of rational points x in the MacMa-
hon polytope Mk−1,n−k+1 such that the points Nx have integer coordinates.
The generating function for the numbers b(nλ, nµ) has the following form

∑
n≥0

b(nλ, nµ)tn =

(k−2)(n−k)∑
j=0

N(k − 1, n − k + 1; j)tj

 /(1−t)(k−1)(n−k+1)+1,

where N(k, n; j), 0 ≤ j ≤ (k−1)(n−1), denote the rectangular Narayana num-
bers. For definition of the rectangular Narayana numbers and the MacMahon
polytope, see [35], Section 2, Exercise 1.
For the reader’s convenience, we display the numbers b(Nλ, Nµ) for small val-
ues of k and N .
If k = 1, then b(Nλ, Nµ) = 1 for all integer numbers N ≥ 1.

If k = 2, then b(Nλ, Nµ) =

(
N + n − 1

N

)
.

If N = 1, then b(λ, µ) =

(
n

k − 1

)
.

If N = 2, then b(2λ, 2µ) = 1
k

(
n

k − 1

)(
n + 1
k − 1

)
.

Thus, the number b(2λ, 2µ) is equal to the Narayana number Nk−1,n+1.

Note also, that

b(Nλ, Nµ) = KN(k,1n−k+1),N(1n)(1).
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More generally, see e.g. [30],

KN(k,1n−k+1),N(1n)(q) = qkN
k−1∏
i=1

n−k+1∏
j=1

1 − qN+i+j−1

1 − qi+j−1
= qkN

[
N

α

]
q

,

where α is a rectangular shape partition ((k − 1)n−k+1).
In particular, KN(k,1n−k+1),N(1n)(q) is a symmetric and unimodal polynomial
in q.

This example and many others, suggests the following

Problem 5.9. Define a q-analog of the numbers d(λ, µ‖η), in partic-
ular the numbers b(λ, R), which generalizes the q-analog of the LR–numbers
introduced by A. Lascoux, B. Leclerc and J.-Y. Thibon, see e.g. [49].

§5.4. Gelfand–Tsetlin’s polytope GT ((2k, 1n), (12k+n))

Let λ = (2k, 1n), k > 0, be a two–column partition, and µ = η =
(12k+n). In this Section we are going to study in more details the polynomials
Pk,n(q, t) := Pλµη(q, t), Pk,n(t) := Pλµη(1, t), Jk,n(q) := Jλµη(q), as well as the
Gelfand–Tsetlin polytope GTk,n := GT (λ, µ).

We refer the reader to [12, 35, 38, 67], vol.2, for the definition and basic
properties of the Gelfand–Tsetlin polytope GT (λ, µ) corresponding to a parti-
tion λ and composition µ.

First of all, let us remember [35] the formula for the dimension of Gelfand–
Tsetlin’s polytope GT (λ, µ), namely, if λ and µ are partitions, l(λ) = r, l(µ) =
s, then

dim GT (λ, µ) = (r − 1)(s − 1) −
(

r

2

)
−

r∑
i=1

(
λ′

i − λ′
i+1

2

)
,

where λ′
i := #{j | λj ≥ i}.

In particular, dimGTk,n = n(2k − 1) + (k − 1)2.

Proposition 5.10. (1) degt Pk,n(t) = dim GTk,n + 1 − k − n = (k −
1)(2n + k − 2);

(2) Pk,n(q, t) = (−1)ak,nqbk,ntck,nPk,n(q−1, t−1),
where ak,n = (

∑
j∈Jk,n

j) − dim GTk,n − 1, and bk,n, and ck,n are certain
non–negative integers.

In particular, Pk,n(t) is a symmetric polynomial (with non–negative coef-
ficients).
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(♠) We will say that a polynomial P (q, t) is a reciprocal one if it satisfies
the following condition:

P (q, t) = (−1)a qb tc P (q−1, t−1)

for some non–negative integers a, b and c.

Examples 5.11. (i) Take k = 4, n = 0, then dim GT4,0 = 9, Kλµ(q) =
J4,0(q) = q4(1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1), and a4,0 = 4, b4,0 = 112, c4,0 = 10.

Moreover,
P4,0(t) = 1 + 4t + 31t2 + 40t3 + 31t4 + 4t5 + t6.

In particular, the normalized volume of Gelfand–Tsetlin’s polytope GT4,0 is
equal to

112 = 24 · 7.

It seems interesting to compare the above formulae with the corresponding
formulae for the Gelfand–Tsetlin polytope corresponding to the conjugate parti-
tion λ′ = (4, 4) and the same µ and η. It’s not difficult to see that dim GT ((4, 4),
(18)) = 5, J(4,4),(18),(18)(q) = {12, 14, 15, 16, 18, 20, 24}, P(4,4),(18),(18)(t) = (1, 8,

22, 8, 1) and P(4,4),(18),(18)(q, t) is a reciprocal polynomial. In particular, the
normalized volume of the polytope GT ((4, 4), (18)) is equal to 40.

(ii) Take k = 3, n = 2, then dim GT3,2 = 14, a3,2 = 10, b3,2 = 130, c3,2 =
14, J3,2(q) = q3(1, 1, 2,3, 2, 2, 2, 1, 1, 1, 1, 1, 1), but K(23,12),(18)(q) = q3(1, 1, 2,2,

3, 3, 4, 3, 3, 2, 2, 1, 1). Therefore, the difference K(23,12),(18)(q)−J3,2(q) is a poly-
nomial with one negative coefficient. Moreover,

P3,2(t) = 1 + 13t + 225t2 + 1350t3

+4088t4 + 5768t5 + 4088t6 + 1350t7 + 225t8 + 13t9 + t10.

Therefore, the normalized volume of Gelfand–Tsetlin’s polytope GT3,2 is equal
to 17112 = 23 · 3 · 23 · 31.

On the other hand, for the conjugate partition λ′ = (5, 3) we have dimGT

((5, 3), (18)) = 6, J(5,3),(18),(18) = {13, 14, 15, 16, 17, 18, 19, 22, 23, 25} and
P(5,3),(18),(18)(t) = (1, 21, 105, 98, 20), and therefore, the polynomial P(5,3),(18),(18)

(q, t) does not satisfy the condition (2) of Proposition 5.7.
(iii) Take k = 5, n = 0, then dim GT5,0 = 16, and

P5,0(t) = (1, 25, 718, 8059, 43679, 116840, 161912, 116840,

43679, 8059, 718, 25, 1).

In particular, the normalized volume of Gelfand–Tsetlin’s polytope GT5,0

is equal to
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500556 = 22 · 3 · 7 · 59 · 101.

Note that dimGT ((5, 5), (110)) = 7, P(5,5),(110),(110)(t) = (1, 34, 295, 565,

295, 34, 1), and J(5,5),(110),(110)(q) = {20, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40}.
In particular, the normalized volume of the polytope GT ((5, 5), (110)) is

equal to 1225 = 352. One can check that P(5,5),(110),(110)(q, t) is a reciprocal
polynomial.

(♣) It is interesting to note that the polytopes GT ((nk), (1kn)) and
GT ((nk−1, n − 1), (1kn−1)) have the same (normalized) volumes and the same
h-polynomials, i.e.

P(nk),(1kn),(1kn)(t) = P(nk−1,n−1),(1kn−1),(1kn−1)(t).
However, the polynomials P(nk),(1kn),(1kn)(q, t) and P(nk−1,n−1),(1kn−1),(1kn−1)

(q, t) are different.
For example, P(3,3),(16),(16)(q, t) = 1+q10t+q20 t2, but P(3,2),(15),(15)(q, t) =

1 − q20 t3.

Moreover, J(3,3),(16),(16) = {6, 8, 9, 12}, but J(3,2),(15),(15) = {4, 5, 6, 7, 8}.

(♠) It seems an interesting problem to find under what assumptions on λ,
µ and η the polynomial Pλµη(q, t) is a reciprocal one, i.e. satisfies the condition
(2) of Proposition 5.7. One necessary condition is clear: Pλµη(t) have to be a
symmetric polynomial.

(�) We expect that the latter condition is also sufficient.

For example, the polynomials P(2k,1n),(12k+n),(12k+n)(q, t) are reciprocal; we
expect that polynomials P(nk),(1nk),(1nk)(q, t) are also reciprocal. However,
there are plenty of other cases. For example,

P(4,3,2),(2,1,2,1,2,1),(23)(q, t) = 1 + q5(−3, 2) t − 3q11(1,−1, 1) t2 + 3q16(1, 1,

1,−2)t3 + 3q23(−2, 1, 1, 1) t4 − 3q29(1,−1, 1) t5 − q36(−2, 3) t6 + q42 t7.

We have also J(4,3,2),(2,1,2,1,2,1),(23)(q) = 3q5(1, 1, 1).
(�) On the other hand, we expect that the polynomials P(n,k),(1n+k),(1n+k)

(q, t) are reciprocal if and only if k = 0, 1, n − 1, n.

In the case k = 2 we can say more:

Proposition 5.12. (1) degt P2,n(q, t) = 2n, degq P2,n(q, t) = 2n(n +
4);

(2) q2n(n+4)P2,n(q−1, t) = P2,n(q, t);
(3) Pk,n(q, t) is a polynomial with non–negative integer coefficients;
(4) P2,n(1, 1) = Cn Cn+1. In other words, the (normalized) volume of

the Gelfand–Tsetlin polytope GT2,n is equal to the product of two consecutive
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Catalan numbers Cn and Cn+1;
(5) J2,n(q) = q2(1, 1, 2, . . . , 2︸ ︷︷ ︸

n−1

, 1, . . . , 1︸ ︷︷ ︸
n+2

), and

K(22,1n),(1n+4)(q) − J2,n(q) = q6

[
n

2

]
q

.

We end this Section by discussion of some properties of the Littlewood–
Richardson coefficients cλ

δn,δn
, where δn = (n − 1, n − 2, . . . , 1, 0) denotes the

staircase partition of height n − 1.

Denote by κ(n, m) the maximal value of the LR-number cλ
δn,δn

, where λ

runs over all partitions such that l(λ) ≤ m. Let υn,m(r) denote the number
of partitions λ, l(λ) ≤ m, such that cλ

δn,δn
= r. It is well–known (theorem by

Kostant) that υn,n(1) = 2n−1.

(�) We expect that if n ≤ m ≤ 2n − 2, then υn,m(1) = 3m−n/2m−2n+1.

Problem 5.13. It is not difficult to see that υn,n(κ(n, n)) = 1, i.e. there
exists a unique partition λ := λmax, l(λ) ≤ m, with the maximal value of the
Littlewood–Richardson coefficient cλ

δn,δn
.

Question. How does this unique partition λmax look like ?

(�) We expect that if n = 2k + 1, k ≥ 1, then

λmax = (3k + [(k + 1)/2] − 1, 3k − 1, 3k − 2, . . . , k + 1, [k/2] + 1).

§5.5. One dimensional sums and parabolic Kostka polynomials

(♠) Polynomials Pλµ(q) and their interpretations [32]

In this Example we summarize different interpretations and some prop-
erties of an interesting family of polynomials Pλµ(q) which frequently appear
in Combinatorics, Algebraic Geometry, Representation Theory, Statistical Me-
chanics, ... .

Definition 5.14. The polynomials Pλµ(q) are defined as the transi-
tion coefficients between the modified Hall-Littlewood polynomials and the
monomial symmetric functions

Q′
λ(Xn; q) =

∑
µ

Pλµ(q)mµ(Xn).(5.48)
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In other words,

Pλµ(q) =
∑

η

Kηµ(1)Kηλ(q).(5.49)

To put this another way, the polynomial Pλµ(q) is a q-analog of the multiplicity
of weight λ in the tensor product ⊗iVµi

.

The polynomials Pλµ(q) admit the following interpretations:
(10) [Inhomogeneous unrestricted one dimensional sum with

“special boundary conditions”]

Pλµ(q) = qn(µ′)
∑

m∈Pλµ

qE(m),(5.50)

summed over the set Pλµ of all transportation matrices m of type (λ; µ), i.e. the
set of all matrices of non–negative integers with row sums λi and column sums
µj ; E(m) stands for the value of the energy function E(p) of the path p which
corresponds to the transportation matrix m under a natural identification, see
[32], of the set of paths Pµ(bmax, λ) with that of transportation matrices Pλµ.

We refer the reader to [46], or [32] Subsection 3.1, Example 10, for a definition
of the set of paths Pµ(bmax, λ).

(20) [Generating function of a generalized mahonian statistics ϕ

on the set of transportation matrices Pλµ]

Pλµ(q) = qn(µ′)
∑

m∈Pλµ

qϕ(m).

For the definition and examples of generalized mahonian statistics see [32]. For
example, the energy function E(m) defines a generalized mahonian statistics
on the set of transportation matrices.

(30) [The Poincare polynomial of the partial flag variety Fλ
µ/C]

Pλµ(q) =
∑
i≥0

qn(λ)−i dimH2i(Fλ
µ ;Z).(5.51)

This result is due to R. Hotta and N. Shimomura [25].

(40) [The number of Fq–rational points of the partial flag variety
Fλ

µ/Fq]

qn(λ)Pλµ(q−1) = Fλ
µ (Fq).(5.52)
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(50) [The number of chains of subgroups]

{e} ⊆ H(1) ⊆ H(2) ⊆ · · · ⊆ H(m) ⊆ G

in a finite abelian p–group G of type λ, such that each subgroup H(i)

has order pµ1+···+µi

αλ(S; p) = pn(λ)Pλµ(p−1),(5.53)

where S := S(µ) = (µ1, µ1 + µ2, . . . , µ1 + µ2 + · · · + µm), and l(µ) = m + 1.
For more details, proofs and an interesting history of this result, see e.g [10].

(60) [String function of affine Demazure’s module Vw(lΛL) corre-
sponding to the element w = rLn−1rLn−2 . . . rL+2rL+1rL of the affine
Weyl group W (A(1)

n−1)]

P(lL)µ(q) •==
∑
n≥0

dim Vw(lΛL)µ−nδq
n.(5.54)

This result has been obtained in [46], where one can find necessary definitions,
proofs and further details.

(70) [Generalized t–supernomial coefficients

[
λ

µ

](0)

t

and t–multi-

nomial coefficients T (0)(λ; µ)][
λ

µ

](0)

t

=
∑

η

KηµK̃ηλ(t) = tn(λ)
∑

η

KηµKηλ(t−1),(5.55)

T (0)(λ; µ) = t−EminPλµ(t),(5.56)

for some known constant Emin.
The coefficients (5.55) and (5.56) are natural generalizations of those intro-

duced by A. Schilling and S.O. Warnaar in the case l(µ) = 2, see [31, 62, 63, 71].

(80) [Fermionic expression for polynomials Pλµ(q)]
Let λ be a partition and µ be a composition, l(µ) = n, then

Pλµ(q) =
∑
{ν}

qc({ν})
n−1∏
k=1

∏
i≥1

[
(ν(k+1))′i − (ν(k))′i+1

(ν(k))′i − (ν(k))′i+1

]
q

,(5.57)

summed over all flags of partitions ν = {0 = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(n) = λ},
such that |ν(k)| = µ1 + · · · + µk, 1 ≤ k ≤ n, and

c({ν}) =
n−1∑
k=0

∑
i≥1

(
(ν(k+1)′i − (ν(k))′i

2

)
.
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See [32], Sections 3 and 4, and [22] , where further details and applications of
the fermionic formula (5.57) can be found.

In particular, the fermionic formula (5.57) gives an explicit expression for
the number |Fλ

µ (Fq)| of rational points of the partial flag variety Fλ
µ over the

finite field Fq.

Problem 5.15. Deduce the fermionic formula (5.57) from the Lefschetz
fixed points formula, applied to the Frobenius automorphism of the variety Fλ

µ .

(90) [Truncated form or finitization of the characters and branch-
ing functions of (some) integrable representations of the affine Lie
algebra of type A

(1)
n−1]

The observation that certain special limits of polynomials Pλµ(q) and
Kostka–Foulkes polynomials may play an important role in the representation
theory of affine Lie algebras originally was made in [31]. It was observed in
[31], that the character formula for the level 1 vacuum representation V (Λ0) of
the affine Lie algebra of type A

(1)
n−1 (see, e.g., [26], Chapter 13) can be obtained

as an appropriate limit N → ∞ of the modified Hall–Littlewood polynomials
Q′

(1N )(Xn; q). The proof was based on the following well–known formula

P(1N )µ(q) = qn(µ′)

[
N

µ1, . . . , µn

]
q

,

see [31], (2.28).
The latter observation about a connection between the character

ch(V (Λ0)) and modified Hall-Littlewood polynomials Q′
(1N )(Xn; q), immedi-

ately implies that the level 1 branching functions bΛ0
λ (q) can be obtained as an

appropriate limit λN → ∞ of the “normalized” Kostka–Foulkes polynomials
q−AN KλN ,(1N )(q). We refer the reader to [26], Chapter 12, for definitions and
basic properties of the branching functions bΛ

λ (q) corresponding to an integrable
representation V (Λ) of an affine Lie algebra.

It was conjectured in [31], Conjecture 4, that the similar result should be
valid for the branching functions bΛ

λ (q) corresponding to the integrable highest
weight Λ irreducible representation V (Λ) of the affine Lie algebra ŝl(n). This
conjecture has been proved in [31] in the following cases: ŝl(n) and Λ = Λ0,
ŝl(2) and Λ = lΛ0, and ŝl(n) and Λ = 2Λ0. It had not been long before
A. Nakayashiki and Y. Yamada [58] proved this conjecture in the case ŝl(n)
and Λ = lΛi, 0 ≤ i ≤ n − 1. See also [39] for another proof of the result
by A. Nakayashiki and Y. Yamada in the case i = 0. The general case has
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been investigated in [22]. It happened that in general the so–called thermody-
namical Bethe ansatz limit of Kostka–Foulkes polynomials gives the branching
function of a certain reducible integrable representation of ŝl(n), see details in
[22].

(♠♠) [Parabolic Kostka polynomials and 1D sums]
Let λ, µ be partitions, |λ| = |µ|, and n, N be natural numbers such that

l(λ) = r ≤ n, l(µ) = s ≤ n, and N ≥ λ1 + µ1. Define partitions αN = (Nn)
and

βN = (N − λr, N − λr−1, . . . , N − λ1, µ1, µ2, . . . , µs).

Theorem 5.16 (Algebraic version of the Robinson-Schensted-
Knuth correspondence).

Let λ, µ, n, N, αN and βN be as above. Then
i) KαN βN

(q) ≤ KαN+1βN+1(q);

ii) If N ≥ |λ|, then KαN βN
(q) •==

∑
η

Kηλ(q)Kηµ(q).(5.58)

Theorem 5.17 (Algebraic version of the dual Robinson-Schen-
sted-Knuth correspondence).

Let λ, µ be partitions, |λ| = |µ|, l(λ) = r ≤ n, N ≥ λ1. Define the
rectangular shape partition αN = (nN ) and dominant sequence of rectangular
shape partitions RN = {µ, (1N−λr), . . . , (1N−λ1)}. Then

i) KαN RN
(q) ≤ KαN+1RN+1(q);

ii) If N ≥ |λ|, then KαN RN
(q) •==

∑
η

Kηλ(q)Kη′µ(q).(5.59)

In particular, the following numbers

K(Nn),((n−1)N ,1N )(1) =
∑

λ�N, l(λ)≤n

(Kλ,(1N )(1))2

are equal to the number of permutations w ∈ ΣN such that the all increasing
subsequences in w have the length at most n.

Theorem 5.18 (1D sums and parabolic Kostka polynomials).
(i) Let λ and µ be partitions of the same size n. Define partition αN =

(Nn) and sequence of compositions

µ̃µµµµµµµµµµµµµµµN = ((N − λr, 0r−1), (N − λr−1, 0r−1), . . . , (N − λ1, 0r−1), µ).

Then
KαN , µ̃µµµN

(q) •==
∑

η

Kη,λ(1)Kη,µ(q) = Pµ,λ(q).
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(ii) Keep notation of the previous item, but define

µ̃µµµµµµµµµµµµµµµ
(0)
N = (N − λr, N − λr−1, . . . , N − λ1, (µ1, 0(r−1)), . . . , (µs, 0(r−1))).

Then
K

αN , µ̃µµµ
(0)
N

(q) •==
∑

η

Kη,λ(q)Kη,µ(1) = Pλ,µ(q).

Example 5.19. Take n = 6, λ = (2, 2, 2) and µ = (2, 2, 1, 1). One
can take N = 6. Then α6 = (6, 6, 6), µµµµµµµµµµµµµµµµ6 = ((4), (4), (4), (2), (2), (1), (1)),
µ̃µµµµµµµµµµµµµµµ6 = ((4, 0, 0), (4, 0, 0), (4, 0, 0), (2), (2), (1), (1)), µ̃µµµµµµµµµµµµµµµ

(0)
6 = ((4), (4), (4), (2, 0, 0),

(2, 0, 0), (1, 0, 0), (1, 0, 0)), and∑
η

Kη,λ(q)Kη,µ(q) = q7(1, 1, 3, 3, 5, 4, 6, 3, 3, 2, 1, 0, 1) = Kα6, µµµµ(q),

∑
η

Kη,λ(q)Kη,µ(1) = q13(1, 4, 8, 9, 7, 3, 1) = K
α6, µ̃µµµ

(0)
6

(q),

∑
η

Kη,λ(1)Kη,µ(q) = q31(3, 6, 9, 7, 5, 2, 1) = Kα6, µ̃µµµ6
(q).

Conjecture 5.20 (Summation formulas for parabolic Kostka poly-
nomials).

(i) Let µµµµµµµµµµµµµµµµ = (µ(a) := (µ(a)
1 , . . . , µ

(a)
ηa ))r

a=1 and νννννννννννννννν be two sequences of par-
titions such that |µµµµµµµµµµµµµµµµ | = |νννννννννννννννν |. Take n :=

∑r
a=1 ηa and N ≥ |µµµµµµµµµµµµµµµµ |, and define the

sequence of partitions µ̃µµµµµµµµµµµµµµµ := (µ̃(r), µ̃(r−1), . . . , µ̃(1)), where

µ̃(a) := (N − µ(a)
ηa

, . . . , N − µ
(a)
2 , N − µ

(a)
1 ).

Then
K(Nn),( µ̃µµµ, νννν)(q)

•==
∑

λ

Kλ, µµµµ(q)Kλ, νννν (q).

(ii) Define the sequence of partitions µµµµµµµµµµµµµµµµ0 = (µ(a)
0 := (µ(a)

1 , . . . , µ
(a)
ηa , 0(N−ηa)))

r

a=1

and in a similar way that νννννννννννννννν 0. Then

K(Nn),( µ̃µµµ, νννν0)(q)
•==
∑

λ

Kλ, µµµµ(q)Kλ, νννν (1),

K(Nn),( µ̃µµµ0, νννν)(q)
•==
∑

λ

Kλ, µµµµ(1)Kλ, νννν (q).

§6. Parabolic Kostka Polynomials: Conjectures

We keep notation of Section 2. Thus, λ is a partition, µ and η are com-
positions such that |λ| = |µ|, |η| = n, and ll(µ) ≤ n. Let Kλµη(q) denote the
parabolic Kostka polynomial as defined in Section 4.
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Definition 6.1. Let λ, µ and η be as above, and assume that Kλµη(q) �=
0. Introduce non-zero numbers b(λ, µ‖η) and d(λ, µ‖η), and integer numbers
a(λ, µ‖η) and c(λ, µ‖η) via the decomposition

Kλµη(q) = b(λ, µ‖η)qa(λ,µ‖η) + · · · + d(λ, µ‖η)qc(λ,µ‖η).(6.60)

If Kλµη(q) = 0, we put by definition, a(λ, µ‖η) = b(λ, µ‖η) = c(λ, µ‖η) =
d(λ, µ‖η) = 0.

If a composition µ is the concatenation of partitions µ(1), µ(2), . . . , µ(r), we
will use notation a(λ, µµµµµµµµµµµµµµµµ) := a(λ, µ‖η), b(λ, µµµµµµµµµµµµµµµµ) := b(λ, µ‖η). If compositions µ

and η correspond to a (dominant) sequence of rectangular shape partitions R,

we will write a(λ, R) instead of a(λ, µ‖η), b(λ, R) instead of b(λ, µ‖η), and so
on.

§6.1. Non-vanishing conjecture

Conjecture 6.2. Let λ be a partition, µ and η be a composition, ll(µ) ≤
|η| = n. Then

Kλµη(q) �= 0, if and only if λ − µ ∈ Yη.

(♣) Moreover, Kλµη(q) ≤ KΦ(η)(λ − µ| q),
and the equality is attained on a certain polyhedral domain Dη in “the space
of parameters” Zη = {(λ, µ) ∈ Zn

≥0 × Zn
≥0 | λ1 ≥ · · · ≥ λn, λ − µ ∈ Yη}.

§6.2. Positivity conjecture

Conjecture 6.3. Let λ be a partition and µ, and η be compositions
such that |λ| = |µ|, ll(µ) ≤ |η| . Then

d(λ, µ‖η) ≥ 0.

Remark 6.4. It may happen that the all coefficients of a parabolic
Kostka polynomial Kλ, µµµµ(q), except that d(λ, µµµµµµµµµµµµµµµµ), are negative. For example,
take λ = (2, 2) and µµµµµµµµµµµµµµµµ = ((0), (1, 0), (1, 0), (1), (1)). Then

Knλ,nµµµµ(q) = −q7n−1

[
n +

n∑
k=1

(2n − 2k + 1)qk

]
+ (n + 1)2q8n.

Note, that in our example b(nλ, nµµµµµµµµµµµµµµµµ) = −n, a(nλ, nµµµµµµµµµµµµµµµµ) = 7n−1, c(nλ, nµµµµ) = 8n,

d(nλ, nµµµµ) = (n + 1)2, Knλ,nµµµµ(1) = n + 1, Knλ,nµµµµ(−1) = (n + 1)2, and∑
n≥0

Knλ,nµµµµ(q) tn = (1− q6(1 + 3 q − q2)t + 3q14t2 − q23t3)/(1− q7t)2(1− q8t)3.
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On the other hand,

K(2n,2n),(n,n,n,n)(q) = q2n

[
n + 1

1

]
q2

.

§6.3. Generalized saturation conjecture for parabolic Kostka
polynomials

Conjecture 6.5 (�) (Generalized Saturation Conjecture).
Let λ be a partition, and µ and η be compositions, then for any integer

N ≥ 1

c(Nλ, Nµ‖η) = Nc(λ, µ‖η).(6.61)

(��) Let λ and µ be partitions and η be a composition, then for any integer
N ≥ 1

a(Nλ, Nµ‖η) = N a(λ, µ‖η)

(���) More generally, let λ(1), λ(2), . . . , λ(s) be a sequence of partitions, η be
a composition and µ(1), µ(2), . . . , µ(s) be a sequence of compositions such that
|λ(j)| = |µ(j)| and ll(µ(j)) ≤ |η| for all j. Let N , p1, p2, . . . , ps be positive integer
numbers.

For each i, 1 ≤ i ≤ N, define partitions

λ̂(i) :=

 s∑
j≥1

pjλ
(j) + N − i

 /N

 and µ̂(i)(6.62)

:=

 s∑
j≥1

pjµ
(j) + N − i

 /N

 .

Assume that |λ̂(j)| = |µ̂(j)| for all j. Then

s∑
j=1

pj c(λ(j), µ(j)‖η) =
N∑

i=1

c(λ̂(i), µ̂(i)‖η).

(�) If λ and µ are partitions, then we expect the similar conjecture for
the numbers a(λ, µ‖η).

Remember that for any real number x the symbol [x] denotes the integer
part of x.
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Remark 6.6. It is not true in general that the inequality

deg KΦ(η)(w(λ + δ) − µ − δ| q) < deg KΦ(η)(λ − µ| q)(6.63)

holds for any permutation w ∈ Σn, w �= id, as it happens in the case η = (1n),
see Example 4.2. If it would be so, the Generalized Saturation Conjecture would
follow easily from Saturation Theorem for the parabolic q-Kostant partition
function, see Corollary 3.14. It is also not true in general that

c(λ, µ‖η) := deg Kλµη(q) = deg KΦ(η)(λ − µ| q),(6.64)

even if µ is a dominant sequence of rectangular shape partitions of the same
length which is compatible with η, see Example 4.2. In fact, it looks a difficult
problem to find an explicit formula for the numbers c(λ, µ‖η).

(�) However, we expect the validity of the following inequality

Kλµη(q) ≤ KΦ(η)(λ − µ| q),(6.65)

and if λ is a partition and R = (Ra := (µk
a)p

a=1) is a dominant sequence of
rectangular shape partitions of the same length k, then d(λ, R) = 1.

(�) By duality, we expect that if R = (Ra := (kηa)p
a=1) is a sequence of

rectangular shape partitions of the same width k, then b(λ, R) = 1.

§6.4. Rationality conjecture

Conjecture 6.7. Let λ be a partition, and µ and η be compositions
such that λ − µ ∈ Yη, and (according to Theorem 4.14)

•
∑

n≥0 Knλ,nµ,η(q) tn = Pλµη(q, t)/Qλµη(q, t),
where Pλµη(q, t) and Qλµη(q, t) are mutually prime polynomials with integer
coefficients, Pλµη(0, 0) = 1,

• Qλµη(q, t) =
∏

j∈J (1 − qj t)nj

for some finite set of integers J := Jλµη = {jmin = j1 < j2 < · · · < js = jmax},
and a set of non–negative integers {nj}j∈J .

(�) Let Pλµη(q, t) =
∑

k≥0 P
(k)
λµη(q) tk, P

(0)
λµη(q) = 1, and (if P

(k)
λµη(q) �= 0)

P
(k)
λµη(q) = βk(λµη)qαk(λµη) + · · · + δk(λµη)qγk(λµη).

Then, for all k > 0 such that P
(k)
λµη(q) �= 0, the following inequalities

γk(λµη) ≤ kjmax
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have to be valid. Moreover, if the equality is attained for some value of k, then
for the corresponding value of k one should have δk(λµη) ≥ 0.

(��) If λ and µ are partitions, then additionally, for all k > 0 such that
P

(k)
λµη(q) �= 0, the following inequalities

αk(λµη) ≥ kjmin

have to be valid, and if the equality is attained for some k, then for the corre-
sponding value of k one should have βk(λµη) ≥ 0.

It follows from Remark 4.22, (♠), that the polynomial P
(1)
λµη(q) may have neg-

ative integer coefficients.

It is easily seen that Rationality Conjecture, item (i), implies both Posi-
tivity and Generalized Saturation Conjectures. Rationality Conjecture, item,
(ii), implies the item (ii) of Conjecture 6.5.

Question 6.8. Does there exist a “nice” combinatorial interpretation of
the set J := Jλµη and the exponents {nj}j∈J which have appeared in Rationality
Conjecture ?

Examples 6.9. For the reader’s convenience, we list below a few ex-
amples of the set Jλµη.

(i) J(3,3,2,1),(2,1,2,1,2,1),(23) = {32, 43, 53, 62}, degt Pλµη(q, t) = 8.

(ii) J(4,2,2,1),(2,1,2,1,2,1),(23) = {44, 56, 63}, degt Pλµη(q, t) = 10.

(iii) J(5,4,2,1),(3,24,1),(23) = {4, 52, 63, 72}, degt Pλµη(q, t) = 5.

(iv) J(5,4,2,1),(3,24,1),(2,12,2) = {4, 52, 63, 72, 82, 92}, degt Pλµη(q, t) = 9.

(v) J(2,2),(04,1,3),(16) = {5, 6, 7, 8, 92, 10, 11, 12, 13, 15, 17}, degt Pλµη(q, t)
= 12.

(vi) J(4,4,2,2),(26),(16) = {4, 6, 83, 10, 12, 14, 16}, degt Pλµη(q, t) = 7
and P(4,4,2,2),(26),(16)(q, t) is a reciprocal polynomial.

(vii) J(4,3,2,1),(25),(15) = {3, 4, 5, 6, 7, 8, 9, 10}, degt Pλµη(q, t) = 6
and J(4,3,2,1),(25),(15)(q, t) is a reciprocal polynomial.

(viii) J(4,3,2,1),(110),(25) = {10, 113, 123, 132, 142, 152, 16, 17}, degt Pλµη(q, t)
= 8, but P(4,3,2,1),(110),(25)(q, t) is not a reciprocal polynomial.

(ix) J(6,5),(111),(111) = {25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 40, 41, 43,

45, 50},
degt Pλµη(q, t) = 16 and P(6,5),(111),(111)(q, t) is a reciprocal polynomial.

(x) J(24,1),(19),(19)(q) = q4(1, 1, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 1, 1, 1, 1, 1), K(24,1),(19)

(q) − J(24,1),(19),(19)(q) = q9(1, 2, 2, 1, 2, 2, 1, 2, 1), degt Pλµη(q, t) = 23, and
P(24,1),(19),(19)(q, t) is a reciprocal polynomial.
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(�) We expect that if η1 and η2 are two compositions such that η2 is a
subdivision of η1, then Jλ,µ,η1 ⊆ Jλ,µ,η2 .

§6.5. Polynomiality conjecture

Conjecture 6.10. (�) Let λ be a partition, µ and η be compositions.
Then d(Nλ, Nµ‖η) is a polynomial in N with non-negative rational coeffi-
cients of the following form:

there exist a non-negative integer D and a sequence of non-negative inte-
gers
h0 = 1, h1, . . . , hD( �= 0) such that

d(Nλ, Nµ‖η) =
D∑

k=0

hk

(
N + D − k

D

)
.

(��) Let λ be a partition, µ and η be compositions, and

qc(nλ,nµ‖η)Knλ,nµ,η(q−1) =
∑
k≥0

dλµη(k; n) qk,

so that dλµη(0; N) = d(Nλ, Nµ‖η).
Then for a fixed k ≥ 0, there exists a polynomial with rational coefficients

D
(k)
λµη(t) of degree depending only on λ, µ and η, but not k, such that if N ≥ k,

then dλµη(k; N) = D
(k)
λµη(N).

Hence, there exists the limit

lim
n→∞

qc(nλ,nµ‖η)Knλ,nµ,η(q−1)/d(nλ, nµ‖η).

(�) Moreover, we expect that D
(0)
λµη(t) and D

(1)
λµη(t) have non–negative co-

efficients.
(���) Let λ and µ be partitions, and

Knλ,nµ,η(q) = qa(nλ,nµ‖η)

∑
k≥0

bλµη(k; n) qk

 ,

so that bλµη(0; N) = b(Nλ, Nµ‖η).
Then for a fixed k ≥ 0, there exists a polynomial with rational coefficients

B
(k)
λµη(t) of degree depending only on λ, µ and η, but not k, such that if N ≥ k,

then bλµη(k; N) = B
(k)
λµη(N).

Hence, there exists the limit

lim
n→∞

q−a(nλ,nµ‖η)Knλ,nµ,η(q)/b(nλ, nµ‖η).
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(�) Moreover, we expect that B
(0)
λµη(t) and B

(1)
λµη(t) have non–negative coef-

ficients.
(����) Let {(λa, µ(a))}(r)

a=1 be a collection of pairs (λa, µ(a)), where for
all a, 1 ≤ a ≤ r, λa is a partition and µ(a) is a composition of the fake length
at most n. Let η be a composition of size n. Then, there exists a piecewise
polynomial function M(t1, . . . , tr) with rational coefficients such that for each
r-tuples of non-negative integers (n1, . . . , nr) one has

M(n1, . . . , nr) = d(n1λ1 + · · · + nrλr, n1µ1 + · · · + nrµr‖η).

(�) Moreover, we expect that if all compositions µ(a) ′s are in fact partitions,
then the restriction of M(t1, . . . , tr) on “the dominant chamber” {(n1 ≥ · · · ≥
nr) ∈ Zr

≥0} is a polynomial wit non–negative rational coefficients.

Let us note that Polynomiality Conjecture, items (�)–(���), follow from
Rationality Conjecture, except the statements about non–negativity.

Example 6.11. Take λ = (5, 3, 3, 2), µ = (3, 3, 3, 2, 1, 1) and η = (16).
Based on formulas from Example 4.17 (i), one can find that

lim
n→∞

q−a(nλ,nµ‖η)Knλ,nµ,η(q)/b(nλ, nµ‖η) = (1 − q)−6(1 + q)−2.

Remark 6.12. Even in the case when µµµµµµµµµµµµµµµµ is a dominant sequence of rect-
angular shape partitions, the sequence (h0, h1, . . . , hD) does not necessarily
turn out to be unimodal. For example, take λ = (5, 4, 3, 2, 1), µ = (2, 2, 2) and
ν = (6, 5, 4, 3, 2, 1). It is not difficult to compute the corresponding Littlewood–
Richardson numbers:

cnν
nλ,nµ = K(n(2,2,2),n(16))(1) =

(
n + 4

4

)
+

(
n + 2

4

)
= (n + 1)(n + 2)(n2 + 3n + 6)/12.

Hence, in this case D = 2 and (h0, h1, h2) = (1, 0, 1). It is not difficult to check
that∑
n≥0

Kn(2,2,2),n(16)(q)tn = (1+q15 t2)/(1−q3t)(1−q5t)(1−q6t)(1−q7t)(1−q9t).

We see that in our example P
(1)
λµη(q) = 0. We can show that P

(1)
(24),(18),(18)(q) = 0

as well.
(�) However, we expect that if n ≥ 5, then P

(1)
(2n),(12n),(12n)(q) �= 0.

For example, P
(1)
(25),(110),(110)(q) = q10(−1, 1, 1, 2, 2, 2, 2, 3, 1, 2, 1).
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Let us observe that c
(6,5,4,3,2,1)
(5,4,3,2,1),(2,2,2) = 5 is equal to the third Catalan

number C3. More generally, one can show that

c
(2n,2n−1,... ,2,1)
(2n−1,2n−2,... ,2,1),(2n) = K(2n),(12n)(1) =

1
n + 1

(
2n

n

)
= Cn

is equal to the n-th Catalan number.
For definition of unimodal sequences/polynomials see e.g. [66], where one

can find a big variety of examples of unimodal sequences which frequently
appear in Algebra, Combinatorics and Geometry.

Remark 6.13. In the particular case when b(Λ, R) = cν
λ,µ, see Section

5.2, the fact that the function fν
λ,µ(N) := cNν

Nλ,Nµ is a polynomial in N with
rational coefficients follows from Polynomiality Theorem for parabolic Kostka
polynomials, see Corollary 4.15, and has been proved independently by the
several authors: A. Knutson (unpublished), H. Derksen and J. Weyman [15],
E. Rassart [61], ... .

We would like to state separately two particular cases of Conjecture 6.10.

§6.6. The generalized Fulton, d(λ, µ‖η) = 2 and d(λ, µ‖η) = 3
conjectures

Conjecture 6.14 (�) (The generalized Fulton conjecture).
If d(kλ, kµ‖η) = 1 for some positive integer k, then d(Nλ, Nµ‖η) = 1 for

all positive integers N.

(��) If d(λ, µ‖η) = 2, then d(Nλ, Nµ‖η) = N + 1 for all positive integers
N.

If d(λ, µ‖η) = 3, we expect that there are only two possibilities:

either d(Nλ, Nµ‖η) = 2N + 1, or d(Nλ, Nµ‖η) =

(
N + 2

2

)
.

(�) Therefore, we expect that the cases d(Nλ, Nµ‖η) =

(
N + 2

2

)

+ k

(
N

2

)
,

1 ≤ k ≤ 3, do not occur. For example, we don’t know whether or not there
exist a partition λ and a dominant sequence of rectangular shape partitions R

such that d(λ, R) = 3, but d(2λ, 2R) ≥ 7.
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Remark 6.15. In the case when the numbers b(λ, R) coincide with the
Littlewood–Richardson numbers, see Section 5.2, the Fulton conjecture has
been proved by A. Knutson, T. Tao and C. Woodward [44].

Remark 6.16. If µ is a composition, but not a partition, then Conjec-
ture 6.14 (�) is not, in general, valid for the numbers b(λ, µ‖η). For exam-
ple, take λ = (3, 2, 1) and µµµµµµµµµµµµµµµµ = ((0), (2, 0), (2), (2)), see Examples 4.6. Then
a(λ, µµµµµµµµµµµµµµµµ) = 3, b(λ, µµµµµµµµµµµµµµµµ) = 1, but a(2λ, 2µµµµµµµµµµµµµµµµ) = 7, b(2λ, 2µµµµµµµµµµµµµµµµ) = 3 and a(3λ, 3µµµµµµµµµµµµµµµµ) =
8, b(3λ, 3µµµµµµµµµµµµµµµµ) = −1. In fact, if n ≥ 3, then a(nλ, nµµµµµµµµµµµµµµµµ) = 3n− 1, b(nλ, nµµµµµµµµµµµµµµµµ) = 2−n.
On the other hand, c(nλ, nµµµµµµµµµµµµµµµµ) = 9n and d(nλ, nµµµµµµµµµµµµµµµµ) = n+1, ∀n ≥ 1. In particular,
we see that b(Nλ, Nµµµµµµµµµµµµµµµµ) becomes a polynomial in N only starting from N = 3.

§6.7. q-Log concavity and P–positivity conjectures

Conjecture 6.17 (q-Log concavity and P–positivity conjectures).

(�) (q-Log concavity conjecture for parabolic Kostka polynomi-
als)

(a) Let λ and µ be partitions and η be a composition. Consider the
function gN (q) := gλµη

N (q) = KNλ,Nµ,η(q). Then

(gN (q))2 ≥ gN−1(q) gN+1(q).

(�) Moreover, we expect that if a composition η2 is a subdivision of that η1,

then

(gλµη2
N (q))2 − gλµη2

N−1 (q) gλµη2
N+1 (q) ≥ (gλµη1

N (q))2 − gλµη1
N−1 (q) gλµη1

N+1 (q) ≥ 0.

(b) More generally, let λ(1), λ(2), . . . , λ(s) and µ(1), . . . , µ(s) be two se-
quences of partitions, and η be a composition such that |λ(j)| = |µ(j)| and
ll(µ(j)) ≤ |η|, 1 ≤ j ≤ s. Let N , p1, p2, . . . , ps be positive integer numbers.
Assume that |λ̂(j)| = |µ̂(j)| for all j. Then

s∏
j=1

(Kλ(j),µ(j),η(q))pj ≤
N∏

i=1

Kλ̂(i),µ̂(i),η(q).

See Conjecture 6.5, (���),(6.62), for the explanation of notation λ̂(i) and
µ̂(i).

(�) In particular, we expect that if λ := (λ(1) + · · · + λ(s))/N and µ :=
(µ(1) + · · · + µ(s))/N are partitions, then

s∏
j=1

Kλ(j),µ(j),η(q) ≤ (Kλµη(q))N .
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(c) (Strong q-log concavity conjecture for parabolic Kostka poly-
nomials)

Let l ≥ k ≥ r ≥ 1 be integers, λ, µ and η be as in Conjecture 6.17 (a),
gn(q) = Knλ,nµ,η(q). Then

gk(q)gl(q) ≥ gk−r(q)gl+r(q).

(�) Moreover, we expect that the difference gk(q)gl(q) − gk−r(q)gl+r(q) is a
unimodal polynomial.

(��) (P–positivity conjecture for parabolic Kostka numbers)
Let α ⊃ β be partitions, l(α) = r. Consider the following polynomial:

gα\β(q) := gλµη
α\β(q) = det(gαi−βj−i+j(q))1≤i,j≤r.

Then gα\β(1) ≥ 0. Equivalently, {gλµη
N (1)}N≥1 is a Pólya frequency sequence.

Remark 6.18. If r ≥ 3, then it’s not true, in general, that all the co-
efficients of polynomial gα\β(q) are non–negative. For example, take λ =
(4, 3, 2, 1), R = ((2, 2), (2), (2), (1, 1)) and α = (2, 2, 2). Then gα(q) = 4q22 +
28q23 + · · · + 7q34 − q35.

We want to state some special cases of Conjecture 6.17 in its own right.

Conjecture 6.19 (�) (The generalized Okounkov conjecture, I).
Let λ be a partition and R be a dominant sequence of rectangular shape

partitions. Then

(b(Nλ, NR))2 ≥ b((N − 1)λ, (N − 1)R) b((N + 1)λ, (N + 1)R).

(��) More generally, let λ and µ be partitions, and η be a composition,
then the power series

B(t) =
∑
n≥0

b(nλ, nµ‖η)tn

is a P -series.

Remind that a power series B(t) =
∑

n≥0 bntn is called a P -series, if
det(bλi−i+j) ≥ 0 for any partition λ.

(���) Let λ, µ, ν be partitions, then

cν
[(λ+µ+1)/2],[(λ+µ)/2] ≥ cν

λ,µ.(6.66)

For a more general conjecture, see Section 6.8.
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In the case then (λ + µ)/2 is a partition, Conjecture 6.19, (���), was
stated by A. Okounkov [60], Section 2.5. More generally,

(�) we expect that for a sequence of partitions λ(1), . . . , λ(p), the differ-
ence of products of Schur functions

p∏
k=1

s[(
∑

j λ(j)+p−k)/p] −
p∏

j=1

sλ(j)(6.67)

is a Schur or s-positive, i.e. the latter difference can be written as a linear
combination of Schur functions with non–negative (integer) coefficients, cf
Conjecture 6.23 (�).

In the case of the Littlewood–Richardson numbers Conjecture 6.18, (�),
was stated by A. Okounkov [60].

Remark 6.20. The log-concavity of numbers

dim V
gl(n)
λ = sλ(1, . . . , 1︸ ︷︷ ︸

n

) =

(
n

λ′

)
,

which can be in a natural way identified with certain numbers b(λ, R) for some
partitions λ and dominant sequences of rectangular shape partitions R, see e.g.
[30], has been proved by A. Okounkov [59].

The q-log-concavity of the generalized q-Gaussian coefficients for general
partition λ has been proved by A. Okounkov [59], and earlier for some special
cases, by L. Butler, C. Krattenthaller, B. Sagan and others. In fact, A. Ok-
ounkov has proved more fine result, namely, that not only the dimension of
an irreducible representation (or its q-dimension), but the whole skew Schur
function is log-concave.

(�) We expect, that the modified parabolic skew Hall–Littlewood func-
tion is q-log-concave as well.

§6.8. The generalized Fomin-Fulton-Li-Poon conjectures

Let A = Λ \ λ and B = M \ µ be skew diagrams and ν be a partition. Let
θ be a composition such that l(ν) ≤ |θ|. Define partitions

α = α(A, B) := ((MΛ′
1

1 ) + Λ, M), η = (Λ′
1 + M ′

1, θ)

and the composition β = β(A, B) := ((MΛ′
1

1 ) + λ, µ, 0M ′
1−µ′

1 , ν).



�

�

�

�

�

�

�

�

1228 Anatol N. Kirillov

One can prove that the ratio

Kν
A,B,θ(q) := q−|ν| Kαβη(q)

is in fact a polynomial in q with non–negative integer coefficients.
More generally, cf Section 5.2, let A(1) = Λ(1) \λ(1), . . . , A(k) = Λ(k) \λ(k)

be a k-tuples of skew diagrams, ν and θ be compositions such that ll(ν) ≤ |θ|.
Define new partitions α = α(A(1), . . . , A(k)) and β = β(A(1), . . . , A(k)) in the
following way:

if
∑

i≤r−1 Λ(i)′

1 < j ≤
∑

i≤r Λ(i)′

1 , for some 1 ≤ r ≤ k,

then αj =
∑k

i=r+1 Λ(i)
1 + Λ(r)

j , βj =
∑k

i=r+1 Λ(i)
1 + λ

(r)
j ,

where we put by definition, Λ(0) = λ(0) = ∅. In addition, define η = (
∑k−1

i=1 Λ(i)′

1

+ λ
(k)′

1 , θ).
One can prove that the ratio

Kν
A(1),... ,A(k),θ(q) := q−|ν|Kαβη(q)(6.68)

is a polynomial in q with non–negative integer coefficients.
The main intention of this Section is to state a few results, examples and

conjectures about the latter polynomials.

Proposition 6.21. If θ = (1|ν|), then
(♣) Kν

A(1),... ,A(k),θ
(0) = cν

A(1),... ,A(k) ,

where cν
A(1),... ,A(k) := 〈sA(1) . . . sA(k) , sν〉. Remember, that sA(i) denotes the

skew Schur function corresponding to the skew diagram A(i), and 〈 , 〉 denotes
the scalar product (the so–called Redfield–Hall scalar product) on the ring of
symmetric functions, see e.g. [53], Chapter I, Section 4.

In particular, if λ(1) = λ(2) = ∅, then Kν
A(1),A(2),θ

(0) is equal to the LR-
number cν

Λ(1),Λ(2) .

(♣♣) If λ(1) = · · · = λ(k) = ∅, then the number Kν
A(1),... ,A(k),θ

(1) is equal
to the number of semistandard k-rim hook tableaux of content ν and a certain
shape, see details in Section 5.2.

Conjecture 6.22 (Strong q-log concavity conjecture for polyno-
mials Kν

A(1),... ,A(k),θ
(q)).

{Kmν
mA(1),... ,mA(k),θ

(q)}m≥1 is a strong q-log concave sequence.
In particular,

(Kmν
mA(1),... ,mA(k),θ

(q))2

≥ K
(m+1)ν

(m+1)A(1),... ,(m+1)A(k),θ
(q)K(m−1)ν

(m−1)A(1),... ,(m−1)A(k),θ
(q).
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Now we are going to state a generalization of the Fomin-Fulton-Li-Poon
conjectures I and II, concerning the LR-numbers cν

A,B, see [18, 60]. To start
with, we need a bit more notation from the papers quoted above.

(♠) For an ordered k-tuples (λ(1), . . . , λ(k)) of partitions with the same
number of components p, let γ = ∪k

j=1λ
(j) = (γ1 ≥ γ2 ≥ · · · ≥ γkp) be the

decreasing rearrangement of the λ
(j)
i

′s, 1 ≤ j ≤ k, 1 ≤ i ≤ p. Define partitions

λ̃(j) = (γj , γj+k, γj+2k, . . . , γj+(p−1)k), 1 ≤ j ≤ k.

Now suppose that (A(1) = Λ(1) \ λ(1), . . . , A(k) = Λ(k) \ λ(k)) is an ordered
k-tuples of skew diagrams and θ is a composition. Construct a new ordered
k-tuples (Λ̃(1), . . . , Λ̃(k)) from the k-tuples (Λ(1), . . . , Λ(k)), and (λ̃(1), . . . , λ̃(k))
from the k-tuples (λ(1), . . . , λ(k)). It is easy to see that λ̃(j) ⊂ Λ̃(j), ∀j. Finally,
define Ã(j) = Λ̃(j) \ λ̃(j), 1 ≤ j ≤ k and η̃ = (λ̃(k)

1 +
∑k

j≥2 Λ̃(j)
1 , θ).

It is useful to consider the following modification of the above construc-
tion. Namely, for any an ordered k-tuples (λ(1), . . . , λ(k)) of partitions with
the same number of components, define a new ordered k-tuples of partitions
(λ†(1), . . . , λ†(k)) := ((λ̃(1)′)′, . . . , (λ̃(k)′)′). In a similar way, for an ordered
k-tuples (A(1), . . . , A(k)) of skew diagrams one can define a new an ordered
k-tuples of skew diagrams (A†(1), . . . , A†(k)).

Remember that for any partition λ the symbol λ′ stands for the conjugate
of the partition λ.

(♠♠) For an ordered pair (λ, µ) of partitions with the same number of
components, define a new ordered pair (λ∗, µ∗) as follows:

λ∗
k = λk − k + #{j|µj − j ≥ λk − k}, µ∗

j = µj − j + 1 + #{k|λk − k > µj − j}.

One can show, see [18], that λ∗ and µ∗ are partitions and |λ∗|+ |µ∗| = |λ|+ |µ|.
Now suppose that A = Λ \ λ, B = M \ µ are two skew shapes and θ is a

composition. Construct 2 Λ∗ and M∗ from the pair (Λ, M), and λ∗ and µ∗ from
the pair (λ, µ). It is not difficult to see that λ∗ ⊂ Λ∗ and µ∗ ⊂ M∗. Finally,
define A∗ = Λ∗ \ λ∗, B∗ = M∗ \ µ∗ and η∗ = (λ∗

1 + M∗
1 , θ).

Similarly to the previous case (♠), for an ordered pair (λ, µ) of partitions,
construct a new ordered pair of partitions (λ‡, µ‡) := (((λ′)∗)′, ((µ′)∗)′), and
for an ordered pair (A, B) of skew diagrams define a new pair of skew diagrams
(A‡, B‡).

2As we learned from the referee, a similar construction was also considered by F. Bergeron,
R. Biagnoli and M. Rosas, see e.g. [6, 7], or [55].



�

�

�

�

�

�

�

�

1230 Anatol N. Kirillov

(♣) One can show, cf [18], Section 5.1, that

if (A∗, B∗) = (A, B), then (A∗, B∗) = σ(Ã, B̃); ((Ã)∗, (B̃)∗) = σ(Ã, B̃),
(6.69)

where σ denotes the twist σ(X, Y ) = (Y, X). 3

Let us remark that the transformation (λ, µ) → (λ∗, µ∗) := (λ, µ)∗ is
not one-to-one in general, e.g. ((4, 4), (5, 3, 1))∗ = ((5, 4), (4, 2, 1))∗ = ((4, 3),
(5, 4, 1))∗.

(♠♠♠) For an ordered k-tuples (λ(1), . . . , λ(k)) of partitions with the
same number of components p, define a new ordered k-tuples of partitions
(�λ(1)�, · · · , �λ(k)�), cf (6.65), as follows:

(�λ(j)�)i =

[(
k∑

s=1

λ
(s)
i + k − j

)
/k

]
, 1 ≤ j ≤ k, 1 ≤ i ≤ p.

Now suppose that (A(1) = Λ(1) \ λ(1), . . . , A(k) = Λ(k) \ λ(k)) is an ordered
k-tuples of skew diagrams and θ is a composition. Construct in an obvious way
a new ordered k-tuples of skew diagrams (�A(1)�, · · · , �A(k)�) from the k-tuples
(Λ(1), . . . , Λ(k)) and that (λ(1), . . . , λ(k)), and put η = (λ(1)

1 +
∑k

j≥2 Λ(j)
1 , θ).

By analogy with the case (♠), for any an ordered k-tuples (λ(1), . . . , λ(k))
of partitions with the same number of components, define a new ordered k-
tuples of partitions

(λ#(1)
, . . . , λ#(k)) := ((�λ(1)′�)′, . . . , (�λ(k)′�)′).

In a similar way, for an ordered k-tuples (A(1), . . . , A(k)) of skew diagrams
one can define a new ordered k-tuples of skew diagrams (A#(1)

, . . . , A#(k)).

Theorem 6.23. For an ordered k-tuples of skew diagrams (A(1), . . . ,

A(k)) we have the following equalities:

(�A(1)�, . . . , �A(k)�) = (A†(1), . . . , A†(k)
), (Ã(1), . . . , Ã(k))(6.70)

= (A#(1)
, . . . , A#(k)

).

Conjecture 6.24 (�) (The generalized Fomin-Fulton-Li-Poon
conjecture I, cf [18, 60], and (6.66)).

Let A(1), . . . , A(k) be skew diagrams, θ be a composition and ν be a par-
tition. Then

Kν
Ã(1),... ,Ã(k),θ

(q) ≥ Kν
A(1),... ,A(k),θ(q).(6.71)

3As it was pointed by the referee, the equalities (6.69) was also proved by F. Bergeron,
R. Biagnoli and M.Rosas, see e.g. [6, 7].
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Equivalently,

Kν
�A(1)�,... ,�A(k)�,θ(q) ≥ Kν

A(1),... ,A(k),θ(q).

In particular, cν
Ã(1),... ,Ã(k) ≥ cν

A(1),... ,A(k) , cν
A†(1),... ,A†(k) ≥ cν

A(1),... ,A(k) .

(♣) We see that the generalized Fomin-Fulton-Li-Poon conjecture I, (6.71),
is equivalent to our conjecture (6.67), which in turn, is a generalization of that
(6.66). As it was mentioned, in the case when (λ + µ)/2 is a partition, the
conjecture (6.66) was stated by A. Okounkov, [60].

(��) (The generalized Fomin-Fulton-Li-Poon conjecture II, cf
[18])4

Let A, B, Λ, M, λ, µ and θ be as in (♠♠), then

Kν
A∗,B∗,θ(q) ≥ Kν

A,B,θ(q).

In particular, cν
A∗,B∗ ≥ cν

A,B, cν
A‡,B‡ ≥ cν

A,B .

(���) (The generalized Okounkov conjecture II)
Let (A(1), . . . , A(k)) be an ordered k-tuples of skew diagrams, ν be a parti-

tion and θ be a composition. Let p1, . . . , pk be non–negative rational numbers,
p1 + · · · + pk = 1. Define Ǎ(i) =

∑k
j=1 pk+1−i+j A(j), 1 ≤ i ≤ k. Assume that

the all Ǎ(1), . . . , Ǎ(k) are skew diagrams. Then

Kν
Ǎ(1),... ,Ǎ(k),θ

(q) ≥ Kν
A(1),... ,A(k),θ(q).

In particular, cν
Ǎ(1),... ,Ǎ(k) ≥ cν

A(1),... ,A(k) .

Examples 6.25. We elucidate Conjecture 6.23 in the case k = 2. To
simplify notation we will write A, B, Λ, M, λ and µ instead of A(1), A(2), Λ(1),

Λ(2), λ(1) and λ(2) correspondingly.
(i) Take Λ = (5, 1), M = (4, 3, 1), ν = (6, 5, 2, 1), θ = (14) and λ = µ = ∅.

It is easy to check that
(Λ̃, M̃) = ((5, 3, 1), (4, 1)) = (Λ#, M#); (Λ∗, M∗) = ((4, 1), (5, 3, 1));
(�Λ + M�, [Λ + M ]) = ((5, 2, 1), (4, 2)) = (Λ†, M†);
(Λ‡, M‡) = ((4, 2), (5, 2, 1)) and η = (4, 14).
Using the fermionic formula (5.44) for Kostka-Foulkes polynomials, one

can find that

4As it was pointed by the referee, a generalization of the original Fomin–Fulton–Li–Poon
conjecture II, [18], Conjecture 5.1, to the case of skew diagrams has been stated also by
F. Bergeron, R. Biagnoli and M. Rosas, see e.g. [6, 7]; see also [55].
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Kν
Λ∗,M∗,θ(q) = Kν

Λ̃,M̃,θ
(q) = (3, 11, 18, 17, 11, 4, 1), Kν

�Λ+M�, [Λ+M ],θ(q) =
(3,12,19,18,11,4,1),
Kν

Λ,M,θ(q) = (1, 6, 12, 14, 10, 4, 1).
Therefore, the difference Kν

Λ̃,M̃,θ
(q) − Kν

Λ,M,θ(q) is equal to (2, 5, 6, 3, 1).

Similar computations show that if we take θ1 = (12, 2), then (with η1 =
η̃1 = (4, 12, 2))

Kν
Λ∗,M∗,θ1

(q) = Kν
Λ̃,M̃,θ1

(q) = (3, 9, 13, 10, 5, 1), Kν
Λ,M,θ1

(q) = (1, 5, 9, 9, 5, 1)
and

Kν
�Λ+M�, [Λ+M ],θ1

(q) = (3, 10, 14, 11, 5, 1).

(ii) Take A = (5, 5, 2, 2)\(3, 1), B = (1, 1)\(1), ν = (5, 3, 2, 1) and θ = (14).
It is easy to check that

(Ã, B̃) = ((5, 2, 1) \ (3, 1), (5, 2, 1) \ (1)) = (A#, B#);
(A∗, B∗) = ((4, 3, 1)\(2), (3, 2, 2, 1)\(2, 1)); (A‡, B‡) = ((2, 2, 1)\(1), (5, 4,

1, 1) \ (3, 1));
(�A + B�, [A + B]) = ((3, 3, 1, 1) \ (2, 1), (3, 3, 1, 1) \ (2)) = (A†, B†).
Using the fermionic formula (5.44) for Kostka–Foulkes polynomials, one

can find that
Kν

A∗,B∗,θ(q) = (33, 82, 86, 53, 21, 6, 1), Kν
�A+B�, [A+B],θ(q) = (12, 20, 14,

5, 1),
Kν

Ã,B̃,θ
(q) = (20, 86, 139, 131, 86, 43, 17, 5, 1), Kν

A‡,B‡,θ(q) = (22, 56, 61, 40,

17, 5, 1),
Kν

A,B,θ(q) = (4, 9, 9, 4, 1).
Similar computations show that if we take η1 = (1, 2, 1), then
Kν

A∗,B∗,θ1
(q) = (33, 64, 41, 9), Kν

A,B,θ1
(q) = (4, 7, 3)), Kν

�A+B�, [A+B],θ1
(q)

= (12, 15, 5),
Kν

Ã,B̃,θ1
(q) = (20, 73, 87, 49, 13, 1), Kν

A‡,B‡,θ1
(q) = (22, 45, 32, 9).

These examples show that, probably, there are no simple relationships be-
tween polynomials Kν

A∗,B∗,θ(q), K
ν
Ã,B̃,θ

(q), Kν
A‡,B‡,θ(q) and Kν

�A+B�, [A+B],θ(q).
(�) However, based on examples, we expect that max{cν

A∗,B∗ , cν
Λ̃,M̃

} ≥
cν
�A+B�, [A+B].

(�) We expect that if θ1 and θ2 are compositions such that θ2 is a sub-
division of θ1, see Section 1, Notation, then

Kν
Ã(1),... ,Ã(k),θ2

(q) − Kν
A(1),... ,A(k),θ2

(q)

≥ Kν
Ã(1),... ,Ã(k),θ1

(q) − Kν
A(1),... ,A(k),θ1

(q) ≥ 0,
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Kν
A∗,M∗,θ2

(q) − Kν
A,B,θ2

(q)

≥ Kν
A∗,B∗,θ1

(q) − Kν
A,B,θ1

(q) ≥ 0,

Kν
A‡,M‡,θ2

(q) − Kν
A,B,θ2

(q)

≥ Kν
A‡,B‡,θ1

(q) − Kν
A,B,θ1

(q) ≥ 0,

Kν
�A(1)�,... ,[Ak)],θ2

(q) − Kν
A(1),... ,A(k),θ2

(q)

≥ Kν
�A(1)�,... ,[A(k)],θ1

(q) − Kν
A(k),... ,A(k),θ1

(q) ≥ 0,

Kν
Ǎ(1),... ,Ǎ(k),θ2

(q) − Kν
A(1),... ,A(k),θ2

(q)

≥ Kν
Ǎ(1),... ,Ǎ(k),θ1

(q) − Kν
A(1),... ,A(k),θ1

(q) ≥ 0.

Remark 6.26. We expect that Conjecture 6.3 (Positivity), Conjec-
ture 6.5 (Saturation), Conjecture 6.7 (Rationality), Conjecture 6.10 (Poly-
nomiality), Conjecture 6.17 (q-Log concavity and P -positivity), Conjec-
ture 6.24 (Generalized Fomin-Fulton-Li-Poon’s conjectures I and II)
are still valid for the level l-restricted parabolic Kostka polynomials K

(l)
λµη(q),

see Remark 4.28 for the definition of the latter.

§6.9. Miscellany

Conjecture 6.27 (Rationality conjecture for the LLT q-analog of
LR-numbers).

Let λ, µ and ν be partitions, and cν
λ,µ(q) stands for the q-analog of Little-

wood–Richardson numbers defined in [11], [47]. Then∑
n≥0

cnν
nλ,nµ(q) tn = P ν

λ,µ(q, t)/Qν
λ,µ(q, t),

where P ν
λ,µ(q, t) and Qν

λ,µ(q, t) are mutually prime polynomials with integer
coefficients. Moreover,

Qν
λ,µ(q, t) =

∏
i∈I

(1 − qi t)ni

for some finite set of integers I = Iν
λ,µ, and a set of positive integers ni, i ∈ I.

(�) We expect the similar conjecture for the parabolic Kazhdan–Lusztig
polynomials, see e.g. [49] for the definition of the latter.

Conjecture 6.28 (Saturation conjecture for the structural con-
stants of the multiplication of the Schubert polynomials).

For each n ≥ 1, let Σ(n) denote the set of all permutations w such that the
code of w has length at most n. Denote by Σ(∞) the union

⋃
n≥1 Σ(n).
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If w ∈ Σ(n) and N ≥ 1 is an integer, define the permutation N ∗w ∈ Σ(Nn)

to be a unique permutation with the code (Nc1, . . . , Ncn), where (c1, . . . , cn)
is the code of w.

For each w ∈ Σ(n) denote by Sw ∈ Pn := Z[x1, . . . , xn] the corresponding
Schubert polynomial. It is well–known that the Sw, w ∈ Σ(n), form a Z-basis
of Pn.

Finally, if u, v are permutations which belong to the infinite symmetric
group Σ(∞), denote by cw

u,v the structural constants for the multiplication of
Schubert polynomials:

Su Sv =
∑

w∈Σ(∞)

cw
u,v Sw.

Then
(♣) cN∗w

N∗u,N∗v �= 0 for some integer N ≥ 1 if and only if cw
u,v �= 0.

(�) We expect that the formal power series∑
N≥1

cN∗w
N∗u,N∗v tN

is a rational function in t (with the only possible pole at t = 1 ??). In other
words, the function N −→ cN∗w

N∗u,N∗v is a polynomial in N with rational (non–
negative ??) coefficients.

Problem 6.29 (Generalized saturation problem for Kazhdan–
Lusztig’s polynomials).

Let u, w ∈ Σn be two permutations, denote by

Pu,w(q) = 1 + · · · + d(u, w) qc(u,w), d(u, w) �= 0,

the corresponding Kazhdan–Lusztig polynomial [27].
(♣) Prove (or disprove) that
(1) c(N ∗ u, N ∗ w) = N c(u, w) for any positive integer N ;
(2) d(N ∗ u, N ∗w) = 1 for some positive integer N if and only if d(u, w)

= 1.

The similar Problem can be stated for the Kazhdan–Lusztig polynomials
corresponding to the affine symmetric group.

However, we didn’t extensively test Conjecture 6.27 and Problem 6.28 on
a computer.
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We want to end this Section by the following question and problem:

Question 6.30 (A q-analog of the structural constants cw
u,v).

Does there exist a natural q-analog cw
u,v(q) ∈ N [q] of the structural con-

stants cw
u,v, so that cw

u,v = cw
u,v(1), which for the grassmannian permutations u,

v and w coincides with the q-analog c
λ(w)
λ(u),λ(v)(q) of the LR-numbers?

Here λ(w) denotes the shape of a permutation w, see [52] for a detailed
account to the theory of Schubert polynomials. As for a definition of the q-
analog cν

λ,µ(q) of the LR-numbers, see e.g. [11, 47].

Problem 6.31 (Define the polynomials cν
λ,µ(q) through the geom-

etry of Schubert varieties).
Let n ≥ m be fixed positive integers, and λ, µ and ν be three partitions

such that max(l(λ), l(µ), l(ν)) ≤ m, max(λ1, µ1, ν1) ≤ n, and |λ| + |µ| = |ν|.
It is well–known that the LR-number cν

λ,µ counts the number of (isolated)
points in the triple intersection Sλ ∩ Sµ ∩ Sν∗ of the Schubert varieties Sλ,

Sµ and Sν∗ in the Grassmannian variety G(m, n + m), see e.g. [19] for the
explanations of omitted notation, definitions and details.

(♣) Find a geometric way to attach to each intersection point x ∈ Sλ ∩
Sµ ∩ Sν∗ an integer number c(x) such that the generating function∑

x∈Sλ∩Sµ∩Sν∗

qc(x)

coincides with the LLT q-analog cν
λ,µ(q) of the Littlewood–Richardson number

cν
λ,µ.
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