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§1. Introduction

In 1952, two paradoxes of diffusion were demonstrated by simple differ-
ential equations. The first paradox was shown by a great mathematician,
A. Turing, who is well known as a pioneer in the field of computer science.
He proposed a simple reaction-diffusion (RD) system for which a spatially con-
stant equilibrium state is possibly destabilized so that non-constant equilibrium
states appear [1]. The occurrence of such destabilization indicates that diffusion
does not necessarily enhance homogeneity in space. This instability is called
“diffusion-induced instability”. Mathematically speaking, it is some bifurcation
phenomenon which is interpreted as the destabilization of spatially constant
equilibrium solutions, when certain parameters in the system are suitably var-
ied. He claimed that such destabilization plays a role in cell differentiation and
morphogenesis arising in biological systems. The second was contributed by
two neurophysiologists, A. L. Hodgkin and A. F. Huxley, who investigated the
mechanism of impulses propagating along nerve fiber from experimental view-
points [2]. One of the important neurophysiological problems was to under-
stand the reason why a nerve impulse constantly propagates with fixed shape.
In the same year as Turing’ paradox was stated, they proposed a model of
nonlinear partial differential equations to describe the propagation of impulses
along fibers. The model is given by a coupling of a single RD equation with
three ODEs. Since it contains high nonlinearity, its analysis was so hard at
that time. But the model could be managed to numerically solve. It is thus
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1414 Masayasu Mimura

surprisingly revealed that it generates a localized wave which propagates with
constant velocity. This should be another paradoxical evidence of diffusion,
because their equations possibly generate a propagating localized wave, despite
that they possess diffusion effect. Since two paradoxes were demonstrated in
1952, RD systems of the form

Ut = D∆U + F (U)(1.1)

have been intensively studied in the fields of not only mathematics but also ap-
plied sciences. Here U = (u1, u2, . . . , un), F (U) = (f1(U), f2(U), . . . , fn(U))
and D is a diagonal matrix with positive elements {di} (i = 1, 2, . . . , n). Nu-
merics has revealed that RD system of the form (1.1) generated so diverse
complex patterns as well as waves arising in biology, chemistry, physics and
other fields, in spite that it looks so simple. Let me show one simple but sug-
gestive example of (1.1), which is the following two-component system for the
unknowns (u, v): {

τut = ε∆u + ε−1f(u, v)

vt = ∆v + g(u, v)
(1.2)

with f(u, v) = u(1−u2) and g(u, v) = u−u0−γ(v−v0) where u0 = −
√

2/2, v0 =
−
√

2/4, and τ , ε and γ are positive constants. Suppose that the constant γ is
relatively large (satisfying γ > 1.74 . . . ) so that the nulclines of f and g possess
three intersecting points, say P, Q and R, as shown in Figure 1.

In the absence of diffusion, (1.2) reduces to the ODEs for the unknowns
(u(t), v(t)) {

τεut = f(u, v)

vt = g(u, v)
(1.3)

which is called the Bohnhofer van der Pol equations [3]. By using phase plane
analysis, one can easily find that the critical points P and R are both asymp-
totically stable, while Q is unstable, and moreover, for almost all initial data,
the solution (u(t), v(t)) of (1.3) converges to either P or R. Therefore it turns
out that (1.3) is a bistable system for which the dynamics of solutions is quite
simple. Keeping this result in mind, let us go back to (1.2) in RN or in a
bounded domain with zero-flux (Neumann) boundary conditions. Then we can
also see that P and R are locally asymptotically stable, while Q is unstable,
that is, (1.2) is a bistable RD system. Since a diffusion effect enhances spatial
homogeneity, one may expect that the asymptotic behavior of solutions of (1.2)
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Figure 1. Nulclines of f and g in (1.2)

may inherit that of (1.3). Therefore, the following question naturally arises:
“Is this expectation correct or not?”. The limiting case when γ → ∞ in (1.2)
can be answered. In this case, v becomes zero so that (1.2) and (1.3) reduce to
the following scalar equations for u only, respectively:

τεut = ∆u + f(u, 0)(1.4)

and

τεut = f(u, 0).(1.5)

If (1.4) is considered in any convex domain with the zero-flux boundary
condition, it is already known that any spatially non constant equilibrium solu-
tions are unstable, even if they exist [4]. This implies that any solution of (1.4)
is asymptotically described by the one of (1.5). That is, the expectation stated
above is correct for very large γ. Then the next question is “How is the case
when γ is not very large?”. Unfortunately, this question has not yet been
analytically answered except for numerical computation. Let us show some
numerical results on (1.2) with γ = 2.0 where the nulclines of f and g are per-
fectly odd symmetric with its intersecting point Q. We first show some remarks
on the 1-dimensional traveling front solutions (u, v)(z) (z = x − ct) with the
velocity c in −∞ < z < ∞, where the boundary conditions are

(u, v)(−∞) = P and (u, v)(∞) = R(1.6)

[5] [6]. The first remark is that, due to the odd symmetry property of f and g

(γ = 2.0), a standing (stationary) front solution, say SF, exists for any value
of τ , and that its stability depends on τ . If τ is large, it is stable but when τ

decreases, it destabilizes so that two traveling front solutions, say TF+ with the
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velocity c+ > 0 and TF− with c− < 0, super-critically and globally bifurcate
from the trivial standing front one where c+ = −c−, as in Figure 2. That is,
if τ is chosen so as to be relatively small, then there exist two stable traveling
front solutions (Figure 3) and one unstable standing front solution. Such multi-
coexistence of traveling front solutions is an essential feature in the system (1.2),
because, the scalar equation (1.4) possesses a unique traveling front solution
for any fixed value of τ .

Figure 2. Pitchfork bifurcation

Keeping the information on traveling front solutions in mind, we con-
sider (1.2) in a square domain S = {(x, y) ∈ R2|0 < x < L, 0 < y < L}. Under
the zero-flux boundary conditions, we compute (1.2) where L = 20, ε = 0.05,
and γ = 3.5 and τ is a free parameter. The first case is where τ = 0.05. Let
the initial function (u(0, x), v(0, x)) be constructed in a way that it is approxi-
mated by TF+ on the upper half domain of S, and also approximated by TF−
on the lower half domain, as in Figure 4(a). Then for a short time, the re-
sulting pattern twists to the clockwise direction, as in Figures 4(b), (c) and as
time passes, rotating spiral pattern occurs, as in Figures 4(d), (e). This spatio-
temporal pattern can not be expected by the information of the corresponding
ODEs (1.3) only. This is certainly caused by the interplay of kinetics arising
in ODEs and the diffusion effect in (1.2).

The second case is where τ = 0.20. The initial function is constructed
similarly to Figure 4(a). For a short time, spiral pattern begins to form,
as is expected. However, it breaks down and after large time, very com-
plex irregular pattern appears, as in Figures 5(a)∼(c). Eventually, regular
labyrinthine pattern is formed, as in Figures 5(d), (e). These numerical re-
sults clearly indicate that RD systems of the form (1.2) possibly generate
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Figure 3. Traveling front solutions TF+ and TF−

complex spatial and/or temporal patterns, which we are unable to expect
from (1.3).

As is suggested by the above, we are interested in understanding what
kind of patterns appear due to the interplay of reaction and diffusion. In this
respect, the RD systems (1.2) in which any solution tends to be spatially ho-
mogeneous, in other words, no pattern appears, should be, one might say, dis-
carded from our investigation, because they are less interesting from a pattern
formation viewpoint.

We nevertheless would like to address the question: “Are RD systems
of which any solution becomes spatially homogeneous really less interesting,
from pattern formation viewpoints?” More precisely speaking, “Is the transient
behavior of solutions also less interesting?”. In this paper, we will introduce
a class of consumer-finite resource RD systems and discuss this problem. Our
purpose of the present paper is to say “No” to this question.
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Figure 4. Formation of rotating spiral pattern



�

�

�

�

�

�

�

�

Consumer-Finite Resource RD System 1419

Figure 5. Formation of labyrinthine pattern

§2. Consumer-Finite Resource RD Systems

In this section, we restrict our discussion to the following class of RD
systems for two components (u, v):

{
ut = du∆u + f(u)v − h(u)

vt = dv∆v − f(u)v,
(2.1)

where u and v are called the consumer species and its resource, respectively.
du, dv are the diffusion rates of u and v, respectively. f(u)v is the growth
term where f(u) is a increasing function satisfying f(0) = 0 and h(u) is the
conversion (or dissipation) term where it is a non-decreasing function satisfying
h(0) = 0. Let us first introduce some examples described by (2.1).
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Example 1. Epidemic diffusive model [7]
Let u, v be respectively the infective and susceptible species which move

by diffusion. The interaction between two species can be described by{
ut = du∆u + kuv − au

vt = dv∆v − kuv,
(2.2)

where k is the contagion rate of the infective and susceptible species and a is
the removal rate of the susceptible species. Both are positive constants.

Example 2. Autocatalytic reactions [8]
Let us consider the following two chemical processes for three chemical

substances U, V and P:

V + nU → (n+1)U(R1)

mU → P(R2)

When k and a are the reaction rates of (R1), (R2), respectively, the pro-
cesses (R1), (R2) can be described by


ut = du∆u + kunv − aum

vt = dv∆v − kunv

pt = aum

(2.3)

where u, v and p are the concentrations of the intermediate product U, the
reactant V and the final product P. Here we assume that P is immobilized.
n and m are some positive integers. It turns out that the first two equations
are closed for u and v so that (2.3) falls into the framework of (2.1). In par-
ticular, for n = 2 and m = 1, (2.3) is called the Gray-Scott systems without
feeding process.

Example 3. Exothermic reaction-diffusion system [9]
A simplest exothermic reaction of some reactant Z is the following process:

Z → P

where P is a product. Since the reaction is exothermic, the reaction rate de-
pends on temperature, say T . It is given by k(T ), which is called the Arrehenius
rate. Then the process is described by{

Tt = dT ∆T + ωk(T )z − aT

zt = dz∆z − k(T )z
(2.4)
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where z is the concentration of the reactant Z, ω is the conversion rate and a

is the rate of heat radiation. Both are positive constants. k(T ) is a increasing
function of T .

For the system (2.1) in a bounded domain Ω (in RN ) with the zero-flux
boundary conditions and the initial conditions

(u, v)(0, x) = (u0, v0)(x) ≥ 0 x ∈ Ω,(2.5)

asymptotic behavior of solutions (u, v) are well studied. As an example of (2.1),
we consider (2.3) and show some results.

Theorem 1 (Masuda [10]). Suppose a = 0 in (2.3). Then for any pos-
itive integer n, there globally exists a nonnegative solution (u, v)(t, x) satisfying

lim
t→∞

(u, v)(t, x) = (< u0 + v0 >, 0)

where 〈s〉 means the spatial average of s(x) over Ω.

Theorem 2 (Hoshino [11]). Suppose a > 0. Then for any positive inte-
ger n and m, there globally exists a nonnegative solution (u, v)(t, x). Moreover,

(i) If m and n satisfy 0 < m ≤ n, there exists some constant v∞ > 0 such that

lim
t→∞

(u, v)(t, x) = (0, v∞)

(ii) If m and n satisfy 0 < n < m,

lim
t→∞

(u, v)(t, x) = (0, 0).

These theorems imply that any solution of (2.3) asymptotically becomes
spatially homogeneous and that its asymptotic behavior is qualitatively similar
to the one of the ODEs corresponding to (2.3) in the absence of diffusion.

For a class of consumer-finite resource RD systems (2.1), it is intuitively ex-
pected that the consumer fades out after large time, that is, limt→∞ u(t, x) = 0,
because its resource is initially supplied, that is, finite. Therefore, one might
conclude that the system (2.1) is less interesting from a pattern formation view-
point. However, we have recently encountered some consumer-finite resource
system arising in biology, which exhibits a very interesting transient behav-
ior, despite that the asymptotic behavior is so trivial. It is a bacterial growth
where the bacterium is a consumer, while the nutrient is its resource which is
initially supplied.
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§3. Bacterial Growth [12]

Intensive experimental investigations have shown that the growth of bac-
terial colonies produces various complex patterns, depending on the species
and environmental conditions. For instance, the bacterial species called Bacil-
lus subtilis is known to exhibit many qualitatively different two-dimensional
colony patterns as a result of growth and cell division on the surface of thin
agar plates where nutrients are initially contained. It is observed that colony
patterns change drastically when the initial concentrations of agar and nutri-
ent, say Ca and Cn, are globally varied. They are qualitatively classified into
five types, each of which is observed in the regions labeled A–E in the (Ca,
1/Cn)-parameter plane, as in Figure 6. In the region A (hard agar medium
containing poor nutrients), colony patterns exhibit tip-splitting growth with
characteristically branched structures (Figure 7). These patterns are similar to
those observed in diffusion limited aggregation (DLA) processes in solidification
from a supersaturated solution, solidification from an undercooled liquid, and
electro-chemical deposition. Averages over about 25 samples of colony patterns
in experiments yield a fractal dimension of 1.72 ± 0.02. This is indeed in good
agreement with the results from two-dimensional DLA particle model. Increas-
ing Cn with a fixed value of Ca large (corresponding to the change from the
region A to B), the branch thickness of the colony increases gradually and colony
patterns eventually become Eden-like. For large Cn and small Ca (soft agar
medium with rich nutrient) in the region D, the corresponding colony pattern
drastically changes to a homogeneously spreading one which looks macroscop-
ically like a perfect disk. It is likely that the movement of bacterial cells inside
a colony can be described in terms of diffusion, and there is no microscopic
branching at all. In the region E, between the regions A and D, there emerge
colony patterns clearly reminiscent of the so-called dense-branching morphol-
ogy (DBM). Though the branching is very dense, the advancing envelope looks
characteristically smooth compared with DLA-like colonies in the region A.
Finally, in the region C, between the regions B and D, colonies spread and rest
alternately, leaving stationary concentric ring-like patterns.

The bacterial growth system is certainly a consumer-finite resource system
where the bacterial cells move by diffusion and the nutrients are diffusive in
medium. Therefore, one could expect that the bacterial growth may be de-
scribed by a kind of consumer-finite resource RD system. If so, any spatial
pattern would not appear. Nevertheless, the experimental system clearly ex-
hibits diverse complex patterns, depending on the environmental conditions.
We therefore arrive at the following näıve question: “Is there any contradiction
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Figure 6. Phase diagram of colonial patterns [12]

between the experimental results and mathematical ones on consumer-finite
resource RD systems?” One easy answer is probably to say that the experi-
ment above is not described by an RD system of the form (2.1). In order to
judge whether or not this answer is right, we propose some models of bacterial
growth in the experiment. Let b(t, x) be the density of bacterial cells at time t
and position x. The first equation is

bt = db∆b + (b0 − µb),(3.1)

where db is the diffusion coefficient of bacterial cells, b0 is the initial concen-
tration of nutrients, and µ is the intra-specific competition rate of cells. These
parameters are all positive constants. If the initial function b(0, x) is a point-
mass distribution which corresponds to one point inoculation in experiments,
then the solution b(t, x) spreads like an expanding disk. In comparison with
colony patterns in the region D, this equation is an adequate model to describe
patterns observed in the region D [13]. However, we found that other patterns
can never be generated, even if the parameters db and n0 are globally varied.
Therefore, we should say that the equation (3.1) is insufficient to answer the
above question. As a natural extension of (3.1), the following RD system can
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Figure 7. DLA like pattern [12]

be proposed to describe the interaction of bacteria and limited nutrients:{
bt = db∆b + ωg(n)b,

nt = dn∆n − g(n)b,
(3.2)

where n is the concentration of nutrients. dn is the diffusion coefficient of the
nutrients and g(n) is the growth rate. A simple form of g(u) is the Malthusian
rate g(n) = γn with a positive constant γ. ω is the conversion rate of nutrients
from intake to growth. The experiment requires the following initial conditions
for (3.2): {

b(0, x) = b0(x),

n(0, x) = n0,
(3.3)

where b0(x) is a point-mass distribution of the initial density of the bacteria
and n0 is the initial concentration of nutrients which is distributed uniformly
in space. We note that the parameters (n0, db/dn) in the model (3.2), (3.3)
qualitatively correspond to the ones (Cn, 1/Ca) in the experiment. However, it
is numerically well known that the model (3.2) generates disk-like patterns only,
even if two parameters are globally varied. As the model is still insufficient,
we have to propose a new model. The feature of our model is to introduce the
internal state into bacterial cells. That is, if this state variable is relatively
large, then the bacteria actively move, grow and perform cell-division, while if
it is relatively small, then they do nothing at all. In order to model this in a
simple way, we assume that the bacterial cells consist of two types; active cells
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Figure 8. Finger nail pattern (a) conceptual picture [16]: (b) experiment [12]

and inactive ones. In fact, a group of actively moving cells are clearly observed
in the tip of each growing finger in the region E, as if they exhibit finger nail
patterns in Figure 8 [12]. They seem to drive the growth of the finger-tip,
leaving inactive cells behind.

Let b(t, x) and s(t, x) be the densities of the active and inactive cells at
time t and position x, respectively, (hence the sum of b(t, x) + s(t, x) is the
density of all bacterial cells) and n(t, x) be the concentration of nutrients. The
model for b, s and n is given by


bt = db∆b + ωg(n)b − a(b, n)b,

nt = dn∆n − g(n)b,

st = a(b, n)b,

(3.4)

where db and dn are the diffusion rates of the bacterial cells and the nutrients,
respectively [14]. The growth rate of active cells is ωg(n). We simply assume
g(n) to be the Malthusian growth rate. a(b, n) is the conversion rate from the
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active cells to the inactive ones, which is specified by the mechanism of the
internal state. We neglect the conversion rate from the inactive cells to the
active ones, because it is observed that once active cells become inactive ones,
they never become active again unless food is added artificially. It is plausi-
ble that the conversion rate a(., n) decreases as the concentration of nutrients
increases. But, the dependence of a(b, .) on the active cells b is still unclear.
However, it is observed that if the cell density becomes quite small, each cell
is not very active. Thus, we assume that a(b, n) is a decreasing function of b

as well as n and that a(0, 0) > 0. For concreteness and simplicity in numerical
computation, we adopt the functional form a(b, n) = a0/[1+a1b](1+a2n) with
positive constants ai (i = 0, 1, 2). It should be stressed, however, that this
particular form is not essential to our conclusion below, and other functions
which decrease with b and n work as well.

We simply rewrite (3.4) as the following non-dimensionalized form:


bt = d∆b + nb − a(b, n)b,

nt = ∆n − nb,

st = a(b, n)b,

(3.5)

where d is the ratio of the diffusion rates db and dn. We consider (3.5) in a
bounded domain Ω with the zero-flux boundary conditions. The initial condi-
tions are 


b(0, x) = b0(x),

n(0, x) = n0

s(0, x) = 0.

(3.6)

The first two equations of (3.5) are closed in two unknown variables b

and n {
bt = d∆b + nb − a(b, n)b,

nt = ∆n − nb.
(3.7)

Then it turns out that (3.7) is a form similar to a class of consumer-finite
resource RD system (2.1) except that a(b, n) is not a constant but a function of
b and n. Since the third variable s(t, x) can be directly obtained in terms of the
knowns b and n from (3.7), we can say that (3.5) is essentially two component
system for b and n. When a = 0 and g(n) = n, (3.7) obviously reduces to (3.2)
so that RD system (3.5) (and also (3.7)) is a slightly modified version of (3.2).

We start with showing the result on asymptotic behavior of solutions
to (3.7):



�

�

�

�

�

�

�

�

Consumer-Finite Resource RD System 1427

Theorem 3 [15]. Let (b(t, x), n(t, x)) be a solution of (3.7) in a boun-
ded domain Ω under the zero flux boundary conditions and the initial condi-
tions (3.6). Then there is some constant n∞ > 0 such that

lim
t→∞

(b(t, x), n(t, x)) = (0, n∞).

The result of this theorem is similar to (ii) of Theorem 2, that is, any
solution becomes spatially homogeneous asymptotically. (3.7) also falls into
the framework of consumer-finite resource RD systems. Biologically speaking,
active cells fade out and do not form any pattern. Therefore, we may conclude
that RD system (3.7) or (3.5) is less interesting. However, one should not hurry
to come to the conclusion, because the bacterial cells are given not by b(t, x)
but by b(t, x) + s(t, x). Therefore, we have to know the behavior of s(t, x). For
this problem, we have the following result: there is some function s∞(x) ≥ 0
such that

lim
t→∞

s(t, x) = s∞(x).

Then, we have

lim
t→∞

(b(t, x) + s(t, x)) = s∞(x).

This result shows that the final colonial pattern of bacterial cells is represented
by s∞(x). Therefore, we need to know the spatial distribution of s∞(x) which
exhibits colonial patterns of bacterial cells and in particular, the dependence
of s∞(x) on values of the parameters d and n0. Unfortunately, no satisfactory
analytic method has not been developed to solve (3.5), (3.6) and therefore we
have to rely on numerical methods.

Now, let us numerically consider this problem in a circular domain, taking
n0 and d as free parameters. Here we only discuss one typical case where n0 and
d are both small, which corresponds to poor environment (region A). It is shown
that one point-mass distribution of b0(x) expands for a short time and then
breaks up into several spots. As time goes on, each spot splits into two smaller
ones repeatedly so that there appear many spots but they eventually fade out
completely. This observation does not contradict the result of Theorem 3. The
behavior of the solution b(t, x) is not so interesting. However, the behavior
of s(t, x) is totally different. It exhibits a very complex pattern, as shown in
Figure 9(a). A typical feature of the pattern in s(t, x) is the occurrence of tip
splitting which corresponds to the situation where a single spot of b splits into
two spots. When n0 and d decrease, the total bacterial cells b(t, x) + s(t, x)
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Figure 9. Numerical branched pattern of b + s in (3.5). (a) DBM-like pattern;
(b) DLA-like pattern

exhibit branched patterns similar to DLA-like colonies observed in the region
A, as in Figure 9(b). The fractal dimension is about 1.67. On the contrary, for
large n0 and d (rich environment), b(t, x) exhibits an expanding ring pattern so
that the pattern of b(t, x)+ s(t, x) simply forms a disk pattern which is similar
to the ones in region D. It is surprising that the model (3.5), (3.6) reproduces
qualitatively different patterns, depending on values of n0 and d, despite that
the model (3.5) is a consumer-finite resource RD system.

Summarizing the results on our consumer-finite RD model, we can con-
clude that there is no contradiction between mathematical and experimental
results. The asymptotic behavior of active cells b is quite simple but their time
history s leave very complex spatio-temporal patterns.
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Figure 10. Numerical DLA pattern of p in (3.8)
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This phenomenon can be also confirmed in the autocatalytic reaction sys-
tem (2.3). Let us consider the case when n = 2, and m = 1,




ut = du∆u + ku2v − au

vt = dv∆v − ku2v

pt = au.

(3.8)

We find that u, v and p correspond to the active cells, nutrients and inactive
cells in (3.5), respectively. We already know the asymptotic behavior of u from
Theorem 2(i). It fades out asymptotically and when du/dv is suitably small, the
final product p forms a branched pattern, as in Figure 10, which is qualitatively
similar to the pattern in Figure 9(a).

§4. Conclusion

We have discussed consumer-finite resource RD systems. It is known that
the asymptotic behavior of these systems is qualitatively similar to the corre-
sponding ODEs. For this reason, it had been concluded that these RD systems
were simple and abandoned from pattern formation and mathematical analysis
viewpoints. However, in this paper, we have shown that this is certainly incor-
rect, and that depending on the parameters in the system, the time histories
of solutions exhibit very complex patterns. No satisfactory analytical method,
however, has been developed so far. This should be a future work for us.
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