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Abstract

The aim of this paper is to discuss for Wishart processes some properties which
are analogues of the corresponding well-known ones for Bessel processes. In fact, we
mainly concentrate on the local absolute continuity relationship between the laws of
Wishart processes with different dimensions, a property which, in the case of Bessel
processes, has proven to play a rather important role in a number of applications.

§1. Introduction and Main Results

(1.0) To begin with, we introduce some notations concerning sets of matrices:

• Mn,m(R), Mn,m(C): the set of n × m real and complex matrices
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• Sm(R),Sm(C): the set of m × m real and complex symmetric (not self-
adjoint) matrices

• S+
m: the set of m × m real non-negative definite matrices

• S̃+
m: the set of m × m real strictly positive definite matrices

• For A ∈ Mn,m(R), A′ denotes its transpose. Note that Â
def= A′A ∈ S+

m.

(1.1) The present paper constitutes a modest contribution to the studies of
matrix valued diffusions which are being undertaken in recent years, due to
the growing interest in random matrices; see O’Connell [22] for some recent
survey. More precisely, we engage here in finding some analogues for Wishart
processes of certain important properties for squared Bessel processes, which
we now recall (for some similar efforts concerning the Bessel processes, see [39],
pp. 64–67 and [11]).
(1.a) Definition of BESQ processes For x � 0 and δ � 0, the stochastic
differential equation

dXt = 2
√

Xt dBt + δ dt, X0 = x,(1.1)

with the constraint Xt � 0 admits one and only one solution, i.e., (1.1) enjoys
pathwise uniqueness. The process is called a squared Bessel process, denoted as
BESQ(δ), and its distribution on the canonical space C(R+, R+) is denoted by
Qδ

x, where, abusing the notation, we shall still denote the process of coordinates
by Xt, t � 0, and its filtration by Xt = σ{Xs, s � t}.

The family {Qδ
x}δ�0,x�0 enjoys a number of remarkable properties, among

which
(1.b) Additivity property of BESQ laws We have

Qδ
x ∗ Qδ′

x′ = Qδ+δ′

x+x′(1.2)

for every δ, δ′, x, x′ � 0. This property was found by Shiga-Watanabe [31]
and considered by Pitman-Yor [28] who established a Lévy-Khintchine type
representation of (each of) the infinitely divisible Qδ

x’s.
(1.c) Local absolute continuity property Writing δ = 2(1 + ν), with ν �
−1, and Qδ

x = Q(ν)
x , there is the relationship: for ν � 0,

Q(ν)
x |Xt

=
(

Xt

x

)ν/2

exp
(
−ν2

2

∫ t

0

ds

Xs

)
· Q(0)

x |Xt
,(1.3)

from which we can deduce that the Q(0)
x -conditional law of

∫ t

0
(Xs)−1ds given

Xt = y is the Hartman-Watson distribution ηr(du), r > 0, u > 0. It is
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characterized by ∫ ∞

0

exp
(
−ν2u

2

)
ηr(du) =

Iν(r)
I0(r)

,

where Iν denotes the usual modified Bessel function; precisely, there is the
following consequence of (1.3): for ν � 0,

Q(0)
x

[
exp
(
−ν2

2

∫ t

0

ds

Xs

)
|Xt = y

]
=

Iν(r)
I0(r)

,(1.4)

where r =
√

xy/t, and more generally,

Q(ν)
x

[
exp
(
−µ2

2

∫ t

0

ds

Xs

)
|Xt = y

]
=

I√
ν2+µ2(r)

Iν(r)
.

The relation (1.3) was obtained and exploited by Yor [36] to yield, in particu-
lar, the distribution at time t of a continuous determination θt of the angular
argument of planar Brownian motion, thus recovering previous calculations by
Spitzer [32], from which one may derive Spitzer’s celebrated limit law for θt:

2θt

ln(t)
(law)−→ C1 as t → ∞,(1.5)

where C1 denotes the standard Cauchy variable, with parameter 1. It is also
known that

4
(ln(t))2

∫ t

0

ds

Xs

(law)−→ T(1/2) as t → ∞,(1.6)

where T(1/2) denotes the standard stable (1/2) variable. We recall that

E[exp(iλC1)] = E

[
exp
(
−λ2

2
T(1/2)

)]
= exp(−|λ|), λ ∈ R.

The absolute continuity property (1.3) has been of some use in a number of
problems, see, e.g., Kendall [17] for the computation of a shape distribution for
triangles, Geman-Yor [11] for the pricing of Asian options, Hirsch-Song [16] in
connection with the flows of Bessel processes, and more recent work by Werner
[34] who deduces the computation of Brownian intersection exponents also from
the relationship (1.3).
(1.d) Time inversion Let Xt be a Qδ

x distributed process and define i(X)t =
t2X(1/t), then i(X) is a generalized squared Bessel process with drift

√
x,

starting from 0. (See [33] and [27] for the definitions of generalized Bessel
processes). As an application, Pitman and Yor [26] give a “forward” skew
product representation for the d-dimensional Brownian motion with drift.
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(1.e) Intertwining property If Qδ
t (x, dy) denotes the semigroup of the

BESQ(δ) process, there is the intertwining relation

Qδ+δ′

t Λδ,δ′ = Λδ,δ′Qδ
t ,(1.7)

where Λδ,δ′ denotes the multiplication operator associated with βδ/2,δ′/2, a beta
variable with parameter (δ/2, δ′/2), i.e.,

Λδ,δ′f(x) = E[f(xβδ/2,δ′/2)],

for every Borel function f : R+ → R+. The relation (1.7) may be proven purely
in an analytical manner, but it may also be shown in a more probabilistic way,
with the help of time inversion, using a realization of Xδ+δ′

as the sum Xδ+Xδ′

of two independent BESQ processes (see [7] for details).
(1.2) With the help of the above presentation of the BESQ processes, it is not
difficult to discuss and summarize the main results obtained so far by M.F. Bru
([3, 5]) concerning the family of Wishart processes, which take values in S+

m for
some m ∈ N, to be fixed throughout the sequel.

For values of δ to be discussed later, WIS(δ, m, x) shall denote such a
Wishart process with “dimension” δ, starting at x, to be defined as the solution
of the following stochastic differential equation:

dXt =
√

Xt dBt + dB′
t

√
Xt + δIm dt, X0 = x,(1.8)

where {Bt, t � 0} is an m × m Brownian matrix whose components are inde-
pendent one-dimensional Brownian motions, and Im is the identity matrix in
Rm. We denote the distribution of WIS(δ, m, x) on C(R+,S+

m) by Qδ
x.

Assume that x ∈ S+
m and that x has distinct eigenvalues, which we denote

by λ1(0) > · · · > λm(0) � 0. Then, M.F. Bru [5] has shown the following

Theorem 1.1. (i) If δ ∈ (m−1, m+1), then (1.8) has a unique solution
in S+

m in the sense of probability law.
(ii) If δ � m + 1, then (1.8) has a unique strong solution in S̃+

m.
(iii) The eigenvalue process {λi(t), t � 0, 1 ≤ i ≤ m} never collide, that is,
almost surely,

λ1(t) > · · · > λm(t) � 0, ∀t > 0.

Moreover, if δ � m + 1, then λm(t) > 0 for all t > 0 almost surely and the
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eigenvalues satisfy the stochastic differential equation

dλi(t) = 2
√

λi(t) dβi(t) +

δ +
∑
k �=i

λi(t) + λk(t)
λi(t) − λk(t)

 dt, i = 1, ..., m,(1.9)

= 2
√

λi(t) dβi(t) +

δ − m + 1 + 2
∑
k �=i

λi(t)
λi(t) − λk(t)

 dt,

where β1(t), ..., βm(t) are independent Brownian motions.
(iv) If δ � m + 1, then

d(det(Xt)) = 2 det(Xt)
√

Tr(X−1
t ) dβ(t) + (δ − m + 1) det(Xt) Tr(X−1

t ) dt

(1.10)

and

d(log(det(Xt))) = 2
√

Tr(X−1
t ) dβ(t) + (δ − m − 1) Tr(X−1

t ) dt,(1.11)

where β = {β(t), t � 0} is a Brownian motion.
(v) For any Θ ∈ S+

m,

(1.12)

Qδ
x[ exp(−Tr(ΘXt))]

= (det(I + 2tΘ))−δ/2 exp(−Tr(x(I + 2tΘ)−1Θ))

= exp(−Tr(x/2t))(det(I + 2tΘ))−δ/2 exp
(

1
2t

Tr(x(I + 2tΘ)−1)
)

.

For the sake of clarity, we postpone the discussion of further properties of
Wishart processes as presented in M.F. Bru [5] to Section 2.
(1.3) We now present some of our main results and, in particular, the extension
for Wishart processes of the absolute continuity property (1.3).

Theorem 1.2. With the above notation, we have for ν � 0:

Qm+1+2ν
x |Ft

=
(

det(Xt)
det(x)

)ν/2

exp
(
−ν2

2

∫ t

0

Tr(X−1
s ) ds

)
· Qm+1

x |Ft
.(1.13)

Just as in the case of squared Bessel processes, the semigroup of
WIS(δ, m, x) is explicitly known, and we deduce from Theorem 1.2 our main
result in this paper:
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Corollary 1.3. Let ν � 0. Then we have

Qm+1
x

[
exp
(
−ν2

2

∫ t

0

Tr(X−1
s ) ds

)
|Xt = y

]
=
(

det(x)
det(y)

)ν/2 q(ν)
t (x, y)

q(0)
t (x, y)

(1.14)

=
Γm((m + 1)/2)

Γm((m + 1)/2 + ν)
(det(z))ν/2 0F1((m + 1)/2 + ν; z)

0F1((m + 1)/2; z)

=
Ĩν(z)

Ĩ0(z)
,

where z = xy/4t2, q(ν)
t denotes the transition probability of the Wishart process

of dimension δ = m + 1 + 2ν, Γm is the multivariate gamma function, 0F1 is
a hypergeometric function (see the appendix for the definitions of Γm and 0F1

) and Ĩν(z) is the function defined by

Ĩν(z) =
(det(z))ν/2

Γm((m + 1)/2 + ν) 0F1((m + 1)/2 + ν; z).(1.15)

Note that in the case m = 1, Ĩν(z) is related to the usual modified Bessel
function Iν(z) (see [19]) by Ĩν(z) = Iν(2z1/2). Clearly, formula (1.14) appears
as a generalization of the result (1.4) for m = 1.

Notation: In general, quantities related to Wishart processes will appear in
boldface.

Proofs and extensions of (1.13), with two general dimensions instead of
m + 1 and m + 1 + 2ν, are given in Section 2.

As in the case of the Bessel processes, we obtain the absolute continuity
relationship for the negative indexes in the following way.

Theorem 1.4. Assume 0 < ν < 1 and let T0 be the first hitting time of
0 for {det(Xt)}. Then we have

Qm+1−2ν
x |Ft

⋂
{t<T0} =

(
det(Xt)
det(x)

)−ν/2

exp
(
−ν2

2

∫ t

0

Tr(X−1
s ) ds

)
·Qm+1

x |Ft

=
(

det(Xt)
det(x)

)−ν

· Qm+1+2ν
x |Ft

.

(1.16)

From formula (1.16) we may deduce the law of T0 for WIS(m+1−2ν, m, x),
which will also be given in Section 2. In particular, we obtain:
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Corollary 1.5. For 0 < ν < 1, we have

Q(−ν)
x (T0 > t |Xt = y) =

(
Ĩν

Ĩ−ν

)( xy

4t2

)
.(1.17)

(1.4) In this paper, we also obtain some extension of the time inversion results
for Bessel processes (see (1.d)). For this, we need to introduce Wishart pro-
cesses with drift. For δ = n an integer, we define a Wishart process with drift
Θ̂ ≡ Θ′Θ as the process

XΘ
t = (Bt + Θt)′(Bt + Θt) ≡ B̂t+Θt,

where {Bs, s � 0} is an n × m Brownian matrix starting from 0 and Θ =
(Θij) ∈ Mn,m(R). Its law turns out to only depend on Θ̂ = Θ′Θ. In Section
3, we extend the definition of these processes to a non-integer dimension δ and
we show that these processes are time-inversed Wishart processes.

§2. Some Properties of Wishart Processes and Proofs of Theorems

(2.1) First properties of Wishart processes

(2.a) Wishart processes of integral dimension In the case δ = n is an
integer, WIS(n, m, x) is the law of the process {Xs = B′

sBs ≡ B̂s, s � 0}, where
{Bs} is an n × m Brownian matrix starting from B0 with B̂0 = B′

0B0 = x.
(2.b) Transition function Let δ > m − 1. Formula (1.12) shows that
the distribution of Xt for fixed t is the non-central Wishart distribution
Wm(δ, tIm, t−1x1) (Muirhead’s notation), see Theorem 10.3.3 in Muirhead [21].
The transition probability density qδ(t, x, dy) with respect to the Lebesgue
measure dy =

∏
i�j dyij of the Wishart process {Xt} is thus given by

(2.1)

qδ(t, x, y)

=
1

(2t)δm/2Γm(δ/2)
exp
(
− 1

2t
Tr(x + y)

)
(det(y))(δ−m−1)/2

0F1

(
δ

2
;

xy

4t2

)
=

1
(2t)m(m+1)/2

exp
(
− 1

2t
Tr(x + y)

)(
det(y)
det(x)

)(δ−m−1)/4

Ĩ(δ−m−1)/2

( xy

4t2

)
,

where Γm is the multivariate gamma function, 0F1 is a hypergeometric func-
tion (see their definitions in the appendix) and Ĩν(z) is the function defined by
(1.15). The transition probability density qδ(t, x, y) may be continuously ex-
tended in x belonging to S+

m, and we can consider the Wishart processes starting
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from degenerate matrices. Indeed, the Wishart processes starting from 0 will
play some role in the following. Note that

qδ(t, 0, y) =
1

(2t)δm/2Γm(δ/2)
exp
(
− 1

2t
Tr(y)

)
(det(y))(δ−m−1)/2.

(2.c) Additivity property We have the following property (see [5]): If {Xt}
and {Yt} are two independent Wishart processes WIS(δ, m, x) and
WIS(δ′, m, y), then {Xt + Yt} is a Wishart process WIS(δ + δ′, m, x + y). Nev-
ertheless, the laws Qδ

x of WIS(δ, m, x) are not infinitely divisible since the
parameter δ cannot take all the positive values, in fact, δ needs to belong to
the so-called Gindikin’s ensemble Λm = {1, 2, ..., m−1}

⋃
(m−1,∞) (see Lévy

[20] for the Wishart distribution).
(2.d) The eigenvalue process The drift in the stochastic differential equation
(1.9) giving the eigenvalues of the Wishart process is a repelling force between
these eigenvalues (which may be thought as positions of particles) which pro-
hibits collisions. We now discuss some other models of non colliding processes.
In [18], König and O’Connell consider the eigenvalues of the Laguerre process
(defined as in (2.a) replacing the Brownian motion B by a complex Brownian
motion and the transpose by the adjoint for n � m). Then, the eigenvalue
process satisfies the same equation as (1.9) except that the drift is multiplied
by “2”. It is shown that this process evolves like m independent squared Bessel
processes conditioned never to collide.

Gillet [12] considers a stochastic differential equation for an m-dimensional
process, called a watermelon, whose paths don’t intersect. It turns out that
this process corresponds to the square roots of the eigenvalues of a Laguerre
process and then can be interpreted as the process obtained from m independent
three dimensional Bessel processes conditioned to stay in the Weyl chamber
W = {(x1, x2, . . . , xm); x1 > x2 > · · · > xm}

We also refer to Cépa-Lépingle [9] and Grabiner [14] for other closely re-
lated studies about non-colliding particles.

We now study the filtration of the processes which appear in the density
(1.13).

Proposition 2.1. (i) Let {Dt, t � 0} be the filtration generated by the
process {Dt = det(Xt)}. Then {Dt} is equal to the filtration generated by the
eigenvalues {λi(t), i = 1, . . . , m, t � 0} of the process {Xt}. Therefore, the
density in (1.13) is Dt measurable.
(ii) Let Λδ

λ̄
the probability law of the eigenvalues (λi(t); i = 1, . . . , m) of a

WIS(δ, m, x) with λ̄ the vector of the eigenvalues of x ; i.e., the solution of
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(1.9) starting from λ̄. Then, the absolute continuity relation (1.13) reads

Λm+1+2ν
λ̄

|Dt
=
(∏m

i=1 λi(t)∏m
i=1 λi(0)

)ν/2

exp

(
−ν2

2

∫ t

0

(
m∑

i=1

1
λi(s)

) ds

)
· Λm+1

λ̄
|Dt

.

Proof. (i) Denote by Lt = ln(Dt) =
∑m

i=1 ln(λi(t)). Lt is Dt measurable.
According to equation (1.9), we have

ln(λi(t)) =
2√
λi(t)

dβi(t) + Ki(λ(t))dt

for a function Ki on Rm and

〈L, L〉t = 4
∫ t

0

m∑
i=1

(
1

λi(s)

)
ds = 4

∫ t

0

Tr(X−1
s ) ds,

which shows that Tr(X−1
t ) = d〈L, L〉t/dt is Dt measurable.

Now, let us define Lp(t) = Tr(X−p
t ), p ∈ N with L0(t) ≡ L(t). It is easy

to verify that
d

dt
〈Lp, Lq〉t = Lp+q+1(t)

and therefore, it follows that all the processes Lp(t) =
∑n

i=0(λi(t))−p are Dt

measurable. Now, from the knowledge of all the processes Lp, p ∈ N, we can
recover the m-dimensional process {λi(t), i = 1, . . . , m, t � 0}.
(ii) We just write the density in terms of the eigenvalues. �

(2.2) Girsanov formula Here, after writing the Girsanov formula in our
context, we prove Theorem 1.2, i.e., the absolute continuity relationship be-
tween the laws of Wishart processes of different dimensions. We also show that
we may obtain, by using the Girsanov formula, a process which may be called
a squared Ornstein-Uhlenbeck type Wishart process.

Let Qδ
x, x ∈ S̃+

m, δ > m− 1, be the probability law of WIS(δ, m, x) process
{Xt, t � 0}, which is considered as the unique solution of

dXt =
√

Xt dBt + dB′
t

√
Xt + δImdt, X0 = x,(2.2)

where {Bt} is an m×m Brownian matrix under Qδ
x. We consider a predictable

process H = {Hs}, valued in Sm, such that

EH
t = exp

(∫ t

0

Tr(HsdBs) −
1
2

∫ t

0

Tr(H2
s ) ds

)
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is a martingale with respect to Qδ
x and denote by Qδ,H

x the probability measure
such that

Qδ,H
x |Ft

= EH
t · Qδ

x|Ft
,(2.3)

where {Ft} is the natural filtration of {Xt}. Then the process {βt} given by

βt = Bt −
∫ t

0

Hs ds

is a Brownian matrix under Qδ,H
x and {Xt} is a solution of

dXt =
√

Xt dβt + dβ′
t

√
Xt + (

√
XtHt + Ht

√
Xt + δIm) dt.(2.4)

We consider two special cases: Ht = νX
−1/2
t , ν > 0, and Ht = λ

√
Xt, λ ∈ R.

Remark 2.2. Here is a slight generalization of (2.3): let {Hs} be a pre-
dictable process with values in Mn,m(R) and {Bs} be an n×m Brownian matrix
under P. Then, under PH given by

PH |Ft
= exp

(∫ t

0

Tr(H ′
s dBs) −

1
2

∫ t

0

Tr(Ĥs)ds

)
· P|Ft

,

βt = Bt −
∫ t

0
Hsds is an n × m Brownian matrix under PH .

Case 1 Let Ht = νX
−1/2
t . Then the equation (2.4) becomes

dXt =
√

Xt dβt + dβ′
t

√
Xt + (δ + 2ν)Imdt,

which is the stochastic differential equation for a WIS(δ + 2ν, m, x) process.
That is, we have obtained

Qδ+2ν
x |Ft

= exp
(

ν

∫ t

0

Tr(X−1/2
s dBs) −

ν2

2

∫ t

0

Tr(X−1
s )ds

)
·Qδ

x|Ft
.(2.5)

We can write the stochastic integral on the right hand side in a simpler way
when δ = m + 1 and thus obtain Theorem 1.2, as we now show.

Proof of Theorem 1.2. Developing the determinant of y ∈ S̃+
m in terms of

its cofactors, we obtain ∇y(det(y)) = det(y)y−1 and, hence,

∇y(log(det(y))) = y−1.(2.6)
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We know, from (1.11), that {log(det(Xt))} is a local martingale when δ = m+1.
Moreover, by (2.6), we obtain from Itô’s formula

log(det(Xt)) = log(det(x)) +
∫ t

0

Tr(X−1
s (
√

XsdBs + dB′
s

√
Xs)′)

= log(det(x)) + 2
∫ t

0

Tr(X−1/2
s dBs).

Hence, by (2.5), we obtain

Qm+1+2ν
x |Ft

=
(

det(Xt)
det(x)

)ν/2

exp
(
−ν2

2

∫ t

0

Tr(X−1
s ) ds

)
· Qm+1

x |Ft
. �

Remark 2.3. According to Theorem 1.2, we have the following absolute
continuity relationship, for δ = m + 1 + 2λ and δ′ = m + 1 + 2ν, λ, ν � 0,

Qδ′

x |Ft
=
(

det(Xt)
det(x)

)(ν−λ)/2

exp
(
−ν2 − λ2

2

∫ t

0

Tr(X−1
s ) ds

)
· Qδ

x|Ft
,(2.7)

from which we deduce for α ∈ R

Qδ
x

[(
det(Xt)
det(x)

)α

exp
(
−ν2 − λ2

2

∫ t

0

Tr(X−1
s ) ds

)]
= Qδ′

x

[(
det(Xt)
det(x)

)α−(ν−λ)/2
]

.

The moments of det(Xt) are given by the following formula (see [21] p.
447):

Qδ
x[(det(Xt))s] = (2t)ms Γm(s + δ/2)

Γm(δ/2) 1F1

(
−s;

δ

2
;− x

2t

)
.

For x = 0, we have

Qδ
0[(det(Xt))s] = (2t)ms Γm(s + δ/2)

Γm(δ/2)
= (2t)ms

∏m
i=1 Γ(s + δ/2 − (i − 1)/2)∏m

i=1 Γ(δ/2 − (i − 1)/2)

for s > 0, which is the Mellin transform of the distribution of det(Xt) under
Qδ

0. Hence, letting Y1, ..., Ym be independent gamma variables whose densities
are given by

1
Γ(δ/2 − (i − 1)/2)

e−ξξδ/2−(i−1)/2−1, ξ > 0, i = 1, ..., m,

we see that the distribution of det(Xt) under Qδ
0 coincides with that of

(2t)mY1 · · ·Ym. This result is a consequence of Bartlett’s decomposition (cf.
[21, Theorem 3.2.14]).
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Case 2 Let Ht = λ
√

Xt, λ ∈ R. Then (2.4) becomes

dXt =
√

Xt dβt + dβ′
t

√
Xt + (2λXt + δIm) dt.

By (2.2), we obtain

d(Tr(Xt)) = 2 Tr(
√

Xt dBt) + mδ dt

and ∫ t

0

Tr(
√

Xs dBs) =
1
2
(Tr(Xt) − Tr(x) − mδt).

Hence, from (2.3), we have obtained that the probability measure λQδ
x given

by

λQδ
x|Ft

= exp
(

λ

2
(Tr(Xt) − Tr(x) − mδt) − λ2

2

∫ t

0

Tr(Xs) ds

)
· Qδ

x|Ft
(2.8)

is the probability law of the process given by

dXt = (
√

Xt dβt + dβ′
t

√
Xt) + (2λXt + δIm)dt, X0 = x,(2.9)

for a Brownian matrix {βt} (under λQδ
x). See M.F. Bru [5] for a study of

squared Ornstein Uhlenbeck processes and related computations of Laplace
transforms.

(2.3) Generalized Hartman-Watson laws We concentrate on the case
δ � m + 1 for a while and write δ = m + 1 + 2ν. We denote by q(ν)

t (x, y)
the transition probability density with respect to the Lebesgue measure of the
generalized Wishart process (a solution to (1.8)) {X(ν)

t } given by (2.1). Then,
we have

q(ν)
t (x, y)

q(0)
t (x, y)

=
(2t)m(m+1)/2Γm((m + 1)/2)

(2t)m(m+1+2ν)/2Γm((m + 1)/2 + ν)
(det(y))ν

× 0F1((m + 1)/2 + ν; xy/4t2)
0F1((m + 1)/2; xy/4t2)

=
Γm((m + 1)/2)

Γm((m + 1)/2 + ν)
(det

y

2t
)ν 0F1((m + 1)/2 + ν; xy/4t2)

0F1((m + 1)/2; xy/4t2)
.

Denoting the law of {X(ν)
t } by Q(ν)

x , we showed in the previous subsection

dQ(ν)
x

dQ(0)
x

∣∣∣∣∣Ft
=
(

det(Xt)
det(x)

)ν/2

exp
(
−ν2

2

∫ t

0

Tr(X−1
u ) du

)
,



�

�

�

�

�

�

�

�

Some Properties of Wishart Processes 1397

which yields

q(ν)
t (x, y)

q(0)
t (x, y)

=
(

det(y)
det(x)

)ν/2

Q(0)
x

[
exp
(
−ν2

2

∫ t

0

Tr(X−1
u ) du

)
|Xt = y

]
.

(2.10)

Therefore we obtain

Q(0)
x

[
exp
(
−ν2

2

∫ t

0

Tr(X−1
u ) du

)
|Xt = y

]
(2.11)

=
Γm((m + 1)/2)

Γm((m + 1)/2 + ν)
(det(z))ν/2 0F1((m + 1)/2 + ν; z)

0F1((m + 1)/2; z)

with z = xy/4t2, proving Corollary 1.3.
Using the function Ĩν defined by (1.15), we may also write

Q(0)
x

[
exp
(
−ν2

2

∫ t

0

Tr(X−1
u ) du

)
|Xt = y

]
=

Ĩν(z)

Ĩ0(z)
,(2.12)

which is precisely (1.4) when m = 1.
We can extend (2.12) as follows:

Proposition 2.4. Let λ � 0, ν � 0,

Q(0)
x

[
exp
(
−λ2

2

∫ t

0

Tr(Xu) du − ν2

2

∫ t

0

Tr(X−1
u ) du

)
|Xt = y

](2.13)

=
(

λt

sinh(λt)

)m(m+1)/2

exp(−aλ(t) Tr(x + y))
Ĩν(λ2xy/4 sinh2(λt))

Ĩ0(xy/4t2)
,

where aλ(t) = (2t)−1(λt coth(λt) − 1).

Remark 2.5. (i) The computation in the case ν = 0 was done by M.F.
Bru in [5].
(ii) In the case m = 1, formula (2.13) was obtained in [28] and yields to the
joint characteristic function of the stochastic area and winding number of planar
Brownian motion {Zu, u � t}.

Proof. From the absolute continuity relationships (1.13) and (2.8), we
obtain

dλQ(ν)
x

dQ(0)
x

∣∣∣∣
Ft

=
(

det(Xt)
det(x)

)ν/2

exp
(

λ

2
(Tr(Xt) − Tr(x) − mδt)

)
× exp

(
−λ2

2

∫ t

0

Tr(Xu) du − ν2

2

∫ t

0

Tr(X−1
u ) du

)
,
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from which we deduce

Q(0)
x

[
exp
(
−λ2

2

∫ t

0

Tr(Xu) du − ν2

2

∫ t

0

Tr(X−1
u ) du

)
|Xt = y

]
=

λq(ν)
t (x, y)

q(0)
t (x, y)

(
det(x)
det(y)

)ν/2

exp
(
−λ

2
(Tr(y) − Tr(x) − mδt)

)
,

where λq(ν) is the transition density of the squared Ornstein Uhlenbeck process
λX, the solution of (2.9). Since λXt = e2λtX((1−e−2λt)/2λ) for some Wishart
process X, we have

λq(ν)(t, x, y) = e−λm(m+1)tq(ν)(
1 − e−2λt

2λ
, x, ye−2λt).

Straightforward computations give (2.13). �

(2.4) The case of negative indexes We first give a proof of Theorem 1.4
and then discuss the law of T0, the first hitting time of 0 by {det(Xt)}.

Proof of Theorem 1.4. We consider the local martingale {Mt} under Q(0)
x

defined by

Mt =
(

det(Xt)
det(x)

)−ν/2

exp
(
−ν2

2

∫ t

0

Tr(X−1
s ) ds

)
.

Note that, for ε > 0, {Mt∧Tε
} is a bounded martingale, where Tε = inf

{t; det(Xt) � ε}. Then, applying the Girsanov theorem, we find

Q(−ν)
x |Ft∧Tε

= Mt∧Tε
· Q(0)

x |Ft∧Tε
.

Hence, letting ε tend to 0, we obtain the result, since T0 = ∞ a.s. on the right
hand side. �

Proof of Corollary 1.5. From the second equality in (1.16), we obtain

Q(−ν)
x (T0 > t |Xt = y) =

(
det(x)
det(y)

)ν q(ν)
t (x, y)

q(−ν)
t (x, y)

.

Now, using the expression of the semigroup q(ν)
t (x, y) given in (2.1), we obtain

(1.17). �

We next give the tail of the law of T0 under Q(−ν)
x .
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Proposition 2.6. For any t > 0, we have

Q(−ν)
x (T0 > t) =

Γm((m + 1)/2)
Γm(δ/2)

(
det(

x

2t
)
)ν

e−Tr(x/2t)
1F1

(
m + 1

2
;
δ

2
;

x

2t

)(2.14)

=
Γm((m + 1)/2)

Γm(δ/2)

(
det(

x

2t
)
)ν

1F1

(
ν;

δ

2
;− x

2t

)
,(2.15)

where δ = m + 1 + 2ν.

Proof. By Theorem 1.4, we have

Q(−ν)
x (T0 > t) = Q(ν)

x

[(
det(x)
det(Xt)

)ν]
(2.16)

and compute the right hand side by using the explicit expression (2.1) for the
semigroup of {Xt}.

We have by (2.1)

Q(ν)
x

[(
det(x)
det(Xt)

)ν]
=

exp(−Tr(x)/2t)(det(x))ν

(2t)mδ/2Γm(δ/2)

∫
S+

m

e−Tr(y)/2t
0F1

(
δ

2
;

xy

4t2

)
dy.

Noting that 0F1(δ/2; xy/4t2) = 0F1(δ/2;
√

xy
√

x/4t2) from definition, we
change the variables by z =

√
xy

√
x/4t2 to obtain

Q(ν)
x

[(
det(x)
det(Xt)

)ν]
=

exp(−Tr(x)/2t)(det(x))ν−(m+1)/2

(2t)m(δ/2−m−1)Γm(δ/2)

∫
S+

m

e−2t Tr(x−1z)
0F1

(
δ

2
; z
)

dz.

(2.17)

For the formula for the Jacobian, see Theorem 2.1.6, p.58, in [21].
Then, using the fact that the Laplace transform of a pFq function is a

p+1Fq function (cf. Theorem 7.3.4, p.260, in [21]), we get (2.14) and then,
using the Kummer relation (Theorem 7.4.3, p.265, in [21]), (2.15). �

Remark 2.7. When m = 1, we can explicitly compute the right hand side
of (2.16) and show that T0 is distributed as x/2γν , where γν is a gamma variable
with parameter ν. It may be also obtained by using the integral relation

1
Xν

t

=
1

Γ(ν)

∫ ∞

0

uν−1e−uXt du,
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and then the explicit expression for Q
(ν)
x [e−uXt ]. A third method consists in

using the time reversal between BES(ν) and BES(−ν); see paper #1 in [39] for
details.

Remark 2.8. As the knowledge of the law of T0 under Q
(−ν)
x has played

an important role in several questions for m = 1 (in the pricing of Asian options
in particular, see, e.g [11]), it seems worth looking for some better expression
than (2.14) or (2.15). First, let us define S0 = (2T0)−1, and note that, from
(2.15), we have

Q(−ν)
x (S0 � u) =

Γm((m + 1)/2)
Γm(δ/2)

(
det(x)

)ν
umν

1F1

(
ν;

δ

2
;−ux

)
.(2.18)

Note in particular that the right hand side of (2.18) is a distribution function
in u.

From (2.17), we also have the following expression

Q(−ν)
x (S0 � u) =

(det(x))ν−(m+1)/2

Γm(δ/2)
exp(−u Tr(x))um(δ/2−m−1)

×
∫
S+

m

e−Tr(x−1z)/u
0F1

(
δ

2
; z
)

dz,

from which we obtain the following Laplace transform

Q(−ν)
x [exp(−λS0)] = λ

∫ ∞

0

e−λu Q(−ν)
x (S0 � u) du

=
(det(x))ν−(m+1)/2

Γm(δ/2)
2λ (λ + Tr(x))−α/2

×
∫
S+

m

Kα(2
√

(λ + Tr(x)) Tr(x−1z)) (Tr(x−1z))α/2
0F1

(
δ

2
; z
)

dz,

where α = m(δ/2 − m − 1) + 1, Kα is the usual modified Bessel (Macdonald)
function and we have used the integral representation for Kα given in formula
(5.10.25) in [19] .

In the case where m = 1, we obtain

Q(−ν)
x [exp(−λS0)] =

λ

x

1
(1 + λ/x)ν/2

∫ ∞

0

t Kν(t
√

1 + λ/x) Iν(t) dt

by using the fact that Ĩν(x) = Iν(2z1/2). Now, we recall the formula (cf.
formula (5.15.6) in [19])∫ ∞

0

t Kν(at) Iν(t) dt =
1

aν(a2 − 1)
, a � 1,
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from which we deduce

Q(−ν)
x [exp(−λS0)] =

1
(1 + λ/x)ν

.

Hence, we again recover the well-known fact that xS0 obeys the Gamma(ν)
distribution.

Now we go back to Theorem 1.4. We may replace t by any stopping time
T in (1.16). In particular, we may consider

Tr = inf{t; det(Xt) = r} for 0 < r < det(x).

We have Tr < T0 a.s., and (1.16) implies

Q(−ν)
x [HTr

] =
(

r

det(x)

)ν

Q(ν)
x [HTr

; Tr < ∞]

for any non-negative (Ft)-predictable process {Ht}, and, in particular, we ob-
tain

Q(−ν)
x (Tr < ∞) =

(
r

det(x)

)ν

< 1.

This result is in complete agreement with the fact that {(det(x)/
det(Xt))ν} is a local martingale, which converges almost surely to 0 as t → ∞.
Therefore we obtain (see Chapter II, (3.12)Exercise, [29]), for a uniform random
variable U ,

sup
t�0

(
det(x)
det(Xt)

)ν
(law)
=

1
U

or inf
t�0

det(Xt)
det(x)

(law)
= U1/ν .

§3. Wishart Processes with Drift

(3.1) In this section, we define Wishart processes with drift and show in partic-
ular that they are Markov processes. Recall that, in the one-dimensional case,
Bessel processes with drift have been introduced by Watanabe [33] and studied
by Pitman-Yor [27]. They play an essential role in the study of diffusions on
R+ which are invariant under time inversion. Let us first consider the case of
the integral dimension, δ = n ∈ N.

Theorem 3.1. Let {Bs, s � 0} be an n × m Brownian matrix starting
from 0 and let Θ = (Θij) ∈ Mn,m(R). Then, setting XΘ

t = (Bt+Θt)′(Bt+Θt) ≡
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̂(Bt + Θt), we have

E[G(XΘ
t , t � s)] = E

[
G(Xt, t � s) 0F1

(
n

2
;
1
4
Θ̂Xs

)
exp
(
−1

2
Tr(Θ̂)s

)](3.1)

for any s > 0 and for any non-negative functional G, where Θ̂ = Θ′Θ and
Xt ≡ X0

t is an n-dimensional Wishart process.

Proof. By the usual Cameron-Martin relationship, we have

E[G(XΘ
t , t � s)]

= E

G(Xt, t � s) exp

 n∑
i=1

m∑
j=1

ΘijBij(s) −
1
2

n∑
i=1

m∑
j=1

(Θij)2s

 .

Since
∑

i

∑
j ΘijBij(s) = Tr(Θ′Bs), the rotational invariance of Brownian mo-

tions (OB
(law)
= B for any O ∈ O(n)) yields

E[G(Xt, t � s) exp
(
Tr(Θ′Bs)

)
] = E[G((OBt)′(OBt)), t � s) exp(Tr(Θ′OBs))]

= E[G(Xt, t � s) exp(Tr(BsΘ′O))].

Since the last equality holds for any O ∈ O(n), the integral representation (5.1)
given in the appendix gives

E[G(Xt, t � s) exp
(
Tr(Θ′Bs)

)
] = E

[
G(Xt, t � s)

∫
O(n)

exp(Tr(BsΘ′O)) dO

]

= E

[
G(Xt, t � s) 0F1

(
n

2
;
1
4
BsΘ′ΘB′

s

)]
,

where dO is the normalized Haar measure on O(n). The last expression shows
that the law of {XΘ

t } depends on Θ only through the product Θ̂ = Θ′Θ; hence,

we shall also denote XΘ
t by X

(Θ̂)
t . Moreover from Lemma 5.1 in the Appendix,

we see

E [G(Xt, t � s) exp (Tr(Θ′B(s)))] = E

[
G(Xt, t � s) 0F1

(
n

2
;
1
4
ΘXsΘ′

)]
.

(3.2)

Finally, by using Lemma 5.1 again, we obtain the better expression (3.1). �

Proposition 3.2. (i) Keeping the notations in Theorem 3.1, the sto-

chastic process {XΘ
t } now denoted by {X(Θ̂)

t } is a Markov process, which we
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shall refer to WIS(Θ̂)(n, m), whose transition probabilities q(Θ̂)
n (t, x, dy) are

given by

q(Θ̂)
n (t, x, dy) = 0F1(n/2; Θ̂y/4)

0F1(n/2; Θ̂x/4)
exp
(
−1

2
Tr(Θ̂)t

)
q(0)

n (t, x, dy)

(3.3)

=
1

(2t)nm/2Γm(n/2)
exp
(
− 1

2t
Tr(x + y)

)
(det(y))(n−m−1)/2

× 0F1(n/2; xy/4t2) 0F1(n/2; Θ̂y/4)

0F1(n/2; Θ̂x/4)
exp
(
−1

2
Tr(Θ̂)t

)
dy.

(ii)The conditional law of Bs given {Xt, t � s} is given by

E[exp(Tr(Θ′Bs))|{Xt, t � s}, Xs = y] = 0F1

(
n

2
,
Θ̂y

4

)
.

Proof. The first assertion follows from formula (3.1), which describes

{X(Θ̂)
t , t � 0} as an h-transform of {Xt, t � 0} with

h(Xs, s) = 0F1

(
n

2
,
Θ̂Xs

4

)
exp
(
−1

2
Tr(Θ̂)s

)
.

In fact, we have from (3.1), for u > s

E[G(X(Θ̂)
u )|{X(Θ̂)

t , t � s}]

=
E[G(Xu) 0F1(n/2; Θ̂Xu/4) exp(−Tr(Θ̂)u/2)|{X(Θ̂)

t , t � s}]
0F1(n/2; Θ̂Xs/4) exp(−Tr(Θ̂)s/2)

=
Qn

u−s[G(·) 0F1(n/2; Θ̂ · /4)] exp(−Tr(Θ̂)(u − s)/2)

0F1(n/2; Θ̂Xs/4)
,

where Qn
t , t � 0 denotes the semigroup of the original Wishart process.

The second assertion is nothing else but (3.2). �

Remark 3.3. We can also see Propositions 3.1 and 3.2 as consequences
of a result by Rogers and Pitman [30]. Indeed, for y ∈ S+

m, define

Σ(y) = {α ∈ Mn,m(R); α̂ ≡ α′α = y},

and let Λ be the uniform measure on Σ(y) given by

Λf(y) =
∫

O(n)

f(Oα) dO,
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where α ∈ Σ(y) (independent of the choice of α). Then, by the rotational
invariance of Brownian motion, the semigroups Pt of {Bt} and Qt of {Xt = B̂t}
satisfy

QtΛ = ΛPt.

Set fΘ(α) = exp(Tr(Θ′α)), then the law of BΘ
t ≡ Bt+Θt, the Brownian matrix

with drift Θ, satisfies

PΘ
t (α, dβ) = exp

(
−1

2
Tr(Θ̂)t

)
fΘ(β)
fΘ(α)

Pt(α, dβ).

Setting gΘ = ΛfΘ, we have (see [30])

QΘ
t (x, dy) = exp

(
−1

2
Tr(Θ̂)t

)
gΘ(y)
gΘ(x)

Qt(x, dy)

and ΛΘPΘ
t = QΘ

t ΛΘ, where the kernel ΛΘ is given by

ΛΘ(y, dα) =
fΘ(α)
gΘ(y)

Λ(y, dα).

We are now in a position to define Wishart processes with drift in general
dimensions δ.

Definition. Let δ > m − 1 and ∆ ∈ S̃+
m. We define a Wishart process

WIS(∆)(δ, m, x) of dimension δ and drift ∆ as the S̃+
m-valued Markov process,

starting from x, with semigroup given by

(3.4)

q(∆)
δ (t, x, dy) = 0F1(δ/2; ∆y/4)

0F1(δ/2; ∆x/4)
exp
(
−1

2
Tr(∆)t

)
q(0)

δ (t, x, dy)

=
1

(2t)δm/2Γm(δ/2)
exp
(
− 1

2t
Tr(x + y)

)
(det(y))(δ−m−1)/2

× 0F1(δ/2; xy/4t2) 0F1(δ/2; ∆y/4)
0F1(δ/2; ∆x/4)

exp
(
−1

2
Tr(∆)t

)
dy.

However, we need to prove the semigroup property of q(∆)
δ , which is done

in the following.

Proposition 3.4. (i) Let X be a Wishart process WIS(δ, m, a), a ∈ S+
m.

Then the process i(X) obtained by time inversion is a WIS(a)(δ, m, 0) process.
(ii) More generally, if X is a WIS(∆)(δ, m, a) process, then i(X) is a WIS(a)

(δ, m, ∆) process.
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Sketch of Proof. (i) After a straightforward computation, we see that
the distribution of i(X)t is q(a)

δ (t, 0, dy) given by (3.4). Next, we compute
E[f(i(X)s)g(i(X)t)] for s < t in terms of the process X and the semigroup
qδ(t, a, dy). We then obtain that i(X) is a Markov process with semigroup q′

δ

(a priori non homogeneous) given by the transition probability density

q′
δ(s, t; x, y) =

1
tm(m+1)

qδ(1/t, a, y/t2)
qδ(1/s, a, x/s2)

qδ

(
1
s
− 1

t
,

y

t2
,

x

s2

)
,

from which we obtain after some computations that

q′
δ(s, t; x, y) = q(a)

δ (t − s, x, y).

The proof of (ii) is similar. �

Remark 3.5. The semigroup property of q(∆) entails that

Lδ(0F1(δ/2; ∆x/4)) =
1
2

Tr(∆) 0F1(δ/2; ∆x/4),(3.5)

where Lδ denotes the infinitesimal generator of the Wishart process of dimen-
sion δ. Note that the differential equations satisfied by 0F1 given in Theorem
7.5.6, [21], in terms of eigenvalues do not directly yield (3.5). But one can
translate those equations into differential equations with respect to the matrix
entries.

As an application of time inversion, we give an interpretation of the
Hartman-Watson distribution in terms of the Wishart processes with drift.

Proposition 3.6. Let x, y ∈ S̃+
m and let Qδ,(x)

y denote the distribution
of the Wishart process WIS(x)(δ, m, y) of dimension δ and drift x, starting from
y. Then,

Qm+1,(x)
y

[
exp
(
−ν2

2

∫ ∞

0

Tr(X−1
s ) ds)

)]
=

Ĩν(xy/4)

Ĩ0(xy/4)
,(3.6)

where Ĩν is defined in (1.15).

Proof. Let f be a bounded function. From time inversion and the Markov
property, we have

Qm+1
x

[
f(Xt) exp

(
−ν2

2

∫ t

0

Tr(X−1
u ) du

)]
(3.7)

= Qm+1,(x)
0

[
f(t2X1/t) exp

(
−ν2

2

∫ ∞

1/t

Tr(X−1
u ) du

)]

= Qm+1,(x)
0

[
f(t2X1/t)Q

m+1,(x)
X1/t

[
exp
(
−ν2

2

∫ ∞

0

Tr(X−1
u ) du

)]]
.
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On the other hand, according to (2.12), the first line of the above identities
is equal to

Qm+1
x

[
f(Xt)

Ĩν(xXt/4t2)

Ĩ0(xXt/4t2)

]
= Qm+1,(x)

0

[
f(t2X1/t)

Ĩν(xX1/t/4)

Ĩ0(xX1/t/4)

]
.(3.8)

By comparison of the last two terms in (3.7) and (3.8), we obtain (3.6). �

Remark 3.7. We also note that, by time inversion, the left hand side of
(3.6) equals

Qm+1,(y)
x

[
exp
(
−ν2

2

∫ ∞

0

Tr(X−1
s ) ds

)]
,

from which we deduce the identity

Ĩν(xy)

Ĩ0(xy)
=

Ĩν(yx)

Ĩ0(yx)
.

But, in fact, independently from the preceding probabilistic argument, the
equality Ĩµ(xy) = Ĩµ(yx) holds as a consequence of the property that Ĩµ(z)
depends only on the eigenvalues of the matrix z (we apply this remark to both
µ = ν and µ = 0).

Proposition 3.6 is a particular relation between the Wishart bridge and the
Wishart process with drift. We refer to Theorem 5.8 in [27] for other relations
in the Bessel case which can be extended in our context.
(3.2) Intertwining property The extension for Wishart processes of the
intertwining relation (1.7) is given in the following proposition, which M.F.
Bru in [6] predicted, from the results in [35], that it would hold.

To mention the result, we recall the multivariate Beta distribution. We say
that βδ/2,δ′/2 is a Betam variable with parameter (δ/2, δ′/2) if its probability
density function is given by

Γm((δ + δ′)/2)
Γm(δ/2)Γm(δ′/2)

(detU)(δ−m−1)/2(det(Im − U))(δ
′−m−1)/2, 0 < U < Im.

For details, see page 110 in [21].

Proposition 3.8. For δ, δ′ � m − 1 and every t,

Qδ+δ′

t Λδ,δ′ = Λδ,δ′Qδ
t ,(3.9)
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where, letting βδ/2,δ′/2 be a Betam variable with parameter (δ/2, δ′/2) ,
Λδ,δ′(x, dy) denotes the kernel whose action on any bounded Borel function
f is given by

Λδ,δ′f(x) = E[f(
√

xβ δ
2 , δ′

2

√
x)], x ∈ S̃+

m.

Note that (3.9) may be understood as a Markovian extension of the relation
(5.3) given in the Appendix (see [35] in the Bessel case). Indeed, from (3.9),
we have

Qδ+δ′

t Λδ,δ′f(0) = Λδ,δ′Qδ
tf(0),

which is equivalent to

E[f(t
√

γδ+δ′βδ/2,δ′/2
√

γδ+δ′)] = E[f(tγδ)],

where γp is a Wishart distribution Wm(p, Im), β is a Betam variable (see (5.b))
and, on the left-hand side, the two random variables are independent.

Proof. At least two proofs may be given for this result.
(i) an analytical proof, in which we just check that the Laplace transforms of
both hand sides of (3.9) are equal. Indeed, take fΘ(x) = exp(−Tr(Θx)) with
Θ ∈ S+

m. We compute Λδ,δ′Qδ
t fΘ(x) using (1.12).

On the other hand, using Theorem 7.4.2 in [21], we have

Λδ,δ′fΘ(x) = E[exp(−Tr(Θ
√

xβδ/2,δ′/2

√
x))

= 1F1(δ/2; (δ + δ′)/2;
√

xΘ
√

x)

= 1F1(δ/2; (δ + δ′)/2;
√

Θ x
√

Θ)

= E[exp(−Tr(
√

Θβδ/2,δ′/2

√
Θ x))

We then use (1.12) again to compute Qδ+δ′

t Λδ,δ′fΘ(x). The equality
Qδ+δ′

t Λδ,δ′fΘ(x) = Λδ,δ′Qδ
tfΘ(x) follows from a change of variable formula

in integration.
(ii) a probabilistic proof. The proof of this result follows from the same lines
as the proof of the corresponding result (1.7) for the squared Bessel processes
given in [7]. The main ingredients are the time inversion invariance of Wishart
processes, starting from 0, and the relation (5.3) given in the Appendix. In-
deed, let X and X ′ be two independent Wishart processes with respective
dimension δ and δ′, starting at 0. Set Y = X + X ′, Xt = σ{Xs, X

′
s, s � t} and

Yt = σ{Ys, s � t}. Then Y is a Wishart process of dimension δ + δ′ and we
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have

E[F (Yu, u � t)f(Xt)] = E[F (u2Y1/u, u � t)f(t2X1/t)]

= E[E[F (u2Y1/u, u � t)|Y1/t]f(t2X1/t)]

= E[E[F (u2Y1/u, u � t|Y1/t]Λδ,δ′f(t2Y1/t)]

= E[F (u2Y1/u, u � t)Λδ,δ′f(t2Y1/t)]

= E[F (Yu, u � t)Λδ,δ′f(Yt)],

where we have used the Markov property of {t2Y1/t} with respect to X1/t for
the second equality and used (5.3) for the third one. We deduce from the above
equation

E[f(Xt)|Yt] = Λδ,δ′f(Yt),

which implies the intertwining relation (3.9).

§4. Some Developments Ahead

We hope that the present paper is the first of a series of two or three papers
to be devoted to the topics of Wishart processes; indeed, in the present paper,
we concentrated on the extension to Wishart processes of the Hartman-Watson
distribution for Bessel processes, but there are many other features of Bessel
processes which may also be extended to Wishart processes. What seems to be
the most accessible for now are some extensions of Spitzer type limiting results,
i.e., (1.5) and (1.6); for instance, in [10], we prove that(

2
m ln(t)

)2 ∫ t

0

Tr(X−1
u ) du

(law)−→
t→∞

T1(β),(4.1)

where X is our WIS(m + 1, m, x), for x ∈ S̃+
m, and that, if δ > m + 1 and X is

a WIS(δ, m, x),

1
m(ln(t))

∫ t

0

Tr(X−1
u ) du

(a.s.)−→
t→∞

1
δ − (m + 1)

.(4.2)

We also hope that a number of probabilistic results concerning Bessel func-
tions, as discussed in Pitman-Yor [27], may be extended to their matrix coun-
terparts.

For the moment, we show, a little informally, how (4.1) may be deduced
from the absolute continuity relationship (1.13) in Theorem 1.2 (in the case
m = 1, this kind of arguments has been developed in Yor [38], with further
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refinements given in Pap-Yor [25], and Bentkus-Pap-Yor [1]). Indeed, with our
notation, we have:

Q(0)
x

[
exp
(
−ν2

2

∫ t

0

Tr(X−1
s ) ds

)]
= Q(ν)

x

[(
det(x)
det(Xt)

)ν/2
]

.

We then replace ν by ν/c ln(t), for some constant c, which we shall choose later,
to see

Q(0)
x

[
exp
(
− ν2

2(c ln(t))2

∫ t

0

Tr(X−1
s ) ds

)]
= Q(ν/(c ln(t)))

x

[(
det(x)
det(Xt)

)ν/(2c ln(t))
]

� Q(0)
x

[
exp
(
− ν

2c ln(t)
ln(det(Xt))

)]
� Q(0)

x/t

[
exp
(
− ν

2c ln(t)
ln(tm det(X1))

)]
−→ exp(−ν)

as t → ∞ for the choice c = m/2. A similar argument easily leads to (4.2),
while with the weaker convergence in probability result, instead of almost sure
convergence, under Qδ

x, for δ > m + 1.

§5. Appendix

(5.a) We recall the definition of hypergeometric functions of matrix arguments.
We refer to the book of Muirhead, Chapter 7 [21]. For ai ∈ C, bj ∈ C \
{0, 1

2 , 2
2 , ..., m−1

2 } and X ∈ Sm(C), the hypergeometric function pFq is defined
by

pFq(a1, ..., ap; b1, ..., bq; X) =
∞∑

k=0

∑
κ

(a1)κ · · · (ap)κ

(b1)κ · · · (bq)κ

Cκ(X)
κ!

,

where
∑

κ denotes the summation over all partitions κ = (k1, .., km), k1 � · · · �
km � 0, of k, κ! = k1! · · · km!, k =

∑m
i=1 ki,

(a)κ =
m∏

i=1

(
a − i − 1

2

)
ki

, (a)k = a(a + 1) · · · (a + k − 1), (a)0 = 1.

Cκ(X) is the zonal polynomial corresponding to κ, which is originally defined
for X ∈ Sm(R) and is a symmetric, homogeneous polynomial of degree k in the
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eigenvalues of X. For X ∈ Sm(R) and Y ∈ S+
m, since the eigenvalues of Y X

are the same as those of
√

Y X
√

Y , we define Cκ(Y X) by

Cκ(Y X) = Cκ(
√

Y X
√

Y ).

Hence we can also define pFq(a1, · · · ; b1, · · · ; Y X). For details, see Chapter 7
of Muirhead [21]. Moreover we find in [21] that

0F0(X) = exp(Tr(X)), 1F0(a; X) = det(Im − X)−a

and also that, for X ∈ Mm,n(R), m � n, and for H = (H1 : H2) ∈ O(n) with
H1 ∈ Mn,m, ∫

O(n)

exp(Tr(XH1)) dH = 0F1

(
n

2
;
1
4
XX ′

)
,(5.1)

where dH is the normalized Haar measure on O(n).
We also recall the definition of the multivariate gamma function Γm(α),

Re(α) > (m − 1)/2:

Γm(α) =
∫
S̃+

m

exp(−Tr(A))(det(A))α−(m+1)/2 dA.

It may be worthwhile noting that the multivariate gamma function Γm(α) is
represented as a product of the usual gamma function by

Γm(α) = πm(m−1)/4
m∏

i=1

Γ
(

α − i − 1
2

)
, Re(α) >

m − 1
2

.

We now give a lemma which plays an important role in Section 3.

Lemma 5.1. Let X be an m×m symmetric matrix and Θ be an n×m

matrix. Then, one has

0F1(b; ΘXΘ′) = 0F1(b; Θ′ΘX)(5.2)

if b ∈ C \ {0, 1
2 , 2

2 , ..., m∨n−1
2 }.

Proof. Note that the argument ΘXΘ′ on the left-hand side of (5.2) is
an n × n matrix and that Θ′ΘX on the right-hand side is an m × m matrix.
Note also that the non-zero eigenvalues of ΘXΘ′ and Θ′ΘX coincide. Then, we
obtain the same type of equalities for the zonal polynomials and therefore (5.2).
(5.b) The beta-gamma algebra for matrices Let X and Y be two indepen-
dent Wishart matrices with respective distributions Wm(δ, Im) and Wm(δ′, Im)
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(Muirhead’s notation, [21] p.85) with δ + δ′ > m − 1. Then, S = X + Y is
invertible and the matrix Z defined by Z = S−1/2XS−1/2 is a Betam distribu-
tion with parameter (δ/2, δ′/2), see [21, Def. 3.3.2] for the definition of Beta
matrices. Moreover, Z and S are independent, see Olkin and Rubin [23, 24],
Casalis and Letac [8] for an extension to Wishart distributions on symmetric
cones and [2]. We thus have the following identity in law:

((Xδ + Xδ′)−1/2Xδ(Xδ + Xδ′)−1/2, Xδ + Xδ′)
(law)
= (Xδ,δ′ , Xδ+δ′),(5.3)

where, on the left-hand side, Xδ and Xδ′ are independent and Wishart dis-
tributed, and, on the right-hand side, the two variables are independent and
Xδ,δ′ is Betam distributed.
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