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Abstract

We compare several constructions of compactified jacobians — using semistable
sheaves, semistable projective curves, degenerations of abelian varieties, and combina-
torics of cell decompositions — and show that they are equivalent. We give a detailed
description of the “canonical compactified jacobian” in degree g − 1. Finally, we ex-
plain how Kapranov’s compactification of configuration spaces can be understood as
a toric analog of the extended Torelli map.

Introduction

There are many papers devoted to compactifying (generalized) jacobians
of curves and families of curves. Some of them are concerned primarily with
existence, some provide a finer description. The approaches vary widely: some
constructions use moduli of semistable rank-1 sheaves, some use semistable
projective curves, some use combinatorics of cell decompositions; yet others
use degenerations of principally polarized abelian varieties and various notions
of stable varieties.

One aim of this survey is to give a definitive account in the case of nodal
curves and to show, pleasingly, that in this case all of the known approaches are
equivalent and produce isomorphic varieties, with the degeneration of PPAVs
approach being the special case of degree g − 1. Combining the known results
we then describe these varieties in detail.

The degree g − 1 case deserves a special attention since in this case the
compactified Jacobian is unique and comes with a canonical theta divisor. It
is also intimately connected with the Torelli map.
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1242 Valery Alexeev

Recall that the classical Torelli map t : Mg → Ag is a morphism from
the moduli space of smooth genus g curves to the moduli space of principally
polarized abelian varieties which associates to a smooth curve X of genus g its
Jacobian: a principally polarized abelian variety Pic0 X, or – as we prefer to
think – a stable pair (Picg−1 X, Θg−1) with the theta divisor.

As documented by Namikawa in [Nam76], it was Mumford who first noted
the fact that t extends to a regular morphism t̄ – which we will call the toroidal
Torelli map – from the Deligne-Mumford compactification Mg to the toroidal
compactification A

Vor

g for the 2nd Voronoi fan. The proof of this fact con-
sists of a purely combinatorial argument about fans. The extension prop-
erty of A

Vor

g was the impetus for the study of this compactification carried
out by Namikawa and for his pioneering theory of stable quasiabelian vari-
eties.

On the other hand, in [Ale02] we showed that A
Vor

g has a functorial meaning
of the main irreducible component in the moduli space of stable pairs (P, D),
where P is a reduced projective variety with semiabelian group action and D

a divisor on it, satisfying a few natural conditions. Hence, the toroidal Torelli
map is a morphism from one moduli space of stable objects, lower-dimensional
but nonlinear, to another, higher-dimensional but linear; and functorially it
is defined by associating to a stable curve X the moduli space Jacg−1 X of
semistable rank-1 “torsion-free” sheaves of degree g−1 on X together with the
natural theta divisor Θg−1.

The second part of this survey concerns Kapranov’s compactification of
configuration spaces [Kap93] (and a related work of Lafforgue on the compact-
ification of thin Schubert cells [Laf03]). We show that Kapranov’s construction
can be understood as an application of a toric analog of the extended Torelli
map t̄. More precisely, each configuration space KSr,n of [Kap93] comes with
morphism, a toric analog of Torelli map, to an appropriate analog of A

Vor

g ,
and the compactification KSr,n constructed coincides with the closure of the
image. As in the toroidal case, both the source KSr,n and the target space can
be interpreted as moduli spaces of stable pairs. Moreover, the combinatorics
involved is to a remarkable degree similar to the toroidal case, with periodic
polyhedral tilings replaced by tilings of a single polytope.

When working with individual varieties, we assume them to be defined
over an algebraically closed field k of arbitrary characteristic. When working
with families, we work in the category of locally Noetherian schemes over a
field or a Dedekind domain.
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§1. Compactified Jacobians of Nodal Curves

1.1. Construction of moduli spaces of semistable sheaves is a basic ap-
plication of Geometric Invariant Theory. For sheaves on curves the main ref-
erence is Seshadri [Ses82], for a narrower case of irreducible curves (where the
moduli space is fine) the references are works [D’S79, AIK77, AK80, AK79] of
D’Souza, Altman, Iarrobino, Kleiman and Altman. For another special case,
of nodal but possibly reducible curves, it is Oda-Seshadri [OS79]. For a more
general case, of semistable coherent sheaves on arbitrary projective families,
see [Sim94]. Let us recall the basic definitions and results.

Let X be a projective scheme over an algebraically closed field and L be a
polarization, i.e. an ample invertible sheaf on X. For any coherent sheaf F on
X one defines its Hilbert polynomial

p(F, n) = χ(X, F ⊗ Ln) = rnd/d! + and−1/(d − 1)! + · · ·

The integer r = r(F ) is called the rank of F . The ratio µ(F ) = a/r is called
the slope of F and

p(F, n)/r(F ) = nd/d! + µ(F ) nd−1/(d − 1)! + · · ·

is the normalized Hilbert polynomial.
A sheaf F is called admissible (or of pure dimension, or an S1-sheaf ) if

for any nonzero subsheaf E of F one has d(E) = d(F ). A sheaf F is called
slope-semistable (resp. slope-stable) if for any proper nonzero subsheaf E of F

one has µ(E) ≤ µ(F ) (resp. the inequality is strict). A sheaf F is called p-
semistable (resp. p-stable) if, similarly, one has the inequality p(E, n)/r(E) ≤
p(F, n)/r(F ) of normalized Hilbert polynomials for n � 0, which is equivalent
to comparing the coefficients of the two polynomials lexicographically.

Every admissible sheaf F has a Harder-Narasimhan filtration

0 = F0 ⊂ F1 ⊂ . . . Fs = F

such that the quotients Fi/Fi−1 are p-stable and the sequence of normalized
Hilbert polynomials is decreasing. If F is p-semistable then the sequence is
constant. The graded object gr(F ) = ⊕Fi/Fi−1 does not depend on a filtration
as above. Two semistable sheaves are said to be gr-equivalent if gr(F ) � gr(F ′).

Now let X → S be a projective family with a relatively ample sheaf L. A
coherent sheaf F on X flat over S is called slope- or p- (semi)stable if so is its
restriction to a fiber Xs for every geometric point s → S.

Consider the functor M = Mp(n) which associates to any S-scheme S′ the
set of p-semistable sheaves on X ′ = X×SS′ with a fixed Hilbert polynomial
p(n). Then one has quite generally:
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Theorem 1.2.

(1) There exists a scheme M and a natural transformation M → Hom(∗, M)
which has the universal property, i.e. for any scheme M ′ a natural trans-
formation M → Hom(∗, M ′) factors through a unique morphism M → M ′.

(2) The scheme M is projective over S.

(3) The points of every geometric fiber Ms correspond to gr-equivalence classes
of semistable sheaves on Xs.

For higher dimensions, this is [Sim94, 1.21] and the hardest part of the
proof is boundedness of semistable sheaves. Simpson works over C. However,
for curves the boundedness is trivial.

The scheme M = MX/S is called the (coarse) moduli space of semistable
sheaves. Even though it is lacking the property M(k) = M(k) usually asked
of coarse moduli spaces, the universal property defines M uniquely up to a
canonical isomorphism.

1.3. Now from this very general situation let us return to the case of
curves. A sheaf F on a curve X having support of dimension one is admissible
iff it does not contain skyscraper sheaves. The normalized Hilbert polynomial

p(F, n)/r(F ) = n + µ(F )

has only one non-trivial coefficient µ(F ) = χ(F )/r(F ), and so p-stability is
equivalent to the slope-stability.

Suppose X is a reduced curve with irreducible components Xi, the sheaf F

has ranks (ri) at generic points of Xi, and the polarization L has multidegree
(li). Then one immediately computes:

r(F ) =
∑

liri, µ(F ) =
χ(F )∑

liri

Call the difference deg F := χ(F ) − χ(OX) the degree of F . For every
degree d ∈ Z and a polarization L, the compactified jacobian Jacd,L is defined
to be the moduli space of semistable, with respect to polarization L, sheaves of
degree d which have rank 1 at every generic point of X. (Note, however, that
the stability condition involves checking the slope inequality for all subsheaves
E of F , and these may have rank 1 or 0 at different irreducible components
of X.) It is a projective variety, an open and closed subscheme of the above
moduli space Mp(n) for the Hilbert polynomial p(F, n) = n

∑
li + χ(OX) + d.
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Schemes Jac0,L X provide natural compactifications for the ordinary Jaco-
bian Pic0 X, the group variety whose geometric points form the group Pic0(X).
For any degree d, Pic0 X acts on Jacd,L X. Polarizations whose multidegrees
are proportional define the same compactified Jacobian, so the dependence on
L is only felt if X is reducible.

When X is irreducible but has arbitrary singularities there exists a number
of deep results. For example, by [KK81] Jac0 is irreducible if and only if X has
planar singularities.

1.4. For us, however, the focus will be on the case when X has very
simple singularities – at worst nodes – but is perhaps reducible. In this case,
admissible sheaves were characterized by Seshadri [Ses82]:

Lemma 1.5.

(1) A coherent sheaf F of rank 1 is admissible if and only if it has the form
F = π∗F

′ where F ′ = π∗F/torsion is an invertible sheaf on a partial
normalization ν : X ′ → X. The sheaf F is not invertible precisely at the
nodes P ∈ X at which π is not an isomorphism, and in this case the stalk
FP � mP , the maximal ideal of P .

(2) Similarly, a coherent sheaf F which has rank 0 or 1 at every generic point
of X has the form π∗F

′ where π : Y ′ → Y → X is a partial normalization
of a subcurve Y ⊂ X. The curves Y , Y ′ and the invertible sheaf F ′ are all
uniquely defined by F .

Example 1.6. Suppose π is a partial resolution at a single node P and
π−1(P ) = {P+, P−}. Then a simple computation shows that

π∗(mP+ ⊗ mP−) = mP and π∗mP = (mP+ ⊗ mP−) ⊕ kP+ ⊕ kP− ,

where kP+ and kP− are skyscraper sheaves.

From now on, every admissible sheaf will be assumed to have rank 0 or
1 at every generic point. By the above Lemma, to every such sheaf one can
associate a unique partial normalization Y ′ of a subcurve Y ⊂ X and a set of
integers (di), the multidegree of F ′ on Y ′. If Supp F = X then∑

di = deg F ′ = deg F − #{P |π is not an isomorphism}, χ(F ) = χ(F ′)

(Indeed, in the example above, deg mP = −1 and deg(mP+ ⊗mP−) = −2; and
χ(OX) = χ(OX′) − 1.)
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For each subcurve Y ⊂ X, let FY be the maximal subsheaf of F which has
support Y . For example, if P is a node at which two irreducible components
X1 and X2 meet and X1 ⊂ Y , X2 
⊂ Y then FP � OP or FP � mP implies
that (FY )P � (i1)∗mP1 .

If E1 ⊂ E is a subsheaf such that SuppE/E1 is finite and nonempty
then µ(E1) < µ(E). As a consequence, to check the (semi)stability of an
admissible sheaf F , one has to check the slope inequality only for the finitely
many subsheaves FY .

If F is an invertible sheaf then deg FY = deg(F |Y ) − Y (X − Y ), where
Y (X−Y ) stands for the number of points in Y ∩(X−Y ). Hence, F is semistable
(resp. stable) if and only if for every proper nonempty subcurve Y of X one
has the following inequality (resp. with <):

µ(FY ) =
deg(F |Y ) − Y (X − Y ) + χ(OY )

deg(L|Y )
≤ deg F + χ(OX)

deg L
= µ(F )(1)

If we set for simplicity λi = deg(L|Xi
)/ deg L and λY =

∑
Xi⊂Y λi (so that

λX =
∑

λi = 1) and use the fact that the degree of the dualizing sheaf ωX on
Y is Y (X − Y ) − 2χ(OY ) then the inequality becomes∣∣∣∣deg(F |Y ) − 1

2
deg(ωX |Y ) − λY

(
deg F − 1

2
deg ωX

)∣∣∣∣ ≤ 1
2
Y (X − Y )(2)

(the other half of the inequality, giving the absolute value, comes from applying
the first half to the curve X − Y ).

If we choose some integers d̃i with
∑

d̃i = deg F and define fractional
numbers φi by the condition

1
2

deg(ωX |Xi) + λi

(
deg F − 1

2
deg ωX

)
= d̃i + φi(3)

then the semistability condition on the multidegrees (di) of F becomes

∑
Xi⊂Y

(di − d̃i) ≤
∑

Xi⊂Y

φi +
1
2
Y (X − Y ).(4)

Hence, up to a shift, the (integral) solutions for the (semi)stable multi-
degrees (di) depend only on the fractional parts of (φi). Note that by the
definition, one has

∑
φi = 0 since φ measures the deviation from the average.

A rank-1 sheaf F that is not invertible corresponds to an invertible sheaf
on a partial normalization X ′ of X, and the (semi)stability condition is the
same as above but for a subcurve Y of X ′.
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1.7. One notable special case is when the curve X is stable and the
polarization is canonical, i.e. L = ωX . Then the semistability condition (2)
simplifies to

| deg(F |Y ) − λY deg F | ≤ 1
2
Y (X − Y ).(5)

One notes that in this case (2g − 2)λY are integers and F �→ F ⊗ ωk
X defines

an isomorphism Jacd,ωX
X

∼→ Jacd+k(2g−2),ωX
X for any k ∈ Z.

1.8. Before plunging into combinatorics of graphs and cell decomposi-
tions, we would like to explain an alternative approach using Gieseker-semi-
stable curves and used notably by Cornalba [Cor89, Cor91] and Caporaso
[Cap94].

Let X̂ be a curve obtained by inserting for some nodes P ∈ X lines EP �
P1 intersecting the rest of the curve at two points; let π̂ : X̂ → X be the
morphism contracting EP ’s. Invertible sheaves F on X are in a bijection with
invertible sheaves F̂ on X̂ such that deg(F |EP

) = 0. However, if deg(F |EP
) = 1

then π̂∗F̂ � mP . So this is another way to encode the non-invertible sheaves. In
some ways, it is more convenient because deg F̂ = deg F and χ(OX̂) = χ(OX),
so that the curves C and Ĉ can now be fibers of the same flat family.

The price for this convenience is non-uniqueness of F̂ (which is ruled out
by the fact that Pic0 X̂ = Pic0 X). The precise statement is the following:

Lemma 1.9. Every admissible sheaf on X corresponds to a unique
curve X̂ as above and a family of invertible sheaves on X̂ with deg(F̂ |EP

) = 1
for each line EP forming an (GK

m)-orbit. Here, K = #P ; the multiplicative
group GK

m acts by scalar multiplication on each line EP with two marked points,
0 and ∞; and the orbit (GK

m). F̂ is for the induced action of GK
m on Pic X̂.

The sheaf F̂ is unique if and only if every node P is disconnecting, i.e.
removing it increases the number of connected components of X.

In this approach, the (semi)stability of F is equivalent to the inequality (2)
applied to the sheaf F̂ on X̂. The inequality (5) becomes Gieseker’s Basic
Inequality. As a corollary, the fibers of the universal compactified jacobian
Pd → Mg of [Cap94] are Jacd,ωX

/ Aut X.

§2. Combinatorics of Compactified Jacobians

2.1. Oda and Seshadri [OS79] constructed a number of compactified
jacobians Jacφ of nodal curves. These jacobians are exactly the same as the
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projective schemes Jacd,L of the previous section. This may not be entirely
obvious for three reasons:

(1) The semistability condition in [OS79] is formulated not in terms of sub-
sheaves but as φ-semistability, depending on a parameter φ ∈ ∂C1(Γ, R),
where Γ is the dual graph of the curve X.

(2) The GIT construction differs slightly from the GIT construction used else-
where.

(3) The result is formally stated for degree 0 only.

So, let us check that the definitions are equivalent and that the moduli
spaces Jacd,L and Jacφ are indeed the same. The usual scheme for constructing
Jacd,L, for example employed in [Sim94], goes as follows:

(1) One fixes a Hilbert polynomial p(n) and establishes that semistable admis-
sible sheaves with χ(F (n)) = p(n) form a bounded family.

(2) The semistability of F (n) = F ⊗ Ln with respect to the polarization L is
equivalent to semistability of F . By boundedness, there exists n0 such that
for n ≥ n0 the semistable sheaves F (n) are globally generated and have
vanishing higher cohomology.

(3) One fixes some n ≥ n0, a vector space (or a free OS-module) E of rank
p(n) and considers the Grothendieck’s Hilbert scheme Quot(E ⊗ OX , p)
parameterizing admissible quotients of E ⊗OX which have the given poly-
nomial p.

(4) At this step, there is a choice. One usually embeds Quot into a Grassmanian
which in turn embeds into a projective space by Plücker coordinates. Then
one looks at the Hilbert-Mumford criterion for (semi)stability for the PGL-
action on projective spaces and shows that for n � 0 it is equivalent to the
(semi)stability of sheaves of the previous Section, in terms of subsheaves.

(5) Hence, semistable (resp. stable) sheaves form PGL-equivariant open sub-
sets, and by taking the GIT quotients one obtains a projective coarse mod-
uli space (resp. a quasi-projective fine moduli space) of semistable (resp.
stable) sheaves.

The approach of [OS79] differs from this only in Step 4. Instead of embed-
ding Quot into a Grassmanian, they choose a large number of points x1, . . . ,

xN ∈ X and embed Quot into a product of N projective spaces
∏

P(E∗) by
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looking at 1-dimensional quotients E
∼→H0(F (n)) → H0(F (n)|xi

). Then they
use the Hilbert-Mumford criterion for the PGL(E)-action on this product.

The relation with the other setup is as follows, where we refer the reader
to the Outline of the main argument on pp.6–8 of [OS79]. Oda and Seshadri
show that a sheaf F is (semi)stable in their setup iff for every proper subcurve
Y ⊂ X one has inequality (*), equivalently (**) on p.7.

Now, choose the numbers of points (Ni),
∑

Ni = N , on irreducible com-
ponents of X and also the auxiliary parameters (ñi) to be proportional to the
multidegree of the polarization, i.e. to (λi). Then the inequality (*) is just our
inequality (1) for the subsheaves FY and (**) is the inequality (2). The defini-
tion of the parameter φ ∈ ∂C1(Γ, Q) in [OS79] coincides with our formula (3).
Hence, Jacd,L � Jacφ, where φ = φ(d, λi) is defined by the formula (3). So we
have a map (d, L) → φ ∈ ∂C1(Q) and it is also easy to see that this map is
surjective.

One further remark is that [OS79] concentrates on the case of deg F =
0. But as this outline already shows, the moduli spaces in [OS79, §11] are
constructed for semistable sheaves of every degree.

2.2. Let us now turn to the combinatorics of the compactified jacobians.
We will use the following customary notaion:

(1) If X is a nodal curve then Γ = Γ(X) is the dual graph with vertices
{vi; i ∈ I} corresponding to irreducible components Xi of X and edges
{ej ; j ∈ J} corresponding to nodes. We fix an orientation of Γ.

(2) π : X̃ → X denotes the normalization of X, X̃i are normalizations of Xi.

(3) g = pa(X) is the arithmetic genus of X, gi = pa(Xi), g̃i = pa(X̃i).

(4) C0, C1, C
0, C1, H0, H1, H

0, H1 denote the spaces of chains, cochains and
(co)homologies of the graph Γ, with integral coefficients.

∂ : C1 → C0, edge e �→ end(e) − beg(e)

is the boundary operator defined by the chosen orientation.

(5) h1(X) = dim H1(Γ) is the cyclotomic number of the graph Γ(X).

The ordinary Jacobian is Pic0 X, the fine moduli space of invertible sheaves
of multidegree (0, . . . , 0). This is a group variety acting on all compactified ja-
cobians, and the following result is basic (for the proof, see f.e. [OS79, 10.2]).
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Theorem 2.3. Pic0 X is a semiabelian variety, an extension of an
abelian variety Pic0 X̃ by a multiplicative torus whose character group is
H1(Γ, Z). For the geometric points, we have:

1 → H1(Γ, k∗) → Pic0 X
π∗
−→ Pic0 X̃ → 0

(Let P ∈ X be a node. Consider an invertible regular function f defined on
a neighborhood U ⊂ X̃ of π−1(P ) = {P+, P−} such that f(P+)/f(P−) = z ∈
k∗. Then f defines a local section of K∗

X/O∗
X , i.e. a Cartier divisor supported

at P and usually denoted (z, 0, 0)P . Such Cartier divisors are parameterized
by C1(Γ, k∗). The group C0(Γ, k∗) parameterizes principal Cartier divisors
given by locally constant functions f on X̃. The homomorphism C1 → Pic0 X

induces the embedding H1 → Pic0 X.

2.4. An extension of an abelian variety A by a torus T � Gr
m is equiv-

alent to a homomorphism ct : Λ(T ) � Zr → At = Pic0 A from the character
group of T to the dual abelian variety of A. In our case, the dual abelian
variety is identified with Pic0 X̃ via the principal polarization on the Jacobian
of X̃, and the character group of the torus is H1(Γ, Z). The homomorphism is
described explicitly as follows.

Every edge e of the graph Γ corresponds to a node P of X, and the
orientation defines an ordered pair of points (P−, P+) on X̃. Let ct(e) =
P+ − P− ∈ Pic X̃, and extend this by linearity to C1(Γ, Z). Then if h ∈ H1

then ct(h) ∈ Pic0 X̃ and that is the required homomorphism.

2.5. In the space C1(Γ, R) = ⊕j∈JRej with the lattice C1(Γ, Z) one
defines two infinite periodic decompositions:

(1) The Delaunay decomposition Del consisting of standard cubes cut out by
hyperplanes zj = nj for nj ∈ Z.

(2) The Voronoi decomposition Vor which in this case is the Delaunay decom-
position shifted by the vector e(J)/2 =

∑
j∈J ej/2.

These two decompositions are in a dual relationship: for every Delaunay cell,
a cube D of dimension 0 ≤ dim D ≤ |J |, the dual Voronoi cell is the unique
cube V = D∗ of the complementary dimension such that D ∩ V is a point.

(For the background: For every vector space with a positive definite quad-
ratic form and a lattice one defines Delaunay and Voronoi decompositions which
are dual in the same sense as above. Vertices of polytopes of the Delaunay
decomposition are always in the lattice, and for the Voronoi decomposition
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they are not. If one varies the form q, Vor(q) changes continuously but the set
of possibilities for Del(q) is discrete.)

2.6. For every φ ∈ ∂C1(Q) ⊂ C0(Q), let H1(R)φ denote the preimage
∂−1(φ), an affine subspace of C1(R) which is parallel to H1(R). To this, one
can associate two further polyhedral decompositions:

(1) The decomposition Vorφ = Vor∩H1(R)φ of H1(R)φ into rational polytopes,
periodic with only finitely many polytopes modulo H1(Z).

(2) The decomposition Delφ called in [OS79] the Namikawa decomposition de-
fined as follows: for each Voroni cell V ∈ Vor with ∂(V ) � φ, consider the
dual Delaunay cell V ∗ and its orthogonal projection ∂⊥(V ∗) to H1 with
respect to the standard Euclidean form on C1. The images form a poly-
hedral decomposition with vertices in ∂⊥(C1(Z) and periodic with only
finitely many polytopes modulo H1(Z).

By [OS79, 1.5] these two decompositions also stand in duality. Denote by
Vorφ = Vorφ /H1(Z), Delφ = Delφ /H1(Z) the quotient complexes.

In toric geometry it is customary to denote the character (“monomial”)
lattice of the torus T by M and the lattice of 1-parameter subgroups of T by
N . Fans live in the N -space and polytopes for projective toric varieties live in
the M -space.

For what follows, it is important to think of Delφ as living in the N -space
and being a generalized version of a fan, and of Vorφ as living in the M -space
and being an honest collection of rational polytopes defining projective toric
varieties.

2.7. Let us emphasize the following: the decomposition Vorφ is a H1(Z)-
periodic decomposition of H1(R) by hyperplanes corresponding to the edges ej

of the graph Γ which lie on least one cycle. Two edges ej , ej′ define the same
hyperplane if they are equivalent with respect to H1, i.e. ej lies on a cycle iff
so does ej′ .

Remark 2.8. It is unfortunate that in the important special case φ =
∂e(J)/2 the decomposition Vorφ is the Delaunay decomposition for the lat-
tice e(J)/2 + H1(Z) and the quadratic form q which is the restriction of the
standard Euclidean form from C1(Z); and Delφ is the corresponding Voronoi
decomposition.

The notations Delφ, Vorφ in [OS79] are motivated by a general construction
which applies to lattices not necessarily coming from a graph. In the case of C1
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with the standard Euclidean quadratic form, the difference between Vor and
Del is only a shift by ∂e(J)/2 but it seems that it would be better to switch
them. Life sometimes gets confusing when there are two many canonical self-
dualities!

To each polytope δ in the decomposition Vorφ one can associate a projec-
tive toric variety Pδ and an ample Q-line bundle. The torus T acting on this
toric variety is H1(Γ, k∗), the toric part of Pic0 X.

If δ is maximal-dimensional then the dual cell δ∗ in the Namikawa decom-
position is a point. If one looks at a small neighborhood of this point, one
obtains a complete fan. This is precisely the normal fan of the toric variety Pδ.

Let Zδ be the twisted fiber product Pδ ×T Pic0 X = (Pδ ×Pic0 X)/T, with
t ∈ T acting on Pδ in the standard way and on Pic0 by multiplying by t−1.
The following is the main structure theorem of [OS79] about Jacφ:

Theorem 2.9.

(1) Jacφ X is reduced projective scheme.

(2) For each δ ∈ Vorφ there exists a finite morphism Zδ → Jacφ. The images
cover Jacφ and the inclusion relations between them are the same as in
Vorφ. In particular, Jacφ is connected and its normalization coincides with
the union of Zδ for the maximal-dimensional polytopes δ.

Proof. (1) [OS79, Thm.11.4] is and (2) is [OS79, Thm.13.2].

Remark 2.10. As φ varies, the varieties Jacφ change according to the
changing configuration of polytopes of the slice Vor∩H1(R)φ. The situation is
entirely similar to the way a GIT quotient of a toric variety is changing when
one varies the polarization, see f.e. [DH98, KSZ91]. For a non-rational φ the
decomposition Vorφ defines a symplectic form on the nonsingular part of Jacφ

(provided one works over C) but not a polarization.
This is another case where a phenomenon appeared first in the “infinite pe-

riodic” case before being picked up in the “finite” toric case. Another example
is the implicit appearance of the secondary fan in the work of Voronoi [Vor09].

§3. Canonical Compactified Jacobian Jacg−1

Let us start with the following very simple observation:

Lemma 3.1. Jacg−1,L X does not depend on the polarization L.
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Proof. Indeed, the condition deg F = g − 1 is equivalent to χ(F ) = 0.
Then the slope µ(F ) = χ(F )/

∑
li is zero and the condition µ(E) ≤ µ(F ) is

equivalent to the condition χ(E) ≤ 0. In other words, it does not depend on
the multidegree of L.

Alternatively, the inequality (2) becomes∣∣∣∣deg(F |Y ) − 1
2

deg(ωX |Y )
∣∣∣∣ ≤ 1

2
Y (X − Y ),(1)

i.e. it no longer involves λY .

For this reason we will call Jacg−1 X the canonical compactified jacobian,
although it does not contain Pic0 X unless g = 1.

Jacg−1 admits a very nice description in terms of the orientations on the
graph Γ, as follows.

Definition 3.2. A subgraph Γ′ ⊂ Γ is said to be generating if vertices
(Γ) = vertices(Γ′). Every such subgraph corresponds to a partial normalization
of X at the nodes Γ − Γ′. We denote this partial normalization by π(Γ′) :
X(Γ′) → X. Note in particular that X(Γ) = X and that X̃ is X(Γ′) where Γ′

has all the vertices of Γ but no edges at all.

Definition 3.3. A subgraph Γ′ ⊂ Γ is said to be complete if vertices(Γ′)
⊂ vertices(Γ) and edges(Γ′) are precisely the edges of Γ lying inside Γ′. These
graphs correspond to subcurves Y ⊂ X. We may identify such subcurves Y

with the corresponding subgraphs.

Definition 3.4. If d = (di) is a multidegree of total degree
∑

di = g−1
then its normalized multidegree e is defined by ei = di − (g̃i − 1). Note that∑

ei equals the number of edges of Γ.
For a subcurve Y ⊂ X, i.e. a complete subgraph Γ′ ⊂ Γ, we set

dY =
∑

Xi⊂Y

di, eY =
∑

Xi⊂Y

ei

Definition 3.5. We will call a multidegree d (and the normalized mul-
tidegree e) semistable (resp. stable) if the sheaves of this degree are semistable
(resp. stable).

Proposition 3.6. A normalized multidegree e is semistable (resp. sta-
ble) if any of the following equivalent conditions hold:
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(i) For every subcurve Y ⊂ X, one has∣∣∣∣eY − #edges(Y ) − 1
2
Y (X − Y )

∣∣∣∣ ≤ 1
2
Y (X − Y ), resp. <

(ii) eY ≤ #edges(Y ) + Y (X − Y ), resp. <.

(iii) There exists an orientation of the graph Γ such that ei equals the number
of arrows pointing at Xi (resp. in addition X is connected and there is no
proper subcurve Y ⊂ X such that all arrows between Y and X − Y go in
one direction).

Proof. Condition (i) is just the restatement of our basic inequality. The
implication (i)⇒(ii) is clear and the inverse is obtained by looking at Y ′ =
X − Y . (iii) obviously implies (ii).

To prove the implication (ii)⇒(iii) first assume that the normalized mul-
tidegree e of the graph of X is strictly semistable, i.e. there exists a subcurve
Y ⊂ X for which the equality holds. Then consider separately the following
multidegrees on Y and X − Y . On X − Y simply take the restriction of e.
On Y , however, for every vertex Xi take e′i = ei minus the number of edges
between Xi and X −Y . Then it is easy to show that the two multidegrees thus
obtained are semistable. Therefore, the orientations on Y and X − Y exist by
the induction on the number of vertices. To complete the orientation of X,
orient all the edges between Y and X − Y to point at Y .

In general, starting with a semistable multidegree as in (ii) we can fix an
arbitrary vertex Xi0 and change the degrees of Xi0 and the neighboring vertices
= curves Xj by 1 to make the multidegree strictly semistable, thus reducing to
the previous case. Hence, we get an orientation for the modified multidegree.
The orientation for the original multidegree is then obtained by reversing the
orientations of edges (i0, j).

The third condition of the above definition is the easiest to check. We will
call an orientation satisfying (iii) semistable (resp. stable). Note that different
orientations may well produce the same multidegree.

Let us now summarize our discussion as follows:

Theorem 3.7.

(1) F is semistable iff the normalized multidegree (e′) on the corresponding to
F spanning subgraph Γ′ is semistable.

(2) Assume that the curve X is connected. Then F is stable iff (e′) is stable.
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(3) Jacg−1 X has a natural stratification into homogeneous spaces over Pic0 X.
Each stratum corresponds in a 1-to-1 way to a stable multidegree d′ (resp.
stable normalized multidegree e′) on a generating subgraph Γ′ ⊂ Γ. The
k-points of this stratum can be identified with k-points of Picd′(X(Γ′)), i.e.
with invertible sheaves on X(Γ′) of multidegree d′. The codimension of this
stratum equals h1(Γ) − h1(Γ′).

The following statement is the first step towards constructing the theta
divisor on Jacg−1, which will be completed in Theorem 5.3.

Lemma 3.8. For a multidegree d = (di) with
∑

di = g − 1, the subset

{s ∈ Picd X |h0(Fs) > 0} ⊂ Picd X

is a divisor if and only if d is semistable.

Proof. This follows by [Bea77, 2.1] and the part (iii) of Definition-Propo-
sition 3.6.

Remark 3.9. This gives a yet another characterization of semistable ad-
missible sheaves in degree g−1: they have the multidegrees for which the usual
definition of the theta-divisor actually gives a divisor.

3.10. The decomposition Vorφ in the case of degree g−1 is very special.
The formula (3) says that φi = (1/2) deg(ωX |Xi

) (mod Z). This means that φi

is 1/2 (mod Z) if the degree of the vertex vi is odd and 0 (mod Z) if it is even.
In other words, the degree g − 1 case corresponds to the choice φ = ∂e(J)/2.

After shifting the cubes in the Voronoi decomposition of C1(R) by
−∂e(J)/2 to the origin, we see that Vorφ is obtained by intersecting the sub-
space H1(R) ⊂ C1(R) by systems of parallel hyperplanes zj = nj ∈ Z, where
zj , j = 1, . . . , |J | are the coordinate functions on C1. Let e∗1, . . . , e

∗
|J| ∈ H∗

1 be
the vectors in the dual lattice defining the linear functions zj |H1 . The following
is a basic fact from graph theory:

Theorem 3.11. The system of vectors {e∗1, . . . , e∗|J|} ⊂ H∗
1 is totally

unimodular, i.e. any subset which is a basis of C∗
1 (R) is also a basis of the lattice

C∗
1 . Equivalently, the 0-skeleton of the hyperplane arrangement {e∗j = nj ∈ Z}

is the lattice H1 itself.

In matroid theory, the totally unimodular system of this form are called
cographic regular matroids, see f.e. [Oxl92].



�

�

�

�

�

�

�

�

1256 Valery Alexeev

3.12. As already noted in [OS79], the compactified jacobian Jac∂e(J)/2

coincides with the stable quasiabelian variety which Namikawa associated to a
nodal curve in [Nam76].

§4. Extended (Toroidal) Torelli Map

The following theorem is due to Mumford. The proof is contained in
[Nam76]; it is purely combinatorial and does not use moduli interpretations of
the spaces involved. We outline the argument below.

Theorem 4.1. The classical Torelli map t : Mg → Ag can be extended
to a regular map from the Deligne-Mumford compactification Mg to the toroidal
compactification A

Vor

g for the 2nd Voronoi fan.

Sketch of the proof. Let A
τ

g be the toroidal compactification of Ag corre-
sponding to any admissible GL(g, Z)-invariant fan τ whose support equals the
convex hull of rational positive semidefinite quadratic forms on Zg. The stacks
Mg,A

τ

g are toroidal, and the coarse moduli spaces Mg, A
τ

g are locally quotients
of toroidal varieties by finite groups. Hence, the rational map t̄ : Mg → A

τ

g is
regular if and only if every cone in the first fan maps inside of a cone in the
second fan.

For a neighbourhood of a stable curve [C] ∈ Mg, the cone in the first fan
can be identified with quadrant ⊕n

i=1R≥0ej , where ej ’s correspond to the nodes
of C. The second cone lies in the cone of positive semidefinite quadratic form
on H1(Γ, R). As in the previous section, let zj be restrictions to H1 of the
coordinate functions on C1. Then the map of fans sends ej to z2

j . Thus, the
rational map t̄ is regular if and only if all z2

j lie in a common cone of the fan τ .
The second Voronoi fan τVor has this property. Indeed, by definition, a

locally closed cone of τVor consists of quadratic forms q on H1(Γ) defining
the same Delaunay decomposition. For any primitive integral linear functions
f1, . . . the Delaunay decomposition of

∑
ckf2

k does not depend on the choice of
positive ck if and only if the corresponding system of vectors in the dual space is
totally unimodular. For the functions z1, . . . z|J| this is just Theorem 3.11.

§5. Compactified Jacobians as Stable Varieties and Pairs

In [Ale02], we defined a stable semiabelic variety as a connected reduced
projective G-variety P for a semiabelian group variety G which satisfies the
following conditions:
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(1) (on singularities) P is seminormal

(2) (on group action) the number of G-orbits is finite, and the stabilizer of
every geometric point is connected, reduced and lies in the toric part T

of G.

A stable pair (P, D) has in addition an ample effective divisor D satisfying the
following crucial condition:

(3) D does not contain any G-orbit entirely.

Theorem 5.1. Every compactified jacobian Jacφ is a stable semiabelic
variety for the semiabelian group variety G = Pic0 X.

Proof. The variety Jacφ is projective, connected and reduced by Theorem
2.9. There are only finitely many semistable multidegrees with a fixed d =

∑
di.

For each multidegree the semistable sheaves give a unique orbit under Pic0 X

and the stabilizer is a subtorus of the toric part.
The hard part is seminormality. We know that Jacφ is a GIT quotient

R// PGL of an open subset R of a certain Hilbert scheme. We claim that
R// PGL is seminormal if so is R. Indeed, let Z be the unique seminormaliza-
tion of R// PGL. Then the morphism R×R// PGLZ → R is finite and bijective,
and so has to be an isomorphism if R is seminormal. Hence, Z → R// PGL is
an isomorphism.

So we are reduced to showing that R is seminormal. In the course of
proving that R is reduced Oda and Seshadri establish [OS79, p.60] the following:
There exists an open subscheme Y ⊂ R × P which projects surjectively to the
first summand and a formally smooth morphism Y → H to the Hilbert scheme
H = Hd parameterizing reduced length-d subschemes of the curve X. This
obviously implies that R is seminormal ⇐⇒ so is Y ⇐⇒ so is H. Finally,
H is a quotient of an open subset of X × · · · ×X by the symmetric group, and
so is obviously seminormal.

For any projective family X → S with a relatively ample sheaf L and a
chosen Hilbert polynomial p(n), Theorem 1.2 gives a projective family Mp X →
S of moduli spaces of semistable sheaves. In general, there is no expectation for
this family to be flat. For the compactified jacobians of stable curves, however,
this does hold:

Theorem 5.2. For any d ∈ Z and any flat family of stable curves X →
S, the associated family Jacd,L X → S is flat.
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Proof. Even though the moduli space Mg of stable curves is only a coarse
moduli space, it is well-known that any family X → S of stable curves can étale
locally be obtained by pullback from a “versal” family XU → U with reduced
U . Hence, it is sufficient to prove flatness for flat families of curves over reduced
bases. Choose a relatively ample sheaf on Jacd,L X → S. Then the flatness is
equivalent to the constancy of the Hilbert polynomial. This can be checked on
generic one-parameter families s ∈ C ⊂ S through the point s, and for these
the flatness follows because the fibers Jacd,Ls

Xs are reduced, connected and of
the same dimension pa(Xs).

Hence, all compactified jacobians Jacd,L are degenerations of abelian vari-
eties. In the case d = g−1 they are even degenerations of principally polarized
abelian varieties:

Theorem 5.3. For any nodal curve X, Jacg−1 X comes with a natural
ample Cartier divisor Θ. If X → S is a family of stable curves then Θ is a
relative ample Cartier divisor.

Proof. First, we would like to see that the condition h0(X, Fs) 
= 0 defines
a closed subscheme of Jacg−1 X defined locally by one equation. We use an ar-
gument of Soucaris and Esteves [Sou94, Est95] which they applied to irreducible
curves.

Let F be a semistable sheaf on X ×S with χ(Fs) = 0. By [KM76], there a
natural line bundle L(F ) = (detRπ∗F )−1 and since χ(Fs) = 0, it comes with
a canonical section θ. Moreover, this works for families of curves as well.

If we replace F by F ⊗ π∗E, L(F ) will be replaced by L(F ) ⊗ E−χ(Ft) =
L(F ), so it is universally defined. Moreover, two gr-equivalent families of
semistable sheaves define the same L(F ). The latter follows from the fact
that if

0 → F ′ → F → F ′′ → 0

is an exact sequence, then det Rπ∗F = (detRπ∗F
′)⊗ (detRπ∗F

′′), so only the
stable factors are important. Jacg−1 is constructed using GIT as a quotient of
the Grothendieck’s Quot-schemes. The above property implies that the sheaf
L(F ) and its section descends to Jacg−1.

Since Jacg−1 X is reduced, the section θ is locally a non-zerodivisor if and
only if its zero set does not contain an irreducible component. This follows by
Lemma 3.8.

Let g ∈ Pic0 X be an n-torsion element. Then the divisors nΘ and n(g.Θ)
are linearly equivalent. Using Lemma 3.8 again, we see that some multiple nΘ
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is basepoint-free and hence defines a morphism, call it ϕ, to a projective space.
Because of the group action, if ϕ is not injective then it has to contract an orbit
of positive dimension, which is ruled out by Lemma 3.8 one again. Hence, ϕ is
injective, and Θ is ample.

Corollary 5.4. The functor (X → S) �→
(
(Jacg−1 X, Θ) → S

)
defines

a morphism from the moduli space Mg of stable curves to the moduli space APg

of [Ale02] of stable semiabelic pairs.

By [Ale02], the main irreducible component of APg is A
Vor

g .

5.5. Now that we know that all Jacφ, Jacd,L are stable semiabelic vari-
eties which are degenerations of abelian varieties, we can combine the descrip-
tion of Theorem 2.9 with that of [Ale02]. By [Ale02], polarized stable semiabelic
pairs correspond to the following combinatorial data:

(1) A lattice Λ � Zr and a sublattice i : Y → Λ.

(2) A cell complex ∆ with a finite reference map ρ : |∆| → ΛR identifying
each cell δ with a lattice polytope. The complex ∆ must have a Y -action
compatible with the translation action of Y on ΛR, and the quotient ∆/Y

must be finite.

(3) The gluing data which is an element of a certain cohomology group H1

with values in a Gm-torsor.

For varieties Jacφ, this gives the following:

(1) The lattice Λ is H1. Depending on the polarization chosen, the lattice Y

is NH1 where N is such that the polytopes of Vorφ become integral after
multiplying by N . (For example, for the canonically polarized jacobian one
can take N = 1 and Y = Λ = H1.)

(2) The complex of polytopes is just N Vorφ.

(3) The gluing data in this case consists of three parts:

(a) A homomorphism ct : Λ → (Pic0 X̃)t defining the extension 1 → T →
Pic0 X → Pic0 X̃ → 0, which we described it in 2.4.

(b) A homomorphism c : Y → Pic0 X̃ satisfying ct ◦ i = λ ◦ c : Y →
(Pic0 X̃)t, where λ is the principal polarization. Hence, c is just the
restriction of ct to a sublattice.
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(c) The equivalence class of the bihomomorphism τ0 : Y × Λ → (ct ×
c)∗P−1 with values in the inverse of the Poincare biextension. This is
given by the so called Deligne symbol, a generalization of the double
ratio (see [BM86]).

§6. Kapranov’s Compactification

In [Kap93] Kapranov constructed a compactification of the configuration
space of n-points (or, dually of n hyperplanes) in a projective space that are
in general position. We would like to relate this compactification to a “finite”
toric analog of the extended toroidal Torelli map.

The map that we are interested in is explicit in Kapranov’s work. We are
going to modify the target of this map slightly and interpret the source and
the target as moduli spaces of stable pairs.

Definition 6.1. Let Gr(r, n) denote the Grassmanian of r-dimensional
linear subspaces of Cn. Fix the standard coordinates x1, . . . xn on Cn and let
Gr0(r, n) denote the open subset parameterizing vector spaces V with

V ∩ ∩α∈I{xα = 0} = 0

for all I ⊂ {1, . . . , n} of cardinality r + 1.
The torus T = (C∗)n/C∗ acts freely on Gr0(r, n). We will denote by KSr,n

the quotient Gr0(r, n)/T .

Via the Gelfand-McPherson correspondence, points of KSr,n are in a bijec-
tion with isomorphism classes of pairs (Pr−1, E), where E =

∑
Hi is a union

of n hyperplanes which is a normal crossing divisor. For a given V ⊂ Cn,
Pr−1 = PV , and Hi = {xi = 0}. Hence, KSr,n is the configuration space.

Kapranov defines his compactification KSr,n to be the Chow quotient
Gr(r, n)//T defined as follows. For any point p ∈ Gr0(r, n), let the cycle
Zp = Tp be the closure of the orbit of p in Gr(r, n). This gives an embedding
of KSr,n into the Chow variety of Gr(r, n), and the latter is a projective variety.
The compactification KSr,n is the closure of KSr,n in this projective variety.

Definition 6.2 ([Kap93]). Let G be an algebraic group acting on a pro-
jective variety Y and let Y 0 be an open subset, assumed nonempty, where G

acts freely. The Chow quotient Y//G is the closure of Y 0/G in the Chow variety
of Y .

Alternatively, one can use the Plücker embedding

φ : Gr(r, n) → P(ΛrCn)
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Then for every p ∈ Gr0(r, n) the closure of the orbit Tφ(p) is a torus-invariant
cycle in P(ΛrCn) and so gives a point of the Chow variety of P(ΛrCn). Kapra-
nov proves [Kap93] that one has an embedding of Chow quotients

KSr,n = Gr(r, n)//T ↪→ P(ΛrCn)//T

The torus T naturally acts on ΛrCn and the standard homogeneous coordi-
nates of P(ΛrCn) are eigenvectors. Therefore, they correspond to points in the
character group of T , i.e., to integral points in Zn. Using the character group
of (C∗)n instead of the quotient torus T , these are the points that have r coor-
dinates equal to 1 and (n− r) coordinates equal to 0. The polytope with these(
n
r

)
vertices is called a hypersimplex and is denoted by ∆(r, n).

Example 6.3. ∆(1, n) is an ordinary (n − 1)-dimensional simplex.
∆(2, 4) is an octahedron. It is also obvious that ∆(r, n) and ∆(n − r, n) are
isomorphic. Another way to describe ∆(r, n) is to say that its vertices are the
barycenters of the (r− 1)-dimensional faces of the (n− 1)-dimensional simplex
r∆(1, n).

The advantage of using the second space is that the variety P(ΛrCn)//T

is easily understood, see [KSZ91]. It is a projective, possibly non-normal toric
variety P ′

Sec∆(r,n) whose normalization ν : PSec ∆(r,n) → P ′
Sec∆(r,n) corresponds

to the secondary polytope Sec ∆(r, n) of the hypersimplex.
To summarize, by [Kap93] one has

Theorem 6.4. There exists a natural injective map t : KSr,n →
P ′

Sec∆(r,n) and one has KSr,n = t(KSr,n).

Now, our basic observation is that both KSr,n and PSec ∆(r,n) have func-
torial meaning as moduli spaces of stable pairs and that the morphism t has
meaning of a toric Torelli map.

Let us begin with the target space. There exist at least four related ver-
sions of it. Let Q be an arbitrary maximal-dimensional lattice polytope in the
lattice Λ of characters of a torus T . Denote by PQ the projective toric variety
associated to Q.

6.5. The original Chow quotient PN−1//T , where N = #(Λ ∩ Q). The
canonical morphism PQ → PN−1 is finite. The points of the Chow quotient
correspond to the cycle im PQ, its translations g. im PQ, g ∈ (C∗)N−1 under the
action of the big diagonal torus of PN−1 and to limits of such cycles. The Chow
quotient is a possibly non-normal toric variety P ′

Sec Q whose normalization is
associated to the secondary polytope SecQ.
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It is well-known that the faces of SecQ and hence the strata of PSec Q are
in a bijection with convex lattice subdivisions of Q.

Advantages of the Chow quotient are its simplicity and its use of classical
tools of projective geometry. Among the disadvantages, there are two. First,
the procedure of taking a quotient provides only the structure of a reduced
scheme. Secondly, the Chow variety does not represent any functor on the
category of schemes. (One has to switch to a very restricted category of reduced
weakly-normal schemes, see [Kol96]. Even then, this only works over a field,
and the situation becomes quite complicated in positive characteristic.)

6.6. The toric Chow variety of [KSZ91]. The projective toric variety
PQ comes with a finite morphism PQ → PN−1 which is dually described by
a surjection π : σN → Q from the standard (N − 1)-dimensional simplex σN .
Fibers π−1(q) over points q ∈ Q correspond to toric varieties Pq (when q is
rational, Pq comes with a natural ample Q-line bundle). The polytope Q is
divided into finitely many polyhedral strata according to the types of the fibers.
On the strata, there is a natural partial order by inclusion of the closures. One
defines

ChowQ = lim←−Pq

This is a projective scheme, possibly non-reduced and reducible. The main
irreducible component of (ChowQ)red is a similar limit but in the category of
T -varieties. The normalization of this variety is the projective toric variety
PSec Q for the secondary polytope of Q.

The strata in the natural stratification of the toric Chow variety are in a
bijection with all lattice subdivisions of Q.

This scheme does not represent a clearly defined moduli functor.

6.7. The toric Hilbert scheme of [PS02]. The toric Hilbert scheme pa-
rameterizes Λ-graded ideals I in R = k[x1, . . . , xN ] such that the graded pieces
of the quotient R/I are locally free of rank 0 or 1. (There is a generalization
to the case of arbitrary multiplicities, [HS02]).

The main component of toric Hilbert scheme corresponds to the state
polytope with may be different from the secondary polytope.

6.8. The moduli space of stable toric pairs MQ. This approach is used
in [Ale02]. This is the coarse moduli space of stable toric varieties of numerical
type Q. It also comes with a natural stratification in which strata are in a
bijection with all lattice subdivisons of Q; and the normalization of the main
irreducible component is PSec Q.
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There exists a finite “Chow” morphism from MQ to the toric Chow variety
with strata mapping to the strata with the same label.

A stable toric variety P is a seminormal projective variety with a torus
action so that there are only finitely many orbits and the stabilizers are con-
nected and reduced. A stable toric pair (P, D) adds an effective ample Cartier
divisor not containing any orbits entirely. This is just a special case of the
definition for a stable semiabelic pair we used in the previous Sections, when
the semiabelian variety is a torus.

Let (P, D) be a stable pair in which P is a toric variety and with (P, L =
O(D)) corresponding to a lattice polytope Q ⊂ ΛR. The equation s ∈ H0

(P,O(D)) written in the basis of T -eigenfuctions

s =
∑

m∈Λ∩Q

cmem

can dually be interpreted as a finite map ψs : P → PN−1, where N = |Λ ∩ Q|
via the homomorphism

C[z1, . . . , zN ] → ⊕d≥0H
0(Ld), zm �→ cmem

This gives the connection with the Chow quotient: the data for the pair
(P, (s) = D) with toric P is equivalent to the data for the cycle ψs(P ) ⊂ PN−1.

6.9. Although in general the four moduli spaces are different, they all
share a common subscheme UnimQ corresponding to the unimodular convex
subdivisions of Q. All the polyhedral decompositions appearing in the descrip-
tion of KSr,n are convex and unimodular, so all four approaches in this case
are equivalent. We take the last approach, the moduli of stable pairs, as being
just the finite version of the 2nd Voronoi compactification A

Vor

g and the moduli
space of stable pairs APg.

6.10. The source space.

Theorem 6.11. Points of KSr,n \ KSr,n correspond to pairs (X, E)
which are limits of pairs (Pr−1,

∑
Hi). Moreover, the pairs (X, E) are sta-

ble in the sense of [Ale96], i.e. the singularities are semi-log canonical and the
sheaf ωX(E) is ample.

We noticed this fact several years ago. Since the proof now appeared in a
paper of Hacking [Hac03], we will omit it.

6.12. The analogy with the toroidal Torelli map is now complete.
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§7. KS2,n Versus Mg

We conclude with the following description of K2,n from [Kap93], which
should be compared against the description of the compactified jacobians in 2.7.

Theorem 7.1.

(1) KS2,n coincides with M0,n, the moduli space of n-pointed rational curves.
It is naturally stratified by the types of curves, with strata labeled by trees
Γ with n numbered ends.

(2) If (X, E = P1 + · · · + Pn) is in the stratum for the tree Γ then t̄(X, E)
is in the stratum corresponding to a decomposition of the polytope ∆(2, n)
obtained by cutting it by hyperplanes.

(3) Hyperplanes correspond bijectively to the interior edges of Γ (i.e. not the
labeled end edges).

Problem 7.2. Give a moduli-theoretic description of the points of the
stable pair (P, D) corresponding to t̄(X, E) as semistable sheaves on (X, E).
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Note added in proof: Alternative proof of seminormality of R//PGL in Thm. 5.1:
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zation. By uniqueness, f is PGL-equivariant. But then f factors through the categorial
quotient R//PGL and Z = R//PGL.


