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Abstract

In this paper we review some classes of exact solutions of the Navier-Stokes
equations under a time-independent external straining flow, centering around the
celebrated Burgers vortex. The objectives are (i) to clarify the relationship between
them and (ii) to examine them as models of turbulence. Particularly we study the
Lundgren spiral model for turbulence in the presence of azimuthal vorticity (that is,
with axial velocity). The implication on linear stability of the Burgers vortex is briefly
discussed.

§1. Introduction

At present there is no known method of integrating the Navier-Stokes equa-
tions in a systematic fashion. In this sense one should not be surprised at the
paucity of exact solutions known to date. There are a number of attempts to
collect and tabulate the exact solutions, which are scattered rather sporadically
over a range of the literature [B63, W89, W91, O97]. Some of them are dis-
covered independently by different researchers and some of them belong to the
folklore. The purpose of this article is two-fold. First, we review a class of exact
solutions centering around the celebrated exact solution of the Burgers vortex
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1268 Koji Ohkitani

[B48]. Second, we consider its application a model for small-scale motion in
turbulence.

There are a number of attempts to represent turbulent flow field as an
assembly of exact solutions of Navier-Stokes or Euler equations. Fourier spec-
trum of energy E(k) may be used as a rough but convenient measure of each
model; see [S97] for a nice survey of such researches. One such attempt uses an
inviscid solution of Hill’s vortex [SL43]. This first model suffers from a defect
that it cannot sustain energy transfer, in that any odd-order moments vanish
in this model. See also [AP01]. Another attempt uses vortex tubes and lay-
ers [T51, S68]. It was shown that a vortex tube alone deterministically yields
E(k) ∝ k−1 and a vortex layer yields E(k) ∝ k−2.

We will be interested in the model which utilizes the Burgers vortex but
has helical components in addition to it. More specifically, we consider the
Lundgren’s spiral model for turbulent small scale motion [L82]. This consists
of axial vorticity, helically wound up around the Burgers vortex tube, see [M93]
for more general helical models in flow fields. It was found that the energy
spectrum of the spiral model associated with axial vorticity yields a form of
k−5/3, something between the values predicted by tube and layer models, and
more importantly consistent with Kolmogorov’s similarity theory of turbulence
[L82]. This model has been discussed subsequently in [L93, PS93, PBS94].

We ask what happens to the model if there is azimuthal vorticity, which
were put to zero in the Lundgren’s model. To estimate the spectrum coming
from the azimuthal components we will first prepare a suitable class of exact
solutions of the Navier-Stokes equations.

There is a phenomenological theory [G93] regarding the Lundgren’s spiral
model which explains k−5/3 for axial vorticity and predicts (if straightforwardly
extended) k−7/3 for azimuthal vorticity. In this sense the azimuthal contribu-
tion would not mask the axial one, thereby suggesting robustness of the k−5/3

form of the latter. We will examine validity of this phenomenology by asymp-
totic solutions.

The rest of this paper is organized as follows. In Section 2, we list the
Burgers vortex and a similar, but different class of solutions investigated by
Takaoka in [T91] as a model for vortex reconnection. In Section 3, a slightly
more general class is considered, which is obtained by direct superposition of
Burgers’ and Takaoka’s. Alternatively, this class will be understood in an uni-
fied manner by a simple construction for quasi two-dimensional Navier-Stokes
flows. In Section 4, a brief summary of Lundgren’s model for turbulence is
given. As an application of the construction, we derive the energy spectrum
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E⊥(k) associated with axial velocity in the spirit of the original paper [L82]
in Section 5,1 where we consider the Lundgren’s model using the general su-
perposed class of solutions. Finally, Section 6 will be devoted to summary and
discussion.

§2. Some Classes of Stretched Solutions

§2.1. Burgers vortex

The celebrated Burgers vortex tube [B48] is an exact solution under an
external time-independent strain field. With the external field the solution
dose not belong in L2, but the physical meaning of it is that it mimics the
effect of other vortices residing at far distances. The Burgers vortex solution
was independently found by Rott [R58]. There, some of its properties such as
pressure distribution were studied in detail.

Originally, the Burgers solution was given as a stationary solution of the
Navier-Stokes equations. In [R58] a non-stationary form is described. More
generally it can be realized as a large-time asymptotic state of non-stationary
solutions [K84, M86]. Consider a flow under a constant strain rate α(> 0),
whose velocity and vorticity are respectively given by

u = (−αx + u1(x, y, t),−αy + u2(x, y, t), 2αz)(2.1)

and

ω = (0, 0, ω3), ω3 = ∂xu2 − ∂yu1.(2.2)

The vorticity equation reads

∂ω3

∂t
+ u1

∂ω3

∂x
+ u2

∂ω3

∂y
= αx

∂ω3

∂x
+ αy

∂ω3

∂y
− γω3 + ν�2ω3,(2.3)

where �2 ≡ ∂2
x + ∂2

y . If the flow is axisymmetric, we have

u1
∂ω3

∂x
+ u2

∂ω3

∂y
=

∂(ω3, ψ)
∂(x, y)

= 0,

where ψ is the stream function. Introducing the transformations Ω3 = ω3e
γt

and X = xeαt, Y = yeαt, T = (e2αt − 1)/(2α), the vorticity equations reduces
to a linear diffusion equation

∂Ω3

∂T
= ν

(
∂2Ω3

∂X2
+

∂2Ω3

∂Y 2

)
.(2.4)

1It should be emphasized that the same result has been obtained by [PL01] by a more
sophisticated treatment following [PS93, PBS94].
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This can be solved by using a heat-kernel as

Ω3(X, Y, T ) =
1

4πνT

∫∫
ω3(X ′, Y ′, 0)(2.5)

× exp
(
− (X − X ′)2 + (Y − Y ′)2

4νT

)
dX ′dY ′.

In the original variables we find

ω3(r, t) =
α

2πν

e2αt

e2αt − 1

∫∫
ω3(X ′, Y ′, 0)(2.6)

× exp
(
− α

2ν

(eαtx − X ′)2 + (eαty − Y ′)2

e2αt − 1

)
dX ′dY ′,

so we find by dominated convergence that

ω3(r, t) →
αΓ
2πν

exp
(
−αr2

2ν

)
as t → ∞.

This is the Burgers vortex tube, obtained as a balance between stretching by
the external strain field and viscous diffusion.

§2.2. A class of solutions studied by Takaoka

This class is complementary to the Burgers vortex, in that vorticity has two
non-zero components and velocity one non-zero component. Axisymmetric case
can be obtained by applying Lundgren’s transformation to a class of quasi 2D
solutions (see below) and is only marginally novel. In [T91] this class has been
used as a model for vortex reconnection, see also, [T90] for the two-dimensional
case.

The velocity and vorticity are

u = (−αx,−βy,−γz + u3(x, y, t))(2.7)

and

ω = (∂yu3,−∂xu3, 0),(2.8)

where α, β > 0, α + β + γ = 0.
The vorticity equations read

∂ω1

∂t
= αx

∂ω1

∂x
+ βy

∂ω1

∂y
− αω1 + ν�2ω1,(2.9)

∂ω2

∂t
= αx

∂ω2

∂x
+ βy

∂ω2

∂y
− βω2 + ν�2ω2,(2.10)
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where use has been made of an identity

ω · ∇u3 = ω1∂xu3 + ω2∂yu3 = 0.

By transforming dependent and independent variables as2

Ω1 = ω1e
αt, Ω2 = ω2e

βt,

U3 = u3e
−γt,

X = xeαt, Y = yeβt, T = t

we find

∂Ω1

∂T
= ν

(
e2αT ∂2

∂X2
+ e2βT ∂2

∂Y 2

)
Ω1.(2.11)

Noting that

Ω1 =
∂U3

∂Y
we verify that the axial velocity obeys the same equation

∂U3

∂T
= ν

(
e2αT ∂2

∂X2
+ e2βT ∂2

∂Y 2

)
U3.(2.12)

This can be solved as

U3(X, Y, T ) =
√

αβ

2πν
√

(e2αT − 1)(e2βT − 1)
(2.13)

×
∫∫

u3(X ′, Y ′, 0) exp
(
− α(X − X ′)2

2ν(e2αT − 1)
− β(Y − Y ′)2

2ν(e2βT − 1)

)
dX ′dY ′,

that is,

u3(x, y, t) =
eγt

√
αβ

2πν
√

(e2αt − 1)(e2βt − 1)
(2.14)

×
∫∫

u3(X ′, Y ′, 0) exp
(
−α(xeαt − X ′)2

2ν(e2αt − 1)
− β(yeβt − Y ′)2

2ν(e2βt − 1)

)
dX ′dY ′.

Unlike the Burgers vortex, it does not converge to a nontrivial stationary solu-
tion in the limit t → ∞. Rather it decays to zero as

u3(x, y, t) ≈
√

αβ

2πν

(∫∫
u3(x′, y′, 0)dx′dy′

)
exp

(
−αx2 + βy2

2ν

)
exp (2γt),

where γ = −(α + β) < 0.

2In [T91] a slightly different scaling was used for U3.
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§3. Superposed Class of Solutions

Generally speaking, because the Navier-Stokes equations are nonlinear, a
superposition of two of their exact solutions does not necessarily yield another
solution. Nevertheless,

Proposition 3.1. A superposition of Burgers’ and Takaoka’s class of
solutions does yield another class of solution.

Proof. Let us consider a class of solutions of the form

u = (−αx + u1(x, y, t),−βy + u2(x, y, t),−γz + u3(x, y, t))(3.1)

and

ω = (∂yu3,−∂xu3, ∂xu2 − ∂yu1).(3.2)

Recall that
u1 = ∂yψ, u2 = −∂xψ,

ω1 = ∂yu3, ω2 = −∂xu3, ω3 = ∂xu2 − ∂yu1.

The vorticity equations read

∂ω1

∂t
=−αω1 +

(
αx

∂ω1

∂x
+ βy

∂ω1

∂y

)
−

(
u1

∂ω1

∂x
+ u2

∂ω1

∂y

)
(3.3)

+
(

ω1
∂u1

∂x
+ ω2

∂u1

∂y

)
+ ν�2ω1,

∂ω2

∂t
=−βω2 +

(
αx

∂ω2

∂x
+ βy

∂ω2

∂y

)
−

(
u1

∂ω2

∂x
+ u2

∂ω2

∂y

)
(3.4)

+
(

ω1
∂u2

∂x
+ ω2

∂u2

∂y

)
+ ν�2ω2,

∂ω3

∂t
=−γω3 +

(
αx

∂ω3

∂x
+ βy

∂ω3

∂y

)
−

(
u1

∂ω3

∂x
+ u2

∂ω3

∂y

)
(3.5)

+
(

ω1
∂u3

∂x
+ ω2

∂u3

∂y

)
+ ν�2ω3.

We have, as in the Takaoka vortex,

ω · ∇u3 = ω1∂xu3 + ω2∂yu3 = 0,
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so the equation for the axial vorticity decouples from those for the
azimuthal.

If we assume axisymmetry3 (so, necessarily α = β is required), we have as
in the case of the Burgers vortex

u1
∂ω3

∂x
+ u2

∂ω3

∂y
≡ ∂(ω3, ψ)

∂(x, y)
= 0.

The same equation results as the one for the Burgers vortex for axial vorticity

∂ω3

∂t
= −γω3 + α

(
x

∂ω3

∂x
+ y

∂ω3

∂y

)
+ ν�2ω3.

It should be noted that u3, ω1, ω2 are functions of x, y, t but u1, u2, ω3 are
functions of r, t only.

We can make use of the transformation of variables (writing for the gen-
eral case α �= β to show how the time-dependent coefficients appear in the
equations)

X = xeαt, Y = yeβt,

U1 = e−αtu1, U2 = e−βtu2, U3 = e−γtu3,

Ω1 = eαtω1, Ω2 = eβtω2, Ω3 = eγtω3.

Defining

Ω1 =
∂U3

∂Y
, Ω2 = −∂U3

∂X
, Ω3 =

∂U2

∂X
− ∂U1

∂Y
,

we may write the first two equations as

∂Ω1

∂t
=−

(
e2αtU1

∂Ω1

∂X
+ e2βtU2

∂Ω1

∂Y

)
+ e2αt

(
Ω1

∂U1

∂X
+ Ω2

∂U1

∂Y

)
(3.6)

+ν

(
e2αt ∂2Ω1

∂X2
+ e2βt ∂2Ω1

∂Y 2

)
,

∂Ω2

∂t
=−

(
e2αtU1

∂Ω2

∂X
+ e2βtU2

∂Ω2

∂Y

)
+ e2βt

(
Ω1

∂U2

∂X
+ Ω2

∂U2

∂Y

)
(3.7)

+ν

(
e2αt ∂2Ω2

∂X2
+ e2βt ∂2Ω2

∂Y 2

)
.

For the symmetric case α = β, by

T =
exp(2αt) − 1

2α

3Without axisymmetry the equation for ω3 is decoupled, but is not linearized.
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the above equations are simplified as

∂Ω1

∂T
= −

(
U1

∂Ω1

∂X
+ U2

∂Ω1

∂Y

)
+

(
Ω1

∂U1

∂X
+ Ω2

∂U1

∂Y

)
+ ν

(
∂2Ω1

∂X2
+

∂2Ω1

∂Y 2

)
,

(3.8)

∂Ω2

∂T
= −

(
U1

∂Ω2

∂X
+ U2

∂Ω2

∂Y

)
+

(
Ω1

∂U2

∂X
+ Ω2

∂U2

∂Y

)
+ ν

(
∂2Ω2

∂X2
+

∂2Ω2

∂Y 2

)
.

(3.9)

Or, using

Ψ = ψ, U1 =
∂Ψ
∂Y

, U2 = − ∂Ψ
∂X

,

we can write alternatively

∂Ω1

∂T
=

∂(Ψ, Ω1)
∂(X, Y )

+
∂(U1, U3)
∂(X, Y )

+ ν

(
∂2Ω1

∂X2
+

∂2Ω1

∂Y 2

)
,

∂Ω2

∂T
=

∂(Ψ, Ω2)
∂(X, Y )

+
∂(U2, U3)
∂(X, Y )

+ ν

(
∂2Ω2

∂X2
+

∂2Ω2

∂Y 2

)
.

together with
∂Ω3

∂T
= ν

(
∂2Ω3

∂X2
+

∂2Ω3

∂Y 2

)
.

The axial vorticity Ω3 is obtained by solving a diffusion equation. Then
U1, U2(or Ψ) is known explicitly and we may solve the linear equations for
Ω1 and Ω2. �

§3.1. An alternative interpretation of the superposed solutions

A method is known for constructing a class of quasi two-dimensional
(∂/∂z = 0) Navier-Stokes flows, see, e.g. [M85]. It has axisymmetric azimuthal
velocity and axial velocity.

Lemma 3.1. Consider a flow in cylindrical coordinates (r, θ, z),

ur = 0, uθ = uθ(r, t), uz = uz(r, θ, t).

The Navier-Stokes equations can be written as

∂uθ

∂t
= ν

(
∂2uθ

∂r2
+

1
r

∂uθ

∂r
− uθ

r2

)
,(3.10)



�

�

�

�

�

�

�

�

Navier-Stokes Equations and Turbulence 1275

∂uz

∂t
+

uθ

r

∂uz

∂θ
= ν

(
∂2uz

∂r2
+

1
r

∂uz

∂r
+

1
r2

∂2uz

∂θ2

)
,(3.11)

and

u2
θ

r
=

∂p

∂r
.(3.12)

Proof. This is a direct consequence of the axisymmetric Navier-Stokes
equations.

Remark. The components of vorticity are

ωr =
1
r

∂uz

∂θ
, ωθ = −∂uz

∂r
, ωz =

1
r

∂(ruθ)
∂r

.

Remark. When ν = 0, we may solve them easily as

ur = 0, uθ = uθ(r), uz = uz

(
r, θ − t

uθ(r)
r

)
.

As time elapses, uz has an increasingly oscillating structure. It is well known
that as t → ∞ such a solution does not converge to anything in the normal
sense, but it displays weak convergence. In this case as t → ∞, uz converges
in a weak sense to the θ-average of its initial value, see e.g. [Y00, BG98]. If
ν > 0, uz eventually decays to zero by viscous diffusion.

Proposition 3.2. For the axisymmetric case α = β, the superposed
class of solutions mentioned above actually belongs to this category.

Proof. To see this we write the equations for velocity

∂u1

∂t
= −αu1 +

(
αx

∂u1

∂x
+ βy

∂u1

∂y

)
−

(
u1

∂u1

∂x
+ u2

∂u1

∂y

)
− ∂p2

∂x
+ ν�2u1,

(3.13)

∂u2

∂t
= −βu2 +

(
αx

∂u2

∂x
+ βy

∂u2

∂y

)
−

(
u1

∂u2

∂x
+ u2

∂u2

∂y

)
− ∂p2

∂y
+ ν�2u2,

(3.14)

∂u3

∂t
= −γu3 +

(
αx

∂u3

∂x
+ βy

∂u3

∂y

)
−

(
u1

∂u3

∂x
+ u2

∂u3

∂y

)
+ ν�2u3,(3.15)
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where we have introduced p2 defined by

p(x, y, z, t) = −1
2

(
α2x2 + β2y2 + γ2z2

)
+ p2(x, y, t).

Under the set of transformations, the last equation (3.15) becomes

∂U3

∂T
+ U1

∂U3

∂X
+ U2

∂U3

∂Y
= ν

(
∂2U3

∂X2
+

∂2U3

∂Y 2

)
,

or, in cylindrical coordinates

∂U3

∂T
+

UΘ

R

∂U3

∂Θ
= ν

(
∂2U3

∂R2
+

1
R

∂U3

∂R
+

1
R2

∂2U3

∂Θ2

)
,

which is the same as (3.11).

Note that U3 behaves like a passive scalar because of the decoupling of
axial and planar components of velocity. We also note that

ΩR =
1
R

∂U3

∂Θ
, ΩΘ = −∂U3

∂R
.

§4. Lundgren’s Spiral Model for Turbulence

In a seminal paper Lundgren considered a spiral model for small-scale
turbulent motion on the basis of the Burgers vortex. Lundgren’s asymptotic
solution of the 2D Navier-Stokes equations takes the following form

ω(r, θ, t) =
∞∑

n=−∞
ωn(r, t) exp(inθ),(4.1)

ωn = e2αtf‖
n(R) exp(−in σ (R)T − νn2σ′(R)T 3/3), (n 	= 0)(4.2)

ω0(r, t) = e2αt
(
f
‖
0 (R, T ) + g‖(R, T )

)
,(4.3)

R(r, t) = reαt, T = (e2αt − 1)/(2α),(4.4)

where

1
R

d

dR

(
R2σ(R)

)
= f

‖
0 (R) + g‖(R).(4.5)

The expression (4.5) relates vorticity and circulation in cylindrical coordinates

ω =
1
r

∂

∂r
(ruθ(r)).
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Here f
‖
0 (R, T ) describes θ-averaged vorticity of the spiral component and

g‖(R, T ) the background vorticity.
The following comment may help clarify the meaning of the approximate

solution. If, in the totally inviscid case, we take f
‖
n(ρ) = f‖(ρ) (independent of

n) we have

ω(r, θ, t) = 2πe2αtf‖(R)δ(θ − σ(R)T ) + e2αtg‖(R),

where δ is the Dirac delta function. Therefore the underlying mechanism in this
case is rolling-up of a nearly circular vortex layer due to Kelvin-Helmholtz in-
stability by differential rotation σ. For general f

‖
n, such a simple interpretation

is not available.
Using this asymptotic solution, Lundgren computed the averaged energy

spectrum E(k) as
E(k) = E0(k) + E‖(k),

where E0(k) ∝ k−1 is the contribution from the vortex tube,4 whose unaveraged
form is given by

E0(k) =
NΓ2

4πk
exp

(
−νk2

α

)
.(4.6)

The spectrum E‖(k) due to the spiral contributions is

E‖(k) = Ak−5/3 exp
(
−νk2

3α

)
,(4.7)

A =
4π

3
N(2α)1/3

∞∑
n=1

n−4/3

∫ ∞

0

|f‖
n(ρ)|2ρdρ

(−σ′(ρ))4/3
(4.8)

Under the circumstances where the prefactor of the core spectrum is smaller
than the one of the spiral, we find E(k) ∝ k−5/3 . We observe that this result
is independent from the choice of initial conditions, because f

‖
n(ρ) is included

in A.
This model consists of three parts, each of them are of importance in their

own right in applied analysis of the Navier-Stokes equations. The first two
are required for the approximate solutions and the final for estimation of the
spectrum.

4Care should be taken in averaging E0(k), as a cut-off is needed for time integration
[PS93, PBS94].
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1. Lundgren’s transform

We have already made use of it a couple of times in this paper. Given a
3D flow with external strain fields, we may reduce it to 2D flow without
them. Conversely, this boosts a 2D flow without external strain fields to a
3D flow with external strain fields. For an axially symmetric case it goes
likes this.

Suppose that there is a 3D flow with strain fields which obeys

∂ω

∂t
− αr

∂ω

∂r
+

1
r

∂(ω, ψ)
∂(r, θ)

= 2αω + ν�ω,(4.9)

where

ur =
1
r

∂ψ

∂θ
, uθ = −∂ψ

∂r
.(4.10)

We introduce transforms for independent variables

R = eαtr, Θ = θ, T =
e2αt − 1

2α

and those for dependent variables

Ω(R, Θ, T ) = e−2αtω(r, θ, t),

Ψ(R, Θ, T ) = ψ(r, θ, t).

Then we can reduce the dynamical equations to

∂Ω
∂T

+
1
R

∂(Ω, Ψ)
∂(R, Θ)

= ν

(
∂2Ω
∂R2

+
1
R

∂Ω
∂R

+
1

R2

∂2Ω
∂Θ2

)
,(4.11)

which is a 2D flow without strain fields. Note that

UR =
1
R

∂Ψ
∂Θ

, UΘ = −∂Ψ
∂R

.(4.12)

2. Asymptotic axisymmetrization of advecting velocity

This means that at large times (t → ∞), dynamics of vorticity is well
approximated by
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∂Ω
∂T

+
U0(R)

R

∂Ω
∂Θ

= 0,(4.13)

where U0 is the axisymmetric azimuthal velocity induced by vorticity Ω0.
For simplicity, viscosity has been discarded.

It means that as the vorticity winds up with excitation on small scales,
its non-axisymmetric perturbations become rapidly varying in radial di-
rection, which makes vorticity-stream function coupling cancel at leading
order [BL94, BG98]. Thus, as T → ∞ the vorticity behaves as if it were a
passive scaler advected by a flow induced by Ω0. This large time asymp-
totic analysis has been recast using a kind of WKB analysis [BL94] under a
linear approximation. While a rigorous mathematical justification for the
fully-nonlinear case seems to be lacking, validity of the asymptotic theory
has been obtained by numerical simulations, see e.g. [L93, BG98]. See also
related works [LB95, BG99, MBG02, HBG03].

3. Statistical average of the energy spectrum

It is assumed that there are a large number of vortices in the box. In that
box each vortex has the identical structure but is in different stages of time
evolution. These vortices are assumed to be supplied at some constant
rate N , the rate of creation of vortex length per unit time per unit volume
[L−2T−1] to take into account the increasing length of the structures by
vortex stretching. This may be viewed as a kind of ergodic hypothesis.

The Lundgren’s model assumes that azimuthal vorticity is absent. If it is
present, it might influence the shape of the spectrum E(k).

A phenomenological theory based on the cascade argument (essentially the
so-called β-model for turbulence) is given by Gilbert in [G93]. According to it,
the spectrum due to axial vorticity leads to

E‖(k) ∝ k−5/3,

consistent with Lundgren’s model. If we apply the same phenomenology to
azimuthal component of vorticity, it is readily verified that
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E⊥(k) ∝ k−7/3,

whose slope is steeper than −5/3.
It may be in order to briefly describe the derivation here. Consider a blob

of vortex in an axisymmetric field u = (0, uθ(r), 0). The three components of
vorticity evolve as ωθ ≈ ω0σt, ωr ≈ ω0, ωz ≈ ω0, where σ ≈ r∂r(uθ/r) is the
differential rotation. If we turn on the straining filed u = (−αr, 0, 2αz), the
vorticity is stretched as

ωr(r, θ, z, t) = e−αtΩR(R, Θ, Z, T ),

ωθ(r, θ, z, t) = e−αtΩΘ(R, Θ, Z, T )

and
ωz(r, θ, z, t) = e2αtΩR(Z, Θ, Z, T ),

where

R = eαtr, Θ = θ, Z = e−2αtz, T =
e2αt − 1

2α
.

Thus, axial and azimuthal components of vorticity are transformed as

ωz ≈ ω0 → ω0e
2αt

and

ωθ ≈ ω0σt → ω0e
−αtσ

e2αt − 1
2α

≈ ω0σ

α
eαt.

On the other hand, the height, length and thickness of the blob undergo re-
spectively transformations as

l0 → l0e
2αt, l0σt → l0σ

α
eαt,

l0
σt

→ l0α

σ
e−3αt(≡ l).

Now, considering the eddy turn-over time O(1/α) and reading the smallest scale
by l(= 1/k), the enstrophy spectra Q‖(k) and Q⊥(k) associated respectively
with axial and azimuthal vorticity are estimated as

kQ‖(k) ≈ l30
α

(ω0e
2αt)2 ∝ l−4/3 ≈ k4/3

and

kQ⊥(k) ≈ l30
α

(ω0σ

α
eαt

)2

∝ l−2/3 ≈ k2/3.

These are Gilbert’s phenomenological predictions.
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Thus, as far as the phenomenology is concerned, the azimuthal component
is expected to have little effect on the spectrum because it could not spoil k−5/3

for large k. Because we have an appropriate class of superposed solutions we
may address the prediction analytically by means of asymptotic solutions.

§5. Properties of the Superposed Solution

Now we apply Lundgren’s methods to the superposed class of solutions.
The rest is basically reiteration of his argument for the derivation of the energy
spectrum due to axial velocity (or, in other words, azimuthal vorticity).

§5.1. Asymptotic solution

Proposition 5.1. Consider a flow of the following form

ur = −αr, uθ = uθ(r, t), uz(≡ u3) = 2αz + uz(r, θ, t), (α > 0),(5.1)

ωr =
1
r

∂uz

∂θ
, ωθ = −∂uz

∂r
, ωz =

1
r

∂(ruθ)
∂r

.(5.2)

At large time t → ∞, an asymptotic solution is given by

u3,n ≈ S−1hn(S1/2r) exp
(
−inσ(S1/2r)P − ν

n2

3
σ′(S1/2r)2P 3

)
,

ωθ,n ≈ f⊥
n (S1/2r)S1/2rσ′(S1/2r)P exp

(
−inσ(S1/2r)P − ν

n2

3
σ′(S1/2r)2P 3

)
,

and

ωr,n ≈ S−1/2f⊥
n (S1/2r) exp

(
−inσ(S1/2r)P − ν

n2

3
σ′(S1/2r)2P 3

)

for Fourier expansions such as

u3(r, θ, t) =
∞∑

n=−∞
u3,n(r, t) exp(inθ).

Here we have introduced

σ(r) =
uθ(r, 0)

r
, S = exp(2αt), P =

exp(2αt) − 1
2α

,

and f⊥
n (r) = inhn(r)/r with hn(r) is an arbitrary function of r. An asymptotic

solution of axial vorticity ω = ωz is still given by (4.1).
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Proof. We start with the equation for the axial velocity

∂U3

∂T
+

UΘ

R

∂U3

∂Θ
= ν

(
∂2U3

∂R2
+

1
R

∂U3

∂R
+

1
R2

∂2U3

∂Θ2

)
,(5.3)

which has the same form as the equation for axial vorticity. We define its
Fourier coefficient by

U3 =
∞∑

n=−∞
U3,n(R, T )einΘ

and

σ(R, T ) =
UΘ(R, T )

R
.

The axial component of velocity U3 is a passive scalar. As in [L82] we
may treat σ(R, T ) as a constant; σ(R, T ) = σ(R, 0), see also [BG98, BG99].
The validity of such an approximation is different from the (more difficult,
nonlinear) vorticity problem, where asymptotic axisymmetrization is the key
property. Here for a passive scalar problem, the large time asymptotic analysis
holds because dynamics is linear by definition [RW83].

To absorb rapidly varying exponentials, we introduce hn(R, T ) =
U3,n exp(inσT ) then it satisfies

∂hn

∂T
= ν

[
∂2hn

∂R2
+

(
1
R

− 2in
dσ

dR
T

)
∂hn

∂R

+

(
−in

d2σ

dR2
T − n2

(
dσ

dR

)2

T 2 − in

R

dσ

dR
T − n2

R2

)
hn

]
.

Retaining the dominant T 2-term at large times in the viscous term we find

∂hn

∂T
≈ −νn2

(
dσ

dR

)2

T 2hn.

This can be solved to give

U3,n ≈ hn(R) exp

(
−inσ(R)T − ν

n2

3

(
dσ

dR

)2

T 3

)
,(5.4)

with an arbitrary function hn(R) of R. So we find

U3 ≈
∞∑

n=−∞
hn(R) exp

(
−inσ(R)T − ν

n2

3

(
dσ

dR

)2

T 3 + inΘ

)
.(5.5)
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We may derive the two components of vorticity;

ΩR =
1
R

∂U3

∂Θ
≈

∞∑
n=−∞

f⊥
n (R) exp

(
−inσ(R)T − ν

n2

3

(
dσ

dR

)2

T 3 + inΘ

)(5.6)

and

(5.7)

ΩΘ = −∂U3

∂R
≈

∞∑
n=−∞

[
g⊥n (R) + Rf⊥

n (R)
dσ

dR
T +

inν

3
Rf⊥

n (R)
d

dR

(
dσ

dR

)2

T 3

]

× exp

(
−inσ(R)T − ν

n2

3

(
dσ

dR

)2

T 3 + inΘ

)
,

where

f⊥
n (R) ≡ inhn(R)

R

and
g⊥n (R) = −h′

n(R).

For the Fourier coefficients, we find

ΩR,n ≈ f⊥
n (R) exp

(
−inσ(R)T − ν

n2

3

(
dσ

dR

)2

T 3

)
,(5.8)

ΩΘ,n ≈
(

g⊥n (R) + f⊥
n (R)R

dσ

dR
T +

3iν

n
Rf⊥

n (R)
d

dR

(
dσ

dR

)2

T 3

)
(5.9)

× exp

(
−inσ(R)T − ν

n2

3

(
dσ

dR

)2

T 3

)
,

where

ΩR =
∞∑

n=−∞
ΩR,n(R, T )einΘ, ΩΘ =

∞∑
n=−∞

ΩΘ,n(R, T )einΘ.

Finally, after performing the Lundgren’s transforms for independent and
dependent variables, we find in terms of the original coordinates

ωr,n ≈ S−1/2f⊥
n (S1/2r) exp

(
−inσ(S1/2r)P − ν

n2

3
σ′(S1/2r)2P 3

)
(5.10)
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and

ωθ,n ≈
[
S−1/2g⊥n (S1/2r) + f⊥

n (S1/2r)S1/2rσ′(S1/2r)P(5.11)

+S
3iν

n
ρ

(
σ′(ρ)2

)′
f⊥

n (ρ)P 3

]

× exp
(
−inσ(S1/2r)P − ν

n2

3
σ′(S1/2r)2P 3

)
,

where

S = exp(2αt), P =
exp(2αt) − 1

2α
.

As expected, ωr,n is negligible compared with ωθ,n. We also note that the third
term (with explicit ν-dependence) in the brackets in ωθ,n is small when the
Reynolds number is large.

Remark. As T → ∞ we have U3 → 0. Therefore addition of axial
velocity does not give rise to another stationary solution different from the
Burgers vortex.

§5.2. Estimation of the energy spectrum

We will derive the energy spectrum associated with axial velocity following
the method in [L82].

Theorem 5.1. Consider the superposed class of solutions of the propo-
sition 5.1. The energy spectrum due to planar components of vorticity is given
by

E⊥(k) = Bk−7/3 exp
(
−νk2

3α

)
,(5.12)

B =
4π

3
N

(2α)7/3

∞∑
n=1

n−2/3

∫ ∞

0

|f⊥
n (ρ)|2(−σ′(ρ))4/3ρ3dρ,(5.13)

where f⊥
n (ρ) represents an amplitude of Fourier coefficient of planar vorticity.

Proof. We will closely follow the footsteps of Lundgren to evaluate the
spectral from azimuthal component. We write

E(k, t) = E0(k, t) + E‖(k, t) + E⊥(k, t),(5.14)
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where E0(k, t) is the spectrum of the associated with the Burgers vortex,
E‖(k, t) is that of the spiral of the axial vorticity, and E⊥(k, t) is that of the
spiral of the planar vorticity. It is given by

E⊥(k, t) = 2πk
∞∑

n=1

|In(k, t)|2,(5.15)

where

In(k, t) =
∫ ∞

0

Jn(kr)u3,n(r, t)rdr(5.16)

is the Hankel transform. Using an integral representation of Bessel functions

Jn(kr) =
1
2

(
2

πkr

)1/2

((−i)n+1/2eikr + in+1/2e−ikr),

we find

In(k, t) =
∫ ∞

0

1
2

(
2

πkr

)1/2

((−i)n+1/2eikr + in+1/2e−ikr)ωθ,n(r, t)rdr.

Inserting the approximate solution obtained above

In(k, t) ≈
∫ ∞

0

W (rn, t)
(
(−i)n+1/2 exp

(
ikr − inσ(S1/2r)P

)

+in+1/2 exp
(
−ikr − inσ(S1/2r)P

))
dr,

where

Wn(r, t) ≡ 1
2

(
2

πkr

)1/2

S−1hn(S1/2r) exp
(
−ν

n2

3
σ′(S1/2r)2P 3

)
.

Assuming
σ′(S1/2r) < 0, σ′′(S1/2r) > 0,

we can evaluate the above integral using the method of stationary phase5 as

In(k, t) ≈ in−1/2eiπ/4

(
2π

nσ′′(S1/2rn)PS

)1/2

×Wn(rn, t) exp
(
−ikrn − inσ(S1/2rn)P

)
,

5Note that

∫ ∞

−∞
eiax2

dx =

√
π

a
eiπ/4, a > 0.
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where rn is determined by the stationarity condition

k + nσ′(S1/2rn)PS1/2 = 0.

The azimuthal spectrum becomes

E⊥(k, t) = 2πk

∞∑
n=1

2π

nσ′′(S1/2rn)PS
(Wn(rn, t))2

= 2
∞∑

n=1

π

nσ′′(S1/2rn)PS
rn

(
S−1hn(S1/2rn)

)2

exp
(
−2ν

n2

3
σ′(S1/2r)2P 3

)
.

Inserting

n = − k

S1/2Pσ′(S1/2rn)
,

we find

E⊥(k, t) =
2π

k

∞∑
n=1

−σ′(S1/2rn)
σ′′(S1/2rn)

S−1/2rn

(
S−1hn(S1/2rn)

)2

× exp
(
−2ν

n2

3
σ′(S1/2r)2P 3

)
.

This is a deterministic form of the azimuthal spectrum.
It is assumed that there are a large number of vortices in a box of size L3,

then the averaged energy spectrum can be written as

E⊥(k, t) =
∑

j

lj
L3

E⊥(k, t),

where lj denotes a segment along which each vortex. We replace the above
ensemble average with a long-time average

∑
j

= Nc

∫ ∞

0

dt

together with lj = S(t)l0. The averaged azimuthal spectrum is

E⊥(k, t) =
2π

k

Ncl0
L3

∫ ∞

0

∞∑
n=1

−σ′(S1/2rn)
σ′′(S1/2rn)

S−1/2rn

(
S−1hn(S1/2rn)

)2

× exp
(
−2ν

n2

3
σ′(S1/2r)2P 3

)
Sdt.

Changing variables to ρ = S1/2rn and noting Sdt = dP and

− σ′(ρ)
σ′′(ρ)

dP =
2
3
Pdρ,
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we find

E⊥(k) =
4π

3
N

2α
k−1 exp

(
−νk2

3α

) ∞∑
n=1

∫ ∞

0

ρ|hn(ρ)|2PS−3ρdρ,

with

P =
(
− k

nσ′(ρ)(2α)1/2

)2/3

,

where we have defined N = Ncl0/L3. Because P/S ≈ 1/(2α), we obtain

E⊥(k) = Bk−7/3 exp
(
−νk2

3α

)
,(5.17)

B =
4π

3
N

(2α)7/3

∞∑
n=1

n4/3

∫ ∞

0

|hn(ρ)|2(−σ′(ρ))4/3ρdρ.(5.18)

In terms of an amplitude f⊥
n (ρ) of planar vorticity components we may write

B =
4π

3
N

(2α)7/3

∞∑
n=1

n−2/3

∫ ∞

0

|f⊥
n (ρ)|2(−σ′(ρ))4/3ρ3dρ.(5.19)

§6. Summary and Discussion

If we extend Gilbert’s phenomenological argument to planar components
of vorticity in a straightforward fashion, it predicts

E⊥(k) ∝ k−7/3.

The above asymptotic solutions is consistent with it, in that they give the same
exponent. It is of interest to note that there is a subtle difference between E⊥(k)
and the Lundgren’s spectrum

E‖(k) = Ak−5/3 exp
(
−νk2

3α

)
, A =

4π

3
N(2α)1/3

∞∑
n=1

n−4/3

∫ ∞

0

|f‖
n(ρ)|2ρdρ

(−σ′(ρ))4/3
.

(6.1)

While we can take f
‖
n(ρ) = f‖(ρ) in E‖(k), we cannot take f⊥

n (ρ) = f⊥(ρ) in
E⊥(k), because the summation w.r.t. n would be divergent. This suggests that
the spatial structure of planar vorticity cannot be a simple roll-up mechanism
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of a thin vortex layer. With this reservation in mind, we can say that the
Lundgren’s −5/3 is robust as it cannot be masked by the contribution from
azimuthal vorticity.

Some comments of related problems are in order. The present study is
related with of works of [PA84, M85, N, C89, S90, KKTY97] which investi-
gate motion of diffusive vortex in a simple shear. The difference is that in the
present case the axial velocity uz(r, θ) decays in x-y plane, rather than a simple
shear e.g. uz ∝ x which become indefinitely large at r = ∞.

The Burgers vortex has been generalized in a number of different ways.
In [S59] Sullivan obtained an exact solution which represents two-cell vortices,
which may be of interest as another basis for a modeling turbulence. However,
it is a three-dimensional, nonlinear solution and techniques of reduction to lin-
ear diffusion equations does not work there. More work would be necessary to
determine the small-scale motion associated with it.

In [GFD99, OG00], the Burgers vortex was generalized in a different way,
which has an indefinitely growing strain field in one direction. The blow-up
problem of fluid equations has been investigated in a class of solutions.

Finally, in spite of some works [RS84, PP95, C98], the linear stability
property of the Burgers vortex has not yet been fully investigated. The main
difficulty stems from the very existence of the imposed strain fields which be-
have wildly at far distances. In the superposed class of solutions, the added
component of axial velocity (planar vorticity) eventually decays in time. It
does not define a new stationary solution other than the Burgers vortex. This
is consistent with a conjecture that the Burgers vortex is stable with infinites-
imal perturbations. There is another kind of stationary solution known as the
Burgers vortex layer. For its stability, and in particular its transition into virtex
tubes, see e.g. [BK96, B97a, B97b] and references cited therein.

Note: After submitting this manuscript, the author was informed of an
overlooked work [PL01], where the same result as Theorem 5.1 was derived.
He would like to thank Professors Pullin and Lundgren for kindly pointing this
out.
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