
�

�

�

�

�

�

�

�

Publ. RIMS, Kyoto Univ.
40 (2004), 1113–1125

Shift Operator for Nonabelian Lattice Current
Algebra†

By

Ludvig Faddeev
∗ and Alexander Yu. Volkov

∗∗

Abstract

The shift operator for a quantum lattice current algebra associated with sl(2) is
produced in the form of product of local factors. This gives a natural deformation of
the Sugawara construction for discrete space-time.
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Introduction

The Current Algebra provides the chiral dynamical variables for a generic
conformal field theory model called WZNW model. Its lattice analogue, due to
Semenov-Tian-Shansky, proved useful for elucidating the quantum group struc-
ture in this model [AFSV]. In the subsequent papers [AFS, FG, BC, AFFS]
some general properties of this algebra and its representations were discussed.
However, these considerations covered kinematical aspects of the lattice model
while such a basic dynamical object as the hamiltonian density remained un-
available. Here we address this problem making use of our experience in a
simpler abelian case [FV93, V97a]. Following the general philosophy worked
out in these papers we construct a spatial translation operator W which simul-
taneously generates the temporal shift. We find W to be a product of local
factors over the lattice. This may be regarded as a multiplicative analogue of
the Sugawara construction.

For simplicity we confine ourselves to the simplest case of the sl(2) algebra.
In Section 1 we recall the basic facts about the current algebra in its classical
continuous form. Then we embed the Sugawara hamiltonian into the hierarchies
of conservation laws of two major integrable models which are mKdV and
NLS equations [FT]. To make a smoother transition to the quantum case we
present in Section 3 the classical lattice deformation of the current algebra. In
particular, we produce relevant integrable hierarchies. The quantum case is
treated in Section 4.

§1. Classical Model

The generators ja(x) of current algebra are associated with a given simple
Lie algebra g with index a labeling the linear basis in g and the variable x

running through the unit circle. Let fab
c and Kab be the structure constants

and the Killing tensor of g. The defining Poisson bracket is

{ja(x), jb(y)} = γfab
c jc(x)δ(x − y) + γKabδ′(x − y).

The real ‘coupling constant’ γ is irrelevant in classical case but comes into play
under quantization.

The hamiltonian

H =
1
2γ

∫ 2π

0

Kabj
a(x)jb(x)dx

leads to a free equation of motion

∂tj
a(x) = {H, ja(x)} = ∂xja(x)
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which reflects the conformal invariance in hyperbolic language. The hamilto-
nian density

T (x) = Kabj
a(x)jb(x)

is quadratic in the generators and is often referred to as the Sugawara construc-
tion. In this paper we shall consider g to be a real form sl(2, R) of the algebra
sl(2).

Thus, a takes the values 3, +,− and all the functions ja are real. The
Poisson bracket is given by

{j3(x), j3(y)}= γδ′(x − y)

{j3(x), j±(y)}=±γj±δ(x − y)

{j+(x), j−(y)}= 2γ(j3δ(x − y) + δ′(x − y))

{j±(x), j±(y)}= 0

and
T = (j3)2 + j+j−.

It is also useful to combine the currents into a 2 by 2 matrix

J =

(
j3 j−

j+ −j3

)
.

§2. Separation of Variables and Yang-Baxterization

The above bracket and hamiltonian allow for separation of variables.
Indeed, one may put the matrix J into the form

J = Ω

(
0 p

q 0

)
Ω−1 + ∂xΩΩ−1

with a diagonal matrix Ω solving the equation

∂xΩ = j3σΩ, σ =

(
1 0
0−1

)

The Poisson bracket for the new set of dynamical variables j ≡ j3, p, q proves
to be

{p(x), p(y)}=−2γsign(x − y)p(x)p(y)

{q(x), q(y)}=−2γsign(x − y)q(x)q(y)

{p(x), q(y)}= 2γ(sign(x − y)p(x)q(y) + δ′(x − y))

{j(x), j(y)}= γδ′(x − y)

{j(x), p(y)}= {j(x), q(y)} = 0.
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while the hamiltonian density becomes

T = j2 + pq.

Thus, the pair p, q completely separates from j. The p-q bracket is known to
belong to the hierarchy of Poisson structures associated with the NLS equation
while the density pq is a member (the momentum density) of the corresponding
family of densities of local conservation laws [FT]. On the other hand, the
j-bracket and the density j2 come from the hierarchy of the mKdV equation.
Thus, we see where sl(2) current algebra and Sugawara hamiltonian fit into the
general pattern of Soliton Theory:

H
WZNW

= P
mKdV

+ P
NLS

.

This will prove useful for our approach to quantization.
The lattice formalism for the mKdV part, which is nothing but the abelian

current algebra, was already developed in [FV93, V92, V97a]. In this paper we
perform a similar treatment of the NLS part.

In Soliton Theory the densities of conservation laws come from the asymp-
totic expansion of the trace of the monodromy matrix of the auxiliary linear
problem. For the NLS equation this problem reads(

∂x +

(
0 p

q 0

)
+ λσ

)
Ψ = 0.

The matrix Ω being diagonal, this auxiliary problem is gauge equivalent to

(∂x + J + λσ) Ψ = 0.

Thus, we see that NLS part P
NLS

of the Sugawara hamiltonian is provided by
‘Yang-Baxterization’ of the current

J � J + λσ.

In the next Section we shall do the same on the lattice.

§3. Lattice Model

We discretize the circle introducing the spacial variable taking integer
values running from 1 to N . The real dynamical variables will be denoted
by αn+ 1

2
, βn with integer n; it is understood that

αn+N+ 1
2

= αn+ 1
2

βn+N = βn.
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One may say that integers label vertices while half-integers stand for edges. Or
vice versa. One reason for using different notations for dynamical variables with
integer and half-integer subscripts is mere convenience which becomes evident
when the Poisson bracket is displayed:

{αn− 1
2
, αn+ 1

2
}=−2γαn− 1

2
αn+ 1

2

{αn− 1
2
, βn}=−2γαn− 1

2
βn

{βn, αn+ 1
2
}=−2γβnαn+ 1

2

{βn−1, βn}= 2γαn− 1
2
.

All brackets not listed are zero. It is clear that every variable has nontrivial
brackets only with the two neighbours in either direction.

One can recognise here the so called Flaschka variables for the Toda model.
However, the hierarchy we will deal with is different from that of the Toda
equations.

To see what this lot has to do with the Current Algebra we arrange dy-
namical variables in two matrices

B2n =


α

− 1
2

2n+ 1
2

0

0 α
1
2
2n+ 1

2





1 β2n

0 1




C2n−1 =


α

1
2
2n− 1

2
0

0 α
− 1

2
2n− 1

2





 1 0

β2n−1 1


 .

The Poisson relations for them

{
1

B2n,
2

B2n}= γ[r12,
1

B2n

2

B2n]

{
1

C2n−1,
2

C2n−1}= γ[r21,
1

C2n−1

2

C2n−1]

{
1

B2n,
2

C2n−1}= γ
1

B2nr12

2

C2n−1

{
1

C2n+1,
2

B2n}= γ
1

C2n+1r21

2

B2n

employ the major ingredient of q-deformations, namely the classical r-matrices

r12 =




1
2 0 0 0
0 −1

2 2 0
0 0 −1

2 0
0 0 0 1

2




r21 = P12r12P12,

where P is a permutation.
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The product
Jn = B2nC2n−1

satisfies the Poisson brackets

{
1

Jn,
2

Jn}= γ(r12

1

Jn

2

Jn −
1

Jn

2

Jnr21)

{
1

Jn+1,
2

Jn}= γ
1

Jn+1r21

2

Jn

which turn into the Current Algebra in the continuum limit

Jn ∼ I + ∆J(x).

This is what usually is called the Lattice Current Algebra. However, it is not
clear whether one gains anything reducing B-C-algebra to the J-one. This time
we prefer to deal with somewhat more transparent B-C-algebra but we could
do with the J-one instead.

To produce relevant conservation laws we introduce the transfer-matrix

t(ω) = tr
←∏
n

ξσ3B2nη−σ3C2n−1

with spectral parameter’ ω entering in ξ and η in such a way that

ξ2 + η2 = 2
ξ

η
= ω.

It turns out that

(i) t(ω) is a Poisson commuting family:

{t(ω), t(ω′)} = 0,

(ii) in the continuous limit it turns into the trace of monodromy matrix of the
continuous auxiliary linear problem of Section 1 provided

ω ∼ 1 + ∆λ,

(iii) it is a power series in ω

t(ω) =
N/2∑
−N/2

hkω2k
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with

hN/2 =
∏
n

(
2 +

β2n+1β2n

α2n+ 1
2

)

h−N/2 =
∏
n

(
2 +

β2nβ2n−1

α2n− 1
2

)
.

(ii) is obvious, (iii) is almost so, (i) can be verified along the guidelines of [FM].
We shall not go into further details because the model in question actually
belongs to the same hierarchy as the Ablowitz-Ladik’s model [SV].

The local factors, entering the expressions above, coincide with the product
of the offdiagonal elements of matrix Jn. Thus in the continuous limit we have

H = log hN/2 + log h−N/2 − N log 2 =
∆
2

∫ 2π

0

J+J−dx = ∆PNLS

as should be expected.
We have obtained the hamiltonian of the classical lattice model which plays

the role of the NLS part of the Sugawara construction for the lattice current
algebra. The corresponding mKdV part can be found in [V92]. However, the
equations of motion produced by these hamiltonians are quite complicated and
turn into simple free equations only in the continuous limit. It was realized in
[FV93] that the discrete time equation

Jn(t + ∆) = Jn+1(t)

is a better option. In other words, the discretizing of space should be accom-
panied by the discretizing of time. The last equation is especially transparent
in the quantum theory where the spacial shift operator W such that

W−1JnW = Jn+1

is taken to define the time shift as well

Jn(t + ∆) = W−1Jn(t)W

Jn(0) = Jn.

The matrix elements of Jn depend on the variables α2n± 1
2
, β2n, β2n−1, so

that the shift n → n + 1 corresponds for the shift for α, β on two lattice points

αn− 1
2
W = Wαn+ 3

2

βn−1W = Wβn+1
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One can say, that the site on the chain for Jn consists of two sites of the chain
for α − β variables.

We shall find operator W in the next Section. The expression for the
classical lattice hamiltonian will prove to be a useful hint in our search.

§4. Shift Operator

The quantum lattice current algebra inherits the notation α-β for gener-
ators together with the way they are enumerated while the Poisson relations
turn into their most natural quantum counterparts

αn+ 1
2
αn− 1

2
= q2αn− 1

2
αn+ 1

2

βnαn− 1
2

= q2αn− 1
2
βn

αn+ 1
2
βn = q2βnαn+ 1

2

[βn−1, βn] = (q − q−1)αn− 1
2
,

with the deformation parameter q combining the coupling constant γ and the
Planck constant � in the usual way

q = ei�γ .

The consistency of these commutation relations becomes more apparent as soon
as one rewrites them in R-matrix form

R12

1

B2n

2

B2n =
2

B2n

1

B2nR12

R21

1

C2n−1

2

C2n−1 =
2

C2n−1

1

C2n−1R21

2

C2n−1

1

B2n =
1

B2nR12

2

C2n−1

2

B2n

1

C2n+1 =
1

C2n+1R21

2

B2n

where matrices B,C are built of α,β’s in literally the same way as in the classical
case of Section 2. The R-matrix involved is the sl(2) one

R12 =




q
1
2

q−
1
2 q

1
2 − q−

3
2

q−
1
2

q
1
2




and it is needless to say that the associativity of the B-C-algebra is due to the
Yang-Baxter equation

R12R13R23 = R23R13R12

fulfilled by R.
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The way variables separate in the continuous model and the belief that
integrals of local densities on the lattice turn into products of local factors
suggest that the shift operator W should decompose into a product of two
commuting factors

W = UV = V U

depending separately on mKDV and NLS variables

ξn = αn+ 1
2
α−1

n− 1
2

tn− 1
2

= q + q2βnα−1
n− 1

2
βn−1

as follows

U =
←∏

θn, V =
←∏

σn,

where
θn = θ(qξn), σn = σ(tn− 1

2
)

with appropriate functions θ and σ. The arrow shows that local numbers
increase from right to left. The functions θ(ξ) and σ(t) are taken from our
previous papers e.g. [FKV]. They satisfy the functional equations

θ(qξ)
θ(q−1ξ)

= −ξ

and
σ(qt)

σ(q−1t)
=

1
1 + t

.

It was shown in [FV93] that θn are generators of the Braid group

θn+1θnθn+1 = θnθn+1θn

and the cyclic product of 2N − 1 generators does not depend on the point of
departure

θ2N . . . θ2 = θ2N−1 . . . θ1 = θ2N−2 . . . θ1θN = . . . ,

if we impose an appropriate condition on the central elements of α-algebra.
The product defining operator U is just this one.

The generators σn satisfy the relations which were first derived by one of
the authors (AYuV, see [V97b])

σn+1σn−1σnσn+1 = σn−1σn+1σn,

σnσn−1σn+1 = σn−1σnσn+1σn−1.
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We conjecture, that the cyclic product of σn shortened by two factors, also does
not depend on the end point

σ2Nσ2N−1 . . . σ3 = σ2N−1 . . . σ2 = σ2N−2 . . . σ1 = . . . .

The derivation, as in the case of θn, should use the structure of the set of central
elements in α−β algebra and is not done yet. So what follows depends heavily
on the validity of this conjecture.

In a more weak formulation the conjecture states the existence of the cyclic
product of factors (σ2N . . . σ1)cycl with the following properties:

1. It does not depend on the point of departure

(σ2N . . . σ1)cycl = (σk . . . σ1σ2N . . . σk+1)cycl.

2. For a chosen variant only dependence on variables tk near the beginning
and the end of the chain is modified, so that factors in the bulk of the chain
stay intact.

This allows to reduce check of the property of shift to local calculations.
Let us stress, that the RHS of the functional equation for σ(t) comes

directly from the density of the classical lattice hamiltonian

1
1 + t

∼ 1
2 + ββ/α

.

This correspondence principle plays a major role in the detailed study of the
classical limit which will be presented elsewhere.

As we said, one could do with the J-picture from the very beginning. This
would eventually lead to the following decomposition

W =
←∏

σ
(
t2n+ 1

2

)
θ
(
qα2n+ 1

2
α−1

2n− 1
2

)
σ(t2n− 1

2
)

for the J-shifting operator
JnW = WJn+1.

This reduction is based on the factorization of the algebra of abelian currents
αn− 1

2
into two commuting ones, generated by

kn =
α2n+ 1

2

α2n− 1
2

and ln = α2n+ 3
2
α2n+ 1

2
.

Now we can turn to the derivation. Due to the cyclicity and locality of
expressions for U and V the equations

αn− 1
2
W = Wαn+ 3

2
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βn−1W = Wβn+1

easily reduces to

αn− 1
2
θ
(
qαn+ 3

2
α−1

n+ 1
2

)
θ
(
qαn+ 1

2
α−1

n− 1
2

)
= θ

(
qαn+ 3

2
α−1

n+ 1
2

)
θ
(
qαn+ 1

2
α−1

n− 1
2

)
αn+ 3

2
.

and

βn−1σ
(
tn+ 1

2

)
θ

(
qαn+ 1

2
α−1

n− 1
2

)
σ

(
tn− 1

2

)
= σ

(
tn+ 1

2

)
θ

(
qαn+ 1

2
α−1

n− 1
2

)
σ

(
tn− 1

2

)
βn+1.

The form of the functional equations suggests, that any computation must be
based on the Weyl-type relations xy = q2yx.

Since any two of the α’s either commute or make a Weyl pair, the first
translation comes easy:

αn− 1
2
θ
(
qαn+ 3

2
α−1

n+ 1
2

)
θ
(
qαn+ 1

2
α−1

n− 1
2

)
= −q2θ

(
qαn+ 3

2
α−1

n+ 1
2

)
αn+ 3

2
α−1

n+ 1
2
αn− 1

2
θ
(
qαn+ 1

2
α−1

n− 1
2

)
= q4θ

(
qαn+ 3

2
α−1

n+ 1
2

)
θ
(
qαn+ 1

2
α−1

n− 1
2

)
αn+ 1

2
α−1

n− 1
2
αn+ 3

2
α−1

n+ 1
2
αn− 1

2

= θ
(
qαn+ 3

2
α−1

n+ 1
2

)
θ

(
qαn+ 1

2
α−1

n− 1
2

)
αn+ 3

2
.

The second one is more tricky. We cannot pull βn−1 through σ(tn+ 1
2
)

straight away because βn−1 and tn+ 1
2

neither commute nor make a Weyl pair.
Nevertheless, we have a good supply of operators making ‘good’ pairs with both
tn− 1

2
and tn+ 1

2
which, by the way, between themselves are a q-oscillator1

qtn+ 1
2
tn− 1

2
− q−1tn− 1

2
tn+ 1

2
= q − q−1.

Among them are:

(i) all the α’s
[α, t] = 0,

1The remaining nontrivial commutation relations governing the algebra of t’s, those for
the neighbours twice removed, seldom participate in computations. Their role may be
seen in taking care of the associativity of the algebra. Anyway, their explicit form can
be found in [V92]. This algebra is sometimes referred to as the Lattice Virasoro Algebra
for in a certain continuous limit, different from the one of the present paper, it turns into
the Virasoro algebra with a nonzero central charge.
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(ii) the β which is ‘between’ them

tn− 1
2
βn = q2βntn− 1

2

βntn+ 1
2

= q2tn+ 1
2
βn,

(iii) another operator cn = q(tn+ 1
2
tn− 1

2
− 1)

tn− 1
2
cn = q2cntn− 1

2

cntn+ 1
2

= q2tn+ 1
2
cn

which is a familiar satellite of q-oscillators.

So, we express βn−1 via ‘good’ operators

βn−1 = qt−1
n+ 1

2
cnβ−1

n αn− 1
2

+ q2t−1
n+ 1

2
β−1

n αn− 1
2
− qβ−1

n αn− 1
2

and get

βn−1σ(tn+ 1
2
)

= σ(tn+ 1
2
)
(
qt−1

n+ 1
2
cnβ−1

n αn− 1
2
+(1 + q−1tn+ 1

2
)(q2t−1

n+ 1
2
β−1

n αn− 1
2
−qβ−1

n αn− 1
2
)
)

= σ(tn+ 1
2
)
(
(β−1

n tn− 1
2
− tn+ 1

2
β−1

n )αn− 1
2
)
)

.

Similarly,

σ(tn− 1
2
)βn+1 =

(
αn+ 1

2
(−β−1

n tn− 1
2

+ tn+ 1
2
β−1

n )
)

σ(tn− 1
2
).

The rest

(
(β−1

n tn− 1
2
− tn+ 1

2
β−1

n )αn− 1
2
)
)

θ(qαn+ 1
2
α−1

n− 1
2
)

= θ(qαn+ 1
2
α−1

n− 1
2
)
(
αn+ 1

2
(−β−1

n tn− 1
2

+ tn+ 1
2
β−1

n )
)

is a variation on the same theme.
This completes the derivation and our paper. We hope to prove the con-

jecture in the near future.
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