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Abstract

The purpose of this paper is to study hypersurface isolated singularities by using
partial differential operators based on D-modules theory. Algebraic local cohomology
classes supported at a singular point that constitute the dual space of the Milnor
algebra are considered. It is shown that an isolated singularity is quasi-homogeneous
if and only if an algebraic local cohomology class generating the dual space can be
characterized as a solution of a holonomic system of first order partial differential
equations.

§1. Introduction

In this paper, we consider isolated hypersurface singularities and give in
particular characterization of quasi-homogeneity of these singularities from the
viewpoint of the theory of D-modules.

Let us recall the following theorem concerning to the quasi-homogeneous
singularities due to K. Saito;

Theorem (K. Saito [8]). Let f = f(z) be a holomorphic function in a
neighbourhood of the origin in Cn defining an isolated singularity at the origin
O. The following conditions are equivalent;
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2 Shinichi Tajima and Yayoi Nakamura

1. There is a holomorphic coordinate transformation ϕ such that ϕ(f) is a
weighted-homogeneous polynomial.

2. There exist holomorphic functions aj(z) ∈ OX,O, j = 1, . . . , n such that

f(z) = a1(z)
∂f(z)
∂z1

+ · · · + an(z)
∂f(z)
∂zn

.

In 1996, Y.-J. Xu and S. S.-T.Yau ([12]) gave a characterization of quasi-
homogeneity of a hypersurface singularity in terms of its moduli algebra (i.e.,
Tjurina algebra).

Apart from the hypersurface case, characterization of quasihomogeneity
have been studied by G.-M. Greuel ([2]), G.-M. Greuel, B. Martin and G. Pfis-
ter ([3]), J. Wahl ([11]) for isolated complete intersection singularities. They
showed that, for several cases, the quasihomogeneity can be characterized by the
equality of Milnor number and Tjurina number. More recently, H. Vosegaard
([10]) extended this characterization to any isolated complete intersection sin-
gularities.

In this paper, we derive a new characterization of quasihomogeneity of
hypersurface isolated singularities by considering D-module properties of al-
gebraic local cohomology classes. The main objects of examination are an
algebraic local cohomology class, denoted by σ, which generates the dual space
of Milnor algebra, and the associated holonomic system of first order differential
equations.

In §2, we introduce the ideal Ann
(1)
DX,O

(σ) generated by annihilating differ-
ential operators for a generator σ of order at most one and give a description
of the solution space in the algebraic local cohomologies Hn

[O](OX) of the holo-

nomic system DX,O/Ann
(1)
DX,O

(σ) (Theorem 2.1). In §3, we give an equivalent
condition, in terms of the holonomic system, for isolated singularities to be
quasihomogeneous (Theorem 3.1 and Proposition 3.1). In §4, we give exam-
ples.

The approach adopted in this paper can be applied to a study of non quasi-
homogeneous isolated singularities. Some applications to unimodal singularities
will be treated elsewhere ([6]).

§2. The First Order Differential Operators Acting
on the Dual Space

Let X be a neighbourhood of the origin O of Cn and OX the sheaf of germs
of holomorphic functions in X. Let f = f(z1, . . . , zn) ∈ OX,O be a germ of a
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Quasi-Homogeneous Isolated Singularities 3

holomorphic function defining an isolated singularity at the origin O. Let Jf

be the ideal in OX,O generated by partial derivatives fzj
=

∂f

∂zj
(j = 1, . . . , n)

of f :
Jf = (fz1 , . . . , fzn

).

Let Σf denote the space consisting of algebraic local cohomology classes anni-
hilated by the Jacobi ideal Jf :

Σf = {η ∈ Hn
[O](OX) | gη = 0, ∀g ∈ Jf}.

Σf can be identified with ExtnOX
(OX/Jf ,OX). We can also identify the Mil-

nor algebra OX/Jf with Ωn
X/JfΩn

X where Ωn
X is the sheaf of holomorphic

differential n-forms. Then, by the non-degeneracy of the Grothendieck local
duality

Ωn
X/JfΩn

X × ExtnOX
(OX/Jf ,OX) → C0,

Σf can be considered as the dual space of the Milnor algebra OX/Jf by treating
them as finite dimensional vector spaces.

The dual space Σf can be generated by a single algebraic local cohomology
class, denoted by σ, over OX,O:

Σf = OX,Oσ.

Let us consider first order differential operators that annihilate σ in the sheaf
DX,O of linear partial differential operators. We have the following fundamental
property;

Lemma 2.1. Let σ be an algebraic local cohomology class which gen-
erates Σf over OX,O. Annihilating differential operators of order one for the
cohomology class σ act on the space Σf .

Proof. Let P =
∑n

j=1 aj(z)
∂

∂zj
+ a0(z) be an annihilator of σ where

aj(z) = aj(z1, . . . , zn) ∈ OX,O (j = 0, 1, . . . , n). Put vP =
∑n

j=1 aj(z)
∂

∂zj
.

Since any class η in Σf can be written as η = h(z)σ with some holomorphic
function h(z) = h(z1, . . . , zn) ∈ OX,O, we have

Pη = P (h(z)σ)

= (PQ − QP )σ + h(z)Pσ

= (vP h(z))σ ∈ Σf

where Q is the multiplication operator in DX,O defined by Q = h(z). �
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Let Lf be the set of linear partial differential operators of order at most 1
which annihilate σ:

Lf =


P =

n∑
j=1

aj(z)
∂

∂zj
+ a0(z) | Pσ = 0, aj(z) ∈ OX,O, j = 0, 1, . . . , n


 .

It is obvious from the proof of Lemma 2.1 that the condition whether a given
first order differential operator P acts on Σf or not depends only on the first
order part vP of P . We denote by Θf the set of differential operators of the
form

∑n
j=1 aj(z)∂/∂zj with aj(z) ∈ OX,O, j = 1, . . . , n acting on Σf . Then,

an operator v is in Θf if and only if v satisfies the condition vg(z) ∈ Jf for all
g(z) = g(z1, . . . , zn) ∈ Jf , i.e.,

Θf =


v =

n∑
j=1

aj(z)
∂

∂zj
| vg(z) ∈ Jf ,∀ g(z) ∈ Jf ,

aj(z) ∈ OX,O, j = 1, . . . , n


 .

Lemma 2.2. The mapping, from Lf to Θf , which associates the first
order part vP ∈ Θf to a first order differential operator P ∈ Lf is surjective.

Proof. For any v ∈ Θf , there exists a holomorphic function h(z) ∈ OX,O

such that vσ = h(z)σ. Thus the operator P = v − h(z) is in Lf .

Let P ∈ Lf be an annihilator of σ of the form P =
n∑

j=1

aj(z)
∂

∂zj
+ a0(z).

If an algebraic local cohomology class η = h(z)σ ∈ Σf is a solution of the
homogeneous differential equation Pη = 0, we have

vP h(z) =
n∑

j=1

aj(z)
∂h(z)
∂zj

∈ Jf

where vP ∈ Θf is the first order part of the operator P . It is obvious that, in
order to represent η ∈ Σf in the form η = h(z)σ, it suffices to take the modulo
class in OX,O/Jf of the holomorphic function h(z) ∈ OX,O. Furthermore any
element v in Θf induces a linear operator acting on OX,O/Jf which is also
denoted by v:

v : OX,O/Jf → OX,O/Jf .
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Now we make the following definition;

Definition. A solution space Hf is the set of solutions in OX,O/Jf of
differential equations vh(z) = 0 for all v ∈ Θf :

Hf = {h(z) ∈ OX,O/Jf | vh(z) = 0, ∀v ∈ Θf}.

Then, by Lemma 2.2, we have the following result;

Lemma 2.3.

Hf = {h(z) ∈ OX,O/Jf | P (h(z)σ) = 0, ∀P ∈ Lf}.

From the above definition, Hf does not depend on the choice of a genera-
tor σ.

Let Ann
(1)
DX,O

(σ) be a left ideal in DX,O defined to be Ann
(1)
DX,O

(σ) =
DX,OLf . By the above Lemma 2.3, we have the following result;

Theorem 2.1. Let f ∈ OX,O define an isolated singularity at the ori-
gin. Let σ be a generator of Σf over OX,O. Then

HomDX,O
(DX,O/Ann

(1)
DX,O

(σ),Hn
[O](OX)) = {h(z)σ | h(z) ∈ Hf}.

Proof. Since DX,OJf ⊂ Ann
(1)
DX,O

(σ), we have

HomDX,O
(DX,O/Ann

(1)
DX,O

(σ),Hn
[O](OX))

⊂ HomDX,O
(DX,O/DX,OJf ,Hn

[O](OX)).

Since HomDX,O
(DX,O/DX,OJf ,Hn

[O](OX)) = Σf , the above inclusion re-

lation implies that any solution of the holonomic system DX/Ann
(1)
DX,O

(σ) can
be represented in the form h(z)σ with some h(z) ∈ OX,O/Jf . Thus the theorem
follows from Lemma 2.3.

§3. The Quasi-Homogeneous Singularities

Let f ∈ OX,O be a function which defines an isolated singularity at the
origin and Jf the Jacobi ideal of f . Let σ be a generator of Σf over OX,O.

Proposition 3.1. Assume that a function f is quasi-homogeneous.
Then the set Hf is an one-dimensional vector space SpanC{1}.
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Proof. Let w = (w1, . . . , wn) be the quasi-weight of the quasihomoge-
neous function f with w1, . . . , wn ∈ N+. By a suitable holomorphic coordinate
transformation, f is transformed into a weighted-homogeneous function of the
same type w. Since the assertion does not depend on the choice of coordi-
nates, we may assume that f is a weighted-homogeneous function. Denote by

σf the algebraic local cohomology class
[

1
fz1 . . . fzn

]
∈ Hn

[O](OX) correspond-

ing to the Grothendieck symbol

[
1

fz1 . . . fzn

]
∈ ExtnOX

(OX/Jf ,OX). Then

Σf = OX,Oσf holds. The Euler operator v =
∑n

j=1 wjzj∂/∂zj is in Θf . Let E

be the set of all exponents of basis monomials of OX,O/Jf . A function h(z) in
Hf can be written in the form

h(z) = b0 +
∑

k∈E\{0}
bkzk

with b0, bk ∈ C. We have

vh(z) =
∑

k∈E\{0}
bk(w1k1 + · · · + wnkn)zk

= 0.

Thus, bk(w1k1 + · · · + wnkn) = 0 hold for all k ∈ E \ {0}. Since wj > 0
(j = 1, . . . , n), we have bk = 0 for all k ∈ E \ {0}. This implies h(z) = b0.

Let AnnDX,O
(σ) be a left ideal in DX,O consisting of all annihilators of

the algebraic local cohomology class σ.

Theorem 3.1. Let f ∈ OX,O define a hypersurface isolated singularity
at the origin. The following three conditions are equivalent;

(i) (f,Jf ) = Jf .

(ii) Ann
(1)
DX,O

(σ) = AnnDX,O
(σ).

(iii) HomDX,O
(DX,O/Ann

(1)
DX,O

(σ),Hn
[O](OX)) = SpanC{σ}.

Proof. The equivalence of the condition (ii) and (iii) is obvious from
the simplicity of the holonomic system DX,O/AnnDX,O

(σ). The implication
(i)⇒(ii) follows immediately from Theorem 2.1 and Proposition 3.1. We only
have to prove the implication (iii)⇒(i).
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(iii)⇒(i): Assuming f �∈ Jf , we have fσ �= 0. Let us denote by F ∈
DX,O the multiplication operator defined by F = f ∈ OX,O ⊂ DX,O. For an

annihilator P =
∑n

j=1 aj(z)
∂

∂zj
+ a0(z) ∈ Lf of σ, we have

P (fσ) = PFσ

= (PF − FP )σ + FPσ

= (vP f)σ.

Since vP f =
∑n

j=1 aj(z)
∂f

∂zj
being in Jf , P (fσ) = 0 holds. As σ and fσ are

linearly independent algebraic local cohomology classes in Σf , we have

dim HomDX,O
(DX,O/Ann

(1)
DX,O

(σ),Hn
[O](OX)) ≥ 2.

§4. Examples

In this section, we give two examples: one is about a quasi-homogeneous
case and the other is about a non quasi-homogeneous case.

Let f0 be a function defined by a polynomial x3 + y7, which is weighted
homogeneous of the weighted-degree 21 with the weight (7, 3).

Example 1. Let f1 be a function defined by a polynomial f0 + xy4 =
x3+y7+xy4. The weighted-degree 19 of the monomial xy4 is smaller than that
of the function f0. The standard basis of the Jacobi ideal Jf1 of the function
f1 with respect to the lexicographical ordering is

{y7, 7y6 + 4xy3, y4 + 3x2}.

The monomial basis of OX,O/Jf1 is given by {xy2, xy, x, y6, y5, y4, y3, y2, y, 1}.
The dual space Σf1 is spanned by the following 10 algebraic local cohomology
classes;[

1
x2y3

]
,
[

1
x2y2

]
,
[

1
x2y

]
,
[

1
xy7

− 1
3

1
x3y3

− 7
4

1
x2y4

]
,
[

1
xy6

− 1
3

1
x3y2

]
,[

1
xy5

− 1
3

1
x3y

]
,
[

1
xy4

]
,
[

1
xy3

]
,
[

1
xy2

]
,
[

1
xy

]

where [·] is a standard Čech covering representation of algebraic local cohomolog
classes. The space Θf1 is generated by first order differential operators

4x
∂

∂y
+ (4y3 − 35xy2)

∂

∂x
, 16y

∂

∂y
+ (−28y3 + 147xy2 + 32x)

∂

∂x
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and operators in {y7 ∂
∂x , y7 ∂

∂y , (7y6+4xy3) ∂
∂x , (7y6+4xy3) ∂

∂y , (y4+3x2) ∂
∂x , (y4+

3x2) ∂
∂y}.

Solving the simultaneous differential equations vh(z) = 0 for above generators
v of Θf1 , we find Hf1 = SpanC{1}. Thus the function f1 is quasi-homogeneous.
For instance, we can obtain a representation[
−3176523

16384
1

xy + 49
64

1
x3y + 1029

256
1

x2y2 + 21609
1024

1
xy3 − 1

12
1

x3y3

− 7
16

1
x2y4 − 147

64
1

xy5 + 1
4

1
xy7

]
of the cohomology class σf1 =

[
1

f1xf1y

]
by solving first order partial differential

equations Pσf1 = 0, ∀P ∈ Ann
(1)
DX,O

(σf1) where f1x = ∂f1
∂x and f1y = ∂f1

∂y .
Note that (see [8]), the function f1 satisfies Df1 = f1, where D is a differential

operator defined by D =
1

48 + 441y2
{(16x + 147xy2 − 8y3) ∂

∂x + (8y + 6x +

63y3) ∂
∂y}.

Example 2. Let f2 be a function defined by a polynomial f0 + xy5 =
x3 +y7 +xy5. The weighted-degree 22 of the monomial xy5 is greater than that
of the function f0. The standard basis of the Jacobi ideal Jf2 of the function
f2 with respect to the lexicographic ordering is

{y8, 7y6 + 5xy4, y5 + 3x2}.

The monomial basis of OX,O/Jf2 is given by

{xy3, xy2, xy, x, y7, y6, y5, y4, y3, y2, y, 1}.

The following 12 algebraic local cohomology classes constitute a basis of the
dual space Σf2 ;[

1
x2y4

]
,
[

1
x2y3

]
,
[

1
x2y2

]
,
[

1
x2y

]
,
[

1
xy8

− 7
5

1
x2y6

− 1
3

1
x3y3

+
7
15

1
x4y

]
,[

1
xy7

− 7
5

1
x2y5

+
1
3

1
x3y2

]
,
[

1
xy6

− 1
3

1
x3y

]
,
[

1
xy5

]
,
[

1
xy4

]
,
[

1
xy3

]
,
[

1
xy2

]
,
[

1
xy

]
.

Any operator in Θf2 is given as a linear combination of first order differential
operators xy3 ∂

∂x , y7 ∂
∂x , y6 ∂

∂x , (5y5−21xy2) ∂
∂x , xy3 ∂

∂y , xy2 ∂
∂y , 2xy ∂

∂y −7xy2 ∂
∂x ,

30x ∂
∂y +(35y4 −252xy) ∂

∂x , y7 ∂
∂y , y6 ∂

∂y , y5 ∂
∂y , y4 ∂

∂y , 2y3 ∂
∂y +5xy2 ∂

∂x , 42y2 ∂
∂y +

(5y4 +84xy) ∂
∂x and operators belonging to the set Jf2

∂
∂x +Jf2

∂
∂y of first order

differential operators with coefficients in the ideal Jf2 . Consequently, Θf2 is
generated over OX,O by first order differential operators v1 = 30x ∂

∂y + (35y4 −
252xy) ∂

∂x , v2 = 42y2 ∂
∂y + (5y4 + 84xy) ∂

∂x and operators in {y8 ∂
∂x , y8 ∂

∂y , (7y6 +
5xy4) ∂

∂x , (7y6 + 5xy4) ∂
∂y , (y5 + 3x2) ∂

∂x , (y5 + 3x2) ∂
∂y}.



�

�

�

�

�

�

�

�

Quasi-Homogeneous Isolated Singularities 9

Solving the simultaneous differential equations vih(z) = 0, i = 1, 2, we find
Hf2 = SpanC{1, y7}. Thus the function f2 is not quasihomogeneous and the
local cohomology class σ which generates Σf2 can not be characterized uniquely
as a solution of first order holonomic system of partial differential equations.
In fact, the function f2 is known as a normal form of an exceptional family of
E12-type unimodal singularities.

Actually, in order to obtain the following representation of cohomology
class σf2 =

[
1

f2xf2y

]
by solving a system of linear partial differential operators,

one needs to employ a system of second order differential equations ([6]);[
1

f2xf2y

]
=

[
− 30517578125

218041257467152161
1

xy + 9765625
1441471195647

1
x2y − 3125

9529569
1

x3y + 1
63

1
x4y

+ 1220703125
1483273860320763

1
xy2 − 390625

9805926501
1

x2y2 + 125
64827

1
x3y2 − 48828125

10090298369529
1

xy3

+ 15625
66706983

1
x2y3 − 5

441
1

x3y3 + 1953125
68641485507

1
xy4 − 625

453789
1

x2y4 − 78125
466948881

1
xy5

+ 25
3087

1
x2y5 + 3125

3176523
1

xy6 − 1
21

1
x2y6 − 125

21609
1

xy7 + 5
147

1
xy8

]
.

It should be mentioned that, in [9], T. Torrelli recently gave, by a com-
pletely different manner from this paper, the same characterization for com-
plete intersection isolated singularities to be quasi-homogeneous in his study of
Berenstein polynomials.
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