
�

�

�

�

�

�

�

�

Publ. RIMS, Kyoto Univ.
41 (2005), 37–72

Microlocal Riemann-Hilbert Correspondence

By

Ingo Waschkies
∗

Abstract

We construct the global microlocal Riemann-Hilbert correspondence as an ex-
plicit equivalence between the abelian stack of microlocal perverse sheaves defined
in [W] and the abelian stack of regular holonomic microdifferential modules of [KK].
The theory of analytic ind-sheaves and its microlocalization is crucial for our construc-
tion since it allows us to define solution complexes with values in the (ind-)ring of
microlocal holomorphic functions (resp. microlocal tempered holomorphic functions).
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§1. Introduction

In [W] we constructed for any field k the abelian stack of microlocal per-
verse sheaves µPerv(kX) on the projective cotangent bundle P ∗X of a complex
manifold X. It is naturally embedded into the prestack of bounded derived cat-
egories of ind-sheaves on C×-conic open subsets of T ∗X. In the last section
we announced that, over the field of complex numbers C, our construction is
equivalent to the stack of regular holonomic microdifferential modules by an
explicit “microlocal Riemann-Hilbert correspondence”.

Recall that using the ind-sheaf Ot ∈ Db(I(CX)) the classical Riemann-
Hilbert correspondence can be expressed as the following diagram of quasi-
inverse contravariant equivalences between the category of perverse sheaves
and the category of regular holonomic DX -modules (see [K2])1

Perv(CX)
RHom( · ,Ot) �� HolReg(DX).

RHomDX
( · ,OX)

��

Here the “ring” Ot ∈ Db(I(CX)) is the complex of tempered holomorphic func-
tions in the bounded derived category of ind-sheaves on X which has been
constructed in [KS2] and RHom( · , Ot) is isomorphic to Kashiwara’s functor of
tempered solutions (see [K2] where it is denoted by THom). These equivalences
can be extended to equivalences of abelian stacks on X.

The purpose of this paper is to establish the microlocal analogon in the
form of quasi-inverse equivalences

(1.0.1) µPerv(CX)
γ−1 Rγ∗ RHom( · ,µOt) �� HolReg(EX).
RIHomβEX

(β( · ),µOX)
��

1Here and in the rest of this paper, we do not write the shift (by the dimension of the
base manifold) that arises according to the choice of a definition of a perverse sheaf.
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Microlocal Riemann-Hilbert-theorem 39

Here γ : T ∗X \ T ∗
XX → P ∗X is the natural projection, RIHom the derived

functor of the interior Hom-functor for ind-sheaves, µ is Kashiwara’s functor
of ind-microlocalization (see [K3] and Appendix A) and β is the embedding of
sheaves into ind-sheaves that is used to transport the theory of modules over a
sheaf of rings to ind-modules (see [KS2]).

If we look at the microlocal Riemann-Hilbert correspondence (1.0.1) in the
stalks we find Andronikof’s construction and the microlocal Riemann-Hilbert
theorem announced in [An1]. Another construction of microlocal perverse
sheaves and of a non-explicit microlocal Riemann-Hilbert correspondence was
proposed in [GMV], but to our knowledge this project has neither been com-
pleted nor published.

The main idea to prove that the functors of (1.0.1) are well defined and
indeed equivalences is the following. Both stacks µPerv(CX) and HolReg(EX)
are locally invariant under quantized contact transformations. So the first task
is to prove that the constructions of (1.0.1) are also invariant which allows us
to reduce the situation to the so-called generic position. In generic position
microlocal perverse sheaves come from perverse sheaves and regular holonomic
microdifferential modules come from regular holonomic D-modules. We will
then show that in the generic position the functors (1.0.1) induce the classical
Riemann-Hilbert correspondence which allows us to prove the theorem.

We would like to express our gratitude to Pierre Schapira who introduced
us to the microlocal Riemann-Hilbert problem and who guided our work with
invaluable help and encouragement during the last three years. We would also
like to thank M. Kashiwara for his precious help and for giving us inside into
his unpublished work on the microlocalization of ind-sheaves. Finally we thank
F. Ivorra for many fruitful discussions during our effort to write a presentation
of Kashiwara’s work on ind-microlocalization.

§2. Microlocal Perverse Sheaves and Contact Transformations

§2.1. Microlocal perverse sheaves

In this section we briefly recall the construction of the abelian stack of
microlocal perverse sheaves of [W] on the projective cotangent bundle P ∗X of
a complex manifold X.

We denote by Db(kX) the bounded derived category of sheaves of k-
vector spaces on X and by Db

R-c(kX) the full subcategory of complexes with
R-constructible cohomology. We will not recall here the theory of the micro-
support SS(F) of a sheaf F and refer to [KS1].
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40 Ingo Waschkies

If S ⊂ T ∗X is a subset we consider the null system

NS = {F ∈ Db(kX) | SS(F) ∩ S = ∅}

and the microlocalizations

Db(kX , S) = Db(kX)/NS and Db
R-c(kX , S) = Db

R-c(kX)/NS ∩ Db
R-c(kX).

Definition 2.1.1. Let S ⊂ Ṫ ∗X be a C×-conic subset.

(i) An object F ∈ Db
R-c(kX) is called microlocally perverse on S, if there exists

an open neighborhood U of S such that the micro-support SS(F) is C×-
conic in U2 and for every non-singular point p of SS(F) ∩ U such that
the projection π : SS(F) → X has constant rank in a neighborhood of p,
there exists a submanifold Y ⊂ X and an object M ∈ Mod(k) such that
F � MY [dimY ] in Db(kX , p).

(ii) We will denote by Db
perv(kX , S) the full subcategory of Db

R-c(kX , S) whose
objects are perverse on S (i.e. which may be represented by a microlocally
perverse sheaf on S).

(iii) The prestack on P ∗X

Ω �→ Db
perv(kX , γ−1Ω)

is called Andronikof’s prestack of microlocal perverse sheaves.

An important property of Andronikof’s prestack is its invariance under
contact transformations (cf. [W]).

Proposition 2.1.2. Let X, Y be two complex manifolds, ΩX ⊂ Ṫ ∗X,
ΩY ⊂ Ṫ ∗Y open C×-conic subsets and

χ : ΩX
∼−→ ΩY

a contact transformation3. Let Λ be the C×-conic Lagrangian variety

Λ =
{
((y; η), (x; ξ)) ∈ ΩY × Ωa

X | (y, η) = χ(x,−ξ)
}
.

Let pX ∈ ΩX and pY = χ(pX).
There exist open neighborhoods X ′ of π(pX), Y ′ of π(pY ), C×-conic open

neighborhoods Ω′
X of C×pX , Ω′

Y of C×pY with Ω′
X ⊂ T ∗X ′∩ΩX , Ω′

Y ⊂ T ∗Y ′∩
ΩY and a kernel K ∈ Db

R-c(kY ′×X′) satisfying
2Such a sheaf is called microlocally C-constructible on U .
3In this paper a contact transformation means an homogenous symplectic isomorphism.
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Microlocal Riemann-Hilbert-theorem 41

(1) χ induces a contact transformation Ω′
X

∼→ Ω′
Y ,

(2)
(
(Ω′′

Y × T ∗X ′) ∪ (T ∗Y ′ × Ω′′
X

a)
)

∩ SS(K) ⊂ Λ ∩ (Ω′′
Y × Ω′′

X
a)

for every C×-conic open subset Ω′′
X ⊂ Ω′

X and Ω′′
Y = χ(Ω′′

X),

(3) the functor ΦK = K◦ induces an equivalence of prestacks

Φperv
K : χ∗ Db

perv(kX′ , ∗ )|Ω′
X
−→ Db

perv(kY ′ , ∗ )|Ω′
Y
.

(4) SS(Φperv
K (F)) ∩ Ω′′

Y = χ(SS(F) ∩ Ω′′
X)

(5) χ∗µhom(F, G)|Ω′
X
� µhom(Φperv

K (F), Φperv
K (G))|Ω′

Y
.

Note that if F ∈ Db
perv(kX , C×pX) then Φperv

K (F) � K ◦ FV for some
subanalytic relatively compact open neighborhood V of π(pX). It is not hard
to calculate the stalks of Andronikof’s prestack. We get (cf. [W])

Proposition 2.1.3. Let p ∈ Ṫ ∗X. The stalk of Andronikof’s prestack
of microlocal perverse sheaves at γ(p) is naturally equivalent to the category
Db

perv(kX , C×p). It is an abelian category. Moreover the natural functor

Db
perv(kX , C×p) −→ Db(kX , C×p)

is fully faithful.

Recall (or see Appendix A) the functor of prestacks on P ∗X

(2.1.1) µ : γ∗ Db
perv(kX , ∗ ) −→ γ∗ Db(I(k ∗ )).

Next we define microlocal perverse sheaves as ind-sheaves on conic open subsets
of T ∗X.

Definition 2.1.4. Let Ω ⊂ P ∗X be an open subset.

(1) An object F ∈ Db(I(kγ−1Ω)) is microlocally perverse (on Ω) if it is locally
in the image of the functor (2.1.1), i.e. if for all p ∈ γ−1(Ω) there exist
a C×-conic neighborhood V ⊃ C×p and an object G ∈ Db

perv(kX , V ) such
that µG|V � F|V .

(2) We denote by µPerv(Ω) the full subcategory of Db(I(kγ−1Ω)) whose objects
are microlocally perverse.
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The main result of [W] is

Theorem 2.1.5. The prestack µPerv on P ∗X is an abelian stack.
Moreover the functor µ induces an equivalence of abelian stacks

Db
perv(kX , ∗ )‡ ∼−→ µPerv,

where Db
perv(kX , ∗ )‡ denotes the stack associated to Andronikof’s prestack.

The support of a microlocal perverse sheaf is by construction a homogenous
Lagrangian subvariety. As in the case of microdifferential modules we are able
to characterize microlocal perverse sheaves in generic position4.

Proposition 2.1.6. Let Λ be a homogenous Lagrangian variety and
suppose that Λ is in generic position at p ∈ Ṫ ∗X. Then µ induces a fully
faithful functor

Pervπ(p),Λ −→ µPervγ(p),

where Pervπ(p),Λ is the category germs of perverse sheaves at π(p) (modulo
constant sheaves) whose micro-support is included in Λ in a neighborhood of
γ(p). Its image are all microlocal perverse sheaves whose support is included in
Λ (in a neighborhood of γ(p)).

§2.2. Invariance under contact transformations

Let p ∈ ΩX ⊂ T ∗X, q ∈ ΩY ⊂ T ∗Y where ΩX , ΩY are C×-conic open
subsets. Suppose that we are given a contact transformation

χ : ΩX
∼−→ ΩY

such that χ(p) = q. After shrinking ΩX and ΩY , we can establish an equivalence
of prestacks (cf. Proposition 2.1.2)

Φperv
K = K◦ : χ∗ Db

perv(kX , ∗ )|ΩX

∼−→ Db
perv(kY , ∗ )|ΩY

.

Hence we get an equivalence of the associated stacks of microlocal perverse
sheaves:

(2.2.1) χ∗µPervX |γ(ΩX)
∼−→ µPervY |γ(ΩY )

4A C×-homogenous Lagrangian variety is said to be in generic position at p ∈ Ṫ ∗X if
locally at p we have Λ ∩ π−1π(p) ⊂ C×p.
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together with a commutative diagram (up to isomorphism)

χ∗γ∗ Db
perv(kX , ∗ )|γ(ΩX)

Φperv
K

∼
��

∼µ

��

γ∗ Db
perv(kY , ∗ )|γ(ΩY )

µ∼
��

χ∗µPervX |γ(ΩX) ∼
�� µPervY |γ(ΩY )

The existence of this diagram is sufficient for many applications. However, for
concrete calculations we need to know that the equivalence (2.2.1) is explicitly
given by integral transform with the kernel µK which we will prove in Section
1.5.

§2.3. Integral transforms for ind-sheaves

Let us fix some notations. We will first consider real manifolds X, Y, Z and
the diagram

X × Y × Z
q12

������������
q13

��

q23

�������������

X × Y X × Z Y × Z.

Composition (or integral transforms) will be considered in its ind-version. For
F ∈ Db(I(kX×Y )) and G ∈ Db(I(kY ×Z)) we set

F ◦ G = Rq13!!(q−1
12 F ⊗ q−1

23 G),

even if F, G are actually complexes of classical sheaves. In this case α(F ◦ G)
gives the classical composition. Note that there is always a natural morphism

F ◦ G −→ α(F ◦ G).

Furthermore, we will consider the following variant. Let

qa
12 : T ∗X × T ∗Y × T ∗Z −→ T ∗X × T ∗Y(

(x; ξ), (y; η), (z; ζ)
)
�→

(
(x; ξ), (y,−η)

)
.

Then set for F ∈ Db(I(kT∗X×T∗Y )) and G ∈ Db(I(kT∗Y ×T∗Z))

F
a◦ G = Rq13!!(qa−1

12 F ⊗ q−1
23 G).

Note that the operation
a◦ is associative up to natural isomorphism.
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§2.4. Integral transforms for microlocal perverse sheaves

For any kernel K ∈ Db(kY ×X) attached to contact transformations χ :
ΩX

∼−→ ΩY we study the functor

Φa
µK = µK

a◦ : χ∗γ∗ Db(I(k ∗ ))|γ(ΩX) −→ γ∗ Db(I(k ∗ ))|γ(ΩY ).

Our interest in this section is to find kernels K such that this functor preserves
the stack µPerv of microlocal perverse sheaves.

By definition an object in γ∗ Db(I(k ∗ )) is microlocally perverse on ΩY

if and only if it is microlocally perverse in the stalks, i.e. in the category
γ∗ Db(I(k ∗ ))γ(p) for every p ∈ ΩY .

Take an object F ∈ µPerv. By definition we have locally F � µF̃ for some
object F̃ ∈ Db

perv(kX , C×p). Hence locally

µK
a◦ F � µK

a◦ µF̃.

Unfortunately, the functor µ commutes with
a◦ only in special situations (see

Appendix A, Theorem A.2.5), and therefore we will have to find kernels K such
that

µK
a◦ µF̃ � µ(K ◦ F̃)

holds in a neighborhood of C×q. This would imply that Φa
µK induces locally

Φa
µK : χ∗µPerv(kX)|γ(ΩX) −→ µPerv(kY )|γ(ΩY ).

By Theorem A.2.5 there is at least a natural morphism

(2.4.1) µK
a◦ µF̃ −→ µ(K ◦ F̃).

Remark 2.4.1. Suppose condition (1) or (2) below.

(1) (T ∗
XX × T ∗Y ∪ T ∗X × T ∗

Y Y ) ∩ SS(K1) ⊂ T ∗
XX × T ∗

Y Y,

(2) (T ∗
Y Y × T ∗Z ∪ T ∗Y × T ∗

ZZ) ∩ SS(K2) ⊂ T ∗
Y Y × T ∗

ZZ.

Then the natural morphism (2.4.1) is an isomorphism outside the zero section.
In particular, let F ∈ Db(I(kX)) and consider K such that

SS(K) ∩
(
T ∗

Y Y × T ∗X ∪ T ∗Y ∪ T ∗
XX

)
⊂ T ∗

Y Y × T ∗
XX

Then the morphism (2.4.1)

µ(K)
a◦ µF −→ µ(K ◦ F)

is an isomorphism outside the zero section. For instance we get the following
lemma.
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Lemma 2.4.2. Let F ∈ Db(I(kX)). The morphism

µ(k∆)
a◦ µF −→ µ(k∆ ◦ F) � µF

is an isomorphism outside the zero section.

We will mostly be interested in the following more general situation:

Definition 2.4.3. Let us denote by Ñ(Y, X, ΩY , ΩX) the full subcate-
gory of Db(kY ×X , ΩY × T ∗X) such that

(i) SS(K) ∩ (ΩY × T ∗X ∪ T ∗Y × Ωa
X) ⊂ ΩY × Ωa

X
5

(ii) p1 : SS(K) ∩ ΩY × T ∗X → ΩY is proper.

Proposition 2.4.4. Suppose that ΩX ∩T ∗
XX = ∅ and ΩY ∩T ∗

Y Y = ∅.
Let K ∈ Ñ(Y, X, ΩY , ΩX) and F ∈ Db(kX) such that SS(F)∩ Ṫ ∗X ⊂ ΩX . Then
the natural morphism

µK
a◦ µF −→ µ(K ◦ F)

is an isomorphism on ΩY .

Proof. We have by hypothesis

SS(K) ∩ (T ∗Y × SS(F)a) ⊂ (SS(K) ∩ T ∗Y × Ωa
X) ∪ (SS(K) ∩ T ∗Y × T ∗

XX)

⊂ ΩY × Ωa
X ∪ T ∗Y × T ∗

XX.

Intersecting both sides with T ∗
Y Y × T ∗X we get

SS(K) ∩ (T ∗Y × SS(F)a) ∩ (T ∗
Y Y × T ∗X) ⊂ T ∗

XX × T ∗
Y Y.

Hence the non-characteristic condition of Theorem A.2.5 is satisfied.
Moreover by assumption SS(K) ∩ (ΩY × T ∗X) ⊂ ΩY × Ωa

X , hence

SS(K) ∩ (T ∗Y × SS(F)a) ∩ ΩY × T ∗
XX = ∅

and

SS(K) ∩ (T ∗Y × SS(F)a) ∩ T ∗Y × T ∗
XX ⊂ �ΩY × T ∗

XX

Therefore the morphism is an isomorphism outside �ΩY , hence on ΩY .

5Here, Ωa denotes the image of Ω by the antipodal map.
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Remark 2.4.5. Consider K ∈ Ñ(Y, X, ΩY , ΩX) and F ∈ Db(kX). Then
we have a chain of natural isomorphisms:

(µK)|ΩY ×Ωa
X

a◦ (µF)|ΩX
� (µK)(1,a)|ΩY ×ΩX

◦ (µF)|ΩX
�

(
µK

a◦ µF
)
|ΩY

.

which is easily seen using the fact that SS(K) = supp(µK). Consider the
morphism

(2.4.2) (µK
a◦ µF)|ΩY

−→ µ(K ◦ F)|ΩY
−→ µ(α(K ◦ F))|ΩY

The term on the right only depends on the image of F in Db(kX , ΩX). By
the last lemma, the same result holds for the term on the left side. In the
following we will be interested in situations when the composition (2.4.2) is an
isomorphism.

Hence, in the situation of Proposition 2.4.4, we may replace F by any
object isomorphic to F in Db(kX , ΩX). However, in general, it is not possible
to find an object F′ isomorphic to F in Db(kX , ΩX) such that SS(F′) ⊂ ΩX .
Therefore we will have to assume a stability condition on K and the existence
of a suitable cut-off functor.

Proposition 2.4.6. Let X, Y be affine and K ∈ Ñ(Y, X, ΩY , ΩX). Let
δ ⊂ X∗ be an open cone and U ⊂ X be a relatively compact open set such that

(U × δ) ∩ Ṫ ∗X ⊂ ΩX .

Set Ω′
X = U × δ and suppose that there exists an open subset Ω′

Y ⊂ ΩY such
that K ∈ Ñ(Y, X, Ω′

Y , Ω′
X). Then the natural morphism

µK
a◦ µF −→ µ(α(K ◦ F))

is an isomorphism on Ω′
Y .

Proof. There is a cut-off functor ΦU,δ (cf. [W]) such that SS(ΦU,δ(F)) ⊂
U×δ and ΦU,δ(F) → F is an isomorphism in Db(kX , U×δ). Then the morphism

µK
a◦ µ(ΦU,δ(F)) −→ µ(K ◦ ΦU,δ(F))

is an isomorphism on Ω′
Y . Moreover supp(ΦU,γ(F)) ⊂ U which is compact.

Hence K ◦ ΦU,γ(F) → α(K ◦ ΦU,γ(F)) is an isomorphism. Therefore

µK
a◦ µ(ΦU,δ(F)) −→ µ(α(K ◦ ΦU,δ(F)))

is an isomorphism on Ω′
Y and is isomorphic to

µK
a◦ µF −→ µ(α(K ◦ F)).
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§2.5. Quantized contact transformations for microlocal perverse
sheaves

We are now ready to prove the main result of the first Section:

Theorem 2.5.1. Let p ∈ ΩX ⊂ T ∗X, q ∈ ΩY ⊂ T ∗Y where ΩX , ΩY

are C×-conic open subsets. Suppose that we are given a contact transformation

χ : ΩX
∼−→ ΩY

such that χ(p) = q. Then locally there exists a kernel K such that

µK
a◦ : χ∗γ∗ Db(I(k ∗ ))|γ(ΩX) −→ γ∗ Db(I(k ∗ ))|γ(ΩY )

induces an equivalence of stacks

χ∗µPervX |γ(ΩX)
∼−→ µPervY |γ(ΩY )

and the diagram

χ∗γ∗ Db
perv(kX , ∗)|γ(ΩX)

µ ��

Φperv
K

��

χ∗µPervX |γ(ΩX)

µK
a◦

��
γ∗ Db

perv(kY , ∗)|γ(ΩY )

µ �� µPervY |γ(ΩY )

commutes up to natural isomorphism.

Proof. Consider the diagram of functors of prestacks

χ∗γ∗ Db(kX , ∗)|γ(ΩX)

µ ��

ΦK=K◦
��

χ∗γ∗ Db(I(k ∗ ))|γ(ΩX)

µK
a◦

��
γ∗ Db(kY , ∗)|γ(ΩY )

µ �� γ∗ Db(I(k ∗ ))|γ(ΩY ).

By Proposition 2.4.6 this diagram induces a commutative diagram (up to
natural isomorphism) in the stalks, so we immediately get that for p ∈ ΩX and
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q = χ(p) ∈ ΩY the diagram

(2.5.1) Db
perv(kX , C×p)

µ ��

ΦK

��

µPervγ(p)

µK
a◦

��
Db(kY , C×q)

µ �� Db(I(k∗))γ(q)

commutes up to natural isomorphism.
Consider the diagram (2.5.1). Let F ∈ Db

perv(kX , C×p). Recall that for a
sufficiently small relatively compact open neighborhood V of π(p) the object
Φperv

K F is represented by K◦FV in Db
perv(kY , C×q) and it is isomorphic to K◦F

in Db(kY , C×q). Since Db
perv(kY , C×q) is a full subcategory of Db(kY , C×q), we

get that µK
a◦ µF is an object of µPervY

γ(q). Hence we get the induced functor
of stacks

µPervX |γ(ΩX) −→ µPervY |γ(ΩY )

and the diagram of the theorem.
In the same way we verify that µK∗a◦6 is a well defined functor of stacks

in the opposite direction and it is easily verified that µK∗a◦ is a quasi-inverse
(as Φperv

K∗ is a quasi-inverse to Φperv
K ).

Finally let us compose quantized contact transformations. Suppose that
we have contact transformations

χ1 : ΩX
∼→ ΩY χ2 : ΩY

∼→ ΩZ

and kernels K1 ∈ Db
R-c(kY ×X), K2 ∈ Db

R-c(kZ×Y ) such that Theorem 2.1.2 is
valid. Then we know that Φa

µK1
= µK1

a◦ and Φa
µK2

= µK2
a◦ are well-defined on

microlocal perverse sheaves. However note that K2 ◦K1 is not R-constructible
and we do not know if

µK2
a◦ µK1 −→ µ(K2 ◦ K1)

is an isomorphism in Db(I(kT∗Z×T∗X)). Nevertheless we get

Proposition 2.5.2. The functor

µ(K2 ◦ K1)
a◦ : µPervX −→ µPervZ

is well-defined and naturally isomorphic to Φa
µK1

◦ Φa
µK1

.

6Here K∗ = RHom(K, ωX×Y |X)
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Proof. The strategy is similar to the proof of Theorem 2.5.1. First we
can show that µ(K2 ◦ K1)

a◦ : µPervX −→ µPervZ is well-defined by looking
in the stalks and using the fact that Db

perv(kY , C×q) is a full subcategory of
Db(kY , C×q). The same argument shows the isomorphism.

Remark 2.5.3. Theorem 2.5.1 and Proposition 2.5.2 are an important
step towards the definition of the stack of microlocal perverse sheaves on a
complex contact manifold. Such a manifold is locally isomorphic to an open
subset ΩX ⊂ P ∗X and the transition maps are contact transformations. Using
the proposition we can locally associate an equivalence of stacks. But the choice
of the kernel K is neither unique nor canonical.

§3. Microlocal Riemann-Hilbert Correspondence

The classical Riemann-Hilbert correspondence states that on a complex
variety X the solution functor RHomDX

( · , OX) defines a contravariant equiva-
lence between the stack HolReg(DX) of regular holonomic DX -modules and
the stack of perverse sheaves. A quasi-inverse of this functor, THom( · , OX),
has been constructed explicitly by Kashiwara (cf. [K2]).

Let M be a holonomic D-module. We set

Sol(M) = RHomDX
(M, OX).

Let F be an object of Db
R-c(CX) and set

RH(F) = THom(F, OX).

Then the Riemann-Hilbert correspondence can be stated as follows.

Theorem 3.0.4. The functors RH and Sol define quasi-inverse equiva-
lences of abelian stacks

Perv(CX)
RH �� HolReg(DX).
Sol

��

The microlocal Riemann-Hilbert correspondence should therefore establish
an equivalence between the stack of microlocal perverse sheaves and the stack
of regular holonomic EX -modules.
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§3.1. The Ind-objects µOX and µOt
X

The microlocalization of the ring of holomorphic functions defines an object
of I(CX). More precisely, we have (cf. [K3])

Proposition 3.1.1. The ind-sheaf

µOX |Ṫ∗X

is concentrated in degree dX .

Let F ∈ Db
R-c(CX). We will study the microlocal solution complex

µhom(F, OX) � RHom(π−1F, µOX).

The stalks of this complex have been studied in [KS1] and we will show that
some results can be extended to open neighborhoods.

The “ring” Ot
X ∈ Db(I(CX)) of temperate holomorphic functions has been

defined in [KS2]. It is defined from the “ring” Dbt
X ∈ Db(I(CX)) as

Ot
X = RHomβ(DX )(β(OX), Dbt

X).

We will not recall the construction of Dbt
X here. Recall that Ot

X is only defined
in the derived category. It is not concentrated in a single degree.

The link with Kashiwara’s functor THom is given by the natural isomor-
phism

(3.1.1) RHom(F, Ot
X) � THom(F, OX)

where F ∈ Db
R-c(CX).

In [KS2], the full functoriality of Ot is established. We will only need the
following result:

Proposition 3.1.2. Let f : X → Y be a smooth map between complex
manifolds. Then there is a canonical isomorphism in Db(I(β(DX))):

RIHomβDX
(βDX→Y , Ot

X) � f−1Ot
Y .

By microlocalization we get an object µOt
X ∈ Db(I(CT∗X)). It is not

known if this object is concentrated in a single degree or not. Our first objective
is to prove that the microlocalization of the formula (3.1.1) holds, i.e. for every
F ∈ Db

R-c(CX) we have the formula

RHom(µF, µOt) � tµhom(F, OX),
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where tµhom(F, OX) is Andronikof’s tempered version of the functor
µhom(F, OX) (see [An2]). The proof is similar to the proof of the formula

RHom(µF, µG) � µhom(F, G)

from [K5] where F, G ∈ Db(CX). First recall the normal deformation of the
diagonal in X × X that can be visualized by the following diagram

TX
∼ �� T∆X

(X × X)

τX

��

� � s �� X̃ × X

p

��

p1

��

p2

��

Ω� �
j��

p̃

����
��

��
���

X � �

∆X

��

id
X 		�������������� X × X

q2

��

q1

��
X .

Recall that X̃ × X is equipped with a map t : X̃ × X → R and Ω is the open
set t−1(R>0). Note that p̃, p1 and p2 are smooth but p is not. Also, the square
is not Cartesian. We use the same notations when we deform the diagonal in
T ∗X × T ∗X.

We will need the following lemma:

Lemma 3.1.3. Let F ∈ Db
R-c(CT∗X) and G ∈ Db(I(CT∗X)). Then

RHom(F, µG) � ω−1
X

(
s−1 RHom((p−1

2 F)Ω, p−1q!
1G)

)∧
.

Here ( · )∧ denotes the Fourier-Sato transform (see for instance [KS1]).

Proof. Set

P =
{
(x; v) ∈ TT ∗X | 〈v, ω(x)〉 � 0

}
,

P ′ =
{
(x; v) ∈ TT ∗X | 〈v, ω(x)〉 � 0

}
.

We have

RHom(F, µG) � RHom(F, Rq1!!(q−1
2 G ⊗ Rp!!(CΩ) ⊗ β(CP ⊗ Rs∗ωTT∗X|T∗X)

� RHomF, Rp1!!(p−1
2 G ⊗ CΩ ⊗ β(CP ⊗ Rs∗ωTT∗X|T∗X))

� RHomF, Rp2!!(p−1
1 G ⊗ CΩ ⊗ β(CP ′ ⊗ Rs∗ωTT∗X|T∗X))

� Rp2! RHom(p−1
2 F, p−1

1 G ⊗ CΩ ⊗ β(CP ′ ⊗ Rs∗ωTT∗X|T∗X))

� Rp2!

(
RHom(p−1

2 F, p−1
1 G ⊗ CΩ) ⊗ CP ′ ⊗ Rs∗ωTT∗X|T∗X)

)
.
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Now note that locally on (T ∗X × T ∗X)∼ the set Ω is convex and

SS0(p−1
1 G) ∩ T ∗

Ω(T ∗X × T ∗X)∼ ⊂ T ∗
(T∗X×T∗X)∼(T ∗X × T ∗X)∼.

Hence

CΩ ⊗ p−1
1 G � RHom(CΩ, CX) ⊗ p−1

1 G � RIHom(CΩ, p−1
1 G).

Moreover note that

ωTT∗X|T∗X � τ−1
T∗Xω⊗−1

∆|T∗X×T∗X � s−1p̃−1q!
1CT∗X .

Hence

RHom(F, µG) � Rp2!

(
RHom(p−1

2 F ⊗ CΩ, p−1
1 G) ⊗ CP ′ ⊗ Rs∗ωTT∗X|T∗X)

)

� Rp2! Rs!

(
s−1 RHom(p−1

2 F ⊗ CΩ, p−1q!
1G) ⊗ CP ′

)

� Rτ!

(
s−1 RHom(p−1

2 F ⊗ CΩ, p−1q!
1G) ⊗ CP ′

)

� ω−1
X

(
s−1 RHom((p−1

2 F)Ω, p−1q!
1G)

)∧
.

This shows the lemma.

Proposition 3.1.4. Let F ∈ Db
R-c(CX). Then

RHom(µF, µOt) = tµhom(F, OX).

Proof. Apply Lemma 3.1.3 to F ∈ Db(CX). Then a standard calculation
shows that

RHom(π−1F, µG) =
(
s−1 RHom

(
(p−1

2 F)Ω, p−1q!
1G

))∧
.

When we apply this result to Ot
X and F ∈ Db

R-c(CX) we get

RHom(π−1F, µOt) �
(
s−1 RHom

(
(p−1

2 F)ΩX
, p−1q!

1O
t
))∧

�
(
s−1 RHomD

X̃×X

(
D

X̃×X
p1→X

, THom((p−1
2 F)ΩX

, O
X̃×X

)
⊗s−1p−1q!

1CX

)∧

�
(
s−1D

X
p1←X̃×X

⊗
D

X̃×X

THom((p−1
2 F)Ω, O

X̃×X

)
[1]

)∧

� tµhom(F, OX).

Following [KS2], we set for a locally free OX -module L:

Lt = Ot
X

L
⊗

βOX

βL.
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Lemma 3.1.5. Let L a locally free OX -module of finite rank. Then
there are natural isomorphisms

µL
∼−→ µOX

L
⊗

π−1βOX

π−1βL,

µLt ∼−→ µOt
X

L
⊗

π−1βOX

π−1βL.

Proof. Let us show the second isomorphism, the proof of the first being

similar since L � OX

L
⊗

βOX

βL. By definition

µ
(
Ot

X

L
⊗

βOX

βL
)
� Rq1!!

(
KX ⊗q−1

2 π−1
(
Ot

X

L
⊗

βOX

βL
))

.

But since KX � KX ⊗βC∆ and

βC∆⊗
(
q−1
2 π−1Ot

X

L
⊗

βq−1
2 π−1OX

βq−1
2 π−1L

)

�
(
(βC∆ ⊗ q−1

2 π−1Ot
X)

L
⊗

βq−1
1 π−1OX

βq−1
1 π−1L

)

we get the second isomorphism.

§3.2. EX-modules

The ring EX of microdifferential operators on T ∗X has been defined in
[SKK]. For a short introduction to the theory of EX -modules we refer to [K3],
for a more detailed study see also [Sch]. The ring EX has many “good” proper-
ties, for instance it is coherent and Noetherian. For our purpose it is convenient
to consider microdifferential operators outside the zero-section, hence when we
write EX , we consider EX |

Ṫ∗X
.

We will also consider two variants of this ring. In the sequel we will identify
T ∗X with T ∗

∆X
(X × X) by the map

δa : T ∗X
∼−→ T ∗

∆X
(X × X) ↪→ T ∗X × T ∗X; (x; ξ) �→ ((x; ξ), (x;−ξ)).

The functor δa−1 is often omitted for complexes with support on T ∗X.
One defines the ring ER

X on T ∗X as

ER
X � HdX µhom(C∆X

, O
(dX ,0)
X×X ) � HdX RHom(π−1C∆X

, µO
(dX ,0)
X×X ).
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In [An2] Andronikof introduced the ring E
R,f
X on T ∗X of tempered microdiffer-

ential operators as

E
R,f
X = HdX

(
tµhom(C∆, OX×X)

L
⊗

OX×X

O
(dX ,0)
X×X

)
.

Proposition 3.2.1. We have

E
R,f
X � HdX RHom(π−1C∆X

, µO
t,(dX ,0)
X×X ).

Proof. Follows from Proposition 3.1.4 and Lemma 3.1.5.

Recall some basic properties (cf. [An2]):

(i) We have Riγ∗E
R,f
X � 0 for i �= 0 and EX � γ−1γ∗E

R,f
X .

(ii) The rings ER
X and E

R,f
X are faithfully flat over EX .

(iii) The ring EX (and therefore ER
X , ER,f

X ) is a π−1DX -module.

A priori, EX -modules are defined on the cotangent space T ∗X. But since
we have γ−1γ∗EX � EX , coherent EX -modules (hence in particular regular
holonomic EX -modules) are conic objects, hence it is often convenient to work
on the projective bundle P ∗X or on C×-conic sets. We will always work outside
the zero section.

Let M be a coherent EX -module. Then its support supp(M) is called its
characteristic variety. If M is a coherent DX -module, then the characteristic
variety of EX ⊗π−1DX

π−1M coincides with the characteristic variety of M as
a DX -module. The main result about the characteristic variety of EX -modules
is (see [SKK]):

Proposition 3.2.2. Let M be a coherent EX-module. Then its charac-
teristic variety is a closed, analytic, involutive, C×-conic subset of T ∗X.

Definition 3.2.3. Let M be a coherent EX -module. One says that M

is holonomic if its characteristic variety is Lagrangian.

Regular holonomic EX -modules7 (or “holonomic systems with regular sin-
gularities”) have been studied in [KK]. A DX -module is regular holonomic if
and only if its associated EX -module is regular holonomic.

7A holonomoic EX -module M is regular holonomic if locally there exists a coherent E(0)-
module L ⊂ M such that M = EXL and for every homogenous holomorphic function
f ∈ OṪ∗X(0) with f |supp(M) = 0 we have f(L/E(−1)L) = 0.
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Theorem 3.2.4. Let M be a regular holonomic EX-module such that
its characteristic variety is in generic position at a point p ∈ Ṫ ∗X. Then there
exists a regular holonomic DX-module M̃ such that

M � EX ⊗
π−1DX

M̃.

Regular holonomic EX -modules form a stack of abelian categories. This
stack is invariant by quantized contact transformations. Hence modulo a con-
tact transformation a regular holonomic EX -module is locally isomorphic to

EX ⊗
π−1DX

RH(F)

where F is a perverse sheaf. For our purpose this could be taken as a definition
of a regular holonomic system. Finally let us recall the following theorem.

Proposition 3.2.5. ([An2], Théorème 4.2.6 and Proposition 5.6.1) Let
F ∈ Db

C-c(CX). Then

tµhom(F, OX) � E
R,f
X

L
⊗

π−1DX

THom(F, OX).

If F is perverse then tµhom(F, OX) is concentrated in degree 0 and

H0 tµhom(F, OX) � E
R,f
X ⊗

π−1DX

π−1 THom(F, OX).

§3.3. The microdifferential structure of µOX and µOt
X

Recall that for any field k an object A ∈ I(kX) is called a kX -algebra if
there exist morphisms

kX → A A ⊗ A −→ A

that satisfy the usual conditions of unit and associativity (for more details, see
for instance [KS2], Section 5.4). For example, If A is a classical kX -algebra in
Mod(kX) then βA is a kX -algebra in I(kX).

Let A ∈ I(kX) be a kX -algebra. A left A-module in I(kX) is given by an
object M ∈ I(kX) and a structure morphism

A ⊗ M −→ M

that satisfies the usual compatibility conditions with the structure morphisms
of A (for more details, see loc. cit.).
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Similarly, one defines the notion of a kX -algebra A in Db(I(kX)) and the no-
tion of a left A-module in Db(I(kX)). Note that if a kX -algebra A in Db(I(kX))
is concentrated in a single degree, then it defines a kX -algebra in I(kX). How-
ever, even if A is concentrated in a single degree, an A-module in Db(I(kX)) is
in general not well-defined in the derived category of A-modules in I(kX). In
order to avoid confusion, one often calls an A-module in Db(I(kX)) a formal
A-module.

In this section we will show that µOX is a βER
X -module in I(CX). The same

strategy will show that µOt
X is a formal βE

R,f
X -module in the derived category

Db(I(CX)). In particular its cohomology ind-sheaves are βE
R,f
X -modules.

We will need the tempered version of the integration morphism:

Proposition 3.3.1. There is a natural morphism in Db(I(CX))

Rf!!Ωt
X [dX ] −→ Ωt

Y [dY ].

Proof. This is a simple version (not respecting D-module structures) of
the morphism established in [KS2]:

Rf!!(Ωt
X

L
⊗

βDX

βDX→Y )[dX ] −→ Ωt
Y [dY ].

Now consider complex manifolds X, Y, Z of complex dimensions dX , dY , dZ

and the diagram

X × Y × Z
q12

������������
q13

��

q23

�������������

X × Y X × Z Y × Z.

Lemma 3.3.2. The integration morphisms induce natural morphisms

µO
(dX ,0)
X×Y

a◦ µO
(dY ,0)
Y ×Z −→ µO

(dX ,0)
X×Z [−dY ]

µO
t,(dX ,0)
X×Y

a◦ µO
t,(dY ,0)
Y ×Z −→ µO

t,(dX ,0)
X×Z [−dY ]

Proof. The two constructions being similar (and just an ind-variant of
the construction used in Lemma 11.4.3. of [KS1]) we will only show how to
define the second morphism.

First let us construct the natural morphism

O
t,(dX ,0)
X×Y ◦ O

t,(dY ,0)
Y ×Z −→ O

t,(dX ,0)
X×Z [−dY ].
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It can be obtained as follows

O
t,(dX ,0)
X×Y ◦ O

t,(dY ,0)
Y ×Z � Rp13!!

(
p−1
12 O

t,(dX ,0)
X×Y ⊗ p−1

23 O
t,(dY ,0)
Y ×Z

)
→ Rp13!!O

t,(dX ,dY ,0)
X×Y ×Z

→ O
t,(dX ,0)
X×Z [−dY ]

where the last morphism is the integration morphism of Proposition 3.3.1. Us-
ing the microlocal composition formula (Theorem A.2.5) we get the morphism

µO
t,(dX ,0)
X×Y

a◦ µO
t,(dY ,0)
Y ×Z −→ µ

(
O

t,(dX ,0)
X×Y ◦ O

t,(dY ,0)
Y ×Z

)
−→ µO

t,(dX ,0)
X×Z [−dY ].

Proposition 3.3.3. Consider kernels K1 ∈ Db(I(CT∗X×T∗Y )) and
K2 ∈ Db(I(CT∗Y ×T∗Z)). There are natural morphisms

RIHom
(
K1, µO

(dX ,0)
X×Y

) a◦ RIHom
(
K2, µO

(dY ,0)
Y ×Z

)
−→ RIHom

(
K1

a◦ K2, µO
(dX ,0)
X×Z

)
[−dY ]

RIHom
(
K1, µO

t,(dX ,0)
X×Y

) a◦ RIHom
(
K2, µO

t,(dY ,0)
Y ×Z

)
−→ RIHom

(
K1

a◦ K2, µO
t,(dX ,0)
X×Z

)
[−dY ]

These morphisms satisfy the obvious associativity condition (analogous to
Lemma 11.4.3 in [KS1]).

Proof. Note that there is a natural morphism

RIHom(F1, G1)
a◦ RIHom(F2, G2) −→ RIHom(F1

a◦ F2, G1
a◦ G2).

Combining this morphism with the morphisms of Lemma 3.3.2, we get the
desired arrows.

The associativity condition is tedious to write down. It is a straightforward
consequence of the corresponding associativity conditions of the morphisms
involved in the construction.

Remark 3.3.4. Consider K1 ∈ Db(CX×Y ) and K2 ∈ Db(CY ×Z). Apply-
ing the functor α to the first morphism of Proposition 3.3.3 (and replacing Ki

by µKi, i = 1, 2), we get a morphism

Rp13!

(
pa−1
12 µhom(K1, O

(dX ,0)
X×Y ) ⊗ p−1

23 µhom(K2, O
(dY ,0)
Y ×Z )

)

−→ µhom(K1 ◦ K2, O
(dX ,0)
X×Z )[−dY ].

This morphism is naturally isomorphic to the morphism of [KS1], Lemma
11.4.3.
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In the situation of Proposition 3.3.3 consider Z = {pt} and K2 = µOY

(resp. K2 = µOt
Y ). Applying α we get natural morphisms

Rp1!

(
RHom

(
K, µO

(0,dY )
X×Y

)
⊗pa−1

2 RHom
(
µOY , µOY

))

−→ RHom
(
K[dY ]

a◦ µOY , µOX

)
,

Rp1!

(
RHom

(
K, µO

t,(0,dY )
X×Y

)
⊗pa−1

2 RHom
(
µOt

Y , µOt
Y

))

−→ RHom
(
K[dY ]

a◦ µOt
Y , µOt

X

)
.

Taking X = Y and K = π−1C∆X
we get the morphisms

ER
X ⊗ RHom(µOX , µOX) −→ RHom(µOX , µOX),

E
R,f
X ⊗ RHom(µOt

X , µOt
X) −→ RHom(µOt

X , µOt
X).

Note that for any F ∈ Db(I(CX)) the identity of F defines a natural morphism
C∆X

→ RHom(F, F). Hence we get the structure morphisms

(3.3.1) βER
X ⊗ µOX −→ µOX ,

(3.3.2) βE
R,f
X ⊗ µOt

X −→ µOt
X .

In order to prove that the two morphisms (3.3.1) and (3.3.2) define structures
of formal modules in Db(I(CX)) one uses the associativity of the construction
in Proposition (3.3.3). The proof that the action is unitary is the same as for
tµhom in [An2] (Proposition 4.2.4) and µhom in [KS1] (Proposition 11.4.4) and
goes back to [SKK]. Therefore we get:

Proposition 3.3.5. The object µOX (resp. µΩX) is a formal left (resp.
right) βER

X-module in Db(I(CX)) and µOt
X (resp. µΩt

X) is a formal left (resp.
right) βE

R,f
X -module in Db(I(CX)).

Corollary 3.3.6. Let F ∈ Db(I(CT∗X)). Then

(i) the complex RIHom(F, µOX) (resp. RIHom(F, µOt
X)) is a formal left

βER
X-module (resp. βE

R,f
X -module) in Db(I(CX)),

(ii) the complex RIHom(F, µΩX) (resp. RIHom(F, µΩt
X)) is a formal right

βER
X-module (resp. βE

R,f
X -module) in Db(I(CX)).
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(iii) The object µOX (resp. µΩX) is a left (resp. right) βER
X-module in I(CT∗X)

and for every F ∈ Db(CX) the complex µhom(F, OX) is well defined in the
derived category of ER

X-modules.

(iv) Let F ∈ Db(I(CT∗X)) such that RHom(F, µOt
X) is concentrated in a single

degree (for instance if F is a microlocal perverse sheaf (see Lemma 3.6.1
below)). Then the natural morphism

RHom(F, µOt
X) −→ RHom(F, µOX)

is well defined in the derived category of EX-modules.

We also get

Proposition 3.3.7. The natural morphism

Rp13!!

(
pa−1
12 RIHom(K1, µO

(dX ,0)
X×Y )⊗p−1

23 RIHom(K2, µO
(dY ,0)
Y ×Z )

)

−→ RIHom(K1
a◦ K2, µO

(dX ,0)
X×Z )[−dY ]

factors through

Rp13!!

(
pa−1
12 RIHom(K1, µO

(dX ,0)
X×Y )

L
⊗

p−1
2 βER

X

p−1
23 RIHom(K2, µO

(dY ,0)
Y ×Z )

)
.

Proof. This is a consequence of the associativity condition of Proposition
3.3.3.

§3.4. Quantized contact transformations for µOX and µOt
X

In this section we will adapt Section 11.4 of [KS1] to study the behaviour
of µOX and µOt

X under complex contact transformations. We will restrict
ourselves now to µOX , the study of µOt

X being similar.
Hence to any contact transformation χ : ΩY

∼−→ ΩX we want to attach a
kernel K and an isomorphism

µK
a◦ µOY

∼−→ µOX

that is compatible with the action of βEX (resp. βEY ) on µOX (resp. µOY ).
Such a morphism has been constructed in Db(CX , p) in Section 11.4 of [KS1].

Recall the morphism

Rp1!

(
RHom

(
µK, µO

(0,dY )
X×Y

)
⊗pa−1

2 RHom
(
µOY , µOY

))

−→ RHom
(
µK[dY ]

a◦ µOY , µOX

)
.
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Now suppose that RHom
(
K, µO

(0,dY )
X×Y

)
is concentrated in positive degrees and

that
supp RHom

(
K, µO

(0,dY )
X×Y

)
→ X

is proper. Then by taking the 0-cohomology we get a morphism

p1∗

(
H0RHom

(
µK, µO

(0,dY )
X×Y

)
⊗ pa−1

2 H0RHom
(
µOY , µOY

))

−→ H0RHom
(
µK[dY ]

a◦ µOY , µOX

)
.

Hence the identity of µOY and any section

s ∈ H0RHom(µK, µO
(0,dY )
X×Y ).

define a morphism
ϕ(s) : K[dY ]

a◦ µOY −→ µOX

Recall the morphism

pa
13∗

(
pa−1
12 RHom(µK1, µO

(0,dY )
X×Y ) ⊗

βER
Y

pa−1
23 RHom(µK2, µO

(0,dZ )
Y ×Z )

)

−→ RIHom(µK1
a◦ µK2[dY ], µO

(0,dZ )
X×Z )

−→ RIHom(µ(K1 ◦ K2)[dY ], µO
(0,dZ)
X×Z ).

Denote by s ◦ s′ the image of s ⊗ s′ by this morphism. Then we get

Proposition 3.4.1.

ϕ(s ◦ s′) = ϕ(s) ◦ (K[n]
a◦ ϕ(s′))

Proof. This follows from the fact that the morphism of Proposition 3.3.3
satisfies to the obvious associativity condition.

In the sequel we will only consider kernels K ∈ Db(CY ×X) satisfying

(i) K is R-constructible,

(ii) (ΩY × T ∗X ∪ T ∗Y × Ωa
X) ∩ SS(K) ⊂ Λ,

(iii) K is simple8 with shift 0 along Λ.

Note that given a C×-conic Lagrangian subvariety Λ that is associated to a con-
tact transformation, for each p ∈ ΩX there exist a C×-conic open neighborhood
Ω′

X of C×p and a kernel K such that (i), (ii) and (iii) are satisfied.
8For the definition of simple sheaves see [KS1], Section 7.5.
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Theorem 3.4.2. For every p ∈ ΩY there exists a C×-conic open neigh-
borhood Ω′

Y ⊂ ΩY of C×p such that if we set Ω′
X = χ(ΩX) we can find sections

s ∈ H0 RHom(µK, µO
(dX ,0)
X×Y )|Ω′

X×Ω′
Y

st ∈ H0 RHom(µK, µO
t,(dX ,0)
X×Y )|Ω′

X×Ω′
Y

such that the morphisms

ER
X |ΩX

−→ p1∗ H0 RHom(µK, µO
(dX ,0)
X×Y )|Ω′

X×Ω′
Y
; P �→ Ps

E
R,f
X |ΩX

−→ p1∗ H0 RHom(µK, µO
t,(dX ,0)
X×Y )|Ω′

X×Ω′
Y
; P �→ Pst

ER
Y |ΩY

−→ p2∗ H0 RHom(µK, µO
(dX ,0)
X×Y )|Ω′

X×Ω′
Y
; Q �→ sQ

E
R,f
Y |ΩY

−→ p2∗ H0 RHom(µK, µO
t,(dX ,0)
X×Y )|Ω′

X×Ω′
Y
; Q �→ stQ

are isomorphisms and we get antiisomorphisms

χ∗E
R
Y |ΩY

∼−→ ER
X |ΩX

; P �→ Q such that Ps = sQ

χ∗E
R,f
Y |ΩY

∼−→ E
R,f
X |ΩX

; P �→ Q such that Pst = stQ

For such sections s, st the morphism

ϕ(s) : µK[dY ]
a◦ µOY −→ µOX ϕ(st) : µK[dY ]

a◦ µOt
Y −→ µOt

X

is an isomorphism of βER
X-modules (resp. βE

R,f
X -modules).

Corollary 3.4.3. Let s, st be a section as in Theorem 3.4.2.

(i) Let F be a perverse sheaf. Then ϕ(s) defines an isomorphism of ER
X-modules

χ∗ RHom(π−1µF, µOY ) � RHom(µK
a◦ µF, µOX)

and ϕ(st) defines an isomorphism of E
R,f
X

χ∗ RHom(π−1µF, µOt
Y ) � RHom(µK

a◦ µF, µOt
X).

(ii) Let M be a coherent EY -module. Then ϕ(s) defines an isomorphism

µK
a◦ RIHomβEY

(βM, µOY ) � RIHomβEX
(χ∗βM, µOX).

§3.5. Classical Riemann-Hilbert Theorem and Ind-sheaves

Using the functor µ we can reformulate the isomorphisms of the classical
Riemann-Hilbert Theorem from the microlocal point of view.
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Lemma 3.5.1.

(1) Let F ∈ Db
C-c(CX). Then

RHom(µF, µOt
X)� E

R,f
X

L
⊗

π−1DX

π−1 RH(F),

γ−1 Rγ∗ RHom(µF, µOt)� EX

L
⊗

π−1DX

π−1 RH(F).

(2) Let M be a coherent DX-module. Then

RIHomβER,f
X

(βE
R,f
X

L
⊗

π−1βDX

β(π−1M), µOX)� µ(Sol(M)),

RIHomβEX
(βEX

L
⊗

π−1βDX

β(π−1M), µOX)� µ(Sol(M)).

Proof. (1) is a reformulation of Theorem 4.2.6 of [An2] in terms of ind-
sheaves using the fact that γ−1 Rγ∗E

R,f
X � EX and (2) follows directly from the

fact that M is a coherent DX -module.

Therefore we can now formulate Riemann-Hilbert Theorem in terms of
ind-sheaves:

Proposition 3.5.2.

(1) Let F be a perverse sheaf on X. Then

RIHomβER,f
X

(β RHom(µF, µOt
X), µOX)� µF,

RIHomβEX
(βγ−1 Rγ∗ RHom(µF, µOt

X), µOX)� µF.

(2) Let M be a regular holonomic DX-module. Then

RHom(RIHomβER,f
X

(β(ER,f
X

L
⊗

π−1DX

π−1M), µOX), µOt
X)

� E
R,f
X

L
⊗

π−1DX

π−1M,

γ−1 Rγ∗ RHom(RIHomβEX
(β(EX

L
⊗

π−1DX

π−1M), µOX), µOt
X)

� EX

L
⊗

π−1DX

π−1M.
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Proof. The proof follows from Lemma 3.5.1.

Now let us formulate the comparison theorem for regular holonomic EX -
modules in terms of ind-sheaves. The classical version ([An1], Proposition 5.6.3)
states

Proposition 3.5.3. Let M be a regular holonomic EX-module and G ∈
Db

R-c(CX) such that tµhom(G, OX) is concentrated in a single degree. Then the
natural morphism

RHomEX
(M, tµhom(G, OX)) −→ RHomEX

(M, µhom(G, OX))

is an isomorphism.

Remark 3.5.4. It is slightly complicated to deal with µOt
X since we do

not know if µOt
X is well defined in the derived category of microdifferential

modules. The analog of the last proposition should be the formula

RIHomβEX
(βM, µOX) ∼−→ RIHomβEX

(βM, µOt
X)

for any regular holonomic EX -module M. However the second term of this
isomorphism is unfortunately not (yet known to be) well-defined. Therefore we
only get the following weaker statement:

Proposition 3.5.5. Let M be a regular holonomic EX-module. Then
there is a natural morphism

RIHomβEX
(βM, µOX) −→ RIHom(βM, µOt

X).

Proof. First we will show that if F is a microlocal perverse sheaf, then
the presheaf

Hom(F, RIHom(βM, µOt
X))

is a sheaf. It is sufficient to prove that RHom(F, RIHom(βM, µOt
X)) is con-

centrated in positive degrees. This can be seen by considering

RHom(F, RIHom(βM, µOt
X)) � RHom(βM, RIHom(F, µOt

X))

� RHom(M, RHom(F, µOt
X))

and the fact that, by Lemma 3.6.1 below, RHom(F, µOt
X) is concentrated in

degre 0.
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By the comparison theorem if G ∈ Db
perv(CX , U) we have a natural mor-

phism

RHomEX
(M, µhom(G, OX)) � RHomEX

(M, tµhom(G, OX))

−→ RHom(M, tµhom(G, OX)).

Since we have

RHomEX
(M, µhom(G, OX)) � RHomEX

(M, RHom(µG, µOX))

� RHomβEX
(βM, RIHom(µG, µOX))

� RHom(µG, RIHomβEX
(βM, µOX))

and

RHom(M, tµhom(G, OX)) � RHom(M, RHom(µG, µOt
X)

� RHom(βM, RIHom(µG, µOt
X))

� RHom(µG, RIHom(βM, µOt
X))

we get a morphism

RHom(µG, RIHomβEX
(βM, µOX)) −→ RHom(µG, RIHom(βM, µOt

X)).

By Lemma 3.6.2 below the complex RIHomβEX
(M, µOX) is a microlocal per-

verse sheaf. Hence locally it is of the form µG for some object G ∈ Db
perv(CX , U).

Thus locally the identity morphism of RIHomβEX
(M, µOX) defines the desired

morphism and we may patch it because of the first part of the proof.

Remark 3.5.6. If µOt
X was well-defined in the derived category of βEX -

modules then the proof of the last proposition would be sufficient to establish
the isomorphism

RIHomβEX
(βM, µOX) ∼−→ RIHomβEX

(βM, µOt
X).

§3.6. Microlocal Riemann-Hilbert morphism

In this section we formulate and prove the Microlocal Riemann-Hilbert
theorem.

Lemma 3.6.1. Let F ∈ µPerv(Ω) and set U = γ−1(Ω). Then

RHom(F, µOt
X |U )
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is an E
R,f
X |U -module. Moreover

γ−1 Rγ∗ RHom(F, µOt
X |U )

is a regular holonomic EX |U -module.

Proof. First we will show that RHom(F, µOt
X |U ) is a well-defined E

R,f
X |U -

module.
By Proposition 3.3.6 it is enough to prove that the complex

RHom(F, µOt
X |U )

is concentrated in a single degree. This is a local problem. Thus we may assume
that F � µF̃ where F̃ is an object of Db

perv(CX , U). Therefore we get

RHom(F, µOt
X |U ) � RHom(µF̃|U , µOt

X |U ) � tµhom(F̃, OX)|U

Since tµhom(F̃, OX)|U is invariant under quantized contact transformations,
we can suppose that F̃ is a perverse sheaf. Then the complex tµhom(F̃, OX)|U
is concentrated in degree 0. Hence RHom(F, µOt

X |U ) is a well-defined E
R,f
X |U -

module.
Hence γ−1 Rγ∗ RHom(F, µOt

X |U ) is an EX -module. Let us show that it
is regular holonomic. This is again a local question, invariant by quantized
contact transformations. Therefore we may assume that F � µF̃ for a perverse
sheaf F̃. Recall that

tµhom(F̃, OX)|U �
(
E

R,f
X ⊗

π−1DX

π−1 THom(F̃, OX)
)
|U .

By the Riemann-Hilbert Theorem THom(F̃, OX) is a regular holonomic DX -
module. Hence the module γ−1 Rγ∗ RHom(F, µOt

X |U ) is regular holonomic.

Lemma 3.6.2. Let M ∈ HolReg(U) where U = γ−1(Ω). Then

RIHomβEX |U (βM, µOX |U )

is an object of µPerv(Ω).

Proof. This is a local problem, invariant by quantized contact transfor-
mations. Therefore we may assume that M is isomorphic to EX ⊗

π−1DX

π−1M̃

on U where M̃ is a regular holonomic DX -module. Then

RIHomβEX |U (βM, µOX |U ) � RIHomβEX
(βEX ⊗

π−1DX

π−1βM̃, µOX)|U

� µ RHomDX
(M̃, OX)|U .
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By the Riemann-Hilbert Theorem RHomDX
(M̃, OX) is a perverse sheaf.

Definition 3.6.3. For any open subset Ω ⊂ P ∗X let us define the mi-
crolocal Riemann-Hilbert correspondence:

µPerv(Ω)
µRH �� HolReg(EX |γ−1Ω)
µSol

��

by the formulas

µSol(M) = RIHomβ(EX |γ−1Ω)(β(M), µOX |γ−1Ω)

µRH(F) = γ−1
Ω RγΩ∗(RHom(F, µOt|γ−1(Ω)))

where γΩ is the restriction of γ to γ−1(Ω).

The functors µSol and µRH are obviously functors of stacks.

Lemma 3.6.4. There is a natural morphism

(3.6.1) Id −→ µSol ◦µRH .

Proof. Let F be a microlocal perverse sheaf. We will define the morphism
(3.6.1) by a natural element of

HomDb(I(CX))(F, RIHomβEX
(βγ−1 Rγ∗ RHom(F, µOt

X), µOX)).

Note that

HomDb(I(CX))(F, RIHomβEX
(βγ−1 Rγ∗ RHom(F, µOt

X), µOX))

� HomDb(I(βEX))(F ⊗ βγ−1 Rγ∗ RHom(F, µOt
X), µOX).

Since the morphism

βγ−1 Rγ∗ RHom(F, µOt
X) −→ βγ−1 Rγ∗ RHom(F, µOX)

is βEX -linear, the natural morphism in Db(I(βEX))

F ⊗ βγ−1 Rγ∗ RHom(F, µOX) −→ µOX

defines the morphism of the lemma.

Now we are ready to prove the microlocal Riemann-Hilbert Theorem:
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Theorem 3.6.5. The functors µSol and µRH define quasi-inverse
equivalences of stacks

µPerv
µRH ��

γ∗HolReg(EX).
µSol

��

Proof. First let us show that the morphism of Lemma 3.6.4 is an isomor-
phism.

Let F be a microlocal perverse sheaf defined in a neighborhood at p. Then
there exists F̃ ∈ Db

perv(CX , C×p) such that F � µF̃. Let χ be a contact trans-
formation such that χ(SS(F̃)) is in generic position at χ(p). Then

Φa
µK RIHomβEX

(β RHom(µF̃, µOt
X , ), µOX)

� RIHomβEX
(β RHom(ΦKF̃, µOt

X , ), µOX).

Since ΦKF̃ is isomorphic to a perverse sheaf in a neighborhood of π(p) the
isomorphism follows from the second part of Proposition 3.5.2.

Now let us show that the functor µRH is an equivalence of stacks. It is
sufficient to prove this locally. In order to prove that µRH is essentially surjec-
tive, we show that µRH and µSol are inverse to each other (up to isomorphism)
on the level of objects. We have already seen that µSol ◦µRH(F) � F for any
microlocal perverse sheaf F.

Let M be a regular holonomic EX -module defined in a neighborhood of
p ∈ Ṫ ∗X. Let χ be a contact transformation such that χ∗M is in generic
position at χ(p). Then

χ∗ Rγ−1 Rγ∗ RHom(RIHomβEX
(β(M), µOX), µOt

X)

� γ−1 Rγ∗ RHom(Φa
µK RIHomβEX

(β(M), µOX), µOt
X)

� γ−1 Rγ∗ RHom(RIHomβEX
(βχ∗M, µOX), µOt

X)

But since χ∗M is in generic position there exists a regular holonomic DX -
module M̃ such that

M � EX

L
⊗

π−1DX

π−1M̃,

and we find that µRH ◦µSol(M) � M by the classical Riemann-Hilbert Theo-
rem. Hence µRH is essentially surjective.
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Let us show that µRH is fully faithful. Let F, G be microlocal perverse
sheaves. By invariance under quantized contact transformations we may assume
that there exist perverse sheaves F̃, G̃ such that F � µF̃ and G � µG̃. Then the
fact that µRH is fully faithful follows from the well-known formula

µhom(F̃, G̃) � RHom(RH(G̃), RH(F̃)).

A. Appendix - The Functor of Ind-microlocalization

In this appendix, we first recall some definitions and statements of the
theory of analytic ind-sheaves from [KS2]. Then we define Kashiwara’s func-
tor of ind-microlocalization and give (without proof) some basic properties
that we used in this paper. The main result is the microlocal composition
formula (Theorem A.2.5) which is the most important tool for our construc-
tions.

A.1. Ind-sheaves

If C is a category, one embeds C into the category of presheaves (of sets)
on C by the fully faithful Yoneda-functor:

C −→ Ĉ; A �→ HomC( · , A)

where Ĉ is the category of contravariant functors C → Set. An object in the
essential image of the Yoneda-functor is called representable. Note that Ĉ ad-
mits all small colimits since the category Set does but even if C admits colimits
the Yoneda-functor does not commute with them.

One denotes by Ind C the full subcategory of Ĉ formed by small filtered
colimits of representable objects and calls it the category of ind-objects of C.
Then Ind C admits all small filtered colimits.

If C is abelian then Ind C is abelian and the Yoneda-functor induces an
exact fully faithful functor C → Ind C.

Now let X be a locally compact topological space with a countable base
of open sets and fix a field k. One sets

I(kX) = IndModc(kX)

where Modc(kX) denotes the full subcategory of Mod(kX) formed by sheaves
with compact support. We call I(kX) the category of ind-sheaves (of k-vector
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spaces). One can show that the prestack X ⊃ U �→ I(kU ) is a proper stack (in
the sens of [KS2]), in particular it is an abelian stack.

There are three important basic functors for ind-sheaves

ι : Mod(kX) −→ I(kX); F �→ “ lim−→ ”
U⊂⊂X

FU

α : I(kX) −→ Mod(kX); “ lim−→ ”
i∈I

Fi �→ lim−→
i∈I

Fi

β : Mod(kX) −→ I(kX) left adjoint to α

where we write “ lim−→ ” for colimits in the category I(kX). All three functors
induce functors of stacks.

Proposition A.1.1.

(i) The functor ι is fully faithful and exact.

(ii) The functor α is exact.

(iii) The functor β is fully faithful and exact.

(iv) The triple (β, α, ι) is a triple of adjoint functors, i.e. β is left adjoint to α

and α is left adjoint to ι.

Note that since the functors ι, α, β are exact they are well-defined in the
derived categories, guard the adjoint properties and β, ι are still fully faithful.
An object F ∈ Db(kX) is identified with ιF in Db(I(kX)).

There are internal operations on ind-sheaves

( · ) ⊗ ( · ) and IHom( · , · )

and an external

Hom( · , · ) : I(kX) × I(kX) −→ Mod(kX).

Moreover for any continuous map f : X → Y between locally compact spaces
we get the external operations

f−1, f∗, f!!,

where the notation f!! indicates that ιf! �� f!!ι.
While ⊗ and f−1 are exact the other functors have a right derived functor

and pass to the derived category where we can define Poincaré-Verdier dual-
ity, i.e. we have a right adjoint f ! to Rf!! and we get the usual formalism of
Grothendieck’s six operations. We will not recall here the various natural iso-
morphisms relating these functors and refer to [KS2] but let us summarize the
commutation properties with ι, α, β:
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Proposition A.1.2.

(i) The functor ι commutes to ⊗, f−1, f !, Rf∗.

(ii) The functor α commutes to ⊗, f−1, Rf∗, Rf!! and we have α RIHom( · , · ) �
RHom( · , · ).

(iii) The functor β commutes to ⊗, f−1.

Finally let us state the following Proposition which has no counterpart in
classical sheaf theory:

Proposition A.1.3. Let F, G ∈ Db(kX) and M ∈ Db(I(kX)). Then
there is a natural isomorphism

RIHom(F, M) ⊗ βG
∼−→ RIHom(F, M ⊗ βG).

A.2. Microlocalization of ind-sheaves

In [K5], Kashiwara establishes the following theorem

Theorem A.2.1. There exists a functor

µ : Db(I(kX)) −→ Db(I(kT∗X))

such that for any F, G ∈ Db(kX) we have a natural isomorphism

RHom(µF, µG) � RHom(π−1F, µG) � µhom(F, G).

Remark A.2.2. Note that if F ∈ Db(kX), then

supp(µF) = supp(RHom(µF, µF)) = supp(µhom(F, F)) = SS(F).

We recall here the construction of µ which is rather straight-forward if we
want to have the property of the Theorem (cf. Proposition 3.1.4).

The normal deformation of the diagonal in T ∗X × T ∗X can be visualized
by the following diagram

TT ∗X
∼ �� T∆T∗X

(T ∗X × T ∗X)

τT∗X

��

� � s �� ˜T ∗X × T ∗X

p

��

Ω� �
j��

p̃



�����������

T ∗X � �

∆T∗X

�� T ∗X × T ∗X
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Note that p̃ is smooth but p is not. Also, the square is not cartesian. Set

KX = Rp!!

(
kΩ ⊗ β(kP )

)
⊗ β(ω⊗−1

∆T∗X |T∗X×T∗X)

where the set P ⊂ TT ∗X is defined by

P =
{

(x, ξ; vx, vξ) | 〈vx, ξ〉 � 0
}

.

Definition A.2.3. Kashiwara’s functor of microlocalization is defined
on T ∗X as

µ : Db(I(kX )) −→ Db(I(k
T∗X

)) ; F �→ µF = KX ◦π−1F.

We made use of the following proposition.

Proposition A.2.4. Let F ∈ Db
R-c(kX) and G ∈ Db(I(kX)) and assume

that
SS(F) ∩ supp(µG) ⊂ T ∗

XX

Then there is a natural isomorphism

RHom(F, kX) ⊗ G
∼−→ RIHom(F, G).

The main theorem of [K5] is the microlocal composition theorem.

Theorem A.2.5. Microlocal composition of kernels. Let K1 ∈ Db

(I(kX×Y )) and K2 ∈ Db(I(kY ×Z)).

(1) There is a natural morphism

(A.2.1) µX×Y K1
a◦ µY ×ZK2 −→ µX×Z(K1 ◦ K2).

(2) Assume the non-characteristic condition9

SS0(K1)
a
×

T∗Y
SS0(K2) ∩ (T ∗

XX × T ∗Y × T ∗
ZZ) ⊂ T ∗

XX × T ∗
Y Y × T ∗

ZZ,

9For two sets S1 ⊂ T ∗X×T ∗Y and S2 ⊂ T ∗Y ×T ∗Z we denote by S1

a
×

T∗Y
S2 the cartesian

product of qa
2 |S1

: S1 → T ∗Y and q1|S2
: S2 → T ∗Y , hence

S1

a
×

T∗Y
S2 =

{
((x; ξx), (y; ξY ), (z; ξZ) ∈ T ∗X × T ∗Y × T ∗Z |

((x; ξx), (y; ξY )) ∈ S1 ((y;−ξY ), (z; ξZ)) ∈ S2

}
.
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then the morphism

KX×Z ◦
(
µX×Y K1

a◦ µY ×ZK2

)
−→ µX×Z(K1 ◦ K2)

is an isomorphism and

µX×Y K1
a◦ µY ×ZK2 −→ µX×Z(K1 ◦ K2)

is an isomorphism outside p13

(
SS0(K1)a ×

T∗Y
SS0(K2) ∩ T ∗X×T ∗

Y Y ×T ∗Z
)
.
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