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Abstract

Let VR be a real vector space with an irreducible action of a finite reflection group
W . We study the semi-algebraic geometry of the W -quotient affine variety V//W with
the discriminant divisor DW in it and the τ -quotient affine variety V//W//τ with the
bifurcation set BW in it, where τ is the Ga-action on V//W obtained by the integration
of the primitive vector field D on V//W and BW is the discriminant divisor of the
induced projection :DW →V//W//τ .

Our goal is the construction of a one-parameter family of the semi-algebraic
polyhedra KW (λ) in VR which are dual to the Weyl chamber decomposition of VR.

As an application, we obtain two geometric descriptions of generators for
π1((V//W )reg

C
), satisfying the Artin braid relations.

The key of the construction of the polyhedra KW (λ) is a theorem on a lineariza-
tion of the tube domain in (V//W )R over the simplicial cone EW in TW,R.
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Introduction

Let VR be a finite-dimensional real vector space and W a finite group acting
irreducibly on VR generated by reflections. We denote by V the associated
scheme over R and by SW :=V//W the quotient scheme1. Let DW ⊂ SW be
the discriminant divisor defined by the zero locus of ∆ := the square of the
fundamental anti-invariant of W . The open regular part (V//W )reg, defined
as the complement SW \DW , is a simple geometric object where interests from
several different areas of mathematics (e.g., Lie algebra theory, complex and
differential geometries,...,etc.) intersect.

We recall two basic results on the topology of the complexification
(V//W )reg

C
:=SW,C\DW,C of the regular orbit space:

a) the fundamental group of (V//W )reg
C

is an Artin group (generalized braid
group) (Brieskorn [Br1],[Br2] and [BS]), and
b) the universal covering of (V//W )reg

C
is contractible (Deligne [D1]).

Interestingly, for the both results, the polyhedron KW which is dual to
the simplicial cone decomposition of VR plays an essential role. Namely, a) the
1-skeleton and the 2-skeleton of KW determine the generators and relations

1We mean by “V//W” the categorical quotient scheme (1.4.5) of V by the W -action.
Even though W is a finite group, it is convenient to use scheme-theoretic concepts and
notation, since we study mainly over the real number field R. The set theoretic quotient
space VR/W is not sufficient to describe structures we study. The RorC-rationalpoint set
of a scheme is indicated by the subscript R or C, respectively.
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for the fundamental group of (V//W )reg
C

, and b) the contractibility of KW is
a key step in the proof ([D1]) of the contractibility of the nerve of a simple
covering of the universal covering of (V//W )reg

C
. We remark further that c) the

dual polyhedron KW also describes the Stiefel-Whitney class of a related vector
bundle ([Hu],[M] and [N]).

A goal of the present paper is to reconstruct the dual polyhedron KW from
a completely different viewpoint. The quotient variety SW :=V//W carries a
differential geometric structure, called the flat structure (Saito [S1,3]). Then we
shall make use of a part of the real flat structure to construct the polyhedron
as follows.

A principal ingredient of the flat structure is the vector field D on SW ,
called the primitive vector field (1.6.1), of the lowest degree, which is unique
up to a constant factor. The integration exp(λD) of D induces a Ga-action τ

on SW (1.6.2), transversal to the discriminant divisor DW (see [S2,3] for the
role of D in the theory of primitive forms).

For ε∈{±1}, consider the real form S
[ε]
W,R of SW,C (the “quotient real form”

of the real form V ε
R

:=
√

ε⊗VR of VC := C ⊗ V , see (1.4.8)). The Ga-action τ

induces the one-parameter group action τ [ε] :R×S
[ε]
W,R→S

[ε]
W,R (see (1.6.4)). For

each fixed λ[ε] ∈ R>0, consider three real hypersurfaces in S
[ε]
W,R: a) the real

discriminant locus : D
[ε]
W,R and b)± the positive and negative translations of

the real discriminant locus: τ [ε](+λ[ε])(D[ε]
W,R) and τ [ε](−λ[ε])(D[ε]

W,R). Then, for
ε∈{±1} and each λ[ε]∈R>0, one has:

Theorem A (§1.8). There exists an open semi-algebraic parallelotope
J
{ε}
W (λ[ε]) in S

[ε]
W,R, which is surrounded 2 by the hypersurfaces a) and b)±. It is

adjacent to the origin o∈S
[ε]
W,R, and the faces adjacent to the origin are indexed

by the set Π of simple generators of W .

Theorem B (§1.8). The inverse image K
ε

W (λ[ε]) in V ε
R

of the closure

J
{ε}
W (λ[ε]) of the parallelotope in S

[ε]
W,R is a closed semi-algebraic polyhedron

which is dual to the simplicial cone decomposition of V ε
R

by the Weyl chambers.

See Appendix Fig. 8–12 for illustrated examples of J
{ε}
W (λ[ε]) and K

ε

W (λ[ε])
of type A2 and B2.

It was asked by Brieskorn, Deligne, and the author to find some descrip-
tions of the generator system of π1(SW,C\DW,C, ∗) as an Artin group in terms of
the geometry of SW . Let us give two answers to this question as an application
of Theorems Aand B (see §4 for details and proofs).

2By the word “surrounded”, we mean that J
{ε}
W (λ[ε]) is a connected component of

S
[ε]
W,R\

`
D

[ε]
W,R ∪ τ [ε](λ[ε])(D

[ε]
W,R) ∪ τ [ε](−λ[ε])(D

[ε]
W,R)

´
.
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1. Let ao{ε}(λ[ε]) be the vertex of J
{ε}
W (λ[ε]) antipodal to the origin o. Due

to Theorem A, the edges of J
{ε}
W (λ[ε]) adjacent to ao{ε}(λ[ε]) are indexed by

the set Π in such a manner that the αth edge for α ∈ Π intersects the αth
face of J

{ε}
W (λ[ε]) transversally at a point, say pα, in D

[ε]
W,R (see Fig. 4). Inside

a complexification of the αth edge (an open complex curve in SW,C containing
the αth edge), take a path, say γα, based at ao{ε}(λ[ε]) and turning counter-
clockwise once around the discriminant divisor DW,C at pα (Fig. 3). The class
of γα in SW,C\DW,C is uniquely determined by the index α ∈ Π.

Corollary 1 (§4.1 and §4.2). The 1-homotopy classes of γα for α ∈ Π
give a system of generators for π1(SW,C \DW,C, ao{ε}(λ[ε])), which satisfy the
system of fundamental braid relations for the Artin group.

2. Next, we choose an arbitrary point ∗∈J
{ε}
W (λ[ε]) and consider the orbit

τ [ε](R) ·∗ which is a real line in S
[ε]
W,R. If ∗ is generic, the real line intersects

l distinct points of the real discriminant locus D
[ε]
W,R

3 (Fig. 5). One chooses
paths inside the complex line τ [ε](C)·∗ as in Fig. 6, whose homotopy classes are
called the Zariski-van Kampen generators.

Corollary 2 (§4.3 and §4.4). The system of the Zariski-van Kampen
generators is homotopic to the generator system in Corollary 1.

Theorems A and B and their corollaries are direct applications of another
basic Theorem C on the real bifurcation set which we explain below.

The quotient space TW := SW //τ by the τ -action is a smooth (l−1)-
dimensional affine variety. The quotient map πτ :SW→TW is a linear projection
in the direction of the primitive vector field. The restriction πτ |DW of πτ to
the discriminant divisor is a finite covering over TW . The ramification divisor
BW in TW , i.e., the discriminant divisor of the covering πτ |DW , is called the
bifurcation set. Decompose it as BW =∪∞p=2BW,p according to the ramification
index p, where BW,1 does not appear due to the transversality property of
the primitive vector field D to DW . We split the bifurcation set BW into the
ordinary part BW,2 and the higher part BW,≥3 (called the stratum of Maxwell’s
convention and the caustics, respectively, in [T2]).

For each ε ∈ {±1}, we introduce some closed subset Oε in T
[ε]
W,R\B[ε]

W,≥3,R

(resp. AOε in S
[ε]
W,R\D[ε]

W,R), which are homeomorphic to the real half line and
are defined by the help of regular eigenvectors of the Coxeter element of W

(see 2.5). They shall play two basic roles: i) to single out particular connected
components of T

[ε]
W,R\B[ε]

W,≥3,R (resp. S
[ε]
W,R\D[ε]

W,R) containing them, and ii) to
be chosen as a base point for the fundamental group of the complexification

3This fact is a non-trivial consequence of Theorem C stated below.
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TW,C\BW,≥3,C (resp. SW,C\DW,C). On the other hand, they are related with
the vertex of the polyhedra J

{ε}
W (λ[ε]) as: AOε = {ao{ε}(λ[ε]) | λ[ε] ∈ R>0} and

Oε = πτ (AOε). We, therefore, call AOε the half vertex orbit axis and Oε the
half vertex orbit line (here “half” indicates that they are isomorphic to the half
line R>0).

The connected component C{ε} of S
[ε]
W,R\D[ε]

W,R containing AOε, called the
central component, is nothing but the image of a Weyl chamber in V ε

R
. The

connected component E
{ε}
W of T

[ε]
W,R\B[ε]

W,≥3,R containing Oε, called the central

region, is a key object in the present paper. Although the region E
{ε}
W con-

tains the image πτ (C{ε}), they are different. In fact, the gap E
{ε}
W \πτ (C{ε}) is

“growing exponentially” as the rank l grows.
Theorem C of the present paper concerns a description of the central region

E
{ε}
W and its inverse image π−1

τ (E{ε}
W ) (called the tube domain) in S

[ε]
W,R.

Let V̂Π :=⊕α∈ΠRvα be the vector space with basis vα attached to α ∈ Π
of simple generators for W , and let VΠ := V̂Π/RvΠ be the quotient space for
vΠ :=

∑
α∈Π vα, and let πΠ : V̂Π → VΠ be the projection.

Theorem C (§3.5). There exist i) an open simplicial cone EΓ(W ) ⊂ VΠ

depending only on the Coxeter diagram Γ(W ) in such a manner that its faces
are indexed by the edges of Γ(W ), and ii) real algebroid maps cW and bW with
the commutative diagram:

(π[ε]
τ )−1(E{ε}

W )
cW
 (πΠ)−1(EΓ(W ))

π
[ε]
τ

� πΠ

�
E

{ε}
W

bW
 EΓ(W )

where we mean by 
 a semi-algebraic isomorphism. The map cW induces a
bijection

D
[ε]
W,R ∩ (π[ε]

τ )−1(E{ε}
W ) 
 (∪α∈ΠHα) ∩ (πΠ)−1(EΓ(W ))

where Hα is the coordinate hyperplane in V̂Π w.r.t. the αth coordinate.

The linearization maps cW and bW of type A3 are illustrated in Fig. 2. Precise
statements of Theorems A,B and C are given in §1.8 and §3.5.

Theorems A and B and their corollaries are proved in §3 as the direct conse-
quences of TheoremC. However, TheoremC is not proved in the present article,
since TheoremC is a part of consequences of a general study of the linearization
maps cW and bW , whose comprehensive treatment shall appear in [S4].
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Before we go further, we explain a motivation of the present paper. The
quotient variety SW appears as the base space of the universal unfolding XW →
SW of a simple singularity [Br3]. On the total space XW there is a special de
Rham cohomology class relative to SW , called the primitive form ζ

(0)
W [S2].

The period integral
∫

ζ
(0)
W over cycles in the fibers of the unfolding gives a

multivalued map, called the period map, defined on SW,C\DW,C to the period
domain. For the study of the period map, we need to understand the homotopy
groups of the space SW,C\DW,C. This gives one motivation.

The primitive form induces the flat structure on SW , where ζ
(0)
W is identi-

fied with the primitive vector field D on SW ([S2]). In the present paper, we
employ not only D but the basic framework of the theory of primitive forms
such as the τ -orbit space TW with its bifurcation divisor BW , the characteristic
variety CW and the finite morphism qW :CW→TW . The vertex orbit axis AO

is nothing but the real form of the coordinate axis for the lowest degree flat
coordinate P1. Therefore, it does not seem an accident that the polyhedron
KW is reconstructed through the action τ , the integral of the primitive vec-
tor field. However, we still need to clarify the relation of the period map for
ζ
(0)
W with the polyhedron KW(λ). Some natural questions are the followings.

Can one reconstruct Deligne’s proof [D1] in terms of the semi-algebraic geom-
etry of the spaces V and V//W as in the present work? Is TW,C \ BW,≥3,C

an Eilenberg-MacLane space? Determine the fundamental relations for its fun-
damental group with respect to the natural generators indexed by the edges of
Γ(W ).

There are many precedent works on the semi-algebraic geometry of the
space SW with the discriminant divisor DW in it, among others, by Hilbert
[H], Thom [T1,2], Arnold [Ar1,2], Looijenga [Lo1,2], Springer [Sp1,2] and Tits.
In particular, Thom’s idea on the universal unfolding ([T2]) influenced either
directly or indirectly on the idea of the primitive form and the primitive vector
field. We also note an article on the semi-algebraic geometry of the orbit spaces
of compact Lie groups by Procesi-Schwarz [P-S], though we do not know yet
its direct relation with the present paper.

Let us explain the construction of the present paper.
The first half of §1 is an elementary preparation on the quotient variety

SW :=V//W by the finite reflection group W . Then, we introduce the τ -action
on SW and on its real forms. After these preparations, we formulate Theorems
A and B in §1.8.

§2 studies the τ -quotient variety TW with its bifurcation set BW . After
introducing the base point loci Oε in TW,C\BW,≥3,C, we introduce the central
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regions E
{ε}
W in §2.5, and algebroid functions ϕα,ε in §2.6. This section is an

extract from §2-§9 of the forthcoming paper [S4]. Leaving a general treatment
to [S4], we restrict our attention only to the real structures [ε] for ε = ±1.
We also omitted the study of the characteristic variety CW (which plays an
important role in [S4] to understand the discriminant divisor DW ).

In §3, we study the linearization map cW . The target spaces V̂Π, VΠ and
the simplicial cone EΓ(W ) are introduced in §3.1 and §3.2. The map cW is
introduced as an algebroid map in §3.4. Using them, Theorem C is formulated
in §3.5. As its application, Theorems A and B are proved in §3.6 and §3.7.
The proof of Theorem C is not given in the present paper but it is given in
[S4], where we formulate cW as an algebraic correspondence, which is more
appropriate for our purpose.

§4 studies the generator systems of the fundamental group of the space
SW,C\DW,C. A pair of generator systems depending on ε ∈ {±1} is constructed
by use of the polyhedra J

{ε}
W (λ[ε]) in §4.1 and is identified with Brieskorn’s

generator system in §4.2. A pair of the Zariski-van Kampen generator systems
depending on ε by the use of τ -pencil is described in §4.3. It is identified in
§4.4 with the one in §4.1. The relationship between the generator systems for
ε=+1 and for ε=−1 is given in §4.5.

Appendix studies the rank two case in detail. The polyhedra J
{ε}
W (λ[ε]) and

Kε
W (λ[ε]) of types A2 and B2 are illustrated in Fig. 8, 9 and 11.

Concluding Remarks: The study of the polyhedra J
{ε}
W (λ[ε]), Kε

W (λ[ε])
and the real region E

{ε}
W has just started. The proofs are rather involved. On

the other hand, we have observed a new aspect of the geometry of V , V//W

and V//W//τ : the interaction between the semi-algebraic geometry of their
real forms and the topology of their complexification, where the flat structure
combines them. We may briefly summarize the present work as a combinatorial
aspect of the flat structure on the quotient variety by a finite reflection group.
These new features of the geometry seem to the author quite attractive and
worthwhile to be studied further. Perhaps (and hopefully), the study in the
present paper is the first fortunate model case4 of a certain new mathematical
research subject.

The author would like to express his hearty gratitude to Professors Masaki
Kashiwara and Takahiro Kawai for their supports and helps during the prepa-
ration of the present paper, to Professor Hiroaki Terao for careful reading of the

4One next model may be the case of elliptic root systems, which admit again the flat struc-
ture. Since the complement of the complex discriminant divisor may have 2-homotopy
classes, we need to study the non-simply connected polyhedra.
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manuscripts and many useful pieces of advice, and to Mrs. Kumiko Matsumura
for her beautiful drawing of figures.

The author would like to express his deep sorrow to the early death of the
late Professor Nobuo Sasakura (March 5, 1941 – June 16, 1997), who constantly
showed interests in the present work when it was in a preparatory form.

§1. Parallelotopes J
{ε}
W (λ[ε]) and Polyhedra Kε

W (λ[ε])

We construct the main objects J
{ε}
W (λ[ε]) and Kε

W (λ[ε]) of the present pa-
per, and give precise statements of Theorems A and B announced in the intro-
duction.

In 1.1–1.5, we recall basic results on a finite reflection group W and its
invariants from [B, Ch.4,5]. In 1.6 and 1.7, we introduce the new concept:
the τ -action on the W -quotient varieties S

[±1]
W,R . By the use of the τ -action,

Theorems A and B in §1.8 describe the polyhedra J
{ε}
W (λ[ε]) and Kε

W (λ[ε]).

§1.1. Finite reflection group W

Let VR be an R-vector space of rank l equipped with the classical topology.
An element α ∈ GL(VR) is a reflection if there exist eα ∈ VR and fα ∈ V ∗

R
:=

HomR(VR, R) with 〈fα, eα〉= 2 such that α(x) = x−fα(x)eα for x ∈ VR. Two
vectors eα and fα are not unique but eα⊗ fα is uniquely determined by α. If I

is an α-invariant symmetric bilinear form on VR such that I(eα, eα) 
= 0, then
fα(x) = I(e∨α, x) for e∨α := 2eα/I(eα, eα). The kernel Hα :=ker(fα)=ker(1−α)
is called the reflection hyperplane of α.

Let W be a finite group generated by reflections on VR and I a W -invariant
positive-definite symmetric bilinear form on V . Assume that W acts irreducibly
on VR. Then, I is unique up to a positive constant factor. Put

(1.1.1) R(W ) := {α ∈W | α is a reflection}.
We recall some basic facts on W in [B].

1. A connected component of VR\∪α∈R(W )Hα, called a Weyl chamber, is a
simplicial cone. The group W acts simply transitively on the set of chambers.

2. For a chamber C, put Π(C) := {α ∈ R(W ) | Hα is a wall of C}
Then (W,Π(C)) is a Coxeter system with respect to the CoxetermatrixMW :=
(mαβ)α,β∈Π(C) with mαβ :=ord(αβ) (see [B, Ch.IV, §1 no1.3.]).

3. The closure C of a chamber C is a fundamental domain of the action
of W on VR, that is, C → VR/W is a homeomorphism.

4. The vectors {eα | α∈Π(C)} form a basis of VR. Choose eα so that C =
{x ∈ VR | 〈fα, x〉 > 0 for α ∈ Π(C)}. Then i) I(eα, eβ) ≤ 0 for α 
= β ∈ Π(C),
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and ii) the coefficients of the expression eγ =
∑

α∈Π(C) cαeα for any γ ∈ R(W )
are either all non-negative or all non-positive.

§1.2. Simplicial cone decomposition of VR

For a subset F ⊂ R(W ), consider the subspace HF := ∩β∈F Hβ of VR and
the set of hyperplanes of HF induced by reflection hyperplanes:

(1.2.1) A(HF ) := {HF ∩Hα | α ∈ R(W ), Hα 
⊃ HF }.
A point in HF is called generic if it lies in ḢF := HF\∪G∈A(HF )G. A connected
component of ḢF is called a facet of VR. Let Γ be the index set of all facets of
VR by running all finite subset F of R(W ), and let us denote by Vγ the facet
corresponding to γ ∈ Γ. Then the vector space VR decomposes into a disjoint
union of facets:

(1.2.2) VR = �γ∈Γ Vγ .

Put γ ≤ δ for γ, δ ∈ Γ iff Vγ ⊂ V δ. The decomposition is a stratification,
i.e., it satisfies the boundary condition: if Vγ ∩ V δ 
= ∅ then Vγ ⊂ V δ. The
minimal element of Γ is denoted by 0 (i.e., V0 = {0}). The maximal elements
of Γ correspond to chambers. Any stratum is a cone over a simplex, and hence
(1.2.2) is called the simplicial cone decomposition of VR.

§1.3. Polyhedron dual to the simplicial cone decomposition
Definition. 1. A compact subset P in R

l with a fixed semi-algebraic
stratification (a finite decomposition of P into smooth semi-algebraic sets satis-
fying the boundary condition) is called a semi-algebraic polyhedron, if there is a
semi-algebraic diffeomorphism, say ϕ, from P to a polyhedron in R

l (a convex
hull of finite points in R

l which has non-trivial interior points). More precisely,
ϕ induces an isomorphism from each stratum to a facet of the polyhedron. A
stratum of P corresponding to a face, facet or vertex is called a face, facet or
vertex of P , respectively. The set P of interior points of P is called an open
semi-algebraic polyhedron. We say the faces of P are crossing normally at a
point x ∈ P , if there is a real-analytic diffeomorphism from a neighborhood
of x in R

l to a neighborhood of the origin of R
l which maps locally (P , x) to

(Rk
≥0 × R

l−k, 0) for some 0 ≤ k ≤ l.
2. A semi-algebraic polyhedron K in VR is called dual to the simplicial

cone decomposition (1.2.2), if it has the facet decomposition:

(1.3.1) K = �γ∈ΓKγ

indexed by the same index set Γ as in (1.2.2) such that
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i) Kγ ⊃ Kδ if and only if γ ≤ δ,
ii) Kγ ∩ Vδ 
= ∅ if and only if γ ≤ δ, for any γ, δ ∈ Γ,
iii) if γ ≤ δ, then Kγ and Vδ intersects transversally at each point of Kγ∩Vδ.

There exists a real analytic diffeomorphism from a neighborhood of Kγ ∩ Vδ to
a neighborhood of the cube [0, 1]k of dimension k := dim(Vδ)−dim(Vγ), which
induces a homeomorphism from Kγ ∩ Vδ to [0, 1]k. In particular, dim(Kγ) +
dim(Vγ) = l for γ ∈ Γ.

The last condition iii) implies the following property:
iv) the faces of K are crossing normally everywhere on K.

The above definition implies that K0 is an open cell in VR containing 0 ∈ VR

such that K0 is the interior of K. The simpliciality of the cone decomposition
(1.2.2) implies that K is a manifold with corners.

§1.4. Invariants for W and the quotient variety SW

We recall basic facts on W -invariants S(V ∗
R

)W ([B, Ch.v, §5]) and fix no-
tation on the W -quotient variety.

1. A product c := Πα∈Π(C)α is called a Coxeter element. Its conjugacy
class in W is independent of the order of the product. The order h of c is
called the Coxeter number. The eigenvalues of c are given by exp(2π

√−1mi/h)
(i = 1, . . . , l) where 0 < mi < h are called the exponents of W and are ordered
as m1 = 1 < m2 ≤ · · · ≤ ml−1 < ml = h− 1.

2. Let S(V ∗
R

) be the symmetric tensor algebra of V ∗
R

. We denote by
S(V ∗

R
)W the subring consisting of W -invariants in S(V ∗

R
). Chevalley’s Theorem

[Ch] states that S(V ∗
R

)W is generated by l algebraically independent homoge-
neous elements of degrees mi + 1 (i = 1, . . . , l). In the rest of the paper, we
fix a homogeneous generator system (P1, . . . , Pl) with di := degPi = mi + 1.
Therefore, we have S(V ∗

R
)W 
R[P1, . . . , Pl].

3. The module of anti-invariants S(V ∗
R

)−W :={P∈S(V ∗
R

) | g(P )= det(g)−1P

for all g∈W} is a free S(V ∗
R

)W-module of rank one generated by

(1.4.1) δW :=
∏

α∈R(W ) fα.

The Jacobian of the generator system (P1,. . ., Pl) of invariants with respect to
a linear coordinates (X1,. . .,Xl) of VR is a basic anti-invariant:

(1.4.2) det
(

∂(P1,...,Pl)
∂(X1,...,Xl)

)
= c δW for c ∈ R�=0.

4. Let Ω := exp(π
√−1/h) be a primitive (2h)th root of unity. The eigen-

vector ξ of a Coxeter element belonging to the eigenvalue Ω2 in the complex-
ification VC = C ⊗ VR is regular, i.e., δW (ξ) 
= 0 ([B, Ch.V,§6]). This implies
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an equality (c.f. §2.4 Fact 1):

(1.4.3) #R(W ) = h · l/2.

5. The square ∆W := δ2
W is a W -invariant called the discriminant. Express

∆W as a polynomial in Pl. In view of the degree counting: deg(Pl) = h and
deg(∆) = hl, we know that it is of the form:

(1.4.4) ∆W = A0P
l
l + A1P

l−1
l + · · ·+ Al

where Ai is a homogeneous polynomial of degree ih in P1, . . . , Pl−1. Then
A0 
= 0 (since, by the degree condition, one has P1(ξ)= . . .=Pl−1(ξ) = 0. Then
∆W (ξ) 
= 0 implies A0 
=0 and Pl(ξ) 
=0).

6. The categorical quotient variety V//W as a scheme over R is denoted by

(1.4.5) SW := V//W := Spec(S(V ∗
R

)W ),

and its C-rational point set is given by

(1.4.6) SW,C := Homalg
R

(S(V ∗
R )W , C) = Homalg

C
(S(V ∗

C )W , C),

where Homalg is the set of algebra homomorphisms. The image in SW,C of the
origin 0 of VC is denoted by o and is called the origin of SW,C.

For ε∈{±1}, we consider the real form V ε
R

of VC :=VR⊗RC where

(1.4.7) V +1
R

:= VR and V −1
R

:=
√−1VR.

The C-linear W -action on VC leaves the real forms invariant such that
S((V ε

R
)∗)W⊗RC
S(V ∗

C
)W . Thus, we introduce two real forms of SW,C:

(1.4.8) S
[ε]
W,R := Homalg

R
(S((V ε

R
)∗)W , R)

for ε ∈ {±1}. These two real forms coincide if −idVR
∈W . Note that a real

coordinate system of S
[ε]
W,R is given by (Pi/

√
εmi+1)l

i=1 so that

(1.4.9) (P1/
√

ε2, . . . , Pl/
√

εh) : S
[ε]
W,R

∼−→ R
l,

where we put
√

1 := 1 and
√−1 := the unit of pure imaginary number.

7. For any point x∈ VC, the evaluation homomorphism: S(VC)W � P �→
P (x)∈C induces the W -invariant morphisms:

(1.4.10) πW,C : VC → SW,C and πε
W,R : V ε

R
→ S

[ε]
W,R (ε ∈ {±1}).
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These morphisms are finite and closed maps with respect to the classical topol-
ogy. The morphism πW,C induces a homeomorphism VC/W 
 SW,C, and πε

R

induces an embedding V ε
R
/W ⊂ S

[ε]
W,R onto a closed semi-algebraic set, called

the central component (see Assertion 1.1 (4)).

§1.5. Discriminant divisor and the central component C{ε}

The discriminant divisor DW in SW is defined by ∆W = 0. Its C-rational
point set in SW,C or R-rational point set in S

[ε]
W,R for ε∈{±1} (called the complex

or real discriminant locus) are given by

(1.5.1) DW,C := {t ∈ SW,C | ∆W (t) = 0} and D
[ε]
W,R := DW,C ∩ S

[ε]
W,R.

The equalities (1.4.1) and (1.4.2) imply:
i) The critical values of πW,C lie in the discriminant divisor DW,C.
ii) The inverse image π−1

W,CDW,C is the union
⋃

α∈R(W ) Hα,C.

Assertion 1.1. (1) The stabilizer subgroup of W at any point x ∈ VC

is generated by the reflections whose reflection hyperplanes contain x.
(2) The complement of the discriminant locus SW,C\DW,C is the space of

regular (i.e., stabilizer free) orbits of the W -action on VC.
(3) πW,C : VC\∪α∈R(W )Hα,C → SW,C\DW,C is a normal covering whose

covering transformation group is W .
(4) For ε∈ {±1}, there exists a connected component C{ε} of S

[ε]
W,R\D[ε]

W,R

such that for any connected component (chamber) C of VR \∪α∈R(W )Hα, the
morphism πε

W,R induce the homeomorphisms:

(1.5.2)
√

εC 
 C{ε} and
√

εC 
 C{ε}
.

We call C{ε} the central component of S
[ε]
W,R\D[ε]

W,R.

(5) As a consequence of (4), C{ε}
is a semi-algebraic simplicial cone with

the vertex at o, whose faces are indexed by Π = Π(C).

§1.6. Primitive vector field D and Ga-action τ on SW

We fix a particular vector field D on SW , which we shall call the primitive
vector field ([S3,(2.2)]). The vector field D is transversal to the discriminant
divisor DW and plays a basic role throughout the present paper.

Let DerSW
be the module of derivations of the algebra S(V ∗

R
)W over R,

which is a graded S(V ∗
R

)W -module. Using the generator system P1,. . .,Pl for
S(V ∗

R
)W (see 2. of §1.4), its free basis are given by ∂Pi

(i=1,. . ., l) with ∂Pi
Pj =

δij and deg(∂Pi
) = −deg(Pi). The maximality deg(Pl) > deg(Pi) for i =

1, . . . , l− 1, implies that the lowest graded piece of DerSW
is a vector space of
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dimension one spanned by

(1.6.1) D := ∂Pl
.

In the rest of the paper, we fix a basis (1.6.1) and call it the primitive vector
field. The primitive vector field is one of the basic building blocks for the flat
structure on SW , but we do not go into details ([S1,3]).

Integrating D, we introduce a group action

(1.6.2) τ : Ga × SW −→ SW ,

whose co-action τ∗ on S(V ∗
R

)W is given by

(1.6.3)
τ∗ : S(V ∗

R
)W −→ S(V ∗

R
)W ⊗ R[λ],

Pi �→ Pi (i = 1, . . . , l − 1) and Pl �→ Pl + λ.

Note that (τ(C)·o)∩DW,C ={o} where o is the origin of SW,C, since the leading
coefficient A0 in (1.4.4) does not vanish.

For each ε∈{±1}, let us choose and fix the real valued function

λ[ε] :=λ/
√

εh

on the real form G
εh

a :=
√

εhR ⊂ Ga,C = C as its real coordinate. Then, recalling
(1.4.9), one obtains the real one-parameter group action:

(1.6.4)
τ [ε] : R× S

[ε]
W,R → S

[ε]
W,R

λ[ε] × (P1/
√

ε2, . . . , Pl/
√

εh) �→ (P1/
√

ε2, . . . , Pl/
√

εh+λ[ε]).

A domain in S
[ε]
W,R is called a tube domain if it is τ [ε]-invariant.

§1.7. Opposite components C[ε]± of S
[ε]
W,R\D[ε]

W,R

Since the half lines τ [ε](R>0) · o and τ [ε](−R>0) · o do not intersect the
discriminant locus, we have the following definition.

Definition. The opposite components of S
[ε]
W,R\D[ε]

W,R are

(1.7.1)
C[ε]+ :=the connected component which contains τ [ε](R>0) · o,
C[ε]− :=the connected component which contains τ [ε](R<0) · o.

One has: C[ε]+ 
= C{ε} 
= C[ε]− (except for type A1), since the eigenvectors
for exp(2π

√−1/h) of the Coxeter element do not belong to V ε
R
. Each of the

opposite components C[ε]± is the interior of the quotient of a certain twisted real
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form of VC. We shall give another expression of opposite components in (2.5.5)
by determining the twisted real form.

§1.8. Semi-algebraic polyhedra J
{ε}
W (λ[ε]) in S

[ε]
W,R and K

ε

W (λ[ε]) in V ε
R

We state Theorem A announced in the introduction.

Theorem A. For λ[ε] ∈ R>0 and for ε ∈ {±1}, put

(1.8.1) J
{ε}
W (λ[ε]) := C{ε} ∩ τ [ε](−λ[ε])C[ε]+ ∩ τ [ε](λ[ε])C[ε]− .

Then J
{ε}
W (λ[ε]) is an open semi-algebraic polyhedron in S

[ε]
W,R isomorphic to

the l-dimensional parallelotope (0, λ[ε])l adjacent to the origin o ∈ SW,C. Let
ao{ε}(λ[ε]) be the vertex of J

{ε}
W (λ[ε]) which is antipodal to the origin. Then faces

in J
{ε}
W (λ[ε]) are crossing normally at any point of any closed edge adjacent to

ao{ε}(λ[ε]).

Remark 1. The explicit identification cW : J
{ε}
W (λ[ε]) 
 [0,−λ[ε]]l1 ×

[0, λ[ε]]l2 with l = l1 + l2 is given in Theorem C in §3.5.

In an assertion in §3.4, we prove a stronger normal crossing property of
faces of J

{ε}
W (λ[ε]), which implies that the inverse image in V ε

R
of any facet of

J
{ε}
W (λ[ε]) adjacent to ao{ε}(λ[ε]) is smooth. This gives the next theorem, stated

as Theorem B in the introduction.

Theorem B. For λ[ε] ∈ R>0 and for ε ∈ {±1}, put

K
ε

W (λ[ε]) := (πε
W,R)−1

(
J
{ε}
W (λ[ε])

)

Then K
ε

W (λ[ε]) is a closed semi-algebraic polyhedron in V ε
R

dual to the simplicial
cone decomposition (1.2.2). The W -action induces

(1.8.2) K
ε

W (λ[ε])/W ∼= πε
W,R(K

ε

W (λ[ε])) = J
{ε}
W (λ[ε]).

Remark 2. The change D to ωD for ω ∈ R
× induces the change Kε

W

(λ[ε],D)=| λ[ε]

λ[ε]′ ω|1/hKε
W (λ[ε]′,ωD) for λ[ε], λ[ε]′∈R>0, i.e. the polyhedra for any

scale ω and any parameter λ[ε] are homothetic to each other.
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§2. The Central Region E
{ε}
W in T

[ε]
W,R

The concept of a universal unfolding and its bifurcation set is due to
Thom [T2] and is studied by several authors (e.g. [Ar],[Lo1],[Ly],[Te]). We
re-introduce the bifurcation set in the setting of W -τ -invariant theory, and
then introduce the central region E

{ε}
W , which is a key concept in the present

paper. Several results are extracted from [S4]. For a comprehensive study of
them with proofs, one is referred to [S4].

§2.1. τ-quotient space TW and τ-quotient morphism πτ

We first introduce the τ -quotient space and the τ -quotient morphism. Re-
call the co-action τ∗ (1.6.3) and consider the ring of its invariants:

(2.1.1)
S(V ∗

R
)W,τ := {f ∈ S(V ∗

R
)W | τ∗(λ)f = f}

= {f ∈ S(V ∗
R

)W | Df = 0}.
The associated τ -quotient variety is denoted by

(2.1.2) TW := Spec(S(V ∗
R

)W,τ ).

One has the τ -quotient morphism

(2.1.3) πτ : SW −→ TW

induced by the inclusion S(V ∗
R

)W,τ ⊂S(V ∗
R

)W . Using the coordinates P1, . . . , Pl,
one has the explicit expressions:

S(V ∗
R )W,τ = R[P1, . . . , Pl−1] and S(V ∗

R )W = S(V ∗
R )W,τ [Pl].

Namely, TW is an affine variety with the coordinates (P1, . . . , Pl−1) and πτ is
the projection forgetting the last coordinate Pl of SW .

§2.2. Bifurcation divisor BW = ∪∞p=2BW,p

We introduce the bifurcation set BW in TW as the ramification divisor
of the finite cover πτ |DW : DW → TW . Recall that the discriminant ∆W is a
monic polynomial in Pl (1.4.4). The resultant of ∆W and D∆W =∂Pl

∆W with
respect to the variable Pl is an element in S(V ∗

R
)W,τ . Decompose it as

(2.2.1) δ(∆W ,D∆W ) =
∏

p≥2 ωp
W,p

according to its multiplicity (=ramification index) p, where ωW,p are multipli-
city-free polynomials in S(V ∗

R
)W,τ . Using the p-th factor ωW,p, the p-th bifur-

cation divisor is defined by the equation:

(2.2.2) BW,p := the divisor in TW defined by ωW,p = 0.



Dual Polyhedra 1353

We call BW,2 the ordinary part, BW,odd := ∪p:oddBW,p the odd part and
BW,≥3 := ∪p≥3BW,p the higher part of the bifurcation divisor.

Note. The p-th bifurcation divisor BW,p is the image of the union of
two-codimensional subspaces of V where p reflection hyperplanes are intersect-
ing (see the last formula (∗) at the end of Appendix in order to justify the
decomposition (2.2.1)).

One basic formula which plays a key role in the sequel is the following:

(2.2.3) det
(

∂(∆W ,D∆W ,...,Dl−1∆W )
∂(P1, P2, ... , Pl)

)
= c ·∏p≥2 ωp−1

W,p .

The proof uses the degree of ωW,p, obtained by the case by case study (see
[S4,(3.6.1)]).

§2.3. Twisted real forms of the τ-action and the τ-quotient space
Let u ∈ GL(VR) be an element of the normalizer N(W ) of W . We denote
by [u] its W -coset class in N(W )/W . Assume [u]2 = 1 and define an anti-C-
linear automorphism [u]a∗ : S(V ∗

C
)W → S(V ∗

C
)W by [u]a∗P := P ◦ u. Then the

twisted real form S
[u]
W,R := HomR(S(V ∗

C
)W,[u]a∗

, R) is given by the subalgebra
S(V ∗

C
)W,[u]a∗

of [u]a∗-invariants (see [Lo2],[S4]).

Assertion 2.1. There exists b[u] ∈ {±1} making the following diagram
commutative:

(2.3.1)

S(V ∗
C

)W τ∗
→ S(V ∗

C
)W ⊗C C[λ]�[u]a∗

�[u]a∗ ⊗ (b[u] ◦ complex conjugation)

S(V ∗
C

)W τ∗
→ S(V ∗

C
)W ⊗C C[λ] .

One can choose a generator Pl satisfying [u]a∗Pl =b[u]Pl so that P
[u]
l :=Pl/

√
b[u]

is a [u]a∗-invariant. The co-action τ∗ (1.6.3) turns out to be

(2.3.2) τ∗ : S(V ∗
C

)W,[u]a∗ → S(V ∗
C

)W,[u]a∗ ⊗R R[ λ/
√

b[u] ].

Accordingly, we introduce a new real variable λ[u] := λ/
√

b[u] so that we
obtain a twisted real τ -action

(2.3.3)
τ [u] : R× S

[u]
W,R −→ S

[u]
W,R

λ[u] × (P [u]
1 , . . . , P

[u]
l ) �→ (P [u]

1 , . . . , P
[u]
l + λ[u]).

The τ [u]-invariants S(V ∗
C

)W,[u]a∗,τ defines a twisted real form

(2.3.4) T
[u]
W,R := Homalg

R
(S(V ∗

C )W,[u]a∗,τ , R)
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of the space TW,C together with the twisted real quotient morphism

(2.3.5) π[u]
τ : S

[u]
W,R −→ T

[u]
W,R.

One sees from the coordinate expression that the morphism (2.3.5) is an honest
set-theoretical quotient map. In the present article, we are interested in the
case [u]=[ε] for ε∈{±1}. In such a case, one has b[u]=εh.

§2.4. Subspace SW (I2(h)) of SW

We introduce a canonical two-dimensional subspace SW (I2(h)) of SW based
on the study of regular eigenvectors of a Coxeter element due to Coleman [C]
and Kostant [K] (cf. [B, Ch.5, §6, no2, lemma 2]).

Let C be a Weyl chamber in VR of W and let Π = Π(C) be the set of
attached simple reflections. Recall the Coxeter diagram structure Γ(W ) on Π,
where one puts an edge between two vertices α and β Π if mαβ ≥ 3. Since
Γ(W ) is a tree, one has a unique decomposition up to a transposition:

(2.4.1) Π = Π1 � Π2

where each Πj is a totally disconnected subset in Γ(W ). Put

(2.4.2) ci := Πα∈Πi
α, c := c1c2 and d := c1 + c2,

where c and d are called the Coxeter element and the Killing element.
c = c1c2 is of order h, and d has only real eigenvalues 2 cos(πmi/h). Let e be
an eigenvector of d belonging to the largest eigenvalue 2 cos(π/h) (which has
multiplicity 1). We can choose e such that its expression with respect to the
basis eα (α ∈ Π) (see 1.1, 4.) has all positive real coefficients, so that e is
unique up to a positive real constant multiple. Put

(2.4.3) U := Re1 + Re2,

where we use the decomposition e=e1+e2 with ej ∈
∑

α∈Πj
R>0eα for j = 1, 2.

Assertion 2.2. ci leaves the space U invariant and ci|U is a reflection
with respect to ei. The restriction homomorphism 〈c1, c2〉 → 〈c1|U, c2|U〉 is an
isomorphism and defines a faithful W (I2(h))-action on U.

Here W (I2(h)) is the dihedral group of order 2h generated by reflections
c1|U and c2|U . Therefore, we introduce

i) the quotient space SW (I2(h)) := U//W (I2(h)),
ii) a primitive vector field ∂

∂S (which, we shall define below in §2.5),
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iii) the τ -action on SW (I2(h)) as the integration of ∂
∂S ,

iv) the τ -quotient variety TW (I2(h)) := SW (I2(h))//τ .
The embedding U ⊂ VR induces the morphism SW (I2(h))→SW . The following
facts are not difficult, but need proofs (cf. [S4]).

Assertion 2.3. i) The morphism SW (I2(h))→SW is a closed embedding.
Its image is independent of the choices of a chamber C, a decomposition (2.4.1)
and an eigenvector e.

ii) The primitive vector field on SW is tangent to SW (I2(h)), and induces a
non-zero constant multiple of the primitive vector field on the subspace SW (I2(h)).

iii) The restriction of the τ -action on SW coincides with the τ -action on
SW (I2(h)) (up to a scaling constant).

iv) One obtains a canonical embedding TW (I2(h)) → TW which makes the
following diagram commutative and Cartesian:

(2.4.4)

SW (I2(h)) −→ SW�πτ

�πτ

TW (I2(h)) −→ TW

The image of SW (I2(h)) in SW is called the vertex orbit plane and that of
TW (I2(h)) is called the vertex orbit line. In the sequel, we write v.o. for vertex
orbit for short (see the introduction for the naming).

§2.5. V.o. axis, v.o. line and the sign factor σ(D, {Π1,Π2})
Depending on a choice of the vector e and the partition {Π1,Π2}, we obtain

some particular generators of S[U∗]W (I2(h)) (called the flat coordinates), which
leads to some new concepts and constructions.

First, we identify the vector space U with the complex plane C regarded
as a real vector space R ⊕ Ri, where, in order to avoid the confusion with the
complex number field as the coefficient field, we use notation i for the unit of
pure imaginary number in the plane instead of

√−1.
i) The identification U 
 R ⊕ Ri is given by the basis correspondence:

e1 ↔ i and e2 ↔ −iω, where ω := exp(πi/h) = cos(π/h) + sin(π/h)i.
ii) For z1, z2 ∈ C 
 U , put I(z1,z2)=Re(z1z̄2).
iii) The generators c1|U and c2|U of W (I2(h)) are the reflections with

respect to e1 and e2: c1(z)= z̄ and c2(z)=ω2z̄ on C.
iv) The Coxeter element c|U of W (I2(h)) is identified with the multiplica-

tion by ω−2.
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v) We choose the generators R and S of S[U∗]W (I2(h)):

(2.5.1)
R := R({Π1,Π2}, e) := zz̄ = x2 + y2,

S := S({Π1,Π2}, e) := Re(zh) =
∑	h/2


k=0 (−1)kCh
2kxh−2ky2k.

vi) The changes e �→ re (r ∈ R>0) and {Π1,Π2} �→ {Π2,Π1} induce:

(2.5.2)
R({Π1,Π2}, re) = r2R({Π1,Π2}, e)
S({Π1,Π2}, re) = rhS({Π1,Π2}, e)

(2.5.3)
R({Π2,Π1}, e) = R({Π1,Π2}, e)
S({Π2,Π1}, e) =−S({Π1,Π2}, e).

After the preparation above, we can now clarify several sign problems as follows.

1. Sign factor. The derivation ∂
∂S is a primitive vector field on SW (I2(h)).

Due to Assertion 2.3, ii), the proportion ∂
∂S :D|SW (I2(h)) is in R

×. Depending
on the choice of the primitive vector field D (1.6.1) and the decomposition
{Π1,Π2} (2.4.1), we introduce the sign factor:

(2.5.4) σ(D, {Π1,Π2}) := sign( ∂
∂S : D|SW (I2(h))) ∈ {±1}.

A typical use of the sign factor is the following [S4,5.1, Sign Theorem]:

Assertion 2.4. For i ∈ {1, 2} and ε ∈ {±1}, define the twisted real
vector space with respect to εci by V εci

R
:={v∈VC | ci(v)=εv}. Then πW (V εci

R
)

is the closure of a connected component of S
[ε]
W,R \D

[ε]
W,R denoted by C{εci}. The

components C{εci} (i = 1, 2) and the opposite components C[ε]+ and C[ε]− (1.7.1)
are related by the formula:

(2.5.5) C{εci} = C[ε]
ε�h/2�(−1)i−1σ(D,{Π1,Π2}) for i = 1, 2.

The sign factor appears again in TheoremC in §3.5.

2. Vertex orbit axis AO. Let us call the coordinate axis defined by
S =0 in the v.o. plane SW (I2(h)) the vertex orbit axis. It is a one-dimensional
line in SW . Note the fact that the coordinate R (c.f. (2.5.1)) is unique up to a
positive constant multiple. Thus, the real v.o. axis and the half v.o. axis

(2.5.6)
AO := {(R,S) ∈ SW (I2(h)),C | R ∈ R and S = 0},

AO± := {(R,S) ∈ SW (I2(h)),C | R ∈ ±R>0 and S = 0}
are a real line and real half lines in SW,C well defined independent of the choices
of a chamber C, a partition {Π1,Π2} or a vector e.
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Assertion 2.5. i) For any ε ∈ {±1} , the twisted real form S
[ε]
W,R con-

tains the full real v.o. axis AO (see Remark 3. below).
ii) For ε ∈ {±1} , the connected component of S

[ε]
W,R \D

[ε]
W,R containing the

half v.o. axis AOε is the central component Cε (recall (1.5.2)).

In §4.1 of the present article, we shall use AO+ and AO− as the base point
locus for the fundamental group of SW,C \DW,C.

3. Vertex orbit line O. Recall the one-dimensional subspace TW (I2(h)) of
TW (called the v.o. line) which is the projection image of the vertex orbit axis
by πτ (c.f. (2.4.4)). Similarly to the case of the vertex orbit axis, its coordinate
R is unique up to a positive constant multiple. Thus, the real v.o. line and the
half v.o. lines are given by

(2.5.7)
O := {(R) ∈ TW (I2(h)) | R ∈ R},

O± := {(R) ∈ TW (I2(h)) | R ∈ ±R>0}.
They are a well-defined real line and real half lines in TW,C.

Assertion 2.6. i) For any ε ∈ {±1} , the twisted real form T
[ε]
W,R con-

tains the real v.o. line O (see Remark 3. below).
ii) For ε ∈ {±1} , the half v.o. line Oε does not intersect the higher

bifurcation locus BW,≥3,C in TW,C.

Due to this assertion, we are able to deine:

Definition. We introduce

(2.5.8)
E

{ε}
W := the connected component of T

[ε]
W,R\B[ε]

W,≥3,R

containing the half v.o. line Oε

and call it the central region in T
[ε]
W,R.

Remark 3. The statements i) in Assertion 2.5 and i) in 2.6 are valid for
any twisted real structures [u] on SW and TW , respectively. The connected
component E

[u],ε
W of T

[u]
W,R \B

[u]
W,≥3,R containing Oε are studied in [S4,§10].

Remark 4. Actually, the v.o. line O is contained in the ordinary bifur-
cation set BW,2 for l ≥ 3. Hence, the ordinary bifurcation set intersects the
central region for l ≥ 3. The description of the intersection E

{ε}
W ∩ B

[ε]
W,2,R

is reduced to certain real linear inequalities by use of Theorem C in §3.5. It
proposes a quite interesting and important combinatorial geometric problem.
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§2.6. Algebroid functions ϕα and φα for α ∈ Π
Since we have fixed the base point locus, either O+ or O−, in TW,C, we are

able to discuss multi-valued functions and, in particular, algebroid functions
defined on TW,C\BW,≥3,C.

Recall the discriminant (1.4.4). It is a monic polynomial of degree l in the
indeterminate Pl. Let us regard it as the equation in Pl:

(2.6.1) ∆W = A0P
l
l + A1P

l−1
l + · · ·+ Al−1Pl + Al = 0,

where the coefficients Ai are polynomial functions on TW,C. One can show that
i) for any point of TW,C\BW,odd,C, there exist a neighborhood V and l holomor-
phic functions f1, . . . , fl on V such that f1(t), . . . , fl(t) are the solutions of the
equation (2.6.1) at t ∈ V, and ii) the functions f1, . . . , fl can be analytically
continued to everywhere in TW,C\BW,odd,C.

As for an initial system, let us choose l functions indexed by α ∈ Π:

(2.6.2) ϕα,ε

on a neighborhood of the base point locus Oε as follows (see [S4,§8,9]).
For α ∈ Πi, let ζi ∈ U (i = 1, 2) be a point (
= 0) fixed by the action of

ci|U on the real 2-space U . Since ci|U is a reflection with respect to ei (recall
Assertion 2.2), we see ei · ζi = 0, where x · y is a W (I2(h))-invariant positive
symmetric bilinear form on U . Taking the fact e1 · e2 < 0 into account, the
coefficients a, b ∈ R in the expression ζi = ae1 + be2 are simultaneously positive
or negative. We choose ζi such that a, b > 0. Then ζi is unique up to a positive
constant multiple (see Remark 6).

For ε ∈ {±1}, put ζε
i :=

√
εζi ∈ Uε :=

√
ε ⊗ U (see Remark 7). It

projects by πW to a point pi on the discriminant locus D
[ε]
W (I2(h)),R⊂S

[ε]
W (I2(h)),R,

and pi projects further to a point qi ∈ Oε ⊂ T
[ε]
W,R by πτ (c.f. (2.4.4)). On

the other hand, the reflection hyperplane Hα for α ∈ Πi contains ζi. Hence,
ζε
i ∈ Hα,C. Since Hα (α ∈ Πi) are normally crossing at ζi, the stabilizer

subgroup W (ζi) of ζi is an abelian group 〈β, β ∈ Πi〉 
 (Z2)#Πi and preserves
each hyperplane Hα for α ∈ Π. Then, it is easy to see that a neighborhood
of ζε

i in Hα,C projects (by 2#Πi−1 to one) onto a neighborhood Uα of pi in
one of #Πi-number of local irreducible components of DW,C at pi. We can
show that qi = πτ (pi) 
∈ BW,odd,C and that the projection πτ |Uα is a locally
homeomorphism onto a neighborhood Vα of qi in TW,C . Then, we reverse the
map πτ |Uα to a map �α : (Vα, qi)→ (Uα, pi), and put

ϕα,ε := Pl ◦�α.
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By definition, ϕα,ε is a solution to the discriminant equation (2.6.1) on a neigh-
borhood of Oε. Thus we obtain the system of algebroid functions indexed by Π
(2.6.2). By use of characteristic variety CW , we observe that these give the full
system of solutions of the discriminant equation. That is: one has the “local
factorization” of the discriminant:

(2.6.3) ∆W = A0

∏
α∈Π(Pl − ϕα,ε),

on a neighborhood of the base point locus Oε ⊂ TW,C. We set

(2.6.4) φα,ε := Pl − ϕα,ε for α ∈ Π.

Since Di∆W is, up to the factor A0, equal to the (l−i)-th elementary symmetric
function of {φα,ε}α∈Π, the formula (2.2.3) can be rewritten as

(2.6.5) ∧α∈Π dφα,ε = c
∏

p≥3 ω
p/2−1
W,p · ∧l

i=1dPi for some c ∈ R
×.

Remark 5. In the next §3.4, we introduce a largest covering space of
TW,C\BW,odd,C with liftings of the base point loci O+ and O− such that ϕα,+

and ϕα,− are lifted to functions defined on the neighborhoods of the base point
loci and are analytically continued to the same univalent function.

Remark 6. In the above construction of ϕα,ε, we have chosen ζi in such a
manner that the coefficients with respect to the basis ei are positive. However,
we may choose −ζi as the starting point of the construction. Then, for ε ∈
{±1}, the function ϕα,ε changes to ϕχW (α),ε, where χW is the bijection of Π
induced by the adjoint action of the longest element of W (see [S4,8.11], c.f.
also (3.3.1)). This change is caused by the change of the “reference” chamber
from C to −C, which covers the central component C.

Remark 7. In the above construction of ϕα,ε, we have chosen ζε
i ∈ Hε

α

to be ζi
√

ε. However, we may choose its complex conjugate ζi/
√

ε for ζε
i as the

starting point of the construction. Then the ϕα,+1 is unchanged, but the ϕα,−1

changes to ϕχW (α),−1 (see Remark 5 for notation and reference). This change
is caused by the change of the sign of the unit

√−1 of the pure imaginary
number.

§3. Linearization Map cW

The system of algebroid functions φα,ε and ϕα,ε introduced in the previous
section define, by analytic continuation, multivalued holomorphic maps:

cW = (φα)α∈Π : SW,C � �� C
Π & bW = (−ϕα)α∈Π : TW,C � �� C

Π/CvΠ
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where i) vΠ = (1α)α∈Π is the diagonal element, and ii) “� ��” means that the
“maps” are not univalent on SW,C or on TW,C but are defined on their suitable
(branched) covering spaces. In order to clarify this multivaluedness, there may
be two approaches.

1. Transcendental method: introduce a topological covering space TW,odd,C

of TW,C \ BW,odd,C and lift bW to a univalent holomorphic map bW,odd defined
on it, and similarly for cW,odd.

2. Algebraic method: introduce a suitable finite covering variety T̃W→TW

(branching along BW,odd) and introduce b̃W as a scheme morphism from T̃W

to the affine space VΠ, and similarly for c̃W .
The first approach is naive and easily understandable. However, there is a

disadvantage that the “boundary points BW,odd” is excluded from the domain
of definition. In the second approach those boundary points are naturally
included in the domain of definition. Furthermore, it has another advantage
that we can discuss about the twisted real forms of the maps (which plays a
basic role in our study). For these reasons, we employ the second approach in
[S4,§10]. However, the second approach is technically more involved, and we
use the first approach to formulate Theorem C in §3.5 in the present paper.

An important role of the maps cW and bW is that they identify certain
area in SW,C and in TW,C with certain area in a linear space V̂Π,C and in VΠ,C,
respectively. In particular, the map cW identifies the twisted real discriminant
locus in a tube domain of the source space with a system of real hyperplanes
in a tube domain of the target space. This has several fruitful consequences,
since the study of configurations among branches of the real discriminant locus
is reduced to a study of a certain system of linear inequalities. By this reason,
we call these maps cW and bW the linearization maps.

Let us explain the contents of this section.
The linear model spaces V̂Π and VΠ, which will be the target spaces of

the linearization maps, are described in §3.1. Depending only on the Cox-
eter graph Γ(W ), we introduce a simplicial cone EΓ(W ) in VΠ,R in §3.2. In
§3.3, we introduce the covering space TW,odd,C, on which the two algebroid
functions ϕα,ε for ε ∈ {±1} in §2.6 lift to the same globally defined uni-
valent function, denoted by ϕα. By the use of them in §3.4, the lineariza-
tion maps cW and bW are defined. In §3.5, we formulate Theorem C, which
states about the comparison of the real spaces S

[ε]
W,R and V̂Π,R obtained by the

linearlization maps. As applications of Theorem C, Theorems A and B are
proved in §3.6 and §3.7. We illustrate in §3.8 the linearization maps for the
type A3.
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§3.1. Linear model spaces V̂Π and VΠ

We introduce two linear model spaces V̂Π and VΠ, which will be the target
spaces of the linearization maps cW and bW , respectively.

Define the real vector space with the basis {vα}α∈Π:

(3.1.1) V̂Π := ⊕α∈ΠRvα.

Translation by constant multiples of the diagonal element:

(3.1.2) vΠ :=
∑

α∈Π vα

defines a Ga-action on V̂Π:

(3.1.3) (λ, ṽ) ∈ Ga × V̂Π �→ ṽ + λ · vΠ ∈ V̂Π.

The quotient space VΠ and the quotient map πΠ are introduced by

(3.1.4) πΠ : V̂Π −→ VΠ := V̂Π / R · vΠ.

The symmetric group S(Π) acts linearly on V̂Π by permuting the basis vα.
Since vΠ is fixed by S(Π), it induces an action of S(Π) on the quotient VΠ.

Let {λα}α∈Π be the dual basis of {vα}α∈Π, i.e., the coordinate system of
V̂Π. The infinitesimal action of the Ga-action (3.1.4) is given by

(3.1.5)
∑

α∈Π
∂

∂λα
.

Consider the coordinate hyperplane in V̂Π:

(3.1.6) Hα := {∑β∈Π λβvβ ∈ V̂Π | λα = 0}

for α∈Π. The projection πΠ induces an isomorphism from Hα to VΠ for each
α ∈ Π, and also an isomorphism from the intersections Hα∩Hβ for α, β ∈Π
(α 
= β) to the hyperplane in VΠ:

(3.1.7) Hαβ := {v ∈ VΠ | λαβ(v) = 0}.

Here λαβ := λα − λβ is a linear form on VΠ, which satisfies

(3.1.8) λαβ + λβγ = λαγ for α, β, γ ∈ Π.

Note. The set of linear forms {λαβ |α, β∈Π, α 
=β} on VΠ forms a root
system of type Al−1, where Hαβ are the reflection hyperplanes of the group
S(Π). What is different from the usual setting is the fact that the reflection
hyperplane Hαβ is labeled by the positive integer ord(αβ).
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§3.2. Γ(W )-cone EΓ(W ) in VΠ

Depending on the graph Γ(W ) (see §2.4) and on the partition {Π1,Π2}
(2.4.1), we introduce an open simplicial cone EΓ(W ) in VΠ. Put

(3.2.1)
EΓ(W ) :=the connected component of VΠ \ {ΩΓ(W ) = 0}

containing the half line R>0(vΠ1 − vΠ2)

where ΩΓ(W ) :=
∏

αβ∈Edge(Γ(W )) λ2
αβ and vΠi

:=
∑

α∈Πi
vα (i = 1, 2). We call

EΓ(W ) the Γ(W )-cone. As an immediate consequence of the definition, we have:

Assertion 3.1. The Γ(W )-cone is given by inequalities:

(3.2.2)
EΓ(W ) ={ v ∈ VΠ | λαβ(v) > 0

for α ∈ Π1, β ∈ Π2 such that αβ ∈ Edge(Γ(W ))}.
Therefore, EΓ(W ) is an open simplicial cone.

The transposition of Π1 and Π2 induces the change of the Γ(W )-cone
EΓ(W ) to −EΓ(W ). This dependence of the Γ(W )-cone on the partition of Π
is important. However, for the sake of simplicity, we omit {Π1,Π2} in the
notation EΓ(W ) unless explicitly mentioned.

§3.3. Covering spaces TW,odd,C and SW,odd,C

We introduce a covering space TW,odd,C of TW,C\BW,odd,C, where we lift the
two base point loci Oε for ε ∈ {±1}. It turns out that two germs of algebroid
functions ϕα,+1 and ϕα,−1, lifted in the neighborhoods of the lifted base point
loci, are analytically continuated to the same univalent function, which we shall
denote by ϕα, on TW,odd,C.

Consider the complexified vertex orbit line TW (I2(h)),C (recall §2.4 and
§2.5), and let γ[ε] be the generator of π1(TW (I2(h)),C\{0}, Oε)
Z turning once
around the origin counter-clockwise. Then one has ([S4,9.2]):

i) (γ[ε])2 belongs to the center of π1(TW,C\BW,odd,C, Oε).

ii) the monodromy action of γ[ε] on {ϕα,ε}α∈Π (2.6.2) is given by

(3.3.1) ϕα,ε(t̃ · γ[ε]) = ϕχ
W

(α),ε(t̃),

where χ
W
∈ S(Π) is the involution of the set Π obtained by the adjoint

action of the longest element of W .

The fundamental group π1(TW,C\BW,odd,C, Oε) acts on the universal cov-
ering space (TW,C\BW,odd,C)̃ by choosing a base point locus Õε (i.e., a closed
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set in the covering which projects homeomorphically onto Oε). Depending on
ε ∈ {±1}, let us introduce the central quotient space

(3.3.2) TW,odd,C := (TW,C\BW,odd,C)̃ /〈(γ[ε])2〉

with the base point locus Oε
odd :=the image of Õε. One has the natural covering

map: �odd : TW,odd,C → TW,C\BW,odd,C with �odd : Oε
odd 
 Oε.

Remark 8. The TW,odd,C contains pull-backs of evenly labeled bifurca-
tion set BW,even,C\BW,odd,C and, in particular, the ordinary part BW,2,C.

We have constructed two covering spaces depending on ε∈ {±1}. In the
following, we identify them and consider only one space, denoted again by
TW,odd,C, by choosing the two base point locus Oε

odd (ε∈{±1}) simultaneously
as follows: The inverse image by �odd of the complexified v.o. line TW (I2(h)),C

decomposes into the connected components, each of which is a double cover of
the complex v.o. line and is isomorphic to C

× and admits a natural C
×-action.

Choose one component and fix the base point locus inside it as follows:

◦
O+1

odd∗ := eπ
√−1O+1

odd = e−π
√−1O+1

odd

O−1
odd := e

π
2

√−1O+1
odd

O−1
odd∗ := e−

π
2

√−1O+1
odd

O−1
odd

O−1
odd∗

O+1
odd∗ O+1

odd

Figure 1. Four base point loci in TW,odd,C

where Oε
odd∗ (ε∈{±1}) are some auxiliary base point loci (see Remark 9).

The germ of an algebroid function ϕα,ε (2.6.2) is lifted to a germ of holo-
morphic function, again denoted by ϕα,ε, on a neighborhood of Oε

odd. We
observe that:

i) the germ ϕα,ε for α ∈ Π and ε ∈ {±1} is analytically continued to a unique
univalent holomorphic function on TW,odd,C,

ii) for each α ∈ Π, the two univalent functions defined in i) for ε ∈ {±1}
define the same function on TW,odd,C. Let us denote it by

(3.3.3) ϕα
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Remark 9. The fact i) is an immediate consequence of (3.3.1). The fact
ii) is based on the choices of the base point loci in Fig. 1 and of the sign of ζε

i

in the construction of ϕα,ε in §2.6. If we choose ζε
i to be the complex conjugate

ζi/
√

ε of ζi
√

ε for ε = −1, we have to take O−1
odd∗ instead of O−1

odd as the base
point locus. That is: the generator of the Galois group Gal(C/R) 
 Z/2Z acts
on the index set Π of {ϕα,−1}α∈Π by the formula (3.3.1) (see [S4,8.4 & (9.3.8)]).

Let us introduce the fiber product space: SW,odd,C := SW,C×TW,C
TW,odd,C.

On SW,odd,C, we introduce a system of univalent holomorphic functions:

(3.3.4) φα := Pl − ϕα for α ∈ Π.

§3.4. Linearization morphism cW on SW,odd,C

We introduce the linearization map bW as the map from the covering space
TW,odd,C of TW,C to the complexified model vector spaces VΠ,C, and similarly
cW from SW,odd,C to V̂Π,C.

Definition. Using the functions ϕα (3.3.3) and φα (3.3.4) as for the
coefficients of vα, we consider the maps:

(3.4.1)
cW,odd,C =ω−1

∑
α∈Π φαvα : SW,odd,C×C

×−→ V̂Π,C := V̂Π ⊗R C

bW,odd,C =−ω−1
∑

α∈Π ϕαvα : TW,odd,C×C
×−→VΠ,C :=VΠ ⊗R C

and call it the linearization map, where ω ∈ C
× is a scaling factor which shall

take a special value depending on a choice of a twisted real structure.

The push-forward of the primitive vector field D is given by

(3.4.2) (cW )∗(D) = ω−1
∑

α∈Π
∂

∂λα
.

namely, cW,C is equivariant with respect to the two Ga-actions: the τ -action
on SW and the diagonal translation on V̂Π (multiplied by ω). One has

(3.4.3) cW,odd,C(τ(λ)z, ω) = cW,odd,C(z, ω) + ω−1λ · vΠ,

and, hence, the following diagram is commutative:

(3.4.4)

SW,odd,C × C
× cW,odd,C−→ V̂Π,C�(πτ , id)

�πΠ

TW,odd,C × C
× bW,odd,C−→ VΠ,C .
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The formula (2.6.5) can be reformulated as the Jacobian formula:

(3.4.5)
Jac(bW,odd,C) = c · ω−l Πp≥3ω

p/2−1
W,p ,

Jac(cW,odd,C) = c · ω1−l π∗
τ (Πp≥3ω

p/2−1
W,p ).

for some constants c ∈ R
×. We observe that the factor ωW,2 does not appear

in the right hand side. Therefore,

Assertion 3.2. The holomorphic maps cW,odd,C and bW,odd,C are not
ramifying along the ordinary bifurcation set (πτ )−1(BW,2,C) and BW,2,C, but
are ramifying along (πτ )−1(BW,2p,C) and BW,2p,C for p ≥ 2, respectively.

§3.5. Theorem C
In the previous paragraph, the linearization maps are introduced as holo-

morphic maps from the complex manifolds TW,odd,C and SW,odd,C to the linear
model spaces. In this paragraph, we restrict the domain of the definitions of the
linearlization maps bW,odd,C and cW,odd,C to the central region E

{ε}
W introduced

in (2.5.8) and the tube domain (π[ε]
τ )−1(E{ε}

W ) over the central region with a
fixed scaling parameter ω∈{±

√
εh} (see Remark 11 below). The linearization

maps for a fixed ω are denoted by bW,ωD and cW,ωD, respectively:

bW,ωD(x) := bW,odd,C(x, ω) and cW,ωD(x) := cW,odd,C(x, ω).

It is a straightforward calculation to observe that for these choices, the
image of the linearization maps are contained in the real forms VΠ and V̂Π (see
Remarks 10). Thus, (3.4.4) gives rise to the following commutative diagram of
semi-algebraic maps (see Remarks 11):

(3.5.1)

(π[ε]
τ )−1(E{ε}

W )
cW,ωD−→ V̂Π�π

[ε]
τ

�πΠ

E
{ε}
W

bW,ωD−→ VΠ

Remark 10. Generally, we have the following result on the real form
of linearization map ([S4]). For any twisted real structure T

[u]
W,R and for any

connected component E of T
[u]
W,R\B[u]

W,odd,R, there exists an involution χ ∈ S(Π)
such that the linearization map bW,ωD induces a (real multivalued) map from
E to the twisted real space V χ

Π , where the scaling constant ω is chosen in the
twisted real form: C

×,b[u] = R>0

√
b[u] � (−R>0

√
b[u]) with respect to the sign

b[u]∈{±1} introduced in Assertion 2.1 in §2.3.
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Actually, in the present paper, we take [u] = [ε], E = E
{ε}
W , b[ε] = εh, and

χ=id∈S(Π).

Remark 11. So far in the present paper, the linearization maps are de-
fined on the covering spaces TW,odd,C and SW,odd,C. Therefore, one should have,
first, introduced the map bW,ωD on a certain covering space Ẽ

{ε}
W embedded in

TW,odd,C, namely on the connected component of the inverse image of E
{ε}
W in

TW,odd,C which contains the base point locus Oε
odd, and similarly for cW,ωD,

and then formulate Theorem C in terms of the map defined on the covering
spaces. Actually, as a consequence of Theorem C, E

{ε}
W become homeomor-

phic to a simplicial cone in a real vector space so that it is simply connected.
Also, (π[ε]

τ )−1(E{ε}
W ), as a tube domain over E

{ε}
W , is simply connected. Thus

the covering spaces reduce to trivial covering spaces, and bW,ωD and cW,ωD are
well defined as univalent maps on E

{ε}
W and (π[ε]

τ )−1(E{ε}
W ). Therefore, in the

formulation of Theorem C in the present paper, we assume the knowledge of
the simply connectedness beforehand.

We state Theorem C, announced in the introduction.

Theorem C. Depending on the choices of the sign ε∈{±1}, the scaling
factor ω∈{±

√
εh} and the partition {Π1,Π2}, take a sign factor

(3.5.2) σ := −ω σ(D, {Π1,Π2})(
√

ε)h ∈ {±1}

(recall (2.5.4) for σ(D, {Π1,Π2})). Then the following (1)–(7) hold.
(1) The linearization map b

[ε]
W,ωD induces a semi-algebraic homeomorphism:

(3.5.3) b
[ε]
W,σ·ωD:E{ε}

W
∼−−→ EΓ(W ),

which extends to their closures homeomorphically.
(2) The linearization map c

[ε]
W,ωD induces a semi-algebraic homeomorphism:

(3.5.4) c
[ε]
W,σ·ωD : (π[ε]

τ )−1(E{ε}
W ) ∼−−→ (πΠ)−1(EΓ(W )),

which extends to their closures homeomorphically.
(3) The linearization map (3.5.4) is Ga-equivariant so that we obtain the

commutative Cartesian diagram:

(3.5.5)

(π[ε]
τ )−1(E{ε}

W ) ∼−−→
cW,σ·ωD

(πΠ)−1(EΓ(W ))

π
[ε]
τ

� πΠ

�
E

{ε}
W

∼−−→
bW,σ·ωD

EΓ(W )
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(4) The linearization map b
[ε]
W,σ·ωD maps the ordinary bifurcation set B

[ε]
W,2,R

to the union of the 2-labeled reflection hyperplanes in VΠ:

(3.5.6) b
[ε]
W,σ·ωD : E

{ε}
W ∩BW,2,R

∼−−→ EΓ(W ) ∩ (∪αβ �∈Edge(Γ(W ))Hαβ),

(5) The linearization map c
[ε]
W,σ·ωD maps the real discriminant locus D

[ε]
W,R

to the union of the hyperplanes in V̂Π:

(3.5.7) cW,σ·ωD : (π[ε]
τ )−1(E{ε}

W ) ∩D
[ε]
W,R

∼−−→ (πΠ)−1(EΓ(W )) ∩ (∪α∈ΠHα),

(6) The linearization map c
[ε]
W,ωD maps the central component C{ε} in S

[ε]
W,R

to the coordinate hyperquadrant in V̂Π:

(3.5.8) ĈΓ(W ) :={
∑

α∈Π λαvα∈ V̂Π | (−1)iλα >0 for α ∈ Πi, i = 1, 2}

homeomorphically:

(3.5.9) c
[ε]
W,σ·ωD : C{ε} ∼−−→ ĈΓ(W ).

The map extends to their closures homeomorphically. Here, one note that the
hyper-quadrant satisfies πΠ(ĈΓ(W ))⊂EΓ(W ), but the equality may not holds.

(7) The linearization map c
[ε]
W,ωD maps the opposite components C[ε]± in S

[ε]
W,R

(cf. (1.7.1) and (2.5.5)) to the hyper-quadrants in V̂Π:

(3.5.10)
ĈΓ(W ),± :={∑α∈Π λαvα∈ V̂Π | (−1)i−1λα >0 for i with

(−1)i−1 = ±1 and α ∈ Πi},
homeomorphically:

(3.5.11) c
[ε]
W,σ·ωD : C[ε]± ∩ (π[ε]

τ )−1E
{ε}
W
∼−−→ ĈΓ(W ),± ∩ (πΠ)−1EΓ(W ).

The map extends to their closures homeomorphically.
(8) For a subset Σ of Π, let FΣ be the facet of C{ε} corresponding to the

facet ∩α∈Σ{λα =0}∩ ĈΓ(W ) by (3.5.9). Then, for β ∈ Σc := Π\Σ, φβ is regular
on a neighborhood of FΣ in S

{ε}
W,R. One obtains a semi-algebraic isomorphism:

(3.5.12) (σω · φβ)β∈Σc : FΣ
∼−−→

(∏
β∈Π1∩Σc R>0

)
×

(∏
β∈Π2∩Σc R<0

)
.

Remark 12. In Theorem C, the scaling factor ω and the sign factor σ

appear always as the product σ ·ω. In this paper we distinguished them because
of their different origins.
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§3.6. Proof of Theorem A
Recall the R-equivariant isomorphism (3.5.5). Using (3.5.8)–(3.5.11), for

a positive real number λ ∈ R>0, the map c
[ε]
W,σ·ωD induces a semi-algebraic

diffeomorphism from J̄
{ε}
W (λ) := C̄{ε} ∩ τ [ε](−λ)C̄[ε]+ ∩ τ [ε](λ)C̄[ε]− to

(3.6.1)
ĈΓ(W ) ∩ (ĈΓ(W ),+ − λvΠ) ∩ (ĈΓ(W ),− + λvΠ)

= {(λα)α∈Π ∈ V̂Π | 0 ≤ (−1)iλα ≤ λ for α ∈ Πi, i = 1, 2}

where the right hand side is a parallelotope of dimension l in V̂Π. It is the
intersection of two simplicial cones Ĉε

Γ(W ) and Ĉε
Γ(W )(λ), where

(3.6.2)
Ĉε
Γ(W )(λ) : = (ĈΓ(W ),+ − λvΠ) ∩ (ĈΓ(W ),− + λvΠ)

= {(λα)α∈Π∈ V̂Π | (−1)iλα ≤ λ for α∈Πi, i = 1, 2}.
Let us show a slightly stronger transversality between these two cones in

order to apply it to the proof of Theorem B in the next subsection.

Theorem A addendum. The faces of J̄
{ε}
W (λ) are crossing normally at any

point of J̄
{ε}
W (λ) \ (π[ε]

τ )−1(B[ε]
W,≥3,R) (recall §1.3 Definition 1.).

Proof. Recall the formula (3.4.5) for the Jacobian ∂(φα1 ,...,φαl
)

∂(P1,...,Pl)
of the map

cW . The right hand expression means that it does not vanish on the complement
of (πτ )−1(B[ε]

W,≥3,R). This means that the hyperplanes φα = const for α ∈
Π, which define faces of the polyhedra J

{ε}
W (λ), are normally crossing on the

complement of (πτ )−1(B[ε]
W,≥3,R).

This addendum proves the transversality stated in Theorem A and hence
completes the proof of Theorem A.

Remark 13. Let ao{ε}(λ) be the vertex of J̄
{ε}
W (λ) which is antipodal to

the origin. By the definition, it is on the axis {S = 0}⊂SW (I2(h)),R. For each
ε ∈ {±1}, one has AOε = {ao{ε}(λ) | λ ∈ R>0}. This is the reason why AOε

introduced in (2.5.6), is called the vertex orbit axis.

§3.7. Proof of Theorem B
We shall show that

(3.7.1) K̄ε
W (λ) := (πW )−1(J̄{ε}

W (λ))

is a semi-algebraic polyhedron dual to the Weyl chamber decomposition of V ε
R
.

Since the proofs for ε=1 and for ε=−1 are completely parallel, we prove only
the case ε = 1 and omit the upperscripts ε, {ε} and [ε]. The proof is divided
into two parts: 1. local analytic part and 2. global combinatorial part.
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1. We study the local analytic property of K̄W (λ). In this paragraph,
we mean by (X,x) 
 (Y, y) that there exists an analytic isomorphism from a
neighborhood of x in X to a neighborhood of y in Y bringing x to y.

Assertion 3.3. Let x̃ ∈ K̄W (λ) and m := dimRV
W (x̃)

R
, where W (x̃) is

the stabilizer subgroup of W at x̃ and V
W (x̃)

R
is the fixed point subspace by the

W (x̃)-action. Then, there exist an integer k with 0 ≤ k ≤ m and a local real
analytic isomorphism from a neighborhood of x̃ in VR to a neighborhood of the
origin of (VR/V

W (x̃)
R

)× R
m which makes the following diagram commutative:

(3.7.2)

(VR, x̃) 
 (
(VR/V

W (x̃)
R

)× R
m, 0

)
⋃ ⋃

(K̄W (λ), x̃) 
 (
(VR/V

W (x̃)
R

)× R
k
≥0×R

m−k, 0
)
,

Furthermore, the isomorphism induces the following isomorphisms:
i) the isomorphism of the subspaces

(3.7.3) (V W (x̃)
R

, x) 
 ({0} × R
m, 0)

ii) for any facet G of J̄W (λ) which is adjacent to ao(λ)

(3.7.4)
(
π−1

W (G), x̃
) 
 (

(VR/V
W (x̃)

R
)×K, 0

)

where K is the closure of a facet K of (Rk
≥0×R

m−k,0) (which may be empty).

Proof. Let Q1, . . . , Ql be a system of generators of the ring of invari-
ants S(V ∗

R
)W (x̃), and let us consider a W (x̃)-invariant map Q = (Q1, . . . , Ql) :

(VR, x̃) → (Rl, x) for x := Q(x̃). Then, there is a local analytic isomorphism
� : (Rl, x) 
 (SW,R, x) for x := πW (x̃) such that πW = � ◦ Q. We may
choose the first Q1, . . . , Ql−m to be the generators of the ring of invariant poly-
nomials on VR/V

W (x̃)
R

by the W (x̃)-action, and the last Ql−m+1, . . . , Ql to be
W (x̃)-invariant linear functions on VR whose restrictions on V

W (x̃)
R

give its lin-
ear coordinate system such that x = 0. By this choice of the Qi’s, the local
analytic isomorphism �−1 induces a local splitting of the set C at x:

(3.7.5) (C, x) 

((

(VR/V
W (x̃)

R
)/W (x̃)

)× R
m, 0

)
.

We shall denote by F the stratum of C containing x in the left hand side,
which is locally the image of (V W (x̃)

R
, x̃) by πW . Then (F, x) is mapped to the

subspace (Rm, 0) in the right hand side.
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On the other hand, the linearization map cW maps the central component
C to the cone ĈΓ(W ) (3.5.8), and hence the stratum F to a stratum of ĈΓ(W ),
which is an open cone in ∩l

i=m+1Hαi
for some {αm+1, . . . , αl} ⊂ Π. Then,

φα1 , . . . , φαm
for the remaining index set {α1,. . ., αm}=Π\{α1, . . . , αl−m} form

a local coordinate system of F at x (Theorem C (8)). Therefore, replacing
Ql−m+1, . . . , Ql with φα1−φα1(x), . . . , φαm

−φαm
(x), we obtain a local analytic

expression similar to (3.7.5), where the subspace ({0}×R
m, 0) of the right hand

side is still the image of F by (φαi
− φαi

(x)).
The parallelotope JW , locally at x, is defined as the subset of the central

component C given by inequalities ±φαi
≤λ for some i ∈ {1, . . . , m} and suit-

able signs (depending on i, recall (3.6.1)). Then after a suitable renumbering
of {1, . . . , m}, we obtain further a local isomorphism:

(3.7.6) (J̄W (λ), x) 

((

(VR/V
W (x̃)

R
)/W (x̃)

)× R
k
≥0 × R

m−k, 0
)
.

The facet decomposition of J̄W (λ) as a parallelotope at x coincides with the
natural facet decomposition of R

k
≥0 × R

m−k in the right hand side.
Taking the inverse images of the both sides of (3.7.6) in their covering

spaces, i.e., a neighborhood of x̃ in VR and a neighborhood of the origin
in (VR/V

W (x̃)
R

) × R
m, respectively, we obtain the local analytic isomorphism

(3.7.2). Then (3.7.3) follows from the construction.
Let us consider a facet G of JW which is adjacent to ao(λ). Since ao(λ)∈

G, G is contained in the interior of C. This implies the image of G in the
right hand side of (3.7.5) is contained in

((
(VR/V

W (x̃)
R

)/W (x̃)
)◦×R

m, 0
)

where(
(VR/V

W (x̃)
R

)/W (x̃)
)◦ is the unique open facet. Then, by the isomorphism

(3.7.6), the closure G of the stratum G is mapped to
(
((VR/V

W (x̃)
R

)/W (x̃)) ×
K, 0

)
for the closure of a suitable facet K of (Rk

≥0×R
m−k, 0) (including empty

case). By taking their inverse images, the isomorphism in the first line of (3.7.2)
induces (3.7.4).

Corollary. Let G be a facet of J̄W (λ) which is adjacent to ao(λ). Then
(πW )−1(G) is a submanifold with corners in VR, which is transversal to the
system of hyperplanes {Hα,R}α∈R(W ).

Proof. Since πW |(VR\∪α∈R(W )Hα,R) is locally biregular and G \ DW,R is a
manifold with corner due to Theorem A addendum in §3.6, we only have to
show the property of (πW )−1(G) at a point x̃ ∈ (∪α∈R(W )Hα,R) ∩ (πW )−1(G).
Apply Assertion 3.3 at the point x̃.
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The fact ii) in Assertion 3.3 implies that (πW )−1(G) is a locally closed
manifold with corners. Furthermore, the fact that ((πW )−1(G), x̃) contains the
factor (VR/V

W (x̃)
R

, 0) implies that it is transversal to the submanifold (Rm, 0).
Since V

W (x̃)
R

is the intersection of the reflection hyperplanes pathing through
x̃, i) in Assertion 3.3 implies that ((πW )−1(G), x̃) is transversal to every facet
Vγ of VR (recall (1.2.2)).

2. We describe the facet decomposition of K̄W (λ) :=(πW )−1(J̄W (λ)). We
first prepare terminology on the facet decomposition of JW .

Let F(o) = {Fγ}γ∈Γ(o) and F(ao) = {Gδ}δ∈Γ(o) be the sets of facets of JW

which are adjacent to o and to ao, respectively. Here we use the same index set
Γ(o) for the both sets by the reason i) below, and put an overline on the index
by the reason iv) below.

i) There is a one-to-one correspondence F(o) ↔ F(ao) in such a manner
that Fγ ↔ Gδ if and only if F γ ∩Gδ consists of a single point.

ii) The set Γ(o) is partially ordered such that for γ, δ ∈ Γ(o) one has

(3.7.7) γ ≤ δ ⇔ Fγ ⊂ F δ ⇔ Gγ ⊃ Gδ.

iii) Gγ ∩ F δ 
= ∅ if and only if γ ≤ δ for γ, δ ∈ Γ(o). The intersection is a
closed facet of JW (
 [0, 1]k) of dimension k = dim(Fδ)− dim(Fγ).

iv) Recall the index set Γ (1.2.2), on which W acts in the obvious manner.
Then, there is a bijection Γ/W 
 Γ(o) (where the image of δ ∈ Γ is denoted by
δ ∈ Γ(o)) such that πW (V δ) ∩ J̄W (λ) = F δ for δ ∈ Γ.

Definition. A semi-algebraic set K in VR is called a facet of K̄W (λ) if
there is Gγ ∈ F(ao) such that K is the interior of a connected component of
(πW )−1(Gγ).

Let us show that the set of all facets of KW (λ) is indexed by Γ. For any γ ∈
Γ, by the definition, πW (Vγ) and Gγ intersects at a single point transversally.
Therefore, there exists a unique connected component of (πW )−1(Gγ) that
intersects Vγ . Its interior is, by the definition, a facet of KW (λ), which we shall
denote by Kγ . Conversely, let K be the interior of a connected component of
(πW )−1(Gγ) for some γ ∈ Γ(o). Since F γ intersects Gγ transversally at a point,
there exists a connected component of (πW )−1(Fγ) whose closure intersects K

at a single point. Let Vγ for γ ∈ Γ be the cone in (1.2.2) which support the
component such that γ projects to γ. Thus, we find a unique γ ∈ Γ such that
Vγ intersect K at a point.
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By definition, all facets of KW (λ) are disjoint and cover KW (λ). This
shows the decomposition

(3.7.8) KW (λ) = �γ∈ΓKγ .

The fact that (3.7.8) gives a semi-algebraic stratification of KW (λ) (i.e.,
they satisfy the boundary condition) can be reduced to that of F(ao). The fact
that KW (λ) becomes a semi-algebraic polyhedron with respect to the decom-
position (3.7.8) whose faces are normally crossing follows from (3.7.2).

Finally, we have to show the three duality properties i), ii) and iii) for
KW (λ) in Definition 2 in §1.3. The proofs are reduced to the duality between
F(o) and F(ao) and to the local analysis discussed in the first half of this
proof. In particular, for the last iii), we have to show that the intersection of
the closure of a chamber C with the KW (λ)

(3.7.9) C ∩KW (λ)

is analytically isomorphic to the cube [0, 1]l in the following strong sense: there
is a neighborhood in VR of the set (3.7.9) and a real analytic isomorphism of
the neighborhood to an open subset of R

l such that the set (3.7.9) is mapped
homeomorphically onto the cube [0, 1]l. The fact that the set (3.7.9) is home-
omorphic to a cube follows from the fact that the restriction of πW on the set
(3.7.9) is a homeomorphism onto the polyhedron JW (λ). On the other hand,
we have shown in Assertion 3.3 that faces are normally crossing at any point
of the boundary of the set (3.7.9). These two show the required result.

These complete the proof of Theorem B.

Note. The set (3.7.9) is given by two systems of l-inequalities on VR.

(3.7.10) (∩α∈Π{fα ≥ 0}) ∩ (∩i=1,2 ∩α∈Πi
{(−1)iφα ≤ λ}) .

§3.8. Examples of type A3

The shaded area in the upper and lower right figures (Fig. 2) are the
central region E

{ε}
A3

and the Γ(A3)-cone EΓ(A3), respectively. The tube domain

(π[ε]
τ )−1(E{ε}

A3
) in S

[ε]
A3,R is illustrated in the upper left figure as the domain

sandwiched by the covers of an open booklet. The tube domain π−1
Π (EΓ(A3))

in V̂Π is illustrated in the lower left figure as the domain sandwiched by the
straight covers of an open booklet.
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0 E
{ε}
A3

πτ

B
[ε]
A3,2

B
[ε]
A3,3

T
[ε]
A3,R

S
[ε]
A3,R

(πτ )−1(E{ε}
A3

)

D
[ε]
A3,R

c
[ε]
A3

0

b
[ε]
A3

V̂ΠA3

Hα1α2

EΓ(A3)
0

Hα1α3

Hα2α3

VΠA3

πΠ

(πΠ)−1(EΓ(A3))

Γ(A3) := ◦
α1
−−◦

α2
−−◦

α3

Hα3

Hα1

Hα2 0

Figure 2. The linearization maps of type A3
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§4. Fundamental Group of SW,C\DW,C

An Artin group presentation of the fundamental group of the regular orbit
space SW,C \DW,C is given by E. Brieskorn [Br1], where a group G with the
presentation: generator system aα (α∈Π) and the braid relations: aαaβ . . .︸ ︷︷ ︸

mαβ-letters

=

aβaα . . .︸ ︷︷ ︸
mαβ-letters

for α, β ∈ Π as for the fundamental relations, is called an Artin

group [BS]. The generators of π1(SW,C\DW,C) are described in [Br1] in terms of
adjacent chambers in VR (see also a work by P. Deligne [D1], where the Artin
group is given in terms of the galleries of chambers). Then, several authors
including Brieskorn, Deligne and the author asked to describe the generator
system of the Artin group in terms of a geometry onSW,C.

As a consequence of Theorems A, B and C, we give two different an-
swers to this question. The first one is to use the 1-skeleton of JW (λ){ε}

and is described in 4.1. Identification with Brieskorn’s generator system is
given in 4.2. The second one is to use τ -orbits as the pencil of Zariski-van
Kampen method. It is described in §4.3 and is identified in §4.4 with the
one given in §4.1. The generator systems, we have described, depend on
the choice of ε ∈ {±1} since the base points belong to the different central
component C{ε}. The relation between the two generator systems is given in
4.5.

In this section, we sometimes identify a path and its homotopy class.

§4.1. 1-skeleton of the polyhedron J
{ε}
W (λ)

With a use of the 1-skeleton of the polyhedron J
{ε}
W (λ) (Theorem A), we

construct a generator system of π1(SW,C\DW,C). Using Theorem B, they are
identified in §4.2 with the one studied by Brieskorn [Br].

Let ao{ε}(λ) be the vertex of J
{ε}
W (λ) which is antipodal to the origin

(belonging to AOε). Due to Assertion §1.1 5, for each α ∈Π, there exists a
unique edge [ao{ε}(λ),pα] of J

{ε}
W (λ) which starts from ao{ε}(λ) and terminates

at a point pα on the αth face of C{ε}
(cf. Fig. 4).

Since the edge [ao{ε}(λ),pα] intersects the discriminant D
[ε]
W,R transversally

at pα (Theorem A), a complexification of [ao{ε}(λ), pα] (a complex open curve
in SW,C which contains [ao{ε}(λ), pα]) intersects the discriminant locus DW,C

transversally at pα. In the complexification, let us consider a closed path γα

based at ao{ε}(λ) and turning once around the discriminant locus at pα counter-
clockwise as in Fig. 3.
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γα

ao{ε}(λ) = (λ, · · · , λ)pα = (λ, λ, · · · , α
0, · · · , λ)

Figure 3. The generator γα on an edge of J
{ε}
W (λ) (cf. Fig. 4).

Theorem 4.1. The system of the homotopy classes of γα (α ∈ Π) in
π1(SW,C\DW,C, ao{ε}(λ)) coincides with the generator system {gα}α∈Π given by
Brieskorn [Br1, Zusatz]. Therefore, π1(SW,C\DW,C, ao{ε}(λ)) is an Artin group
with respect to the generator system γα (α ∈ Π).

§4.2. Proof of Theorem 4.1
Let ão

ε(λ) be the vertex of Kε
W (λ) in the chamber Cε which projects to

the vertex aoε(λ) of J
[ε]
W (λ). For α∈Π, let α·ão

ε(λ) be the image of ão
ε(λ) by

the reflection α, and [ão
ε(λ), α·ão

ε(λ)] be the 1-edge of the polyhedron Kε
W (λ)

connecting two vertices ão
ε(λ) and α·̃ao

ε(λ), which intersects Hε
α,R transversally

at an inverse image p̃α of the point pα. Then, πW projects [ão
ε(λ), p̃α] and

[p̃α, α·ão
ε(λ)] onto the edge [pα, aoε(λ)].

The inverse image of the path γα (see Fig. 3), which starts at ão
ε(λ), is a

path in the complexification of the edge [ão
ε(λ), α·̃ao

ε(λ)] connecting ão
ε(λ) and

α·ão
ε(λ) described as follows: start at ão

ε(λ) and move along [ão
ε(λ), p̃α] close

to p̃α. Then, just before reaching p̃α turn along a half circle centered at p̃α in the
counter-clockwise direction (inside a complexification of [ão

ε(λ), α · ão
ε(λ)], in

which [ão
ε(λ), α·̃ao

ε(λ)] crosses the discriminant locus at the point p̃α) and then
to come back to a point [p̃α, α·ão

ε(λ)]. Then, again move along [p̃α, α·ão
ε(λ)]

till the point α·ão
ε(λ). In fact, this path is homotopic to the path gα described

by Brieskorn [Br1,Zusatz].

Note. Let us briefly explain how the braid relations follow immediately
from the description of γα. For any pair α, β ∈ Π, consider the 2-dimensional
facet, denoted by [aoε(λ), pα, pβ ], of JW

{ε}
(λ) containing the edges [aoε(λ), pα]

and [aoε(λ), pβ ] (Fig. 4.). The [aoε(λ), pα, pβ ] is a parallelogram transversal
to the 2-codimensional stratum of the discriminant locus of label mα,β . The
inverse image of the parallelogram in Kε

W (λ) is a union of 2mαβ-gons, whose
boundary are mαβ-alternating sequence of inverse images of [aoε(λ), pα] and
[aoε(λ), pβ ]. One translates a 2mαβ-gon Kαβ to K̃αβ in a complex direction in
VC such that i) K̃αβ does not meat with reflection hyperplanes, ii) the boundary
of K̃αβ is homotopic to an alternating sequence of inverse images γα and of γβ .
Taking care of the orientations of the edges, one obtains the homotopy relation:
γαγβ . . .=γβγα . . . (mαβ-terms).
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(cf. Fig.2.)

•

•

•

pβ

ao{ε}(λ)
2-mαβcusp

(label=mαβ)

pα

•

(cf. Fig.6.)

•

•

•
2-mαβcusp

(label=mαβ)

•

•
•

•

∗

•

tβ

tα

Figure 4.The 2-Facet [aoε(λ), pα, pβ ] Figure 5. Pencil close to αβ-edge

§4.3. Zariski-van Kampen generator system
We identify the generator system {γα}α∈Π in §4.1 with the well-known

Zariski-van Kampen generator system. This is achieved since the τ -direction
is transversal to the discriminant divisor, and hence the τ -orbits in SW play a
role as the Zariski pencil.

Choose a base point ∗ε in the central component C{ε} in S
[ε]
W,R. The real line

τ [ε](R)(∗ε) and the real discriminant locus D
[ε]
W,R intersect by l-points (counted

with multiplicity) due to Theorem C. We order them as

(4.3.1) t1 ≤ · · · ≤ tl1 < ∗ε < tl1+1 ≤ · · · ≤ tl,

where u ≤ v (resp. u < v) means v ∈ τ [ε](R≥0)u (resp. v ∈ τ [ε](R>0)u). For a
generic ∗ε (precisely, if ωW,2(∗ε) 
= 0), the points t1, . . . , tl are distinct. Inside
the complexification τ(C)(∗ε) of the line, we choose l-closed paths δ1, . . . , δl

based at ∗ε and turning once around the points t1, . . . , tl counter-clockwise as
in the Fig. 6.

· · ·· · ·
δlδl1+1δ1 δl1

t1 tl1+1 tl∗εtl1

Figure 6. The Zariski-van Kampen generators on a τ -orbit (cf. Fig.5.).

It is well-known that they generate the fundamental group of the com-
plement of the discriminant locus and that their fundamental relations are
determined by the Zariski-van Kampen method.

We compare the two generator systems introduced in §4.1 and in the
present subsection. Let aoε and ∗ε be the base points chosen in §4.1 and
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§4.3. The paths in C{ε} connecting aoε and ∗ε consist of a single homotopy
class, denoted by [aoε, ∗ε], since C{ε} is simply connected.

Theorem 4.2. The conjugation by [aoε, ∗ε] induces the bijection of the
generator systems:

{γα}α∈Π 
 {δi}1≤i≤l,

where the bijection {1, . . . , l} 
 Π of the index sets is given by the map cW :
i ↔ α ⇔ cW (ti) ∈ Hα. The homotopy classes δ1, . . . , δl1 mutually commute,
and so do the homotopy classes δl1+1, . . . , δl.

§4.4. Proof of Theorem 4.2
Let ∗ε ∈ C{ε} be the base point as above. Consider the real τ -orbit

τ [ε](R)(∗ε). Due to the homeomorphism (3.5.5), we identify the tube domain
(π[ε]

τ )−1(E{ε}
W ) with (πΠ)−1(EΓ(W )). For α∈Π1, the half line τ [ε](σε[h/2]

R>0)·∗ε
intersects the hyperplane Hα = {φα = 0} at a point, which we write tα. For
α ∈ Π2, the other half line τ [ε](−σε[h/2]

R>0) · ∗ε intersects the hyperplane
Hα ={φα =0} at a point, which we write tα. If πτ (∗ε) 
∈ B

[ε]
W,2,R, then all tα’s

are distinct. We choose the paths as in Fig. 6. Let us index them by the set Π:
the path turning around the point tα shall be called δα.

We first show that
i) the homotopy classes of δα for α ∈ Π1 mutually commute and so do the

homotopy classes of δα for α ∈ Π2,
ii) for two choices of base points ∗1 and ∗2 ∈ C{ε}, the conjugation by a

path connecting ∗1 and ∗2 in C{ε} induces one to one correspondences between
the generators of the same index.

They follow from the descriptions of the discriminant locus and the central
component in Theorem C, (5) and (6) as follows. Move the line τ [ε](R)(∗) by
moving ∗ in C{ε} and trace the l-points {tα}α∈Π = τ [ε](R)(∗) ∩ D

[ε]
W,R in the

line. The fact that E
{ε}
W does not intersect higher bifurcation set BW,≥3 but

only with ordinary B
[ε}
W,2,R implies that one obtains only some commutative

relations among generators. As far as ∗ moves inside C{ε}, the set of points
{tα |α∈Π1} and the set of the points {tα |α∈Π2} are separated by the base
point ∗ (Theorem C (6)). Theorem C (5) claims that if α and β belong to
the same Π1 or Π2, then the hyperplanes Hα and Hβ are normal crossing in
the tube domain (π[ε]

τ,R)−1(π[ε]
τ,R(C{ε})) ⊂ (π[ε]

τ,R)−1(E{ε}
W ). This proves i) and

ii).
Next, we show that
iii) the conjugation by a path connecting aoε(λ) and ∗ε in C{ε} induces a

correspondence of the homotopy class of γα to that of δα for α ∈ Π.
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We prove this by a use of ii) as follows.
For each α ∈ Π, we can choose a base point ∗α such that the line τ [ε](R) ·

∗α and the discriminant locus D
[ε]
W,R intersect at the point pα introduced in

§4.1. Let [ao{ε}(λ), ∗α] be a path in C{ε} connecting the two vertices and let
[∗α, pα] be the interval in the line τ [ε](R) · ∗α. Then, the path [ao{ε}(λ), pα]
(the edge of J

{ε}
W (λ[ε]) connecting the vertices ao{ε}(λ) and pα) is homotopic

to the composition of paths [ao{ε}(λ), ∗α][∗α, pα] in C{ε}. This means that the
conjugation by [ao{ε}(λ), ∗α] induces the correspondence between the homotopy
classes of γα and that of δα. This fact together with ii) implies iii).

Note. That the generator system {δα}α∈Π satisfies the braid relations can
be shown by the standard Zariski-van Kampen method.

§4.5. Comparison of generator systems for ε ∈ {±1}
Our identification of the fundamental group of SW,C\DW,C with the Artin

group (either by the use of {γα}α∈Π or of {δα}α∈Π) depends on the choice
of the base point locus. Actually, depending on ε ∈ {±1}, the base point is
chosen in the central component C{ε}. For a path γ connecting C{+} and C{−},
an isomorphism of the two fundamental groups is given by Ad[γ], where [γ] is
the homotopy class of the path and by Ad we mean the conjugation action on
homotopy classes.

Here we choose the simplest path connecting the two components C{+1}

and C{−1}. Namely, let the base points ao+ (resp. ao−) lie on the positive
(resp. negative) half v.o. axis AOε. Consider the complexification of the v.o.
axis. Inside the complex v.o. axis deleted by the origin, let γ+ (resp. γ−) be
the path connecting ao+ to ao− (resp. ao− to ao+) by turning half around the
origin counter-clockwise.

ao+

γ+

γ−

ao− oAO− AO+◦ ••

Figure 7. The complexification of the vertex orbit axis AO

By the use of them, we have the isomorphisms:

π1(SW,C \DW,C, ao+)
Ad[γ+]−→ π1(SW,C \DW,C, ao−)

π1(SW,C \DW,C, ao+)
Ad[γ−]←− π1(SW,C \DW,C, ao−)
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In order to state the following Assertion, we recall the fundamental element
[BS]. Consider the monoid generated by the letters aα (α ∈Π) satisfying the
braid relations as the defining relations. The fundamental element ∆ is the
shortest element in the monoid which is divisible (from both sides) by any of
the generators aα. Such ∆ exists uniquely in the monoid. Since the monoid is
embedded in the Artin group, we identify ∆ with its image.

Assertion 4.3. The homotopy classes [γ+][γ−] and [γ−][γ+] are the
fundamental element ∆ in each of the fundamental group based at ao+ and
ao− regarded as an Artin group with respect to the generator systems {γα}α∈Π.

This fact follows from i) the length of [γ+][γ−] as an element of the monoid
is given by l([γ+][γ−]) = deg(∆W )/deg(R) = hl/2 = l(∆), and ii) a description
of the monodromy of [γ+][γ−] on bW : TW,C � �� VΠ,C, see [S4,§8,9]).

Note. 1. ∆2 belongs to the center of the Artin group for any type of W .
However, ∆ does not belong to the center if W is of type An for n ≥ 2, D2k+1

for k ≥ 2, E6 and I2(2q + 1) for q ≥ 1.
2. The fundamental element ∆ projects to the longest element of the

Coxeter group W .

Appendix. Dihedral Group of Type I2(h)

For the dihedral group W (I2(h)) (h≥3), we describe the data 1 – 9.

1. The action of W (I2(h)) on U (recall Notation §2.5 i) – vi)):

W (I2(h)) is generated by the reflections α1 and α2 on U := R⊕Ri given by
α1(z) := z and α2(z) := ω2z, where z := x + yi ∈ U and ω := exp(πi/h),
which satisfy the fundamental relation (α1α2)h = 1.

2. The set of reflections of W (I2(h)) is given by

R(W (I2(h)))={αk :=α1(α1α2)k−1 |k=1,. . ., h}.

3. The normalizer N(W (I2(h))) in GL(U) is equal to W (I2(2h)) and
N(W (I2(h)))/W (I2(h)) = {[1], [β]} where β is the reflection: β(z) = ωz.
One has [−1] = [1] for even h, and [−1] = [β] for odd h.

4. The twisted real vertex orbit planes are given by

S
[+1]
W (I2(h)),R = Spec(R[R,S])R and S

[β]
W (I2(h)),R = Spec(R[R,S[β]])R,

where R=R[β] =x2+y2, S =S[1] =Re((x+iy)h) and S[β] =S/
√−1.



1380 Kyoji Saito

5. For [u] ∈ N(W )/W , the twisted real discriminant locus D
[u]
W (I2(h)),R in

S
[+1]
W (I2(h)),R is defined by the equation:

∆W (I2(h)) = Rh − S2 = Rh + (S[β])2 = εh((εR)h − (S[ε])2) = 0.

This implies that D
[β]
W (I2(h)),R ={0} for even h, but D

[ε]
W (I2(h)),R 
={0} for any

ε. Therefore, in 7. and 8., we consider only cases for [ε].

6. The τ [u]-action on the plane: (R,S[u]) �→ (R,S[u] + λ[u]) for λ[u] ∈ R,

7. The equation for the inverse image (π[ε]
W,R)−1(D[ε]

W (I2(h)),R +λ[ε]) by the polar
coordinates x + iy =

√
εrexp(iθ) on Uε is given by

(τ [ε])∗(λ[ε])∆W = Rh − εh(S[ε] + λ[ε])2

= εh(r2h sin2(hθ)− 2εh(h−1)/2rhλ[ε] cos(hθ)− (λ[ε])2)
= εh(rh(1− εh(h−1)/2 cos(hθ))− λ[ε])(rh(1 + εh(h−1)/2 cos(hθ)) + λ[ε])

8. The dual polyhedron is described by the polar coordinates as

K̄ε
W (λ[ε]) = {z ∈ Uε | τ [ε](λ[ε])∆(z) ≤ 0} ∩ {τ [ε](−λ[ε])∆(z) ≤ 0}

= {√εrexp(iθ) ∈ Uε | rh ≤ λ[ε]/(1− εh(h−1)/2 cos(hθ))
rh ≤ λ[ε]/(1 + εh(h−1)/2 cos(hθ))}.

9. For h=3 and 4, for ε=1 or −1 and for λ[ε] =1, we draw the figures:

i) the real discriminant locus D
[ε]
W,R and the λ[ε]-shifted real discriminant

locus: D
[ε]
W,R ± λ[ε] := τ [ε](±λ[ε])(D[u]

W,R) in S
[ε]
W (I2(h)),R.

ii) the inverse images (π[ε]
W,R)−1(D[ε]

W,R) and (π[ε]
W,R)−1(D[ε]

W,R±λ[ε]) inUε.

iii) the parallelograms J
{ε}
W (λ[ε]) and the polyhedra Kε

W (λ[ε]) (shaded).

iv) the two twisted real forms S
[1]
W (I2(h)),R and S

[β]
W (I2(h)),R which are embed-

ded in the real 3-space SW (I2(h)),C ∩ {Im(R) = 0}.

Remark 14. We compare the multiplicities of two equations of the bifur-
cation set in the vertex orbit curve TW (I2(h)) := Spec(R[R]).

i) The discriminant δ of the map R = zz̄ = x2 + y2 : U → R is equal to
R itself. (The free resolution of R[x, y]/(∂xR, ∂yR) as an R[R]-module is given

by 0→ R[R] R→ R[R]→ R[x, y]/(∂xR, ∂yR)→ 0.)
ii) The discriminant ω of the quadratic polynomial ∆W (I2(h)) = Rh − S2

in S is equal to 4 ·Rh.
Comparing i) and ii), we obtain a relation:

ω = 4 · δh.(*)
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1. h is odd and coset [1]: In this case, [β] = [−1] 
∈ [W (I2(h))].

D
[+1]
A2,R

+ λ[+1]

D
[+1]
A2,R

D
[+1]
A2,R

− λ[+1]

π+1
A2R

3 lines in V +
A2

are the reflection hyperplanes for WA2 .

0 J
{+1}
A2

(π+1
A2,R

)−1(D
[+1]
A2,R

+ λ[+1])

S
[+1]
A2,R

(π+1
A2,R

)−1(D
[+1]
A2,R

− λ[+1])

V +1
A2

= VA2,R

K+1
A2

Figure 8. Polyhedra J
{+1}
A2

and K+1
A2

for λ[+1] = 1

2. h is odd and coset [β] = [−1]:

(π−1
A2,R

)−1(D
[−1]
A2,R

− λ[−1])

D
[−1]
A2,R

− λ[−1]

D
[−1]
A2,R

D
[−1]
A2,R

+ λ[−1]

π−1
A2,R

S
[−1]
A2,R

0J
{−1}
A2

3 lines in V −
A2

are the reflection hyperplanes for WA2 .

(π−1
A2,R

)−1(D
[−1]
A2,R

+ λ[−1])

V −1
A2

= VA2,R ⊗
√−1

K−1
A2

Figure 9. Polyhedra J
{−1}
A2

and K−1
A2

for λ[−1] = 1
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D
[+1]
A2,R

S
[−1]
A2,R

D
[−1]
A2,R

•0

S
[+1]
A2,R

TA2,R

Im(S)

Re(R)

Re(S)

Figure 10. Positions of S
[+1]
A2,R and S

[−1]
A2,R inside SA2,C ∩ {Im(R) = 0}.

3. h is even and coset [1] = [−1]: In this case, −1 ∈W (I2(h)).

S
[+1]
B2,R = S

[−1]
B2,R

DB2,R := D
[+1]
B2,R = D

[−1]
B2,R

V +1
B2

= VB2,R

V −1
B2

= VB2,R ⊗
√−1

K−1
B2

K+1
B2

reflection hyperplanes for WB2 .
4 lines in V +1

B2
and V −1

B2
are

π+1
B2,R

J
{+1}
B2

DB2,R + λ

π−1
B2,R

(π−1
B2,R)−1(DB2,R − λ)

(π−1
B2,R)−1(DB2,R + λ)

(π+1
B2,R)−1(DB2,R + λ)

(π+1
B2,R)−1(DB2,R − λ)

0

DB2,R − λ

J
{−1}
B2

Figure 11. Polyhedra J
{±1}
B2

(λ) and K±1
B2

(λ) for λ = 1.
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4. h is even and coset [β]: In this case, [β] 
= [−1] ∈ [W (I2(h))].
The discriminant locus D

[β]
W (I2(h)),R in the real form S

[β]
W (I2(h)),R consists only of

the origin {o}. Therefore, we omit the figure for this case.

D
[+1]
B2,R = D

[−1]
B2,R

D
[+1]
B2,R = D

[−1]
B2,R

S
[β]
B2,R

• TB2,R

S
[+1]
B2,R = S

[−1]
B2,R

0

Im(S)

Re(R)

Re(S)

Figure 12. Positions of S
[±1]
B2,R and S

[β]
B2,R inside SB2,C ∩ {Im(R) = 0}.
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