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Abstract

In the present paper, we consider the following problem: For a given closed
point x of a special fiber of a generically smooth family X → S of stable curves (with
dim(S) = 1), is there a covering Y → X that is generically étale (i.e., étale over
the generic fiber(s) of X → S, not only over the generic point(s) of X), where Y is
also a family of stable curves, such that the image in X of the non-smooth locus of
Y contains x? Among other things, we prove that this is affirmative (possibly after
replacing S by a finite extension) in the case where S is the spectrum of a discrete
valuation ring of mixed characteristic whose residue field is algebraic over Fp.

§0. Introduction

In algebraic geometry, nonsingular varieties are usually easier to treat than
singular varieties. Thus, resolution of singularities — or, equivalently, desin-
gularization — in the sense of modifying singular varieties into nonsingular
varieties is a fundamental process in the study of algebraic varieties.

Sometimes, however, singular varieties are easier to treat than nonsingular
varieties. One reason for this is that singular varieties are sometimes built up
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1292 Akio Tamagawa

from more elementary varieties. Moreover, it is sometimes useful to consider
nonsingular varieties as deformations of (more elementary) singular varieties.
For example, in the arithmetic-geometric study of elliptic curves, to consider
the Tate curve is indispensable.

In this sense, we sometimes need to consider “resolution of nonsingulari-
ties” — or “singularization” — in the sense of modifying nonsingular varieties
(resp. smooth families of varieties) into singular varieties (resp. non-smooth
families of varieties). The theme of the present paper is, as is shown in the title,
resolution of nonsingularities in this sense, for (mainly 1-dimensional) families
of curves.

In the case of resolution of singularities, we allow modifications like nor-
malizations, blowing-ups, alterations ([D1]), and so on. In the present paper,
we allow a certain kind of alteration. More precisely, we allow modifying a
given (smooth) family of curves by taking a proper, generically finite covering,
which is finite étale over the generic fiber of the original family and itself is
again a stable family of curves.

Such a situation naturally arises in the arithmetic-geometric study of cov-
erings of curves. Indeed, the technique of resolution of nonsingularities was
first introduced to anabelian geometry in [M2], where Mochizuki reduces, by
considering certain resolution of nonsingularities, the Grothendieck conjecture
for proper, hyperbolic curves over number fields to the Grothendieck conjecture
for proper, singular, stable curves over finite fields, which is then reduced to
the Grothendieck conjecture for affine — namely, more elementary in the above
sense — curves over finite fields [Tam1]. The present paper is partly motivated
by this work of Mochizuki.

Now, to state our main problem and main results more precisely, let S be
a 1-dimensional, noetherian, normal, integral, separated scheme and denote by
K the function field of S. We refer to a pair (S′, K ′) as a finite extension of
(S, K), if K ′ is a finite extension of K and S′ is the integral closure of S in K.
(For simplicity, we sometimes refer to S′ as a finite extension of S.) Thus, K ′

coincides with the function field of S′. Let (X∗, D) be a stable marked curve
(cf. §1), which is generically smooth in the sense that the generic fiber X∗

K is
smooth over K. (By definition, DK is automatically étale over K.)

We consider the following conditions (I), (II), (III) and (III′).

(I) There exist a finite extension (S′, K ′) of (S, K) and a generically tame, stable
covering (cf. §1) (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′, such that (Y ∗

S′)non-sm �= ∅.

(II) For each closed point s of S, there exist a finite extension (S′, K ′) of (S, K)
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and a generically tame, stable covering (Y ∗
S′ , ES′) of (X∗

S′ , DS′) over S′, such
that the image of (Y ∗

S′)non-sm in S contains s.

(III) For each closed point x of X∗, there exist a finite extension (S′, K ′) of
(S, K) and a generically tame, stable covering (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′,

such that the image of (Y ∗
S′)non-sm in X∗ contains x.

(III′) For each closed point x of X∗, there exist a finite extension (S′, K ′) of
(S, K) and a generically tame, stable covering (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′,

such that the image in X∗ of the vertical components (cf. §2) in the fibers of
Y ∗

S′ → X∗
S′ contains x.

Here, we have used the following notation:

Definition. Let f : X → S be a morphism of schemes. We define the
smooth locus Xsm of f to be the set of points of X at which f is smooth. Thus,
Xsm is an (a possibly empty) open subset of X, and we define the closed subset
Xnon-sm of X to be the complement of Xsm in X.

Remark 0.1. (i) Clearly, we have (III′) =⇒ (III) =⇒ (II) =⇒ (I).
(ii) At first glance, (II) (resp. (III), (III′)) appears to be a statement that only
concerns a single closed point s of S (resp. x of X∗). However, if we consider
the tower of (generically tame, stable) coverings of (X∗, D), then it may be
regarded as a statement that concerns all of the closed points of S (resp. X∗).
If, moreover, (II) (resp. (III), (III′)) holds for every member of the tower of
coverings of (X∗, D), then it may be regarded as a statement that concerns all
the closed points of all the finite extensions of S (resp. all the coverings of X∗).

The following is a summary of the main results of the present paper. Here,
we say that a (non-empty) scheme S is of characteristic 0 (resp. of characteristic
> 0, resp. of mixed characteristic), if the image of S in Spec(Z) consists of the
generic point (resp. a single closed point, resp. more than one point) of Spec(Z).
Moreover, we say that S is strictly of mixed characteristic, if, for each point
t of S, either {t}cl or Spec(OS,t) is of mixed characteristic. (Throughout this
paper, “cl” stands for the topological closure.) When S is 1-dimensional and
irreducible, S is of characteristic 0 (resp. of characteristic > 0, resp. of mixed
characteristic, resp. strictly of mixed characteristic), if the inverse image of the
generic point of Spec(Z) in S coincides with the whole of S (resp. is empty,
resp. is neither the whole of S nor empty, resp. consists of the generic point
of S).
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Theorem 0.2. Let S be a 1-dimensional, noetherian, normal, integral,
separated scheme and (X∗, D) a generically smooth, stable marked curve over
S.
(i) Assume that S is of characteristic 0 and that (X∗, D) is smooth. Then (I)
never holds.
(ii) Assume that S is of characteristic p > 0, that S is proper over a field k

(necessarily of characteristic p), and that (X∗, D) is not k-isotrivial (cf. §1).
Then (I) holds. In this case, (II) does not always hold.
(iii) Assume that S is of characteristic p > 0, that the residue field of each
closed point of S is algebraic over Fp, and that (X∗, D) is not Fp-isotrivial.
Then (II) holds. (In this case, the author does not know — and is interested in
— whether or not (III) always holds.)
(iv) Assume that S is strictly of mixed characteristic. Then (II) holds. In this
case, (III) does not always hold.
(v) Assume that S is strictly of mixed characteristic, and that the residue field
of each closed point of S is algebraic over Fp for some p > 0. Then (III′) holds.
(In particular, (III) holds.)

Here, (i) and (iv) are widely known, or, at least, can be easily derived from
widely known facts. ((iv) essentially appeared in above-mentioned [M2].) (ii)
and (iii) are straightforward applications of [Sa] and [Tam3], respectively. ((iii)
was used in [St].) (v) is also an application of [Tam3], but requires some extra
arguments. Thus, (v) may be regarded as the main new contribution of the
present paper.

Remark 0.3. An elliptic modular curve (with a suitable level) gives an
example of stable marked curve over (an open subscheme of) the spectrum of
the ring of integers of an algebraic number field. In this case, if we only con-
sider coverings corresponding to congruence subgroups of PSL2(Z), then it is
classically known (see, e.g., [KM]) that supersingular points are the only points
whose nonsingularity can be resolved. In particular, there are only finitely
many such points in each fiber. On the other hand, if we consider all coverings
(possibly corresponding to non-congruence subgroups), Theorem 0.2(v) above
says that the nonsingularity of every closed point can be resolved. In this sense,
we might regard every closed point as a “non-congruence supersingular point”.

We shall explain the content of each § briefly.
In §1 and §2, we give a review of generalities on stable curves and their

coverings. The main aim of these §’s is to fix the definitions and the notations,
and there is nothing mathematically new. We use the notion of log structures
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of Fontaine-Illusie-Kato ([Ka]), but in a rather restricted situation that comes
from a generically smooth, stable marked curve over the spectrum of a discrete
valuation ring.

In §3, we give a review of three main ingredients of the proofs of the main
results. The first one is from [Tam2]. More precisely, we present an aver-
age theorem (Theorem 3.1) concerning p-ranks of prime-to-p-cyclic coverings
of hyperbolic curves in characteristic p > 0. We also prove a generalization
(Theorem 3.10) to stable curves under a certain “abelian-injective” assump-
tion. The second one is from [Tam3] and [Sa]. More precisely, we present
specialization theorems (Theorem 3.13, Theorem 3.14) to the effect that the
specialization map of tame fundamental groups of a family of hyperbolic curves
in positive characteristic is not an isomorphism (under suitable assumptions).
The third one is from [Tat] and [D2]. More precisely, we present “Tate’s theo-
rem” (Theorem 3.16) on p-divisible groups. We also apply this to obtain some
results (Theorem 3.18, Corollary 3.19) on Galois representations on (étale parts
of) Tate modules of abelian varieties.

In §4, we present various conditions related to the above “resolution of
nonsingularities” conditions (I), (II), (III) and (III′). More precisely, in Propo-
sition 4.1, we give various necessary and sufficient conditions for (II), while, in
Proposition 4.3, we give various sufficient conditions for (III) and (III′). Most
implications are standard and/or straightforward but a few implications are
nontrivial (and require Theorem 3.10 and Corollary 3.19).

In §5, We give a proof of our main Theorem 0.2. With various results of
§3 and §4, almost nothing remains for the proof of (i)–(iv). However, as has
been mentioned above, the proof of (v) requires some extra arguments.

§1. Generalities on Stable Curves

In this §, we review some generalities concerning stable curves.

〈Hyperbolic and stable marked curves〉
Let S be a scheme. Let f∗ : X∗ → S be an S-scheme and D ⊂ X∗ a closed

subscheme. Let (g, r) be a pair of non-negative integers.

Definition. We say that (X∗, D) (or, more precisely, (f∗ :X∗→S, D ⊂
X∗)) is a smooth marked curve of type (g, r) over S, if f∗ is proper, smooth,
the geometric fibers of f∗ are (automatically proper, smooth) connected curves
of genus g, and D is finite étale of (constant) degree r over S.

Observe that, if S is non-empty, the type (g, r) is completely determined
by the smooth marked curve (X∗, D)/S.
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Definition. We say that (X∗, D) (or, more precisely, (f∗ :X∗→S, D ⊂
X∗)) is a hyperbolic marked curve of type (g, r) over S, if it is a smooth marked
curve of type (g, r) over S and χ((X∗, D)/S) def= 2 − 2g − r < 0 holds.

Definition. (i) We say that (X∗, D) (or, more precisely, (f∗ : X∗ →
S, D ⊂ X∗)) is a stable marked curve of type (g, r) over S, if f∗ is proper,
flat, its geometric fibers are (automatically proper) connected, reduced curves
of arithmetic genus g whose singularities are ordinary double points, D is con-
tained in Xsm, D is finite étale of (constant) degree r over S, and the following
holds: For each geometric point s of S, let D′

s denote the (disjoint) union of
Ds = D ×X∗ X∗

s and (X∗
s )non-sm (considered as a reduced closed subscheme of

X∗
s ). Then the normalization (Z∗)∼ of each irreducible component Z∗ of X∗

s ,
together with D′

s|(Z∗)∼ = D′
s×X∗

s
(Z∗)∼, forms a hyperbolic marked curve over

s.
(ii) Assume that (X∗, D) is a stable marked curve over S. Then we say that
(X∗, D) is generically smooth, if there exists an open dense subscheme T of S,
such that (X∗, D)×S T is a smooth marked curve over T .

Thus, a hyperbolic marked curve is just a stable marked curve which is
also a smooth marked curve. Also, observe that, if S is non-empty, the type
(g, r) is completely determined by the stable marked curve (X∗, D)/S, and
automatically satisfies χ((X∗, D)/S) def= 2 − 2g − r < 0.

〈Moduli spaces of stable marked curves〉
Let (g, r) be a pair of non-negative integers with 2 − 2g − r < 0.

Definition. We denote by Mg,[r] (resp. Mg,[r]) the moduli stack over
Z classifying hyperbolic marked curves (resp. stable marked curves) of type
(g, r).

Mg,[r] (resp. Mg,[r]) coincides with the quotient [Mg,r/Sr] (resp. [Mg,r/

Sr]) (in the sense of stacks) of the moduli stack Mg,r (resp. Mg,r) in [Kn] by
the natural action of the symmetric group Sr. Thus, Mg,[r] and Mg,[r] form
algebraic stacks in the sense of [DM]. Mg,[r] is proper over Z, and Mg,[r] is an
open substack of Mg,[r]. See also [M5], §0.

Here, the essence of the properness of Mg,[r] is the following well-known
stable reduction theorem.

Definition. Let T → S be a morphism of schemes. Let (X∗
T , DT ) be a

stable marked curve over T . Then we say that (X∗
T , DT ) is defined over (or,

sometimes, descends to or extends to) S, if there exists a stable marked curve
(X∗, D) over S, such that (X∗

T , DT ) is isomorphic to (X∗, D) ×S T over T .



�

�

�

�

�

�

�

�

Resolution of Nonsingularities 1297

Theorem 1.1. Let S be a 1-dimensional, noetherian, normal, integral,
separated scheme and K the function field of S. Let (X∗

K , DK) be a stable
marked curve over K. Then there exists a finite separable extension K ′ of K,
such that (X∗

K , DK)×KK ′ is defined over the integral closure S′ of S in K ′.

Definition. We denote by Mg,[r] (resp. Mg,[r]) the coarse moduli space
over Z associated with Mg,[r] (resp. Mg,[r]).

Mg,[r] (resp. Mg,[r]) is a quasi-projective (resp. projective) scheme over
Z, and Mg,[r] is an open subscheme of Mg,[r].

〈Isotriviality of stable marked curves〉
Let k be a field, S a connected k-scheme, and (X∗, D) a hyperbolic marked

curve of type (g, r) over S. Although the following is more or less well-known,
we include the proof for the sake of completeness, since there appear to be
several non-equivalent definitions of isotriviality in the literature.

Proposition 1.2. Consider the following conditions:
(i) There exist a finite extension k′ of k, a k′-scheme S′, and a finite, étale,
surjective k-morphism S′ → S, such that (X∗, D) ×S S′ descends to Spec(k′).
(ii) There exist an algebraic extension k′ of k, a k′-scheme S′, and a k-morphism
π : S′ → S with OS → π∗(OS′) injective, such that (X∗, D) ×S S′ descends to
Spec(k′).
(iii) The (set-theoretic) image of the classifying morphism S → Mg,[r],k over k

consists of a single closed point, where Mg,[r],k denotes the coarse moduli space

over k associated with Mg,[r],k
def= Mg,[r] ×Z k.

(iii′) The (set-theoretic) image of the k-linearization S → (Mg,[r])k
def= (Mg,[r])

×Z k of the classifying morphism S → Mg,[r] over Z consists of a single closed
point.

Then we have (i) ⇐⇒ (ii) =⇒ (iii) ⇐⇒ (iii′). If, moreover, S is
reduced, all the conditions are equivalent.

Proof. Since a finite, étale, surjective morphism satisfies the injectivity
in (ii), we have (i) =⇒ (ii).

Conversely, assume that (ii) holds. By assumption, we have a 1-commuta-
tive diagram

S′ → Spec(k′)
↓ ↓
S →Mg,[r],k.
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Take a non-empty, finite, étale covering M of Mg,[r],k, such that M is a
scheme. By base-changing the above diagram by M → Mg,[r],k, we obtain
another commutative diagram

S′
M → Spec(k′)M

↓ ↓
SM → M,

which is in the category of k-schemes.
As M → Mg,[r],k is finite étale, Spec(k′)M is a finite disjoint union of

spectra of finite (separable) extensions of k′. As k′ is an algebraic extension of
k, this implies that the image of Spec(k′)M → M is a finite set Σ of closed points
of M . We define Z to be the disjoint union of spectra of residue fields of points
in Σ. Then Z is a closed subscheme of M , and the morphism Spec(k′)M → M

factors as Spec(k′)M → Z ↪→ M . Moreover, as M → Mg,[r],k is flat, the
injectivity condition in (ii) is still valid for S′

M → SM . It follows immediately
from this that the morphism SM → M must also factor through Z. Take any
connected component S′′ of SM . Then the natural map S′′ → M must factor
through Spec(k′′) ↪→ M , where k′′ is the residue field of some z ∈ Σ.

Note that k′′ is a finite extension of k. Moreover, since S is assumed to
be connected, S′′ → S must be (finite, étale and) surjective. Therefore, the
(1-)commutative diagram

S′′ → Spec(k′′)
↓ ↓

SM → M

↓ ↓
S → Mg,[r],k

shows that (i) holds. This completes the proof of (ii) =⇒ (i).
Since the natural k-morphism Mg,[r],k → (Mg,[r])k is finite, radicial (cf.

[KM], Proposition A7.2.1 and Corollary A7.2.2), we have (iii) ⇐⇒ (iii′).
Next, again assume that (ii) holds. By assumption, we have a 1-commuta-

tive diagram
S′ → Spec(k′)
↓ ↓
S →Mg,[r],k,

which induces a commutative diagram

S′ → Spec(k′)
↓ ↓
S → Mg,[r],k,
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in the category of k-schemes. Let z be the image of Spec(k′) → Mg,[r],k,
which is a closed point as k′ is an algebraic extension of k. Similarly as in
the proof of (ii) =⇒ (i), this implies that S → Mg,[r],k factors through
Spec(k′′) ↪→ Mg,[r],k, where k′′ is the residue field of z. This shows that (iii)
holds. This completes the proof of (ii) =⇒ (iii).

Finally, under the extra assumption that S is reduced, suppose that (iii)
holds. Let z denote the closed point that appears in the statement of (iii).
Then, by the reducedness of S, the classifying k-morphism S → Mg,[r],k scheme-
theoretically factors through Spec(k′′) ↪→ Mg,[r],k, where k′′ is the residue field

of z. Take M as in the proof of (ii) =⇒ (i), and set SM
def= S ×Mg,[r],k M .

Then we have the following 1-commutative diagram:

SM → M

↓ ↓
S →Mg,[r],k

↓ ↓
Spec(k′′)→ Mg,[r],k

Thus, the morphism SM → M factors through the natural closed immersion
Spec(k′′) ×Mg,[r],k M ↪→ M .

Since the composite of M → Mg,[r],k → Mg,[r],k is finite, Spec(k′′)×Mg,[r],k

M → M is a finite k′′-scheme, hence set-theoretically consists of a finite number
of (closed) points. Take any connected component S′ of SM . Then the image
of S′ in M , or, equivalently, in Spec(k′′) ×Mg,[r],k M must consist of a single
closed point z′ of M , at least set-theoretically. Since S′ is reduced as being
étale over the reduced scheme S, this implies that S′ → M factors as S′ →
Spec(k′) ↪→ M , where k′ is the residue field of z′. Thus, S′ → Mg,[r],k factors
through S′ → Spec(k′), a fortiori. Since S′ → S is finite, étale and surjective
(as S is connected), this implies that (i) holds.

Thus, the proof is completed.

Definition. We say that (X∗, D) is k-isotrivial if either (i) or (ii) (hence
both of (i) and (ii)) of Proposition 1.2 holds.

§2. Coverings of Stable Curves

In this §, we review some generalities concerning coverings and fundamen-
tal groups of stable curves.

〈Structure of local fundamental groups of stable curves〉
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Lemma 2.1. Let R be a complete discrete valuation ring and m the
maximal ideal of R. Assume that the residue field k = R/m is separably closed
(or, equivalently, that R is strictly henselian). Set p

def= char(k) ≥ 0. Then:
(i) We have

π1(R[[T ]]) = {1}.

(ii) We have

πt
1(Spec(R[[T ]][T−1])) � Ẑp′ def=

∏
l �=p

Zl,

where πt
1(Spec(R[[T ]][T−1])) denotes the quotient of π1(Spec(R[[T ]][T−1])) that

corresponds to coverings which are at most tamely ramified at the point (T = 0)
in the generic fiber. Moreover, the “universal (tame) covering ” is given by
R[[T ]][T−1][T 1/n | n ≥ 1, p � n].
(iii) Let a be an element of mn − mn+1 for some n ≥ 1. Then we have

π1(Spec(R[[T, S]]/(TS − a)) − {M}) � Z/n′Z,

where M is the maximal ideal of R[[T, S]]/(TS − a), and n′ is the maximal
divisor of n that is not divisible by p. Moreover, the “universal covering ” is
given by Spec(R[[T ′, S′]]/(T ′S′ − a′)) − {M′}, where T ′ = T 1/n′

, S′ = S1/n′
,

a′ = a1/n′
, and M′ is the maximal ideal of R[[T ′, S′]]/(T ′S′ − a′).

Proof. (i) As R[[T ]] is strictly henselian, all finite étale coverings over
Spec(R[[T ]]) are trivial.
(ii) [SGA1], Exposé XIII, Corollaire 5.3 (a version of Abhyankar’s lemma).
(iii) In the case where n is not divisible by p, this can be seen in [M1], §3.12,
Lemma. In general, multiplying T with a unit if necessary, we may assume
that a = πn. Then, by a similar argument as loc. cit., one verifies easily that
the universal covering is between Spec(R[[T ′, S′]]/(T ′S′ − a′)) − {M′}) and
Spec(R[[T ′′, S′′]]/(T ′′S′′ − a′′)) − {M′′}), where T ′′ = T 1/n, S′′ = S1/n, a′′ =
π = a1/n, and M′′ is the maximal ideal of R[[T ′′, S′′]]/(T ′′S′′−a′′). Now, since
Spec(R[[T ′′, S′′]]/(T ′′S′′−a′′))−{M′′}) → Spec(R[[T ′, S′]]/(T ′S′−a′))−{M′})
is totally ramified (with purely inseparable residue field extensions) over the
two (generic) points of the special fiber, we can conclude that the universal
covering must coincide with Spec(R[[T ′, S′]]/(T ′S′ − a′)) − {M′}).

〈Coverings between stable curves〉
Let S be a scheme, and (X∗, D), (Y ∗, E) stable marked curves over S.
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Definition. Let f : Y ∗ → X∗ be a morphism over S. Then we denote
by V = VY ∗/X∗ the set of points y of Y with dim(f−1(f(y))) = 1, and call it
the union of vertical components of f . (Observe that V is a closed subset of
Y ∗.)

Definition. (i) A stable covering from (Y ∗, E) to (X∗, D) over S is a
surjective morphism f : Y ∗ → X∗ over S that induces a (unique) (finite, étale)
morphism E → D and a (unique) morphism Y ∗ − (E ∪ V ) → X∗ − D.
(ii) We say that a stable covering f : (Y ∗, E) → (X∗, D) over S is finite, if f is
finite.
(iii) We say that a finite stable covering f : (Y ∗, E) → (X∗, D) over S is an
admissible covering, if (a) (Y ∗)non-sm = f−1((X∗)non-sm) and f : (Y ∗)sm −E =
f−1((X∗)sm − D) → (X∗)sm − D is étale, (b) étale locally at each point of E,

(Y ∗, E)
f→ (X∗, D) → S

is isomorphic to

(Spec(R[T ]), (T = 0))
φn→ (Spec(R[T ]), (T = 0)) → Spec(R)

for some n ≥ 1, n ∈ R×, where φn is induced by the R-algebra homomorphism
R[T ] → R[T ], T �→ Tn, and (c) étale locally at each point of (Y ∗)non-sm,

(Y ∗, E)
f→ (X∗, D) → S

is isomorphic to

(Spec(R[S, T ]/(ST − b)), ∅) ψn→ (Spec(R[S, T ]/(ST − bn)), ∅) → Spec(R)

for some n ≥ 1, n ∈ R×, b ∈ R, where ψn is induced by the R-algebra homo-
morphism R[S, T ]/(ST − bn) → R[S, T ]/(ST − b), S �→ Sn, T �→ Tn.
(iv) We say that a finite stable covering f : (Y ∗, E) → (X∗, D) over S is a tame
covering, if f : Y ∗ − E = f−1(X∗ − D) → X∗ − D is étale, and the condition
of (iii)(b) holds.
(v) We say that a finite stable covering f : (Y ∗, E) → (X∗, D) over S is an étale
covering, if f : Y ∗ → X∗ is étale.
(vi) Let P be a property of stable coverings. Then we say that a stable covering
f : (Y ∗, E) → (X∗, D) over S is generically P, if there exists an open dense
subscheme T of S such that fT : (Y ∗

T , ET ) → (X∗
T , DT ) is P.

The following proposition (which should be widely known) is fundamental.
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Proposition 2.2. Let S be a 1-dimensional, noetherian, normal, inte-
gral, separated scheme and K the function field of S. Let (X∗, D), (Y ∗, E)
be generically smooth, stable marked curves over S. Let fK : (Y ∗

K , EK) →
(X∗

K , DK) be a stable covering over K. Then:
(i) fK extends uniquely to a stable covering f : (Y ∗, E) → (X∗, D) over S.
Moreover, this extension is compatible with any flat base change of 1-dimensio-
nal, noetherian, normal, integral, separated schemes.
(ii) Assume, moreover, that fK is a tame covering, and that the degree of the
Galois closure K(Y ∗

K
)∼/K(X∗

K
) of K(Y ∗

K
)/K(X∗

K
) is not divisible by the char-

acteristic of any point of S. Then the unique extension f of fK in (i) is an
admissible covering.
(iii) Assume, moreover, that (X∗, D) is smooth over S, that fK is a tame (resp.
an étale) covering, and that the degree of the Galois closure K(Y ∗

K
)∼/K(X∗

K
)

of K(Y ∗
K

)/K(X∗
K

) is not divisible by the characteristic of any point of S.
Then the unique extension f of fK in (i) is a tame (resp. an étale) cover-
ing.

Proof. (i) Various proofs of the first assertion for special cases can be seen
in [M2], Lemma 8.3; [M2], Remark after Lemma 8.3, [LL], Proposition 4.4(a)
and [LL], Remark 4.6. Similar proofs work well for our general case. Or, we
can resort to [M3] or the theory of stable maps (cf. [AO]) (after replacing S

by a suitable extension if necessary). The second assertion follows from the
uniqueness in the first assertion.
(ii) The proof of this fact for a slightly less general case can be seen in [M1],
§3.13, Lemma. A similar proof works well for our case. Namely, we can resort
to Abhyankar’s lemma and Lemma 2.1(i)(ii)(iii).
(iii) All the ingredients of the proofs of these facts can be seen in [SGA1],
Exposé X and Exposé XIII, respectively. Or, we can resort to Abhyankar’s
lemma and Lemma 2.1(i)(ii).

〈Various fundamental groups of stable curves〉
Let S be a scheme, (X∗, D) a stable marked curve over S, and set X =

X∗ − D.
If S is connected, then X and X∗ are also connected, since all the fibers are

connected. In this case, after choosing suitable geometric points, we obtain the
fundamental groups π1(X), π1(X∗), π1(S) and the surjective homomorphisms
of profinite groups π1(X) � π1(X∗) � π1(S). Here, π1(X∗) controls the étale
coverings of (X∗, D). When S = Spec(K) with K a field, we have the following
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commutative diagram in which both rows are exact:

1→ π1(XK) → π1(X) →GK → 1
↓ ↓ ‖

1→ π1((X∗)K)→ π1(X∗)→GK → 1,

where GK
def= Gal(Ksep/K) = π1(Spec(K)) is the absolute Galois group of K.

For more details on fundamental groups, see [SGA1].
Next, if S is connected, then, after choosing a suitable (possibly log) ge-

ometric point, we also have the tame fundamental group πt
1(X) def= πt

1(X∗, D)
that controls the tame coverings of (X∗, D). We have π1(X) � πt

1(X) �
π1(X∗). When S = Spec(K) with K a field, we have the following exact
sequence:

1 → πt
1(XK) → πt

1(X) → GK → 1.

For more details on tame fundamental groups, see [SGA1] and [GM].
Finally, let R be a complete discrete valuation ring, and let K and k de-

note the field of fractions and the residue field, respectively, of R. Assume
S = Spec(R) and set s = Spec(k), which is the closed point of S. S is equipped
with a natural log structure R − {0} → R, and we denote the resulting log
scheme by Slog. The pull-back of this log structure to the closed point s yields
the log scheme slog (an object that is often referred to as a “log point”). Now,
assume that (X∗, D) is generically smooth, or, equivalently, X∗

K is smooth over
Spec(K). Then X∗ is equipped with a natural log structure defined by the
functions that are invertible outside the divisor X∗

s ∪ D (which may not be a
normal crossing divisor in general, though). We denote by the resulting log
scheme by (X∗, D)log. (We set (X∗)log def= (X∗, ∅)log.) The pull-back of this
log structure to the special fiber X∗

s yields the log scheme (X∗
s , Ds)log, which

is called the log special fiber. Then, after choosing suitable geometric points,
we obtain the log fundamental groups πlog

1 (S) def= π1(Slog), πlog
1 (s) def= π1(slog),

πlog
1 (X∗, D) def= π1((X∗, D)log), and πlog

1 (X∗
s , Ds)

def= π1((X∗
s , Ds)log). Roughly

speaking, πlog
1 (X∗, D) controls the admissible coverings of (X∗, D) over fi-

nite, at most tamely ramified extensions of S. Next, set St def= Spec(Rt),
where Rt denotes the maximal tamely ramified extension of R (in a fixed
algebraic closure of K). Then St is equipped with a natural log structure
Rt − {0} → Rt, and we denote the resulting log scheme by (St)log. The pull-
back of this log structure to the closed point st = Spec(ksep) of St yields the
log scheme (st)log. Writing St as a projective limit of the spectra of finite
tamely ramified extensions of R, one verifies immediately that X∗

St is natu-
rally equipped with a structure of log scheme (X∗

St , DSt)log, which induces a
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structure of log scheme (X∗
st , Dst)log on X∗

st . Now, by choosing suitable log
geometric points, we obtain the following diagram in which all three rows are
exact:

1→ πt
1(XK) → πt

1(XK) → GK → 1
↓ ↓ ↓

1→ πlog
1 (X∗

St , DSt)→ πlog
1 (X∗, D) → πlog

1 (S)→ 1
↑ ↑ ↑

1→ πlog
1 (X∗

st , Dst) → πlog
1 (X∗

s , Ds)→ πlog
1 (s) → 1.

(In fact, in this commutative diagram, the three vertical arrows from the first
row to the second row are all surjections, while the three vertical arrows from
the third row to the second row are all isomorphisms. For more on this, see
the next subsection.)

For more details on log fundamental groups, see [F], [FK], [M2], [V], [I]
and [St].

〈Specialization maps of fundamental groups of stable curves〉
Let R be a complete discrete valuation ring, and set S

def= Spec(R). Let
K and k denote the field of fractions and the residue field, respectively, of R,
and set s

def= Spec(k). We set p
def= char(k) ≥ 0. Let (X∗, D) be a generically

smooth, stable marked curve.
First, the homomorphism π1(X∗

s ) → π1(X∗) associated with the natural
morphism X∗

s → X∗ is an isomorphism. Composing the inverse of this iso-
morphism with the natural homomorphism π1(X∗

K) → π1(X∗), we obtain the
specialization homomorphism

spét : π1(X∗
K) → π1(X∗

s ).

(Precisely speaking, we have to choose a path on X∗ that connects the image
of the geometric point of X∗

K with that of X∗
s . Accordingly, spét is well-defined

only up to composition with an inner automorphism.) spét fits into the following
commutative diagram in which both rows are exact:

1→ π1(X∗
K

) → π1(X∗
K) →GK → 1

↓ spét ↓ spét ↓
1→ π1(X∗

s ) → π1(X∗
s ) → Gk → 1,

where s = Spec(k). Here, the three vertical arrows are all surjective. If, more-
over, X∗ is smooth over S, spét : π1(X∗

K
) � π1(X∗

s ) induces an isomorphism
π1(X∗

K
)p′ ∼→π1(X∗

s )p′
, where, for a profinite group ∆, ∆p′

denotes the maximal
prime-to-p quotient of ∆ (resp. ∆ itself) for p > 0 (resp. p = 0).
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Second, the homomorphism πt
1(Xs) → πt

1(X) (or, more precisely, πt
1(X∗

s ,

Ds) → πt
1(X∗, D)) associated with the natural morphism (X∗

s , Ds) → (X∗, D)
is an isomorphism. Composing the inverse of this isomorphism with the natural
homomorphism πt

1(XK) → πt
1(X), we obtain the specialization homomorphism

spt : πt
1(XK) → πt

1(Xs).

(Similarly to the case of étale fundamental groups, we have to choose a path
on (X∗, D) that connects the image of the (log) geometric point of X∗

K with
that of (X∗

s , Ds). Accordingly, spt is well-defined only up to composition with
an inner automorphism.) spt fits into the following commutative diagram in
which both rows are exact:

1→ πt
1(XK) → πt

1(XK) →GK → 1
↓ spt ↓ spt ↓

1→ πt
1(Xs) → πt

1(Xs) → Gk → 1.

Here, the three vertical arrows are all surjective. If, moreover, X∗ is smooth
over S, spt : πt

1(XK) � πt
1(Xs) induces an isomorphism πt

1(XK)p′ ∼→π1

(Xs)p′
.

Third, the homomorphism πlog
1 (X∗

s , Ds) → πlog
1 (X∗, D) associated with

the natural morphism (X∗
s , Ds)log → (X∗, D)log is an isomorphism. Composing

the inverse of this isomorphism with the natural homomorphism πt
1(XK) =

πlog
1 (X∗

K , DK) → πlog
1 (X∗, D), we obtain the specialization homomorphism

splog : πt
1(XK) → πlog

1 (X∗
s , Ds).

(Similarly to the case of étale and tame fundamental groups, we have to choose
a path on (X∗, D)log that connects the image of the log geometric point of
(X∗

K , DK)log with that of (X∗
s , Ds)log. Accordingly, splog is well-defined only

up to composition with an inner automorphism.) splog fits into the following
commutative diagram in which both rows are exact:

1→ πt
1(XK) → πt

1(XK) → GK → 1
↓ splog ↓ splog ↓

1→ πlog
1 (X∗

st , Dst)→ πlog
1 (X∗

s , Ds)→ πlog
1 (s)→ 1.

Here, the three vertical arrows are all surjective. πlog
1 (s) can be identified

with the quotient Gt
K

def= Gal(Kt/K) of GK , where Kt is the field of fractions
of Rt. Moreover, splog : πt

1(XK) � πlog
1 (X∗

st , Dst) induces an isomorphism
πt

1(XK)p′ ∼→πlog
1 (X∗

st , Dst)p′
.
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Finally, the above specialization homomorphisms fit into the following com-
mutative diagrams:

πt
1(X

∗
K , DK) = πt

1(XK) � π1(X∗
K)

↓ splog ↓ spt ↓ spét

πlog
1 (X∗

s , Ds) � πt
1(Xs) � π1(X∗

s )

and
πt

1(X∗
K

, DK) = πt
1(XK) � π1(X∗

K
)

↓ splog ↓ spt ↓ spét

πlog
1 (X∗

st , Dst) � πt
1(Xs) � π1(X∗

s ).

Here, we consider the first columns (which involve log fundamental groups) only
when (X∗, D) is generically smooth. If, moreover, (X∗, D) is smooth (i.e., X∗

is smooth over S), then the surjective homomorphism πlog
1 (X∗

st , Dst) � πt
1(Xs)

in the second diagram is an isomorphism (although πlog
1 (X∗

s , Ds) � πt
1(Xs) in

the first diagram is not).

〈Galois representations on fundamental groups of stable curves〉

Definition. (i) Let ∆ be a profinite group. Then we denote by Out(∆)
the outer automorphism group of ∆, i.e., the automorphism group Aut(∆)
divided by the inner automorphism group Inn(∆). When ∆ is (topologically)
finitely generated, Out(∆) is naturally equipped with a structure of profinite
group.
(ii) Let ∆1 and ∆2 be profinite groups, and ϕ a (continuous) homomorphism
∆1 → ∆2. Then we set

Aut(ϕ) def= {(α1, α2) ∈ Aut(∆1) × Aut(∆2) | ϕ ◦ α1 = α2 ◦ ϕ},

Inn(ϕ) def= Aut(ϕ) ∩ (Inn(∆1) × Inn(∆2)),

and
Out(ϕ) def= Aut(ϕ)/ Inn(ϕ) (↪→ Out(∆1) × Out(∆2)).

We denote by pri the natural projection Out(ϕ) → Out(∆i) for each i = 1, 2.

Remark 2.3. (i) If ϕ is surjective, then we have

Aut(ϕ) ∼→{α1 ∈ Aut(∆1) | α1(Ker(ϕ)) = Ker(ϕ)} ⊂ Aut(∆1),

Inn(ϕ) ∼→ Inn(∆1),

and
Out(ϕ)

pr1
↪→ Out(∆1).
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(ii) If ϕ is injective, then we have

Aut(ϕ) ∼→{α2 ∈ Aut(∆2) | α2(Im(ϕ)) = Im(ϕ)} ⊂ Aut(∆2),

Inn(ϕ) ∼→{Inn(δ2) | δ2 ∈ Im(ϕ) · C∆2(Im(ϕ))} ⊂ Inn(∆2),

where C denotes the centralizer, and a natural exact sequence

1 → N∆2(Im(ϕ))/(Im(ϕ) · C∆2(Im(ϕ))) → Out(ϕ)
pr2→ Out(∆2),

where N denotes the normalizer.

The following is well-known or easy.

Lemma 2.4. (i) Assume that we are given the following exact sequence
of profinite groups:

1 → ∆ → Π → Γ → 1.

Then there exists a unique homomorphism (called an outer representation) ρ =
ρΠ : Γ → Out(∆) that fits into the following commutative diagram (in which
both rows are exact):

1→ ∆ → Π → Γ → 1
↓ ↓ ↓ ρ

1→ Inn(∆)→Aut(∆)→Out(∆)→ 1,

where Π → Aut(∆) (resp. ∆ → Inn(∆)) is given by π �→ Inn(π)|∆ (resp.
δ �→ Inn(δ)). If, moreover, ∆ is finitely generated, then ρ is a (continuous)
homomorphism of profinite groups.
(ii) Assume that we are given the following commutative diagram in which both
rows are exact:

1→ ∆1 →Π1 → Γ1 → 1
↓ ϕ ↓ ↓

1→ ∆2 →Π2 → Γ2 → 1,

and set ρi
def= ρΠi

for i = 1, 2. Then ρ1 and ρ2 are compatible in the sense
that there exists a (unique) homomorphism ρ12 : Γ1 → Out(ϕ) that fits into the
following commutative diagram:

Γ1 = Γ1 → Γ2

↓ ρ1 ↓ ρ12 ↓ ρ2

Out(∆1)
pr1← Out(ϕ)

pr2→ Out(∆2).
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Now, let K be a field, and (X∗, D) a stable marked curve over Spec(K).
Then, by the preceding arguments, we obtain outer Galois representations

ρét
K = ρπ1(X∗) : GK → Out(π1(X∗

K
))

and
ρt

K = ρπt
1(X) : GK → Out(πt

1(XK)),

which are compatible in the sense of Lemma 2.4(ii), with respect to the natural
surjection πt

1(XK) → π1(X∗
K

).

Next, let R be a complete discrete valuation ring, and set S
def= Spec(R).

Let K and k denote the field of fractions and the residue field, respectively, of
R, and set s

def= Spec(k). Let (X∗, D) be a generically smooth, stable marked
curve over S. Then we obtain the following outer Galois representations:

ρét
K = ρπ1(X∗

K) : GK → Out(π1(X∗
K

)),

ρt
K = ρπt

1(XK) : GK → Out(πt
1(XK)),

ρét
s = ρπ1(X∗

s ) : Gk → Out(π1(X∗
k
)),

ρt
s = ρπt

1(Xs) : Gk → Out(πt
1(Xk)),

and
ρlog

s = ρπlog
1 (X∗

s ,Ds) : πlog
1 (s) → Out(πlog

1 (X∗
st , Dst)).

Various pairs of these homomorphisms are compatible in the sense of
Lemma 2.4(ii).

〈Abelianizations of fundamental groups〉
Let K be a field, and (X∗, D) a smooth marked curve over Spec(K). Then

we have
π1(X∗

K
)ab � T (J(K))

as GK-modules, where J denotes the Jacobian variety of X∗, and, for an abelian
group M ,

T (M) def=
∏

l: prime

Tl(M), Tl(M) def= lim←−
r

Ker(lr · idM ).

Moreover, we have the following exact sequence of GK -modules:

0 → Ẑ′(1)1−b(2) → Z[D(K)] ⊗ Ẑ′(1) → πt
1(XK)ab → π1(X∗

K
)ab → 0,

where Ẑ′(1) def= T (Gm(K)) and b(2) = 0 (resp. b(2) = 1) if D �= ∅ (resp. D = ∅).
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Next, let R be a complete discrete valuation ring, and set S
def= Spec(R).

Let K and k denote the field of fractions and the residue field, respectively, of
R, and set s

def= Spec(k). Let (X∗, D) be a generically smooth, stable marked
curve over S. Let V be the set of irreducible components of X∗

s and set E def=
(X∗

s )non-sm. Let G = GX∗
s

be the dual graph of X∗
s . By definition, the vertex set

and the edge set of G are V and E , respectively. Observe that Gk naturally acts
on G, hence, in particular, on V and on E . For each v ∈ V , we shall denote by
Z∗(v) the irreducible component of Xs corresponding to v. (Logically speaking,
we have v = Z∗(v), though.) Set Z(v) def= Z∗(v) − {Ds ∪ (X∗

s )non-sm}, which
is a smooth curve over s. Then it is widely known that πlog

1 (X∗
st , Dst) can be

described in terms of a certain graph of groups GG = GG(X∗
st ,Dst ), whose graph

is just GX∗
s

and whose vertex group at v ∈ V is πt
1(Z(v)). In particular, we

have the following exact sequence of πlog
1 (s)-modules:

⊕
v∈V

πt
1(Z(v))ab → πlog

1 (X∗
st , Dst)ab → H1(G, Z)⊗ Ẑ → 0,

where πlog
1 (s) acts on the first and the third terms via its quotient π1(s) = Gk.

〈p-rank and p-defect〉
Let l be a prime number.
Let K be a field, and A a semi-abelian variety over K. Thus, A fits into

an exact sequence 0 → T → A → B → 0, where B (resp. T ) is an abelian
variety (resp. a torus) over K. We set

γl(A) def= rkZl
(HomK(Gm[l∞]K , A[l∞]K)).

This is a non-negative integer, and we call it the l-rank of A. Thus, we have

γl(A) = rkZl
(Tl(A(K))) = 2 dim(B) + dim(T ) = dim(A) + dim(B)

for l �= char(K). On the other hand, we have

γp(A) = rkZp
(Tp(B(K))) + dim(T )

≤ dim(B) + dim(T ) = dim(A)

if p
def= char(K) > 0. Here, the equality follows from the fact that an extension

of a multiplicative p-divisible group by a multiplicative p-divisible group is
again multiplicative, while the inequality follows from a well-known property
of p-rank of abelian varieties.

Next, let R be a discrete valuation ring, and let K and k denote the field
of fractions and the residue field, respectively, of R. Let A be a semi-abelian
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scheme over R. Then we set

δl(A) def= γl(AK) − γl(Ak).

This is a non-negative integer, and we call it the l-defect of A. Assume, more-
over, that A is generically proper, i.e., that the generic fiber AK is an abelian
variety over K. As Ak is a semi-abelian variety over k, it fits into an exact
sequence

0 → Tk → Ak → Bk → 0,

with Bk (resp. Tk) an abelian variety (resp. a torus) over k. Then we have

δl(A) = dim(Tk)

for l �= char(k), and

δp(A) = rkZp
(Tp(AK(K))) − {rkZp

(Tp(Bk(k))) + dim(Tk)}

if p
def= char(k) > 0. Moreover, in the latter case, we have{

dim(Ak) ≤ δp(A) ≤ dim(Ak) + dim(Bk), char(K) = 0,

0 ≤ δp(A) ≤ dim(Bk), char(K) = p.
(2.5)

For a proper, generically smooth, semi-stable curve X∗ over R, let JK be
the Jacobian variety of X∗

K and J the Néron model over R of JK . Moreover,
let J0 denote the group subscheme of J obtained from J by removing all the
connected components of Jk but the one containing the origin. Then J0 is a
generically proper, semi-abelian scheme over R, and we set δl(X∗) def= δl(J0).
Now, by various results of the last subsection and so on, it is not difficult to
see that we have

γl((J0)K) = γl(JK) = γl(X∗
K) def= rkZl

(π1(X∗
K

)ab ⊗
Ẑ

Zl)(2.6)

and

γl((J0)k) = γl(X∗
k) def= rkZl

(π1(X∗
k
)ab ⊗

Ẑ
Zl),(2.7)

hence
δl(X∗) = rkZl

(π1(X∗
K

)ab ⊗
Ẑ

Zl) − rkZl
(π1(X∗

k
)ab ⊗

Ẑ
Zl).

Remark 2.8. It is widely known that J0 is also obtained as a certain
open subscheme of the Picard scheme of X over R. From this description, it
follows that the following exact sequence exists:

0 → Tk → (J0)k → Bk → 0.
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Here, the abelian variety Bk is the direct product of the Jacobian varieties of
the normalizations of the irreducible components of X∗

k
, while the torus Tk is

of dimension equal to rkZ(H1(G, Z)).

§3. Main Ingredients of Proof

In this §, we present three main ingredients of the proofs in §4 and in §5.

〈Average theorems on generalized Hasse-Witt invariants〉
We shall start with the following purely group-theoretic definition.

Definition. Let Π be a profinite group. Let N be a natural number
and l a prime number.
(i) We denote by Π(N) the kernel of Π � Πab/(Πab)N = Πab ⊗ (Z/NZ).
Equivalently, Π(N) is the topological closure of the subgroup [Π, Π]ΠN of Π.
(ii) We set γl(Π) def= dimFl

(Π/Π(l)) ∈ Z≥0 ∪ {∞}.
(iii) Let N be a natural number such that (Π : Π(N)) < ∞. Then we set
γav

l (N)(Π) def= γl(Π(N))/(Π : Π(N)) ∈ Q≥0 ∪ {∞}. (“av” stands for “average”
(over (Z/NZ)-coverings). See [Tam2], Lemma (4.5) and Remark (4.8).)

Let K be an algebraically closed field of characteristic p ≥ 0. Let (X∗, D)
be a hyperbolic marked curve of type (g, r) over K, and set X

def= X∗ −D. We
set

g′
def=

{
g − 1, r ≤ 1,

g, r > 1.

Observe that we have

γl(πt
1(XK)) =

{
2g + r − 1 + b(2) = γl(X∗

K) + r − 1 + b(2), l �= p,

γp(X∗
K), l = p(> 0).

Now, for each natural number N , we set

γav
l (N)(X) def= γav

l (N)(X∗, D) def= γav
l (N)(πt

1(XK)).

Then we have:

Theorem 3.1 ([Tam2], Theorem (0.5)). Assume p > 0. Then we have

lim
f→∞

γav
p (pf − 1)(X) = g′.
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Remark 3.2. Let l be a prime number. If K is a field of characteristic
p �= l, we have

lim
N→∞

p�N

γav
l (N)(πt

1(XK)) = 2g + r − 2.

This follows essentially from Hurwitz’ formula.

We shall generalize this theorem to the non-smooth case. Thus, let R be a
complete discrete valuation ring, and set S

def= Spec(R). Let K and k denote the
field of fractions and the residue field, respectively, of R, and set s

def= Spec(k).
Set p

def= char(k) ≥ 0. Let (X∗, D) be a generically smooth, stable marked
curve of type (g, r) over S. Let V be the set of irreducible components of X∗

s

and set E def= (X∗
s )non-sm. Let G = GX∗

s
, the dual graph of X∗

s (cf. §2). By
definition, the vertex set and the edge set of G are V and E , respectively. Next,
we define another graph G∗ = G∗

(X∗
s ,Ds) as follows. If r = 0, i.e., Ds = ∅, we set

G∗ def= G. Otherwise, the vertex set of G∗ is V∗ def= V
∐
{v∞}, the edge set of G∗

is E∗ def= E
∐

Ds, and each edge e ∈ Ds ⊂ E∗ connects v∞ with the irreducible
component that contains the marked point e ∈ Ds. (Essentially speaking, this
is the one-point compactification of the semi-graph associated with X∗

s −Ds in
the sense of [M4], Appendix.) For each v ∈ V (resp. v ∈ V∗), we set

ν(v) def=
∑
e∈E

νe(v) (resp. ν∗(v) def=
∑
e∈E∗

νe(v)),

where νe(v) ∈ {0, 1, 2} denotes the number of times that e meets v.
For each v ∈ V , let Z∗(v) denote the irreducible component of X∗

s corre-
sponding to v, set Z(v) def= Z∗(v)− {Ds ∪ (X∗

s )non-sm}, and define (Z∗)∼(v) to
be the normalization of Z∗(v).

Definition. (i) Let v be an element of V . Then we say that (X∗
s , Ds)log

is abelian-injective at v, if the natural homomorphism

πt
1(Z(v))ab → πlog

1 (X∗
st , Dst)ab

is injective.
(ii) We say that (X∗

s , Ds)log is abelian-injective, if it is abelian-injective at v

for each v ∈ V .

Remark 3.3. One can prove that the natural homomorphism

πt
1(Z(v)) → πlog

1 (X∗
st , Dst)

(well-defined up to inner automorphism) itself is always injective. See [M2],
Proposition 4.2 and [St], Proposition 6.2.11.
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Proposition 3.4. For each v ∈ V , the following conditions are all
equivalent.
(i) (X∗

s , Ds)log is abelian-injective at v.
(i′) For each natural number N , the natural homomorphism

πt
1(Z(v))ab ⊗ Z/NZ → πlog

1 (X∗
st , Dst)ab ⊗ Z/NZ

is injective.
(ii) The graph G∗ is 2-connected at v, i.e., G∗ − {v} is (either empty or) con-
nected.

Proof. This can be proved by means of the well-known description of
πlog

1 (X∗
st , Dst) in terms of the graph of groups GG def= GG(X∗

st ,Dst ) (cf. §2).
(i′) =⇒ (i). Just take the projective limit (with respect to N) of the

homomorphisms appearing in (i′).
(i) =⇒ (ii). Suppose that G∗ is not 2-connected at v, i.e., that G∗ − {v} is

not connected. Then we may choose a connected component C of G∗−{v} that
does not contain v∞. Let ν(C) denote the total number of times that the edges
contained in Cv

def= C ∪ {v} meet v. Let l be a prime number �= p. Then, by
means of the fact that G∗−{v} has a connected component distinct from C, one
verifies easily that the rank of the Zl-module M ⊂ πt

1(Z(v))ab ⊗
Ẑ

Zl generated
by the images of the edge groups for the edges contained in Cv that meet v is
ν(C). On the other hand, by means of the fact that C does not contain v∞,
one verifies easily that the rank of the image of M in πlog

1 (X∗
st , Dst)ab ⊗

Ẑ
Zl is

at most (in fact, just) ν(C) − 1. Thus, the map

πt
1(Z(v))ab ⊗

Ẑ
Zl → πlog

1 (X∗
st , Dst)ab ⊗

Ẑ
Zl

cannot be injective, and neither can the map,

πt
1(Z(v))ab → πlog

1 (X∗
st , Dst)ab,

a fortiori.
(ii) =⇒ (i′). First, note that the map

π1((Z∗)∼(v))ab ⊗ Z/NZ → π1(X∗
s )ab ⊗ Z/NZ

is always injective. For example, this can be proved by means of the description
of πlog

1 (X∗
st , Dst)ab via GG. More precisely, by considering πlog

1 (X∗
st , Dst)ab

modulo all the edge groups, we deduce that π1((Z∗)∼(v))ab is a direct summand
of π1(X∗

s )ab. For each w ∈ V , let Mw be the (Z/NZ)-module generated by the
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images of all the edge groups (i.e., inertia groups) in πt
1(Z(w))⊗Z/NZ. Thus,

it suffices to prove that Mv is mapped injectively into πlog
1 (X∗

st , Dst)ab⊗Z/NZ.
In particular, we may assume that N is not divisible by p. (Note that, in this
case, Mv is a free (Z/NZ)-module of rank ν∗(v) − 1, unless D = ∅ and X∗ is
smooth.)

For each edge e ∈ E∗, let Me denote the edge group of GG at e (resp. the
inertia group at e) tensored with Z/NZ, if e ∈ E (resp. e ∈ Ds). (Note that
Me is a free (Z/NZ)-module of rank 1.) Choose an orientation (among the
two possibilities) of each edge once for all. For each pair (e, w) ∈ E∗ × V , we
define js

e,w (resp. jt
e,w): Me → Mw to be the natural map if w is the source

(resp. target) of e, and the zero map if w is not the source (resp. target) of e.
(More precisely, the former case is divided into two cases: e ∈ E and e ∈ Ds.
For e ∈ E , we obtain the natural map Me → Mw by the very definition of the
graph of groups GG, while, for e ∈ Ds, the natural map Me → Mw is induced
by the natural inclusion from the inertia group at e into the vertex group at
w.) We set δe,w

def= js
e,w − jt

e,w.

For each subset V ′ (resp. E ′) of V (resp. E∗), we define MV′ (resp. ME′) to
be the direct sum of Mw (resp. Me) for w ∈ V ′ (resp. e ∈ E ′). Thus, we obtain
natural maps js

E′,V′ , jt
E′,V′ , and δE′,V′ from ME′ to MV′ as the direct sums of

js
e,w, jt

e,w, and δe,w, respectively, for (e, w) ∈ E ′ × V ′.

For each (not necessarily connected) subgraph G1 = (V1, E1) of G = (V , E),
we define MG1 to be the cokernel of δE1,V1 : ME1 → MV1 . (Thus, one may
think of MG1 as the image of MV1 , via the natural map, in the direct sum
of the abelianizations tensored with Z/NZ of the fundamental groups of the
connected components of the graph of groups obtained by restricting GG to
G1.) In particular, we obtain a natural inclusion

MG ↪→ πlog
1 (X∗

st , Dst)ab ⊗ Z/NZ,

by means of the description of πlog
1 (X∗

st , Dst) via GG.
For each subset V ′ of V and each e ∈ E∗, we set

νe(V ′) def=
∑

w∈V′

νe(w) (∈ {0, 1, 2}),

and, for each i ∈ {0, 1, 2},

E(V ′, i) def= {e ∈ E | νe(V ′) = i}

and
E∗(V ′, i) def= {e ∈ E∗ | νe(V ′) = i}.
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Then one verifies immediately

E =
2∐

i=0

E(V ′, i), E∗ =
2∐

i=0

E∗(V ′, i),

and E(V ′, 2) = E∗(V ′, 2) (since V ′ ⊂ V).
For each subset V ′ of V , let GV′ denote the “full” subgraph (V ′, E(V ′, 2))

of G. We denote the natural surjection MV′ � MGV′ by pV′ . Now, we claim:

Claim 3.5. Let V ′ be a subset of V, and assume that GV′ is connected.
Let E ′ be a proper subset of E∗(V ′, 1) (i.e., E ′ � E∗(V ′, 1)). Then pV′ ◦ δE′,V′ :
ME′ → MGV′ is split-injective, i.e., induces an isomorphism onto a direct sum-
mand.

Proof. Although this can be proved by considering a smoothing of the
stable marked curve corresponding to GV′ , here we shall give a combinatorial
proof by induction on �(V ′).

First, assume �(V ′) = 1, and write V ′ = {w}. We define MGV′ to be the
cokernel of

(js
E(V′,2),V′ , jt

E(V′,2),V′) : ME(V′,2) ⊕ ME(V′,2) → MV′ .

This is a quotient of MGV′ . It follows immediately from the definition of MGV′

that there is a natural injection

MGV′ ↪→ πt
1((Z

∗)∼(w) − J(E∗(V ′, 1)))ab ⊗ Z/NZ.

Here, for each e ∈ E∗(V ′, 1), we define J(e) ∈ (Z∗)∼(w) to be the corresponding
singular or marked point. Now, it is easy to see that ME′ → MGV′ is split-
injective, hence so is ME′ → MGV′ , a fortiori.

Next, assume �(V ′) > 1. Then there exists a decomposition V ′ = V ′
1

∐
V ′

2,
such that V ′

1 �= ∅, V ′
2 �= ∅, and that both GV′

1
and GV′

2
are connected. (For

example, choose w ∈ V ′ and a connected component C of GV′ −{w}, define V ′
1

to be the set of vertices that belong to C, and set V ′
2

def= V ′−V ′
1.) Let E [V ′

1,V ′
2]

be the set of edges e ∈ E that meet both V ′
1 and V ′

2. Then it is easy to see that
the following four decompositions exist:

E∗(V ′
1, 1) = (E∗(V ′, 1) ∩ E∗(V ′

1, 1))
∐

E [V ′
1,V ′

2],

E∗(V ′
2, 1) = (E∗(V ′, 1) ∩ E∗(V ′

2, 1))
∐

E [V ′
1,V ′

2],

E(V ′, 2) = E(V ′
1, 2)

∐
E(V ′

2, 2)
∐

E [V ′
1,V ′

2],

E∗(V ′, 1) = (E∗(V ′, 1) ∩ E∗(V ′
1, 1))

∐
(E∗(V ′, 1) ∩ E∗(V ′

2, 1)).
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The last decomposition induces a decomposition E ′ = E ′
1

∐
E ′
2, where

E ′
i

def= E ′ ∩ (E∗(V ′, 1) ∩ E∗(V ′
i, 1))

for i = 1, 2. Since E ′ � E∗(V ′, 1), we have either E ′
1 � E∗(V ′, 1) ∩ E∗(V ′

1, 1)
or E ′

2 � E∗(V ′, 1) ∩ E∗(V ′
2, 1). Without loss of generality, we may assume that

E ′
1 � E∗(V ′, 1) ∩ E∗(V ′

1, 1) holds. Thus, E ′
1

∐
E [V ′

1,V ′
2] � E∗(V ′

1, 1) also holds.
On the other hand, since V ′

1 �= ∅, V ′
2 �= ∅, and GV′ is connected, we have

E [V ′
1,V ′

2] �= ∅. Thus, we have E ′
2 � E ′

2

∐
E [V ′

1,V ′
2] ⊂ E∗(V ′

2, 1).
Now, by the induction hypothesis, the natural maps

pV′
1
◦ δE′

1
∐

E[V′
1,V′

2],V′
1

: ME′
1
∐

E[V′
1,V′

2]
= ME′

1
⊕ ME[V′

1,V′
2]
→ MGV′

1

and
pV′

2
◦ δE′

2,V′
2

: ME′
2
→ MGV′

2

are split-injective. Thus, we may write

MGV′
1

= ME′
1
⊕ ME[V′

1,V′
2]
⊕ N1

for some N1 ⊂ MGV′
1
, and

MGV′
2

= ME′
2
⊕ N2

for some N2 ⊂ MGV′
2
. It is immediate from the definition of MGV′ that MGV′

may be identified with the cokernel of the composite of the following:

ME[V1,V2]

δE[V1,V2],V′
→ MV′ = MV′

1
⊕ MV′

2

pV′
1
⊕pV′

2→ MGV′
1
⊕ MGV′

2
.

From these observations, we obtain (in light of the various identifications made
so far):

MGV′ = MGV′
1

∐
ME[V′

1,V′
2]

MGV′
2

(3.6)

= (ME′
1
⊕ ME[V′

1,V′
2]
⊕ N1)

∐
ME[V′

1,V′
2]

MGV′
2

∼←(ME′
1
⊕ N1) ⊕ MGV′

2

= (ME′
1
⊕ N1) ⊕ (ME′

2
⊕ N2).

(Here, A
∐
C

B denotes the amalgamated sum — or, equivalently, fiber coproduct

— of A and B with respect to C.) Thus, the natural map ME′ = ME′
1
⊕ME′

2
→

MGV′ is split-injective, as desired.
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We shall continue to use the notations of the proof of Claim 3.5. Let C be
the set of connected components of G−{v}, and, for each C ∈ C, let VC denote
the set of vertices in V that belong to C. Then one verifies immediately that
E∗(VC , 1) = E [VC , {v}]

∐
E∗[VC , {v∞}]. Here, for two subsets V ′

1 and V ′
2 of V∗

that are disjoint from each other, E [V ′
1,V ′

2] (resp. E∗[V ′
1,V ′

2]) denotes the set of
edges in E (resp. E∗) that meet both V ′

1 and V ′
2.

Now, assume first that r(= �(Ds)) > 0. Since G∗ − {v} is connected
by assumption, E∗[VC , {v∞}] �= ∅ holds for each C ∈ C. Or, equivalently,
E [VC , {v}] � E∗(VC , 1) holds for each C ∈ C. Now, by Claim 3.5, we may write
MGVC

= ME[VC ,{v}] ⊕ NC for some NC ⊂ MGVC
. Thus, we obtain:

MG = MG{v}

∐
ME[V−{v},{v}]

MGV−{v} (cf. (3.6))

= MG{v}

∐
(

⊕
C∈C

ME[VC ,{v}]

)
(

⊕
C∈C

MGVC

)

∼←MG{v} ⊕
(

⊕
C∈C

NC

)
.

Note that Z∗(v) = (Z∗)∼(v) holds, since G∗−{v} is connected and r > 0. Thus,
the natural surjection Mv = M{v} → MG{v} is an isomorphism. Therefore, the
natural map Mv → MG is (split-)injective, as desired.

Next, assume r = 0. If, moreover, V = {v} (i.e., X∗
s = Z∗(v)) holds,

then, by the 2-connectedness assumption, we must have �(E) ≤ 1. In this
case, one verifies the injectivity assertion directly. Thus, we shall assume that
V � {v} holds, and take v′ ∈ V − {v}. Then, replacing S by a suitable finite
extension, we may assume that X∗ → S admits a section σ : S → X, such
that σ(S)s ⊂ Z∗(v′) ∩ (X∗

s )sm. Then (X∗, σ(S)) is a stable marked curve of
type (g, 1) over S. Since G = GX∗

s
is 2-connected at v, one verifies immediately

that G∗
(X∗

s ,σ(S)s) is also 2-connected at v. Thus, by the preceding argument, the
natural map

πt
1(Z(v))ab ⊗ Z/NZ → πlog

1 (X∗
st , σ(S)st)ab ⊗ Z/NZ

is injective.
Now, note that

πlog
1 (X∗

st , σ(S)st)ab ∼→πlog
1 (X∗

st)ab

holds. (For example, this can be derived from the fact that the natural map
πt

1(X
∗
K

, σ(S)K)ab → π1(X∗
K

)ab is an isomorphism, via the specialization maps.)
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From these observations, we can finally show the desired injectivity of the
natural map

πt
1(Z(v))ab ⊗ Z/NZ → πlog

1 (X∗
st)ab ⊗ Z/NZ.

This completes the proof.

Corollary 3.7. The following conditions are all equivalent.
(i) (X∗

s , Ds)log is abelian-injective.
(i′) For each v ∈ V and each natural number N , the natural homomorphism

πt
1(Z(v))ab ⊗ Z/NZ → πlog

1 (X∗
st , Dst)ab ⊗ Z/NZ

is injective.
(ii) The graph G∗ is 2-connected, i.e., G∗ − {v} is (either empty or) connected
for each v ∈ V∗.

Proof. This is a formal consequence of Proposition 3.4, if we replace “v ∈
V∗” in the statement of (ii) by “v ∈ V”. However, since G∗ − {v∞} is always
connected, this difference does not affect the validity of the equivalence.

Corollary 3.8. There exists an admissible covering of (X∗, D) (over a
finite extension of S) whose log special fiber is abelian-injective.

Proof. By Remark 3.3, one verifies immediately that there exists an
admissible covering ((X ′)∗, D′) of (X∗, D), such that the dual graph G′ def=
G(X′)∗s ,D′

s
= (V ′, E ′) has the property that ν(v′) ≥ 2 holds for each v′ ∈ V ′.

Next, let h : G′′ → G′ be the covering of graphs corresponding to π1(G′) �
H

def= π1(G′)ab ⊗ Z/NZ for some N ≥ 2. We claim that G′′ is 2-connected.
Indeed, take any vertex v′′0 of G′′. We shall prove that G′′ − {v′′0} is connected.
We denote by v′0 the image of v′′0 in G′. We define C′ to be the set of connected
components of G′ − {v′0}. For each C ′ ∈ C′, let HC′ denote the image of
π1(C ′v′0) in H (C ′v′0

def= C ′ ∪ {v′0}), i.e., the decomposition group of C ′v′0 in
H. Since π1(G′) = π1(G′, v′0) is isomorphic to the free product of π1(C ′v′0) =
π1(C ′v′0, v

′
0) (C ′ ∈ C′), we have HC′ = π1(C ′v′0)

ab ⊗ Z/NZ for each C ′ ∈ C′,

and H =
∏

C′∈C′
HC′ . Moreover, HC′ is nontrivial for each C ′ ∈ C′. Indeed,

otherwise, C ′v′0 must be a tree, which implies the existence of a vertex v′ ∈ C ′

with ν(v′) = 1. This contradicts our choice of G′.
For any edge e′ of G′ that meets v′0, there exists a unique component

C ′(e′) ∈ C′, such that e′ ⊂ C ′(e′)v′0. Now, by using the property that ν(v′) ≥ 2
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holds for each v′ ∈ V ′, one verifies easily that there exists a loop le′ in C ′(e′)v′0
that starts and ends with v′0, such that e′ is the first edge appearing in le′ , that
the vertex v′0 appears in le′ only as the starting and ending point, and that the
image of le′ in HC′(e′) = π1(C ′(e′)v′0)

ab ⊗ Z/NZ is nontrivial.
Let e′1 �= e′2 be a pair of distinct edges that meet v′0, and let e′′1 (resp. e′′2)

denote the unique edge of G′′ above e′1 (resp. e′2) that meets v′′0 . If C ′(e′1) �=
C ′(e′2) holds, one verifies easily that the unique lifting to G′′, starting with v′′0 ,
of the path le′

1
le′

2
l−1
e′
1

l−1
e′
2

of G′ is a loop le′′
1 ,e′′

2
, such that e′′1 (resp. e′′2) is the first

(resp. last) edge appearing in le′′
1 ,e′′

2
, and that v′′0 appears in le′′

1 ,e′′
2

only as the
starting and ending point. On the other hand, if C ′(e′1) = C ′(e′2) holds, one
verifies directly that there exists a loop le′

1,e′
2

of G′, such that e′1 (resp. e′2) is
the first (resp. last) edge appearing in le′

1,e′
2
, and that v′0 appears in le′

1,e′
2

only
as the starting and ending point. Let m denote the order of the image of le′

1,e′
2

in H. Then the unique lifting to G′′, starting with v′′0 , of the path (le′
1,e′

2
)m of

G′ is a loop le′′
1 ,e′′

2
, such that e′′1 (resp. e′′2) is the first (resp. last) edge appearing

in le′′
1 ,e′′

2
, and that v′′0 appears in le′′

1 ,e′′
2

only as the starting and ending point.
In both cases, le′′

1 ,e′′
2

consists of e′′1 , a path pe′′
1 ,e′′

2
that does not meet v′′0 , and

e′′2 .
Now, take any pair v′′1 , v′′2 of vertices of G′′−{v′′0}. We shall prove that there

exists a path in G′′−{v′′0} that connects v′′1 and v′′2 . Since G′′ is connected, there
exists a path p in G′′ that connects v′′1 and v′′2 . By induction on the number of
times that p meets v′′0 , we may reduce the problem to the case where p meets v′′0
only once. Then p contains a unique successive pair of edges e′′1 , e′′2 that meet
v′′0 . First, assume e′′1 = e′′2 . Then, just removing this pair from p, we obtain
a new path from v′′1 to v′′2 that does not meet v′′0 . Next, assume e′′1 �= e′′2 . In
this case, removing this pair from p and then adding pe′′

1 ,e′′
2
, we obtain a new

path from v′′1 to v′′2 that does not meet v′′0 . This completes the proof of the
2-connectedness of G′′.

Now, let ((X ′′)∗, D′′) be the (combinatorial) étale covering of ((X ′)∗, D′)
corresponding to G′′ → G′. By definition, the dual graph G(X′′)∗s

coincides with
G′′. Thus, G(X′′)∗s

is 2-connected, hence so is G∗
((X′′)∗s ,D′′

s ), as desired.

Observe that we have

γl(π
log
1 (Xst , Dst)) =

{
2g + r − 1 + b(2) = γl(X∗

K) + r − 1 + b(2), l �= p,

γp(X∗
s ), l = p(> 0).

(3.9)

Now, for each natural number N , we set

γav
l (N)((X∗

s , Ds)log)
def= γav

l (N)(πlog
1 (X∗

st , Dst)).
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Then we have:

Theorem 3.10. Assume p > 0, and that (X∗
s , Ds)log is abelian-

injective. Then we have

lim
f→∞

γav
p (pf − 1)((X∗

s , Ds)log) = g − h1(G) − �(Vν∗≤1).

Here, h1(G) def= rkZ(H1(G, Z)) and Vν∗≤1
def= �{v ∈ V | ν∗(v) ≤ 1}.

Proof. Let N denote a natural number that is not divisible by p. By
(3.9), (2.7), Remark 2.8, and Proposition 3.4, we deduce

γp(π
log
1 (X∗

st , Dst)(N))

=
∑
v∈V

(πlog
1 (X∗

st , Dst)ab ⊗ Z/NZ : πt
1(Z(v))ab ⊗ Z/NZ)γp(πt

1(Z(v))(N))

+h1(G(N)),

where G(N) denotes the covering of G corresponding to the quotient H1(G, Z)⊗
Z/NZ of π1(G). Dividing by �(πlog

1 (X∗
st , Dst)ab ⊗ Z/NZ) = N2g+r−1+b(2) , we

have

γav
p (N)((X∗

s , Ds)log) =
∑
v∈V

γav
p (N)(Z(v)) +

1
N2g+r−1+b(2)

h1(G(N)).

For each v ∈ V , we denote by g(Z∗)∼ the genus of the proper, smooth
curve (Z∗)∼ over s. By definition, the cardinality of the point set (Z∗)∼ − Z

is ν∗(Z∗). Thus, we set

g′(Z∗)∼
def=

{
g(Z∗)∼ − 1, ν∗(Z∗) ≤ 1,

g(Z∗)∼ , ν∗(Z∗) > 1.

On the other hand, by (a graph-theoretic version of) Schreier’s theorem, we
have

h1(G(N)) = Nh1(G){h1(G) − 1} + 1.
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Now, observing that 2g + r − 1 + b(2) > g ≥ h1(G) holds, we obtain

lim
f→∞

γav
p (pf − 1)((X∗

s , Ds)log)

=
∑
v∈V

lim
f→∞

γav
p (pf − 1)(Z(v))

=
∑
v∈V

g′(Z∗)∼(v)

=

(∑
v∈V

g(Z∗)∼(v)

)
− �(Vν∗≤1)

=g − h1(G) − �(Vν∗≤1).

Here, the second equality follows from Theorem 3.1.

Let the notations and the assumptions be as in Theorem 3.10, and assume,
moreover, that the characteristic of K is p. For each natural number N , let
(X∗

K
(N), DK(N)) be the (tame) covering of (X∗

K
, DK) corresponding to the

open subgroup πt
1(X∗

K
, DK)(N) of πt

1(X∗
K

, DK). This covering admits a stable
model (X∗(N), D(N)) over a suitable (finite) extension of S. We set

δav
p (N)(X∗, D) def=

δp(X∗(N))

�(πlog
1 (X∗

st , Dst)ab ⊗ Z/NZ)
.

Then we have:

Corollary 3.11.

lim
f→∞

δav
p (pf − 1)(X∗, D) =

{
h1(G) + �(Vν∗≤1) − 1, r ≤ 1,

h1(G) + �(Vν∗≤1), r > 1.

Proof. Apply Theorem 3.1 and Theorem 3.10 to the generic fiber and the
log special fiber, respectively, and take the difference.

Remark 3.12. Even without the assumption that (X∗
s , Ds)log is abe-

lian-injective, one can obtain an upper bound (resp. a lower bound) of
lim

f→∞
γav

p (pf − 1)((X∗
s , Ds)log) (resp. lim

f→∞
δav
p (pf − 1)(X∗, D)). To do this, one

needs not only the statement of Theorem 3.1 but also some arguments in the
proof of Theorem 3.1 in [Tam2].
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〈Specialization theorems on fundamental groups of curves〉
Let R be a complete discrete valuation ring, and set S

def= Spec(R). Let K

and k denote the field of fractions and the residue field, respectively, of R, and
set η

def= Spec(K) and s
def= Spec(k). Let (X∗, D) be a smooth, stable marked

curve over S. Then we have the specialization homomorphism

spt : πt
1(Xη, Dη) � πt

1(Xs, Ds).

Theorem 3.13 ([Tam3], Theorem (0.3)). Assume p
def= char(K) =

char(k) > 0, and that (Xη, Dη) is not (resp. (Xs, Ds) is) Fp-isotrivial. Then
spt is not an isomorphism.

In the case where we do not assume that the special fiber is Fp-isotrivial,
we have the following partial result due to Säıdi. Here, let k be a field of
characteristic p > 0, and S a proper, smooth, geometrically connected curve
over k. Let η denote the generic point of S. Let (X∗, D) be a (an everywhere)
smooth, stable marked curve over S. Then we have:

Theorem 3.14 ([Sa]). Assume that (X∗, D) is not k-isotrivial. Then
there exists a closed point s ∈ S, such that the specialization homomorphism

spt : πt
1(Xη, Dη) � πt

1(Xs, Ds)

is not an isomorphism.

Remark 3.15. The author thinks that it is natural and desirable to be
able to remove the assumption in Theorem 3.14 that S is proper over k.

〈The Tate-de Jong theorem on p-divisible groups and its application〉

Theorem 3.16 ([Tat], [D2]). Let S be a noetherian, normal, integral
scheme, K the function field of S, and η

def= Spec(K). Let p be a prime number.
Let G and H be p-divisible groups over S. Then the natural map

HomS(G, H) → Homη(Gη, Hη)

is an isomorphism.

Remark 3.17. If p is invertible on S, Theorem 3.16 is immediate. In
general, Theorem 3.16 was proved in [Tat] (resp. [D2]) for p �= char(K) (resp.
p = char(K)).
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We shall apply this result to Galois representations associated with abelian
varieties. Let R be a complete discrete valuation ring, and let K and k denote
the field of fractions and the residue field, respectively, of R. We assume that k

is separably closed (or, equivalently, R is strictly henselian), and set I
def= GK .

Let A be a generically proper, semi-abelian scheme over R. Let l be a prime
number, and we set Vl(A(K)) def= Tl(A(K)) ⊗Zl

Ql, which is a Ql-vector space
of dimension γl(AK) that admits a natural action by I. For a Ql[I]-module V ,
we define the coinvariant space VI to be the maximal quotient Ql-vector space
of V on which I acts trivially.

Theorem 3.18.

dimQl
(Vl(A(K))I) = γl(Ak).

Proof. We have

HomQl
(Vl(A(K))I , Ql)

= HomQl[I](Vl(A(K)), Ql)

= HomZl[I](Tl(A(K)), Zl) ⊗Zl
Ql

= HomZl[I](A[l∞]K(K), Ql/Zl) ⊗Zl
Ql

= HomZl[I]((A[l∞]K)ét(Ksep), Ql/Zl) ⊗Zl
Ql

= HomK((A[l∞]K)ét, Ql/Zl) ⊗Zl
Ql

= HomK(A[l∞]K , Ql/Zl) ⊗Zl
Ql

= HomK(Gm[l∞]K , A∨[l∞]K) ⊗Zl
Ql

= HomK(Gm[l∞]K , (A∨[l∞]f)K) ⊗Zl
Ql

= HomR(Gm[l∞]R, A∨[l∞]f) ⊗Zl
Ql

= HomR((A∨[l∞]f)∨, Ql/Zl) ⊗Zl
Ql

= HomR(((A∨[l∞]f)∨)ét, Ql/Zl) ⊗Zl
Ql

= Homk((((A∨[l∞]f)∨)ét)k, Ql/Zl) ⊗Zl
Ql

= Homk((((A∨[l∞]f)∨)k)ét, Ql/Zl) ⊗Zl
Ql

= Homk(((A∨[l∞]f)∨)k, Ql/Zl) ⊗Zl
Ql

= Homk(((A∨[l∞]f)k)∨, Ql/Zl) ⊗Zl
Ql

= Homk(Gm[l∞]k, (A∨[l∞]f)k) ⊗Zl
Ql

= Homk(Gm[l∞]k, (A∨
k )[l∞]) ⊗Zl

Ql.

Here, A[l∞]f denotes the fixed part of A[l∞] in the sense of [SGA7], Exposé
IX. (Namely, A[l∞]f is the maximal divisible subgroup of A[l∞] that is “ind-
finite” over R, i.e., each layer is finite over R.) A∨

K denotes the dual abelian
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variety of AK , and A∨ denotes the group subscheme of the Néron model of A∨
K

obtained by removing all connected components of the special fiber but the one
containing the origin. For an l-divisible group G, G∨ denotes the Cartier dual
of G. For an l-divisible group G = (Gn)n≥0 over a complete noetherian local
ring, Gét denotes G/G0, where G0 is the connected component of G containing
the origin. (More precisely, G0 def= ((Gn)0)n≥0, where (Gn)0 is the connected
component of Gn containing the origin.) Note that the ninth equality follows
from Theorem 3.16.

Thus, we obtain

dimQl
(Vl(A(K))I) = γl(A∨

k ) = γl(Ak),

as desired, where the second equality follows from the fact that A∨
k and Ak are

isogenous to each other over k.

Corollary 3.19. If δl(A) > 0, then the image of the Galois representa-
tion ρ : I → Aut(Tl(A(K))) is infinite.

Proof. Suppose otherwise, then, replacing K by a suitable finite exten-
sion, we may assume that ρ is trivial. Then we have Vl(A(K))I = Vl(A(K)),
hence γl(Ak) = γl(AK) by Theorem 3.18, i.e., δl(A) = 0.

§4. Singularities of Coverings of Stable Curves

In this §, we investigate singularities of coverings of stable curves.
Let S be a 1-dimensional, noetherian, normal, integral, separated scheme,

and denote by K the function field of S. Let (X∗, D) be a stable marked curve
over S, and assume that (X∗, D) is generically smooth.

Proposition 4.1. Let s be a closed point of S and let p ≥ 0 be the
characteristic of the residue field of s. Consider the following conditions:

(Sing) There exist a finite extension (S′, K ′) of (S, K), a generically tame, sta-
ble covering (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′, such that the image of (Y ∗

S′)non-sm

in S contains s.

(Jac1) There exist a finite extension (S′, K ′) of (S, K) and a generically tame,
stable covering (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′, such that the Jacobian variety

JY ∗
K′ of Y ∗

K′ has bad reduction at some s′ ∈ S′ above s.

(Jac2) There exist a finite extension (S′, K ′) of (S, K) and a generically tame,
stable covering (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′, such that Y ∗

S′ has positive p-
defect at some s′ ∈ S′ above s in the sense that (p > 0 and) δp(Y ∗

S′

×S′ Spec(OS′,s′)) > 0 for some s′ ∈ S′ above s.
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(Jac3) There exist a finite extension (S′, K ′) of (S, K) and a generically tame,
stable covering (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′, such that, at some s′ ∈ S′

above s, JY ∗
K′ has bad reduction and Y ∗

S′ has positive p-defect.

(Sp1) The specialization map πt
1(X∗

K
, DK) → πt

1(X∗
s , Ds) is not an isomor-

phism.

(Sp2) The specialization map πt
1(X∗

K
, DK) → πlog

1 (X∗
st , Dst) is not an isomor-

phism.

(Mon1) The outer Galois representation ρ : Gal(Ksep/K) → Out(πt
1(X∗

K
, DK))

is ramified at s, i.e., the restriction of ρ on the inertia subgroup I at s (defined
up to conjugacy) is nontrivial.

(Mon2) Ker(ρ|I) is contained in the wild inertia group Iw.

(Mon3) ρ(Iw) is infinite.

(Mon4) Ker(ρ|I) is contained in the wild inertia group Iw and ρ(Iw) is infinite.

(RamS) (resp. (WRamS)) There exist a finite extension (S′, K ′) of (S, K), a
generically tame, stable coverings (Y ∗

S′ , ES′) → ((X ′)∗S′ , (D′)S′) → (X∗
S′ , DS′)

over S′, a point s′ ∈ S′ above s, an irreducible component (Z ′)∗ = {z′}cl (see
§0 for the notation “cl ”) of (X ′)∗

s′ , and a point w of the fiber Y ∗
S′ ×

(X′)∗
z′, such

that the natural morphism from the integral closure W s of Z ′ in k(w)s to the
normalization ((Z ′)∗)∼ (in k(z′)) of (Z ′)∗ is ramified (resp. wildly ramified)
at some point outside (D′)s′ (resp. at some point). Here, k(w)s/k(z′) denotes
the maximal separable subextension of k(w)/k(z′).

(RamG) There exist a finite extension (S′, K ′) of (S, K), a generically tame,
stable covering (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′, an irreducible component Z∗ =

{z}cl of X∗
s , and a point w of the fiber Y ∗

S′ ×
X∗

z, such that k(w)/k(z) is insep-

arable.

Then:
(i) (Jac1), (Sp1), (Mon1), (Mon2), and (RamS) are equivalent to (Sing).
(ii) If, moreover, p > 0, all the above conditions but (WRamS) are equivalent
to (Sing), and we have the implication (WRamS) =⇒ (Sing).

Remark 4.2. “Sing”, “Jac”, “Sp”, “Mon”, “RamS”, “WRamS”, and
“RamG” stand for “singularity”, “Jacobian”, “specialization”, “monodromy”,
“ramification at a special point”, “wild ramification at a special point”, and
“ramification at a generic point”, respectively.
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Proof. (i) (Sing) =⇒ (Jac1). For this, see the last step of the proof of
[Tam1], Theorem (5.3). (See also the last step of the proof of [Tam3], Theorem
(8.8).)

(Jac1) =⇒ (Mon2). For this, see the proof of [Tam3], Theorem (8.9).
(Mon2) =⇒ (Mon1). Clear.
(Mon1) =⇒ (Sp1). Suppose that (Sp1) does not hold, i.e., that the spe-

cialization map πt
1(X∗

K
, DK) → πt

1(X∗
s , Ds) is an isomorphism. Then the outer

action of I on πt
1(X∗

K
, DK) is isomorphic to that on πt

1(X∗
s , Ds), which is clearly

trivial.
(Sp1) =⇒ (Sing). Suppose that (Sing) does not hold. Then, by [Tam1],

Lemma (5.5), (ii) =⇒ (i), one verifies immediately that the specialization map
πt

1(X∗
K

, DK) → πt
1(X∗

s , Ds) is an isomorphism.
(Sing) =⇒ (RamS). By Remark 3.3, given any singular point (which is

necessarily outside the cusps), there exists a covering that is (tamely) ramified
at that singular point.

(RamS) =⇒ (Sing). Suppose that (Sing) does not hold. Then, by [Tam1],
Lemma (5.5), (ii) =⇒ (i), one verifies immediately that (RamS) does not hold.

(ii) (Sing) =⇒ (Jac3). Assume that (Sing) holds. Then, by (i), (Jac1) holds.
Thus, replacing (X∗, D) by a suitable covering, we may assume that JX∗

K
has

bad reduction at s. In particular, we have g = dim(JX∗
K

) > 0. First, as-
sume char(K) = 0. Then, by (2.5), we have δp(X∗ ×S Spec(OS,s)) ≥ g > 0,
as desired. Next, assume char(K) = p. By a technique similar to the last
step of the proof of [Tam1], Theorem (5.3), (replacing (X∗, D) by a suit-
able tame covering) we may assume that the dual graph G def= GX∗

s
satisfies

h1(G) ≥ 2. Note that, once this condition is satisfied, it is also satisfied
by all the coverings. Moreover, by Corollary 3.8, again replacing (X∗, D)
by a suitable admissible covering, we may also assume that (X∗

s , Ds)log is
abelian-injective. Now, Corollary 3.11 implies that there exists an admissi-
ble covering (Y ∗, E) of (X∗, D) with positive p-defect, as desired. (More pre-
cisely, we can take (Y ∗, E) = (X∗(pf − 1), D(pf − 1)) for sufficiently large
f .)

(Jac3) =⇒ (Jac2). Clear.
(Jac2) =⇒ (Mon3). In light of Corollary 3.19, this is similar to the proof

of (Jac1) =⇒ (Mon2) (cf. [Tam3], Theorem (8.9)). More precisely, assume that
(Jac2) holds. Let I ′ denote the inertia subgroup at s′, which is an open sub-
group of I. By Corollary 3.19, I ′ has infinite image P in Aut(π1(Y ∗

K
)p,ab). Since

the latter group is almost pro-p (in the sense that it admits an open pro-p sub-
group), we may also assume that P is a pro-p group, replacing I ′ by a suitable
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open subgroup if necessary. On the other hand, by Remark 2.3(ii), I ′∩Ker(ρ|I)
has finite image in Out(πt

1(Y ∗
K

, EK)), hence finite image Q in Aut(π1(Y ∗
K

)p,ab),
a fortiori. From these observations, it follows that ρ(I ′) = I ′/(I ′ ∩Ker(ρ|I)) is
surjectively mapped onto P/Q, which is an infinite pro-p group. This implies
(Mon3).

(Jac3) =⇒ (Mon4). This follows from the combination of (Jac3) =⇒
(Jac1) =⇒ (Mon2) and (Jac3) =⇒ (Jac2) =⇒ (Mon3).

(Mon4) =⇒ (Mon3). Clear.
(Mon3) =⇒ (Sp2). Suppose that (Sp2) does not hold, i.e., that the spe-

cialization map πt
1(X

∗
K

, DK) → πlog
1 (X∗

st , Dst) is an isomorphism. Then the
outer action of I on πt

1(X
∗
K

, DK) is isomorphic to that on πlog
1 (X∗

st , Dst), which
factors through the quotient πlog

1 (s) = I/Iw, i.e., ρ(Iw) = {1}.
(Sp2) =⇒ (RamG). Suppose that (RamG) does not hold. Then this (to-

gether with the purity of the branched locus and Lemma 2.1(i)(ii)(iii)) im-
plies that every tame covering (Y ∗

K′ , E∗
K′) of (X∗

K′ , DK′) over a finite exten-
sion (S′, K ′) of (S, K) extends to an admissible covering over S′, after re-
placing S′ by an open neighborhood of a point above s in a finite extension
of S′. This implies that splog : πt

1(X
∗
K

, DK) → πlog
1 (X∗

st , Dst) is an isomor-
phism.

(RamG) =⇒ (Sing). Suppose that (Sing) does not hold. Then, by [Tam1],
Lemma (5.5), (ii) =⇒ (i), one verifies immediately that (RamG) does not
hold.

(WRamS) =⇒ (Sing). Suppose that (Sing) does not hold. Then, by
[Tam1], Lemma (5.5), (ii) =⇒ (i), one verifies immediately that (WRamS)
does not hold.

Proposition 4.3. Let x be a closed point of X∗. Let s be the image of
x in S and let p ≥ 0 be the characteristic of the residue field of s. Consider the
following conditions:

(Sing)x There exist a finite extension (S′, K ′) of (S, K) and a generically
tame, stable covering (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′, such that the image

of (Y ∗
S′)non-sm in X∗ contains x.

(Vert)x There exist a finite extension (S′, K ′) of (S, K) and a generically tame,
stable covering (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′, such that the image of VY ∗

S′/X∗
S′

in X contains x.

(RamS1)x (resp. (WRamS1)x) There exist a finite extension (S′, K ′) of (S, K),
a generically tame, stable coverings (Y ∗

S′ , ES′) → ((X ′)∗S′ , (D′)S′) → (X∗
S′ , DS′)

over S′, a point s′ ∈ S′ above s, a point x′ ∈ (X ′)∗
s′ − (D′)s′ (resp. x′ ∈ (X ′)∗

s′)
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above x, an irreducible component Z ′ = {z′}cl of Spec(O
(̂X′)∗

s′
,x′), and a point w

of the fiber Y ∗
S′ ×

(X′)∗
z′, such that the natural morphism from the integral closure

W s of Z ′ in k(w)s to Z ′ is ramified (resp. wildly ramified). Here, k(w)s/k(z′)
denotes the maximal separable subextension of k(w)/k(z′).

(RamS2)x (resp. (WRamS2)x) There exist a finite extension (S′, K ′) of (S, K),
generically tame, stable coverings (Y ∗

S′ , ES′) → ((X ′)∗S′ , (D′)S′) → (X∗
S′ , DS′)

over S′, a point s′ ∈ S′ above s, a point x′ ∈ (X ′)∗
s′ − (D′)s′ (resp. x′ ∈

(X ′)∗
s′) above x, such that, for each irreducible component Z ′ = {z′}cl of

Spec(O
(̂X′)∗

s′
,x′) and each point w of the fiber Y ∗

S′ ×
X∗

z′, the natural morphism

from the integral closure W s of Z ′ in k(w)s to Z ′ is ramified (resp. wildly
ramified).

(RamG1)x There exist a finite extension (S′, K ′) of (S, K), a generically tame,
stable covering (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′, a point x ∈ X∗

s above x, an
irreducible component Z = {z}cl of Spec(OX̂∗

s ,x), and a point w of the fiber
Y ∗

S′ ×
X∗

z, such that k(w)/k(z) is inseparable.

(RamG2)x There exist a finite extension (S′, K ′) of (S, K), a generically tame,
stable covering (Y ∗

S′ , ES′) of (X∗
S′ , DS′) over S′, such that, for each point x ∈ X∗

s

above x, each irreducible component Z = {z}cl of Spec(OX̂∗
s ,x), and each point

w of the fiber Y ∗
S′ ×

X∗
z, k(w)/k(z) is inseparable.

Then:
(i) (RamS1)x and (RamS2)x are equivalent to (Sing)x.
(ii) If, moreover, p > 0, then we have the following implications:

(Sing)x ⇐= (WRamS1)x =⇒ (RamG1)x

⇑ ⇑ ⇑

(Vert)x ⇐= (WRamS2)x (RamG2)x

Remark 4.4. (i) “Vert” stands for “vertical”.
(ii) Neither (RamG1)x nor (RamG2)x implies (Sing)x. For this, see Remark 5.1
below.

Proof. Replacing (X∗, D) by its base change to Spec(OŜ,s), we may as-
sume that S is the spectrum of a complete discrete valuation ring R.

(i) (Sing)x =⇒ (RamS2)x. This follows from a similar argument to that applied
in the proof of (Sing) =⇒ (RamS) in Proposition 4.1(i).
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(RamS2)x =⇒ (RamS1)x. Clear.
(RamS1)x =⇒ (Sing)x. Assume that (RamS1)x holds. First, replacing

X∗
S′ by (X ′)∗S′ and Y ∗

S′ by its Galois closure, we may assume that (X ′)∗S′ = X∗
S′

and that Y ∗
S′ is Galois over X∗

S′ . Thus, we shall write x, Z and z instead of
x′, Z ′ and z′, respectively. Then, replacing X∗

S′ and Y ∗
S′ by the subcoverings

of Y ∗
S′/X∗

S′ that correspond to the inertia subgroup and the decomposition
subgroup, respectively, at w, we may assume that k(w) = k(w)s holds, i.e.,
k(w) is separable over k(z). Thus, we shall write W instead of W s. Now,
suppose that (Sing)x does not hold. Then we have Z = Spec(OX̂∗

s′
,x) and

W = Spec(OŶ ∗
s′

,y) for some point y ∈ Y ∗
s′ above x. Then, by the purity of the

branched locus, the above separability assumption and the condition x �∈ Ds′

imply that Y ∗
S′ → X∗

S′ is étale at (the image of) y. This implies that W → Z

is étale. (This also gives an alternative (local) proof of (RamS) =⇒ (Sing) in
Proposition 4.1(i).)

(ii) (Vert)x =⇒ (Sing)x. This is immediate, since each vertical component
meets at least one other component.

(WRamS1)x =⇒ (Sing)x. Assume that (WRamS1)x holds. First, re-
placing X∗

S′ by (X ′)∗S′ and Y ∗
S′ by its Galois closure, we may assume that

(X ′)∗S′ = X∗
S′ and that Y ∗

S′ is Galois over X∗
S′ . Thus, we shall write x, Z and

z instead of x′, Z ′ and z′, respectively. Then, replacing X∗
S′ and Y ∗

S′ by the
subcoverings of Y ∗

S′/X∗
S′ of X∗

S′ that correspond to the inertia subgroup and the
decomposition subgroup, respectively, at w, we may assume that k(w) = k(w)s

holds, i.e., k(w) is separable over k(z). Thus, we shall write W instead of W s.
Now, suppose that (Sing)x does not hold. Then we have Z = Spec(OX̂∗

s′
,x)

and W = Spec(OŶ ∗
s′

,y) for some point y ∈ Y ∗
s′ above x. Then, by the purity

of the branched locus and Lemma 2.1(i)(ii), the above separability assumption
implies that any ramification of Y ∗

S′ over X∗
S′ at (the image of) y is at most

tame ramification along DS′ . Thus, any ramification of W over Z is at most
tame ramification along Ds′ . In particular, W → Z is at most tamely rami-
fied. (This also gives an alternative (local) proof of (WRamS) =⇒ (Sing) in
Proposition 4.1(ii).)

(WRamS2)x =⇒ (Vert)x. By a standard argument, we may reduce the
problem to the case where S is the spectrum of a complete discrete valuation
ring with algebraically closed field. Assume that (WRamS2)x holds. First,
replacing S by a suitable finite extension S′′ of S′, X∗ by (X ′)∗S′′ and Y ∗

S′ by
the stable model over S′′ of its Galois closure, we may assume that (X ′)∗S′ = X∗

and that Y ∗ is Galois with Galois group G over X∗. Thus, we may write s
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and x instead of s′ and x′, respectively. Now, suppose that (Vert)x does not
hold. Then Y ∗ → X∗ is finite at x. Replacing X∗ by the covering of X∗

corresponding to the decomposition subgroup at x, we may assume that there
exists a unique point y ∈ Y ∗

s above x. Let a (resp. b) denote the number of
irreducible components of Spec(OX̂∗

s ,x) (resp. Spec(OŶ ∗
s ,y)). Thus, (a, b) is one

of the following: (1, 1), (1, 2), (2, 2). We define Zi = {zi}cl (i = 1, . . . , a) and
Wj = {wj}cl (j = 1, . . . , b) to be the irreducible components of Spec(OX̂∗

s ,x)

and Spec(OŶ ∗
s ,y), respectively. We may assume that w1 is above z1 and wb is

above za. For each j = 1, . . . , b, we denote the decomposition group, the inertia
group, and the wild inertia group at wj by Dj , Ij , and Iw

j , respectively.
First, assume (a, b) = (1, 1). In this case, as in the above proof of (WRam

S1)x =⇒ (Sing)x, we conclude that W s
1 → Z1 is at most tamely ramified. This

contradicts our choice of Y ∗.
Next, assume (a, b) = (2, 2). In this case, we have D1 = D2 = G. Since

both Y ∗
s and X∗

s are reduced, we have Ij = Iw
j for each j = 1, 2. By our

choice of Y ∗ (i.e., by the wild ramification condition in (WRamS2)x), G/Ij =
Dj/Ij has order divisible by p for each j = 1, 2. By Lemma 2.1(iii), G/I1I2

is of order prime to p. Thus, replacing X∗ by the covering corresponding to
I1I2 ⊂ G, we may assume I1I2 = G. Since both I1 and I2 are normal p-
subgroups of G = D1 = D2, one verifies easily that G = I1I2 is a p-group.
Now, observe that we have a decomposition G/(I1 ∩ I2)

∼→G/I1 × G/I2. As
G/Ij is a nontrivial p-group, we may choose G/Ij � Z/pZ. Then, from this
decomposition, we obtain G � G/I1 × G/I2 � (Z/pZ)2. Now, consider the
subcoverings (X ′′′)∗ → (X ′′)∗ → X∗ of Y ∗ → X∗ that correspond to G �
(Z/pZ)2 sum→ Z/pZ. We denote by z′′j the image of wj in (X ′′)s for each j = 1, 2.
Then, by construction, the Z/pZ-covering (X ′′′)∗ → (X ′′)∗ is unramified over
both z′′1 and z′′2 . However, by Lemma 2.1(iii), such a covering must be of order
prime to p. This is absurd.

Finally, assume (a, b) = (1, 2). In this case, (G : D1) = 2. In particular,
D1 is normal in G. Since D2 is conjugate to D1, we have D1 = D2. Thus,
replacing X∗

S′ by the double covering corresponding to D1 = D2 ⊂ G, we can
reduce the problem to the previous case (a, b) = (2, 2).

(WRamS2)x =⇒ (WRamS1)x. Clear.
(RamG2)x =⇒ (RamG1)x. Clear.
(WRamS1)x =⇒ (RamG1)x. Suppose that (RamG1)x does not hold.

Then Lemma 2.1(i)(ii)(iii), together with the purity of the branched locus,
implies that each W s → Z ′ as in the statement of (WRamS1)x must be at
most tamely ramified.
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§5. Proof of the Main Theorem

In this §, we give a proof of Theorem 0.2.

(i) This follows from Proposition 2.2(iii).

(ii) For the first assertion, we may easily reduce the problem to the case
that k is algebraically closed and S is proper and smooth. Then this fol-
lows from Theorem 3.14, together with Proposition 4.1, (Sp1) =⇒ (Sing).
For the second assertion, let k0 be an algebraically closed field of charac-
teristic p, S0 a proper, smooth, connected curve over k0, and K0 the func-
tion field of S0. Take any generically smooth, stable marked curve (X∗

0 , D0)
over S0 that is not k0-isotrivial. Next, let k be another algebraically closed
field that contains k0 but does not coincide with k0. Set S

def= S0 ×k0 k and
(X∗, D) def= (X∗ ×S0 S, D ×S0 S). Then (X∗, D) is a generically smooth, stable
marked curve over S that is not k-isotrivial. Thus, the assertion in (II) does
not hold for any s ∈ S(k)−S0(k0). More precisely, take any such point s. The
image of s in S0 is the generic point of S0. Then, by means of the fact that the
natural map πt

1(X
∗
s , Ds) → πt

1((X0)K0
, (D0)K0

) is an isomorphism, one verifies
immediately that the assertion in (II) does not hold for s.

(iii) Just as in the case of (ii), this follows from Theorem 3.13, together with
Proposition 4.1, (Sp1) =⇒ (Sing).

(iv) Replacing (X∗, D) by a suitable covering, we may assume that g > 0
holds. Then the first assertion follows from (2.5), together with Proposi-
tion 4.1, (Jac1) =⇒ (Sing). For the second assertion, let k0 be an algebraically
closed field of characteristic p > 0, set S0

def= Spec(W (k0)), and take any
generically smooth, stable marked curve (X∗

0 , D0) over S0. Next, let k be
another algebraically closed field that contains k0 but does not coincide with
k0. Set S

def= Spec(W (k)) and (X∗, D) def= (X∗ ×S0 S, D ×S0 S). We set
X0

def= X∗
0 − D0 (resp. X

def= X∗ − D), and denote by K0 (resp. K) the
function field of S0 (resp. S). Then (X∗, D) is a generically smooth, stable
marked curve over S. Now, by means of the fact that π1((X)K) ∼→π1((X0)K0

)
holds, one verifies easily that the assertion of (III) does not hold for any
x ∈ X∗

k (k) − (X∗
0 )k0(k0).

Remark 5.1. Note that the above argument also shows that (RamG1)x

(or even (RamG2)x) does not imply (Sing)x in Proposition 4.3. Indeed, let
the notations and assumptions be as in the above proof of (iv), and take x ∈
X∗

k(k)−(X∗
0 )k0(k0). Then we have already seen that (Sing)x does not hold. On
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the other hand, assume, moreover, that (X∗
0 , D0) is a smooth marked curve over

S0 (i.e., X∗
0 is smooth over S0). In particular, X∗

s is irreducible. Now, by the
first assertion of Theorem 0.2(iv) and Proposition 4.1(ii), (Sing) =⇒ (RamG),
one verifies immediately that (RamG2)x (hence (RamG1)x) holds.

(v) We can easily reduce the problem to the case where S is the spectrum of
a complete discrete valuation ring R of mixed characteristic (0, p) and with
residue field algebraic over Fp. Moreover, replacing R by the completion of
the strict henselization, we may assume that the residue field is an algebraic
closure of Fp. Let K and k denote the field of fractions and the residue field,
respectively, of R.

We shall prove that condition (WRamS2)x holds. First, choose an ad-
missible covering ((X ′)∗S′ , D′

S′) of (X∗
S′ , DS′) over some finite tame extension

S′ of S, such that (X ′)∗s is “sturdy”, i.e., for every irreducible component
(Z ′)∗ of (X ′)∗s, the normalization ((Z ′)∗)∼ has genus ≥ 2 (cf. [M2], Definition
1.1). This can be done by means of Remark 3.3. (See also [M2], Lemma 2.9.)
For simplicity, replacing (X∗, D) by ((X ′)∗S′ , D′

S′), we shall assume that X∗
s is

sturdy.
Now, let Z = {z}cl be an irreducible component of Spec(OX̂∗

s ,x). (We have
two choices (resp. only one choice) of Z, if x is (resp. is not) a node of X∗

s .)
We have a natural morphism Z → X∗, and we denote by zgl the image of z

in X∗, which is the generic point of an irreducible component Z∗ of Xs. (“gl”
stands for “global”.)

One important point of our proof is the introduction of the family

π : X def= (X∗ ×S X∗, (D ×S X∗) ∪ ∆(X∗)) → X∗,

where ∆ is the diagonal and π is the second projection. π itself is not always
a stable marked curve over X∗, but π|U : XU → U is a stable marked curve,
where X

def= X∗ − D and U
def= X − (X∗)non-sm. (As X∗ is generically smooth,

we have XK ⊂ U .) Let A denote the completion of the local ring OX∗,zgl .
This is a complete discrete valuation ring of mixed characteristic (0, p). We set
T

def= Spec(A). We denote the closed point of T again by zgl, and the generic
point of T by ξ. We have a natural map ι : T → X∗. We denote by ξgl the
image of ξ in X∗. Namely, ξgl is the generic point of X∗

K (or, of X∗).
Since ι factors through U ⊂ X∗, πT : XT → T is a stable marked curve.

More concretely, we have XT = (X∗ ×S T, (D ×S T ) ∪ Γι), where Γ denotes
the graph. πξ : Xξ → ξ is a smooth, stable marked curve over ξ, while πzgl :
Xzgl → zgl is a stable marked curve over zgl. More concretely, we have Xzgl =
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(X∗
s ×szgl, (D×szgl)∪Γιzgl

), where ιzgl denotes the natural morphism zgl → X∗
s .

Note that Z def= Z∗
zgl

− (Dzgl ∪ Γιzgl
) is a connected component of (X∗

zgl
)sm −

(Dzgl ∪ Γιzgl
).

We have the following commutative diagram of profinite groups in which
all seven rows are exact:

1→ π1(Xξgl
) → π1(XXK

) → π1(XK) → 1
‖ ↑ s. ↑ s.

1→ π1(Xξgl
) → π1(Xξgl) → π1(ξgl) → 1

‖ ↑ ↑
1→ π1(Xξ) → π1(Xξ) → π1(ξ) → 1

↓ s. ↓ s. ↓ s.
1→ πlog

1 (X(zgl)t)→ πlog
1 (Xzgl)→ πlog

1 (zgl)→ 1
∪ ∪ ‖

1→ πt
1(Zzgl) → DZ → πlog

1 (zgl)→ 1
‖ ↓ s. ↓ s.

1→ πt
1(Zzgl)) → πt

1(Z) → π1(zgl) → 1
‖ ↑ ↑

1→ πt
1(Zz)) → πt

1(Zz) → π1(z) → 1.

Here, “s.” stands for “surjective”, and “D” (resp. “I”) denotes the decompo-
sition (resp. inertia) group . Note that the exactness of the first row requires
the fact that K is of characteristic 0.

For simplicity, for each i = 1, . . . , 7, write

1 → ∆i → Πi → Γi → 1

for the i-th row of the above diagram,

ρi : Γi → Out(∆i)

for the outer representation associated with this exact sequence, and Imi for
Im(ρi). Then, by Remark 2.3 and Lemma 2.4, we have

Im1 = Im2 ←↩ Im3 � Im4 � Im5 = Im6 ←↩ Im7 .

Here, the only nontrivial part is Im4 � Im5, where we have used the following
(cf. Remark 2.3(ii)):

Lemma 5.2. ∆5 is normally terminal in ∆4 (in the sense of [M4], Def-
inition 0.1 (iii)), i.e., the normalizer of ∆5 in ∆4 coincides with ∆5.



�

�

�

�

�

�

�

�

1334 Akio Tamagawa

Proof. (See also [M6].) First note that ∆5 = πt
1(Zzgl) is the decomposi-

tion group of Z∗
zgl

in ∆4 = πlog
1 (X(zgl)t). More precisely, ∆5 is the decomposition

group in ∆4 of an irreducible component (Z∗)∼ above Z∗
zgl

of the “log universal
covering” ((Xzgl)

∼)log of X log
zgl

. Thus, ∆5 is normally terminal in ∆4 if and only
if, for each irreducible component ((Z∗)∼)′ above Z∗

zgl
of (Xzgl)

∼ that is distinct
from (Z∗)∼, the decomposition group ∆′

5 of ((Z∗)∼)′ does not coincide with
that of (Z∗)∼, i.e., ∆5.

Now, since (Z∗)∼ �= ((Z∗)∼)′, there exists a finite (log) covering X1 of
Xzgl , such that the image Z∗

1 of (Z∗)∼ in X1 is distinct from the image (Z∗
1 )′

of ((Z∗)∼)′ in X1. Replacing X1 by a suitable covering if necessary, we may
assume that the genera of the normalizations of Z∗

1 and (Z∗
1 )′ are positive.

We denote by (∆5)1 (resp. (∆′
5)1) the intersection of ∆5 (resp. ∆′

5) and
(∆4)1

def= πlog
1 ((X1)zt

gl
) in ∆4 = πlog

1 (Xzt
gl
). We denote by ((∆4)1)ét the maximal

quotient of (∆4)1 among those corresponding to étale coverings of (X1)zt
gl
. Now,

one verifies easily that the images of (∆5)1 and (∆′
5)1 in (((∆4)1)ét)ab are

nontrivial and distinct from each other. Thus, in particular, we have ∆5 �= ∆′
5,

as desired.

In particular, we have

Im1 ←↩ Im3 � Im6 ⊃ Im7

↑ ↑ ↑ ↑
π1(XK) ← π1(ξ) � π1(zgl)← π1(z),

where all the vertical arrows are surjective. Now, let Izgl be the inertia subgroup
of π1(ξ), and denote by Dzgl and Izgl the images of π1(ξ) and Izgl , respectively,
in π1(XK). The injectivity of Im3 → Im1 implies that π1(ξ) � Im3 factors
through Dzgl . Thus, the surjectivity of Im3 → Im6 implies that π1(ξ) �
π1(zgl) � Im6 factors through Dzgl , and through Dzgl/Izgl since Izgl is just the
kernel of π1(ξ) � π1(zgl). In particular, we obtain:

π1(zgl) � Dzgl/Izgl � Im6

↑ ∪
π1(z) � Im7 .

Set Ix
def= π1(z). (Recall that z is the generic point of the spectrum Z of

a complete discrete valuation ring with algebraically closed residue field, and
that x can be regarded as the closed point of Z.) Let Ix denote the image of
Ix in Dzgl/Izgl . Thus, we have

Ix � Ix � Im7 .
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Now, by Theorem 3.13 and Proposition 4.1, (Sp1) =⇒ (Mon3), the image
of Iw

x in Im7 is infinite. Hence, a fortiori, the image I
w

x of Iw
x in Ix is infinite, and,

in particular, nontrivial. Since the choice of Z = {z}cl is arbitrary, this implies
that (WRamS2)x holds. Thus, by Proposition 4.3(ii), (Vert)x and (Sing)x hold,
as desired.
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