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Abstract

We study the spectral and scattering theory of some n-dimensional anisotropic
Schrödinger operators. The characteristic of the potentials is that they admit limits at
infinity separately for each variable. We give a detailed analysis of the spectrum: the
essential spectrum, the thresholds, a Mourre estimate, a limiting absorption principle
and the absence of singularly continuous spectrum. Then the asymptotic completeness
is proved and a precise description of the asymptotic states is obtained in terms of a
suitable family of asymptotic operators.

§1. Introduction

In this paper we shall be interested in the spectral and scattering theory
of some anisotropic Schrödinger operators H = −∆ + V in the Hilbert space
L2(IRn). A general theory for highly anisotropic potentials is still lacking, but
various partial approaches are already well developed. The most famous one,
and best achieved, is with no doubt the N-body problem (see [16], [6], [18]
and [4]). Let us also mention [8] and [12] for the spectral analysis of general
anisotropic systems, [3] for the scattering theory for systems with different
spatial asymptotics on the left and right, and [10] and references therein for
a thorough analysis of Schrödinger operators with potentials independent of
|x|. Here another type of anisotropy is considered. It is called cartesian since
the potentials V admit limits at infinity separately for each variable. For the
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corresponding operators, the spectral and scattering theory can be completely
achieved. Moreover, since our approach to the propagation properties of states
is close to intuition, we expect that it could stimulate the development of a
general theory.

Let us illustrate our framework with a simple example. We consider the
operator H = −∆ + V in L2(IR2), with V (x1, x2) = V1(x1)V2(x2), and for
j ∈ {1, 2}, Vj is a continuous real function defined on IR which has limits c±j
at ±∞ and converges to these limits in a short-range way. We call asymptotic
Hamiltonians the operators Hj± = −∆ + c±k Vj , with j, k ∈ {1, 2} but j �=
k, and internal Hamiltonians the operators Hj± = −∆j + c±k Vj acting in
L2(IR). Then the essential spectrum of H is the union of the spectra of the
four asymptotic Hamiltonians. The eigenvalues of the internal Hamiltonians
and the numbers c+

1 c+
2 , c+

1 c−2 , c−1 c+
2 , c−1 c−2 compose the set of thresholds. If the

critical set κ(H) is defined as the set of these thresholds and of the eigenvalues
of H, we prove a Mourre estimate and deduce a limiting absorption principle
on IR \ κ(H), and thus get the absence of singularly continuous spectrum. For
the scattering, let us make some heuristic discussion and get some physical
intuition. Consider a state in the absolutely continuous subspace of L2(IR2)
with respect to H propagating into the positive quadrant of IR2. We can expect
that its asymptotic evolution is governed by the operator −∆+c+

1 c+
2 , and thus

this state will be asymptotically free. But there might also exist some infinite
valley parallel to one of the axis which could trap some scattering states. And
such states would then behave asymptotically like guided waves.

This variety of possible outcomes for the asymptotic evolution is one of the
reasons for the complexity of the analysis of anisotropic systems. In order to
predict the asymptotic behaviour of a given scattering state, one has to know
roughly its asymptotic localization. It seems to us that the right concept for
obtaining this information is the asymptotic velocity. In the previous exam-
ple, the asymptotic velocity of the asymptotically free state points out in the
positive quadrant, while for the asymptotically guided state, the asymptotic
velocity has a zero component. Such characteristics will be used for classifying
the scattering states.

Let us briefly describe our mathematical tools. For the spectral analysis,
we mainly use the method of the conjugate operator in the algebraic framework
developed by W. O. Amrein, A. Boutet de Monvel and V. Georgescu [1]. In
this approach, the main object of the theory is a C∗-subalgebra C of the set of
bounded linear operators in some Hilbert space H. This C∗-algebra is closely
related to the anisotropy. The operators H under consideration are then self-
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adjoint operators in H affiliated to C , i.e. the resolvent (H − z)−1 belongs to
C for any complex number z with non-zero imaginary part. We also rely upon
the recent idea that a class of functions defined on IRn having a certain type
of anisotropy is associated with a compactification of IRn, the one on which
all these functions admit a continuous extension. We refer to [2], [8] and to
[12], [13] of M. Măntoiu for motivations, for some general principles and in
particular for the use of crossed products in relation with spectral analysis. For
the scattering theory, the strategy of J. Dereziński and C. Gérard exposed in
[4], Sections 6.6 and 6.7, is followed. Various propagation estimates are proved
with the help of some propagation observables and with a partition of unity
inspired by the paper of G. M. Graf [9]. The notions of minimal and maximal
velocities are introduced and the asymptotic velocity is used for the definition
of the wave operators and the proof of asymptotic completeness.

In the sequel we shall consider potentials V such that limxj→±∞ V (·) exist
for each j ∈ {1, . . . , n} in a suitable sense, and call them cartesian potentials.
This leads to a natural n-dimensional generalization of certain situations con-
sidered in [3] and [7]. The underlying compactification of IRn is the cartesian
product of n copies of the two-point compactification IR := {−∞}� IR�{+∞}
of IR. Hence let us define IR

n
:= IR1 × · · · × IRn (the indexation corresponds

to that of the variables) endowed with the product topology, and let C(IR
n
)

denote the algebra of continuous complex functions on IR
n
. This algebra is

naturally identified with a subalgebra of BCu(IRn), the bounded uniformly
continuous complex functions on IRn. The precise definition of cartesian po-
tentials is given in Definition 4.1. However, let us already mention that any
real element of C(IR

n
) is a smooth cartesian potential.

We introduce some notations which are needed for the statement of our
results. Let L be the set of all multi-indexes α = {αj}n

j=1 with αj taking values
in {−1, 0, 1}. There exists a one-to-one relation between L and all generalized
hypersurfaces of an n-dimensional hypercube. Indeed, the hypersurface IR

α
:=

IR
α1

1 × · · · × IR
αn

n

(
with the convention that IR

0

j = IRj and IR
±1

j = {±∞j}
)

is
a generalized face of IR

n
. Endowed with the induced topology, its interior is

clearly isomorphic to IRα :=
∏

{j|αj=0} IRj or to {0}. We symbolize by |α| the
dimension of the vector space IRα. For |α| �= 0, let Hα denote the Hilbert space
L2(IRα) and let H2

α be the usual Sobolev space of order two on IRα. This space is
the domain of the Laplace operator ∆α :=

∑
{j|αj=0} ∆j . If α = o := (0, . . . , 0)

the familiar notations are kept: IRo = IRn, Ho = H, H2
o = H2 and ∆o = ∆.

In the special cases |α| = 0, meaning that IR
α

is a corner of the hypercube, we
take by convention Hα = H2

α = C.
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For any function V ∈ C(IR
n
), its restriction V α to the hypersurface IR

α
is

identified with an element of BCu(IRα). One notices that the expression V α(x)
with x ∈ IRn has an unambiguous meaning. Indeed, the algebra BCu(IRα) is
canonically identified with a subalgebra of BCu(IRn), its elements depending
only on the variables xj for which αj = 0. More generally, for any cartesian
potential V the restriction V α of V to the hypersurface IR

α
also exists in a

generalized sense (cf. Definition 4.1). Thus we may set Hα := −∆ + V α and
Hα := −∆α + V α, the former being a self-adjoint operator in H with domain
H2 and the latter a self-adjoint operator in Hα with domain H2

α. Let σp(·)
denote the point spectrum of any self-adjoint operator. With the cartesian
Hamiltonian H ≡ Ho = −∆ + V , one associates two special sets: the set of
thresholds τ (H) = ∪α�=o σp(Hα), and κ(H) = ∪α∈L σp(Hα), the critical set
of H.

In order to give a precise description of the spectrum σ(H) of H, some
regularity of the potential with respect to the generator A of dilations has to be
imposed. We refer to Section 2 for the description of this regularity

(
including

the definition of the class C1,1(A)
)

and to Section 5 for its compatibility with
the cartesian anisotropy. If G is a Banach space, its norm is written ‖ · ‖G . The
weighted Sobolev space Hs

t is the closure of the Schwartz space on IRn with
respect to the norm ‖ · ‖Hs

t
= ‖(1 + P 2)s/2(1 + Q2)t/2 · ‖, where Pj := −i∇j ,

j ∈ {1, . . . , n}, are the components of the momentum operator and Qj is the
operator of multiplication by the variable xj . If t = 0, we simply omit this
index.

Theorem 1.1. Let H = −∆ + V with V a cartesian potential. Then

i) σess(H) =
[
min|α|=n−1 inf σ(Hα),∞

)
.

Furthermore, if V is of class C1,1(A), with A the generator of dilations, then

ii) τ (H) and κ(H) are closed countable sets, the eigenvalues of H not belonging
to τ (H) are of finite multiplicity and can accumulate only at points of τ (H),

iii) H has no singularly continuous spectrum,

iv) for each δ > 0, there exists c < ∞ such that |〈ϕ, (H − λ ± iµ)−1ϕ〉| ≤
c‖ϕ‖2

H−1
1/2+δ

for all ϕ ∈ H−1
1/2+δ and uniformly in λ on each compact subset

of IR \ κ(H) and in µ > 0.

We mention that there exists a slightly stronger version of the limiting
absorption principle in terms of Besov spaces [1]. For reasons of simplicity we
do not take this improvement into account.
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Let us recall that the asymptotic velocity P for a system described by H is
obtained as the limit limt→+∞ eiHt Q

2te
−iHt in a suitable sense. Since the limit

t → −∞ is completely similar, we do not consider it. We denote by Pα the
asymptotic velocity obtained for Hα. The following partition of IRn is useful for
the description of the different possible outcomes of the asymptotic evolution.
For each α ∈ L, we define

Zα := {x ∈ IRn
∣∣ xj = 0 if αj = 0 and αjxj > 0 if αj �= 0}.

We shall prove that for α �= o, the elements of H with support of their asymp-
totic velocity on Zα have an asymptotic evolution governed by the Hamiltonian
Hα. For this purpose, we roughly impose that the potential V approaches its
limits at infinity in a short-range way. A more precise condition is given in
Section 7, equation (20).

If C is an m-tuple of commuting self-adjoint operators (m a positive in-
teger), we denote by EΞ(C) its spectral projection corresponding to the sub-
set Ξ ⊂ IRm. We also use the notation Ep(B) for the orthogonal projec-
tion on the subspace spanned by the eigenvectors of a self-adjoint operator
B.

Theorem 1.2. Let V be a cartesian potential of class C1,1(A) satisfying
(20), with A the generator of dilations. Then for each α ∈ L,

i) the operator Ω+
α := s − limt→+∞ eiHte−iHαtE

Zα
(Pα) exists, and its range

RanΩ+
α is equal to EZα

(P)H,

ii) if β �= α, then RanΩ+
β is orthogonal to RanΩ+

α ; furthermore the direct sum⊕
β �=o RanΩ+

β spans the absolutely continuous subspace of H with respect
to H,

iii) if H is identified with
(⊗

{j|αj �=0} L2(IRj)
)
⊗ Hα, the spectral projection

EZα
(Pα) is equal to

(⊗
{j|αj �=0} E{y∈IR|αjy>0}(Pj)

)
⊗ Ep(Hα).

Let us notice that the projections EZα
(P) correspond to the projections

P+(E) conjectured in the Introduction of [3]. In relation with this result,
we mention the recent work of Y. Dermenjian and V. Iftimie in the case of
perturbed stratified media [5]. Their results are comparable but the anisotropy
they consider is less general than ours since it is a short-range perturbation
of a L∞-function which depends only on the variable xn and admits limits as
xn → ±∞.
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In Section 2 we describe the algebraic framework and some generalities on
the regularity of H with respect to the conjugate operator. The algebra related
to the cartesian anisotropy is introduced in Section 3, where its rich internal
structure is investigated. It already gives some informations on the essential
spectrum. In order to deal with non-smooth potentials, some technicalities
are needed. Section 4 is devoted to this purpose. Definition 4.1 contains the
description of a generalized class of cartesian potentials, which includes C(IR

n
).

The affiliation of the corresponding cartesian Hamiltonians to the mentioned
algebra is proved. The Mourre estimate and the limiting absorption principle
are elaborated in Section 5, where the proof of Theorem 1.1 is given. The last
two sections are dedicated to the scattering theory. Section 6 deals with the
asymptotic velocity P and some of its properties. In Section 7, we use it to
construct the wave operators and to prove Theorem 1.2.

We end the Introduction with two observations. The first one concerns
the relationship between cartesian and N-body Hamiltonians. Although our
approach for the spectral and scattering theory of the former is similar to that
developed for the latter, potentials which are both cartesian and of N-body type
are very special cases of cartesian potentials and of N-body potentials. Indeed,
in the formalism of generalized N-body systems (see Section 5.1 of [4]) such
potentials correspond to a system related to a finite semilattice of subspaces of
IRn which satisfy some orthogonality relations; on the other hand, as cartesian
potentials, they must converge to zero (in a suitable sense) except in the vicinity
of some subspaces of IRn of lower dimensions. The second observation is that the
difficulties due to the anisotropy already appear in two dimensions, a situation
which is easily visualized. Therefore this model is, undoubtedly, of pedagogical
interest. For convenience, we have included some relevant examples of cartesian
potentials in Sections 4, 5 and 7.

§2. The Algebraic Framework

Let us consider a self-adjoint operator H in a Hilbert space H. The spec-
trum and the essential spectrum of H can be expressed in terms of its continuous
functional calculus:1

σ(H) = {λ ∈ IR
∣∣ if η ∈ C0(IR) and η(λ) �= 0, then η(H) �= 0},

σess(H) = {λ ∈ IR
∣∣ if η ∈ C0(IR) and η(λ) �= 0, then η(H) �∈ K(H)}.

1If m and k are positive integers, we denote by C0(IRm) the set of all continuous complex
functions on IRm converging to zero at infinity, and by Ck

c (IRm) the subset of C0(IRm) of
k times continuously differentiable functions of compact support. For any Hilbert spaces
H and G, B(H,G) denotes the Banach space of bounded linear operators from H to G,
B(H) := B(H,H) and K(H) is the ideal of compact operators in H.
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If C is a C∗-subalgebra of B(H), then H is said to be affiliated to C if η(H) ∈ C

for all η ∈ C0(IR). A sufficient condition is that (H − z)−1 ∈ C for some
z ∈ C \ σ(H).

The above situation is a special case of the following more abstract frame-
work:

Definition 2.1.

i) A self-adjoint observable affiliated to a C∗-algebra C is a functional calculus
taking value in C , i.e. a ∗-morphism H : C0(IR) → C . The notation η(H)
will be used instead of H(η).

ii) The spectrum σ(H) of the observable H is the set of real values λ such
that, whenever η ∈ C0(IR) and η(λ) �= 0, then η(H) �= 0.

iii) If π : C → C ′ is a ∗-morphism between two C∗-algebras and H is a self-
adjoint observable affiliated to C , then π(H) : C0(IR) → C ′, given by
η
(
π(H)

)
:= π

(
η(H)

)
, is a self-adjoint observable affiliated to C ′. We call

it the image of H through π.

In the sequel we shall simply write morphism for ∗-morphism between two
C∗-algebras.

We recall some definitions related to the Mourre estimate and refer to
[1] for details and a self-contained presentation. Let {Wt}t∈IR be the unitary
group in H generated by a self-adjoint operator A. For any B ∈ B(H), we write
B ∈ C1(A) if the mapping IR � t �→ W−tBWt ∈ B(H) is strongly C1. If this
mapping is C1 in norm we write B ∈ C1

u(A). By assuming that B ∈ C1(A),
we give a rigorous sense to the commutator [B, iA] ∈ B(H).

A self-adjoint operator H in H is of class C1(A)
(
resp. C1

u(A)
)

if (H −
z)−1 ∈ C1(A)

(
resp. (H − z)−1 ∈ C1

u(A)
)

for some, and then for all, z ∈
C \ σ(H). Let G be the domain of H endowed with the graph norm and
assume that it is left invariant by the group {Wt}t∈IR. We denote by G∗ its
dual space and by {W ∗

t }t∈IR the standard C0-group obtained by duality from
the action of the group restricted to G. Then H is of class C1(A) if and
only if the mapping IR � t �→ W ∗

t HWt ∈ B(G,G∗) is strongly C1 (see [1],
Theorem 6.3.4). In this case, the commutator [H, iA] belongs unambigously to
B(G,G∗).
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With any H of class C1(A), one associates the functions �A
H and �̃A

H defined
on IR with values in (−∞,∞] by

�A
H(λ) = sup{a ∈ IR

∣∣ ∃ η ∈ C∞
c (IR) s.t. η(λ) �= 0 and

aη2(H) ≤ η(H)[H, iA]η(H)},
�̃A

H(λ) = sup
{
a ∈ IR

∣∣ ∃ η ∈ C∞
c (IR) and K ∈ K(H) s.t. η(λ) �= 0

and aη2(H) + K ≤ η(H)[H, iA]η(H)
}
.

Some properties of these functions will be quoted later on (Proposition 5.1).
The Mourre set of H with respect to A is µA(H) := {λ ∈ IR | �A

H(λ) > 0}.
Since the work of Mourre ([14], [15]), it is known that H has nice spectral
properties on this set. In particular H has no eigenvalue in µA(H) and, under
an additional regularity assumption, a limiting absorption principle can be
stated on it. This additional condition is as follows: for some, and then for all,
z ∈ C \σ(H),

∫ 1

0
‖W−t(H − z)−1Wt +Wt(H − z)−1W−t − 2(H − z)−1‖dt

t2 < ∞.
If this condition is satisfied, H is said to be of class C1,1(A). Assuming the
invariance of G under each Wt, an equivalent requirement (see Theorem 6.3.4
of [1]) is that

∫ 1

0
‖W ∗

t HWt + W ∗
−tHW−t − 2H‖G→G∗ dt

t2 < ∞, where ‖ · ‖G→G∗

is the norm of B(G,G∗).
In our applications, H is equal to −∆ + V in H = L2(IRn) with domain

H2, the Sobolev space of order two on IRn. The unitary group {Wt}t∈IR is the
group of dilations, which leaves H2 invariant. Since W ∗

t ∆Wt = e2t∆, an easy
calculation shows that the operator −∆ satisfies the C1,1(A)-condition. Hence
H is of class C1,1(A) if V is ∆-bounded with relative bound less than one and
is of class C1,1(A). We still recall some definitions related to this condition in
such a setting.

Definition 2.2. Let U : H2 → H be a linear symmetric operator.

i) We say that U is a Mourre potential if the sesquilinear form
[
[U, A], A

]
defined on the Schwartz space on IRn is continuous for the topology induced
by H2.

ii) We say that U is a long-range potential if [U, A] ∈ B(H2,H−1) and if there
exists a function ξ ∈ C∞(IRn) with ξ(x) = 0 if |x| ≤ 1 and ξ(x) = 1 if
|x| ≥ 2 such that ∫ ∞

1

∥∥∥∥ξ(Q

r

)
[U, A]

∥∥∥∥
H2→H−1

dr

r
< ∞.

iii) We say that U is a short-range potential if
∫∞
1

∥∥∥ξ (Q
r

)
U
∥∥∥
H2→H

dr < ∞
for some ξ ∈ C∞(IRn) such that ξ(x) = 0 if |x| ≤ 1 and ξ(x) = 1 if |x| ≥ 2.
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It is shown in [1] that in all three cases, U is of class C1,1(A). These
definitions are useful in order to construct examples of cartesian potentials of
this class. We shall make some remarks on this point at the end of Section 5.

§3. The Cartesian Algebra and the Essential Spectrum

In this section, we study the cartesian algebra C which characterizes in
some sense the Hamiltonians under consideration. Its properties will be exten-
sively used in our later proofs. Let us first observe that L is naturally endowed
with the structure of a finite semilattice, with largest element o : β ≤ α if
IR

β ⊂ IR
α
. β < α means strict ordering, and we write β � α if β < α and

IR
β ⊂ IR

γ ⊂ IR
α

implies that either γ = β or γ = α. For j ∈ {1, . . . , n}, let
(β − α)j be equal to βj − αj . One has equivalently that β ≤ α if, whenever
αj �= 0, then βj = αj , and that β � α if and only if β ≤ α and there is exactly
one value of j such that (β − α)j �= 0. One also notices that |α| is equal to
n −

∑n
j=1 |αj |.

In the sequel, we shall make some abuses of notation: IR
α

will denote either
a hypersurface of IR

n
or the isomorphic cartesian product of IRj for all αj = 0

(a |α|-dimensional hypercube). Similarly, C(IR
α
) will be viewed either as a

C∗-algebra on its own, or as a subalgebra of C(IR
n
) with elements depending

only on the variables xj for which αj = 0. However, in every case, the context
should suppress the ambiguity.

Before defining C , we summarize some easy properties of the abelian al-
gebra C(IR

n
). For each α ∈ L, let us show the invariance of the hypersurface

IR
α

under the natural action Uo of IRn on IR
n

by translations. For y ∈ IR, let
Uy : IR → IR with Uy(z) = z + y if z ∈ IR and Uy(±∞) = ±∞, be the exten-
sion to IR of the translation by y on IR. Since IR

n
equals IR1 × · · · × IRn, the

action of the group on IR
n

can be defined componentwise: [Uo
x(z)]j = Uxj

(zj)
for any z ∈ IR

n
and x ∈ IRn. But {−∞}, {+∞} and IR are invariant under

each homeomorphism Uy, and therefore IR
α

is invariant. Consequently, each
subalgebra C(IR

α
) of C(IR

n
) is stable under the action of translations. Indeed,

the group Uo of homeomorphisms induces a representation of the translation
group by ∗-automorphisms of C(IR

α
) : for f ∈ C(IR

α
), x ∈ IRn and z ∈ IR

α
,(

Uo
x(f)

)
(z) = f

(
Uo

x(z)
)
. In particular, it implies the stability of C(IR

n
) under

Uo, and similarly the stability of the C∗-algebra C(IR
α
) under Uα, where Uα

is the corresponding action of IRα on IR
α
.

For each subalgebra C(IR
α
) of C(IR

n
), there exists a morphism πα :

C(IR
n
) � f �→ πα(f) ≡ fα ∈ C(IR

α
) given by restriction of f to the hy-

persurface IR
α
. This morphism is covariant since the relation πα ◦Uo

x = Uo
x ◦πα
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is satisfied for all x ∈ IRn. Let C0(IRn) be identified with the ideal of functions
in C(IR

n
) which are null on the boundary IR

n \ IRn. A certain direct sum of
morphisms πα has an important feature: ⊕α�o πα : C(IR

n
) → ⊕α�o C(IR

α
) is

a covariant morphism with kernel equal to C0(IRn). Thus there exists a natural
injective morphism

(1) π : C(IR
n
)/C0(IRn) ↪→ ⊕α�o C(IR

α
).

We now identify C(IR
α
) with the subalgebra of B(Hα) consisting of all

multiplication operators f(Q) with f ∈ C(IR
α
). C0(IRα∗) denotes the set of

operators h(P ) := F∗
αh(Q)Fα with h ∈ C0(IRα) and where Fα is the Fourier

transform in Hα (we have identified the dual of IRα with IRα itself). A few
elements from the theory of crossed products are used in the sequel. We refer
to [8], Sections 3 and 4 for an overview on this subject in relation with spectral
analysis. This reference includes some precise definitions and all the required
results.

One defines Cα :=
〈
C(IR

α
) · C0(IRα∗)

〉
, the norm closure in B(Hα) of the

set of finite sums of the form f1(Q)h1(P )+· · ·+fN (Q)hN (P ) with fk ∈ C(IR
α
)

and hk ∈ C0(IRα). It is shown in [8], Theorem 4.1, that Cα is a C∗-algebra;
the stability of C(IR

α
) under Uα is here essential. Moreover, this algebra is

isomorphic to the crossed product C(IR
α
) � IRα, which is defined abstractly in

terms of the action of translations on C(IR
α
). In the special case α = o, we

simply set C := Co. We shall give in Lemma 4.1 another description of this
C∗-algebra in terms of suitable limits at infinity. We also mention the following
known relations:

(2) K(H) =
〈
C0(IRn) · C0(IRn∗)

〉 ∼= C0(IRn) � IRn.

Due to the embedding of C(IR
α
) into C(IR

n
) and its stability under Uo,

one may form
〈
C(IR

α
) · C0(IRn∗)

〉
, which is a C∗-subalgebra of C isomorphic

to C(IR
α
) � IRn. Let IRα⊥

denote the orthogonal complement of IRα in IRn.
Proposition 2.4 of [19] asserts that C(IR

α
) � IRn is isomorphic to [C � IRα⊥

]⊗
[C(IR

α
) � IRα]. Hence, if H is identified with L2(IRα⊥

) ⊗ Hα, the C∗-algebra〈
C(IR

α
) ·C0(IRn∗)

〉
of bounded operators in H is isomorphic to the C∗-algebra

C0(IRα⊥∗) ⊗ Cα of bounded operators in L2(IRα⊥
) ⊗Hα.

Since the morphism πα is covariant, there exists a unique morphism

Πα :
〈
C(IR

n
) · C0(IRn∗)

〉
→
〈
C(IR

α
) · C0(IRn∗)

〉
such that Πα[f(Q)h(P )] = fα(Q)h(P ) for each f ∈ C(IR

n
) and each h ∈

C0(IRn). Furthermore, since C0(IRn) is a stable ideal of C(IR
n
), the general
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theory of crossed products gives the canonical isomorphism:

[C(IR
n
) � IRn]/[C0(IRn) � IRn] ∼=

[
C(IR

n
)/C0(IRn)

]
� IRn.

Using (1), (2) and some isomorphisms introduced above, one obtains:

C /K(H) ∼=
[
C(IR

n
)/C0(IRn)

]
� IRn(3)

↪→
[
⊕α�o C(IR

α
)
]

� IRn ∼= ⊕α�o

[
C(IR

α
) � IRn

]
∼= ⊕α�o

〈
C(IR

α
) · C0(IRn∗)

〉
.

The resulting injective morphism is denoted by Π. But if Θ is the canonical
surjection C → C /K(H), then Π ◦ Θ = ⊕α�o Πα. Assume now that H is a
self-adjoint observable affiliated to C . Then σess(H) is equal to σ[Θ(H)], where
Θ(H) is the image of H in the Calkin algebra. Since an injective morphism
preserves the spectrum, we have:

(4) σess(H) = σ
(
Π
(
Θ(H)

))
= σ

(
⊕α�o Πα(H)

)
=
⋃
α�o

σ
(
Πα(H)

)
,

the last equality being valid because the spectrum of an observable affiliated
to a finite direct sum is the union of the spectra of its components. Let us
mention that some similar results were already obtained in [12].

§4. Cartesian Hamiltonians

Schrödinger operators −∆ + V in L2(IRn) affiliated to the C∗-algebra
C are called cartesian. If V is a real element of C(IR

n
), the corresponding

Hamiltonian is cartesian. This is easily seen by using the Neumann series
(−∆ + V − z)−1 =

∑∞
k=0(−∆− z)−1[V (z + ∆)−1]k which is norm convergent

for |�z| large enough. In order to deal with non-smooth potentials, several
technical results have to be obtained. This section is entirely devoted to this
question.

In the sequel, we shall often use some non-decreasing functions ξ in C∞(IR)
satisfying ξ(y) = 0 if y ≤ 1 and ξ(y) = 1 if y ≥ 2. For reasons that will
become obvious already in the next lemma, we call them asymptotic localization
functions. Let us say that a bounded operator B is semi-compact if ζ(Q)B is
compact for all ζ ∈ C0(IRn). We recall that for each α � o, there exists exactly
one j such that αj �= 0. Hence α · Q means αjQj and therefore ξ(α · Q)
is well-defined for any function ξ on IR. We start with a new description
of C .
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Lemma 4.1.

i) Each operator in C is semi-compact.

ii) A semi-compact operator B belongs to C if and only if there exist an
asymptotic localization function ξ and a family {Bα}α�o such that Bα ∈〈
C(IR

α
)·C0(IRn∗)

〉
and limr→∞

∥∥∥ξ (α · Q
r

)
(B − Bα)

∥∥∥ = 0. Moreover, each
operator Bα is unique and equal to Πα(B).

Proof. a) By using (2) one observes that the product ζ(Q)[f(Q)h(P )]
belongs to K(H) for any ζ, h ∈ C0(IRn) and any f ∈ C(IR

n
). Since C is the

norm closure of the vector space generated by products of the form f(Q)h(P )
and since K(H) is norm closed, ζ(Q)B is compact for any ζ ∈ C0(IRn) and any
B ∈ C . This proves i).

b) We now check the “only if” part of ii). Consider f ∈ C(IR
n
) and α ∈ L.

Let us observe that f = fα + (f − fα), where fα ∈ C(IR
α
) and (f − fα)

belongs to the ideal Jα of functions of C(IR
n
) which are equal to zero on the

hypersurface IR
α
. So, one has C(IR

n
) = C(IR

α
)+Jα, and Jα is nothing but the

kernel of the morphism πα of the previous section. By Corollary 3.1 of [8], one
gets C = 〈C(IR

α
)·C0(IRn∗)〉+〈Jα ·C0(IRn∗)〉, where 〈Jα ·C0(IRn∗)〉 is the kernel

of the morphism Πα. Now for any B ∈ C , we set Bα := Πα(B) ∈ 〈C(IR
α
) ·

C0(IRn∗)〉; then B − Bα is an element of 〈Jα · C0(IRn∗)〉. If α � o, it is easy to
see that for any asymptotic localization function ξ,

{
1 − ξ

(
α · Q

r

)}
r≥1

is an

approximate unit for this ideal and thus limr→∞

∥∥∥ξ (α · Q
r

)
(B − Bα)

∥∥∥ = 0.
c) To prove the “if” part in ii), let us introduce a partition of unity adapted

to the anisotropy. Set ξ0(y) := 1 − ξ(y) − ξ(−y) for y ∈ IR, and for x ∈ IRn

set ξα(x) :=
∏

{j|αj �=0} ξ(αjxj)
∏

{k|αk=0} ξ0(xk). For ε > 0, there exists r′ > 0

such that for all r ≥ r′ and all α � o,
∥∥∥ξ (α · Q

r

)
(B − Bα)

∥∥∥ < ε
2(3n−1) . For

each α � o, there exists Nα < ∞, fα
k ∈ C(IR

α
) and hα

k ∈ C0(IRn) such that
‖Bα −

∑Nα

k=1 fα
k (Q)hα

k (P )‖ < ε
2(3n−1) . Finally, for each β �= o, choose α(β)

such that α(β) � o and β ≤ α(β). Since ξβ (Q) ≤ ξ (α(β) · Q) ≤ 1 and since L
contains 3n elements, one obtains∥∥∥∥∥∥B − ξo

(
Q

r′

)
B −

∑
β �=o

Nα(β)∑
k=1

ξβ

(
Q

r′

)
f

α(β)
k (Q)hα(β)

k (P )

∥∥∥∥∥∥ < ε.

By semi-compactness of B, ξo

(
Q
r′

)
B belongs to K(H), and hence to C ; and

each term in the sum belongs to C by construction. Since C is norm closed,
one gets that B ∈ C .
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d) For each α � o, the uniqueness of Bα is shown by proving the follow-
ing statement: if C belongs to 〈C(IR

α
) · C0(IRn∗)〉 and satisfies the condition

limr→∞

∥∥∥ξ (α · Q
r

)
C
∥∥∥ = 0, then C = 0. To see this, assume that C �= 0 and

for simplicity let us fix α = (1, 0, . . . , 0). Choose ϕ ∈ H such that ‖ϕ‖ = 1 and
Cϕ �= 0. By hypothesis, there exists r ≥ 1 such that

∥∥∥ξ (Q1
r

)
C
∥∥∥ < 1

2‖Cϕ‖,

and so
∥∥∥ξ (Q1

r

)
Ce−iyP1ϕ

∥∥∥ < 1
2‖Cϕ‖ for each y ∈ IR. But, since all elements of

〈C(IR
α
) ·C0(IRn∗)〉 commute with the unitary operator e−iyP1 (y ∈ IR), one has∥∥∥ξ (Q1

r

)
Ce−iyP1ϕ

∥∥∥ =
∥∥∥ξ (Q1

r + y
r

)
Cϕ
∥∥∥ → ‖Cϕ‖ as y → ∞, a contradiction

with the preceding inequality. Hence C = 0.

Lemma 4.2. Let H be a self-adjoint operator in H with domain D(H)
and assume that for each α � o, there exists a self-adjoint operator Hα in H,
affiliated to

〈
C(IR

α
) ·C0(IRn∗)

〉
, with domain equal to D(H). Assume also that

for some asymptotic localization function ξ and each α � o,

lim
r→∞

∥∥∥∥ξ(α · Q

r

)
(H − Hα)

∥∥∥∥
D(H)→H

= 0.

Then H is affiliated to C and Πα(H) = Hα (in the sense of Definition 2.1).

Proof. Set R := (H − z)−1 and Rα := (Hα − z)−1 for any fixed z ∈ C \ IR
and each α � o. Since Hα is affiliated to the subalgebra

〈
C(IR

α
) · C0(IRn∗)

〉
of C , Rα belongs to C and thus is semi-compact, cf. i) of Lemma 4.1. Then
R is semi-compact since for any ζ ∈ C0(IRn), ζ(Q)Rα ∈ K(H) and R−1

α R is
bounded by the closed graph theorem [11].

Furthermore,∥∥∥∥ξ(α · Q

r

)
(R − Rα)

∥∥∥∥ ≤ c

{∥∥∥∥ξ(α · Q

r

)
(H − Hα)R

∥∥∥∥+
∥∥∥∥[ξ(α · Q

r

)
, Rα

]∥∥∥∥}
where c = max{‖Rα‖, ‖(H −Hα)R‖}. The first term on the r.h.s. goes to 0 as
r → ∞ by hypothesis. For the second term, one has to use the isomorphism〈
C(IR

α
)·C0(IRn∗)

〉 ∼= C0(IRα⊥∗)⊗Cα introduced in Section 3 and either Lemma

3.4 of [7] or a commutator expansion for terms of the form
[
ξ
(
α · Q

r

)
, g(α · P )

]
with g ∈ C0(IRα⊥

). It then follows that limr→∞

∥∥∥[ξ (α · Q
r

)
, Rα

]∥∥∥ = 0, and
the affiliation of H to C is obtained with Lemma 4.1 and the observation made
before Definition 2.1.

We have thus obtained that Πα

(
(H−z)−1

)
= (Hα−z)−1 for all z ∈ C\IR.

The last statement of the lemma follows from the density in C0(IR) of the vector
space generated by the set of functions {(· − z)−1 | z ∈ C \ IR}.
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We now give the general definition of the potentials under consideration,
and we shall prove in Proposition 4.1 the affiliation to C for the corresponding
Schrödinger operators. One notices that if V belongs to C(IR

n
), the functions

V α introduced in the following definition are nothing but the restrictions of V

to the hypersurfaces IR
α
.

Definition 4.1. A Borel function V : IRn → IR is a cartesian potential
(relative to L) if there exists a collection of Borel functions {V α}α∈L , with
V o ≡ V and V α : IRα → IR, such that for each α ∈ L:

i) V α(Q) is ∆α-bounded with relative bound less than one,

ii) limr→∞

∥∥∥ξ ((β − α) · Q
r

) (
V α(Q) − V β(Q)

)∥∥∥
H2

α→Hα

= 0 for each β�α and

some asymptotic localization function ξ.

The second condition means that for each α ∈ L, the function V α defined
on IRα approaches its asymptotic limits V β with β �α in the norm ‖ ·‖H2

α→Hα
.

Let us observe that Lemma 9.4.8 of [1] implies that if V is a cartesian potential,
then V α(Q) is ∆-bounded with relative bound less than one, and ii) is also
fulfilled with the norm ‖ · ‖H2→H instead of the norm ‖ · ‖H2

α→Hα
. We give a

rather general example of such potentials.

Example 1. Let V1 be a bounded real function on IRn such that for
each α � o, there exists V α ∈ L∞(IRα) satisfying

lim
r→∞

sup
x∈IRn

∣∣∣ξ (α · x

r

) (
V1(x) − V α(x)

)∣∣∣ = 0

for some asymptotic localization function ξ. Let V2(Q) be a ∆-bounded opera-
tor (relative bound less than one) such that limr→∞

∥∥∥ξ ( |Q|
r

)
V2(Q)

∥∥∥
H2→H

= 0.

Then V o := V1 +V2 is a cartesian potential. Indeed, let β ∈ L with |β| = n− 2
and let α, α′ be the only two distinct elements of L such that β �α and β �α′.
Let j, j′ ∈ {1, . . . , n} be such that (β − α)j �= 0 and (β − α′)j′ �= 0. Then
one can check that {V α|xj=βjn}n∈N and {V α′ |xj′=βj′n}n∈N are two Cauchy se-
quences in L∞(IRβ) which converge to the same element (denoted V β). Both
requirements of Definition 4.1 are now clearly satisfied for α = o and for each
α � o. The same procedure can then be applied again in order to construct
successively V β for all β ∈ L and to check that the conditions of Definition 4.1
are satisfied.

For the next proof and some later uses, we introduce the semilattice Lα :=
{β ∈ L | β ≤ α}.



�

�

�

�

�

�

�

�

Operators with Cartesian Anisotropy 87

Proposition 4.1. Assume that V is a cartesian potential. Then H =
−∆ + V is a cartesian Hamiltonian and Πα(H) = −∆ + V α for each α ∈ L.

Proof. Since the proof is performed by induction over the lattice L, let
us first introduce some notations. For each α ∈ L and each β ≤ α, let
πα

β : C(IR
α
) � f �→ πα

β (f) ∈ C(IR
β
) be the covariant morphism given by

restriction of f to the hypersurface IR
β
, and let Πα

β be the unique morphism

Cα → 〈C(IR
β
) · C0(IRα∗)〉 satisfying Πα

β [f(Q)h(P )] = πα
β (f)(Q)h(P ) for each

f ∈ C(IR
α
) and each h ∈ C0(IRα). If α = o, then Πα

β is just Πβ . In this
setting, the statement of the proposition reads: if V α is a cartesian poten-
tial relative to the lattice Lα, then Hα = −∆α + V α is affiliated to Cα and
Πα

β (Hα) = −∆α + V β for each β ∈ Lα.
Let us notice that for each α ∈ L, V α is a cartesian potential relative to

the lattice Lα. In the special case |α| = 0, V α is a real number, Hα = V α and
Hα is clearly affiliated to Cα, which is simply C. For any fixed α, |α| �= 0, we
may now assume that the assertions of the proposition are proved for each Hβ

with β�α and we prove it for Hα. With no loss of generality and for simplicity
of notations, we choose α = o.

So assume that for each β � o, Hβ is affiliated to Cβ. Let j ∈ {1, . . . , n}
such that βj �= 0. Then the operator −∆j ⊗ I + I ⊗ Hβ in L2(IRj) ⊗ Hβ is
affiliated to the C∗-algebra C0(IR∗

j )⊗ Cβ (see [1], Section 8.2.3). Furthermore,
if we identify L2(IRj)⊗Hβ with H, then the operator −∆j ⊗I +I⊗Hβ is equal
to −∆+V β , which is thus affiliated to

〈
C(IR

β
)·C0(IRn∗)

〉
, cf. Section 3. Hence

Hβ = −∆ + V β is a self-adjoint operator in H of domain H2 and affiliated to〈
C(IR

β
) · C0(IRn∗)

〉
. But H is also a self-adjoint operator with domain H2

and
∥∥∥ξ (β · Q

r

)
(H − Hβ)

∥∥∥
H2→H

=
∥∥∥ξ (β · Q

r

) (
V (Q) − V β(Q)

)∥∥∥
H2→H

→ 0 as

r → ∞ (ξ is the asymptotic localization function introduced in Definition 4.1).
By invoking Lemma 4.2 one gets that H is affiliated to C and that Πβ(H) = Hβ

for each β � o.
The general case Πγ(H) = Hγ for all γ ≤ o is obtained by taking into

account the trivial equality Πγ = Πγ ◦ Πβ for γ ≤ β, the identification of the
morphisms Πγ on 〈C(IR

β
) · C0(IRn∗)〉 and I ⊗ Πβ

γ on C0(IRβ⊥∗) ⊗ Cβ, and by
using the assumption Πβ

γ (Hβ) = −∆β + V γ .

§5. The Mourre Estimate and the Limiting Absorption Principle

The strategy for obtaining the results announced in this title is similar
to that developed for the N-body problem. The analogy is possible mainly
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because of the rich internal structure of C and its compatibility with the unitary
group {Wt}t∈IR of dilations in H (Lemma 5.1). More precisely, we consider
{Wt = e2iAt}t∈IR with self-adjoint generator A = 1

4

∑n
j=1(PjQj + QjPj). Let

us observe that [∆, iA] = ∆, and recall that this group leaves H2 invariant.
Each Wt induces an automorphism Wt of B(H), namely Wt[B] = W−tBWt for
B ∈ B(H).

Lemma 5.1. For each t ∈ IR, Wt leaves the C∗-algebra C invariant;
for each α ∈ L, Wt ◦ Πα = Πα ◦Wt on C .

Proof. For any f ∈ C(IR
n
) and any h ∈ C0(IRn), one has Wt[f(Q)h(P )] =

f(e−tQ)h(etP ). It is now easy to verify that (Wt ◦ Πα)[f(Q)h(P )] = (Πα ◦
Wt)[f(Q)h(P )]. Since C is the norm closure of the vector space generated by
such products, C is invariant and Wt and Πα commute on C .

The next lemma contains two results which are analogous to the state-
ments of Lemma 9.4.3 and Theorem 8.4.3 of [1]. The compatibility of the
structure of C with the dilation group is essential. One observes that A =
1
4

∑
{j|αj=0}(PjQj + QjPj) + 1

4

∑
{j|αj �=0}(PjQj + QjPj) ≡ Aα + Aα⊥

, where

Aα (resp. Aα⊥
) is the generator of dilations in IRα (resp. IRα⊥

).

Lemma 5.2. Let V be a cartesian potential such that H = −∆ + V is
of class C1

u(A). Then:

i) for each α ∈ L, Hα is of class C1
u(A) and Hα is of class C1

u(Aα),

ii) one has �̃A
H = minα�o �A

Hα
.

The proof of i) can be performed by rewriting the proof of Lemma 9.4.3 of
[1] in our formalism. The statement ii) is obtained by taking into account the
injective morphism (3), together with our Lemma 5.1 and Proposition 8.3.5 of
[1].

Let us now recall two important results in Mourre theory which are ex-
pressed in terms of the functions � and �̃. Proofs can be found in Section 7.2
of [1].

Proposition 5.1. Let H be a self-adjoint operator of class C1(A).

i) If �̃A
H(λ) > 0 for some λ ∈ IR, then λ has a neighbourhood in which there

is at most a finite number of eigenvalues of H, each of finite multiplicity.

ii) One has �A
H(λ) = �̃A

H(λ) unless λ is an eigenvalue of H and �̃A
H(λ) > 0, in

which case �A
H(λ) = 0.
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The next statement contains the Mourre estimate, which is the main result
of this section.

Proposition 5.2. Assume that V is a cartesian potential and that H =
−∆+V is of class C1

u(A). Then τ (H) and κ(H) are closed countable sets, the
eigenvalues of H outside τ (H) are of finite multiplicity and can accumulate
only at points belonging to τ (H), and µA(H) is equal to IR \ κ(H). Moreover,
for each λ ∈ IR,

�̃A
H(λ) = inf{λ − µ

∣∣ µ ∈ τ (H), µ ≤ λ}

with the convention that the infimum over an empty set is +∞.

Proof. a) We begin with some preliminary observations. One notices
that for each α ∈ L, τ (Hα) = ∪β<α σp(Hβ) and κ(Hα) = ∪β≤α σp(Hβ) are
countable sets. Furthermore, if �̃Aα

Hα(λ) > 0 for all λ ∈ IR\ τ (Hα), then σp(Hα)
can only accumulate at points of τ (Hα), since otherwise it would contradict i)
of Proposition 5.1. Since κ(Hα) is equal to τ (Hα) ∪ σp(Hα), this implies that
if τ (Hα) is closed and �̃Aα

Hα(λ) > 0 for all λ ∈ IR \ τ (Hα), then κ(Hα) is also
closed.

b) The proof is going to be performed by induction over L. We have
already noticed that for each α ∈ L, V α is a cartesian potential relative to Lα

and Hα is of class C1
u(Aα). First, for |α| = 0, Hα is equal to the real number

V α, τ (Hα) = ∅ and κ(Hα) = {V α}. Moreover, �̃0
Hα(λ) = +∞ for all λ ∈ IR,

while �0
Hα(V α) = 0 and �0

Hα(λ) = +∞ for λ �= V α. The proposition is thus
verified in this special case. Next, for any fixed α, |α| �= 0, we assume that the
assertions of the proposition are proved for each Hβ with β � α and we prove
it for Hα. For simplicity but with no loss of generality, we choose α = o.

c) We start by determining �A
Hβ

for each β � o. If j ∈ {1, . . . , n} such that
βj �= 0, then Hβ is equal to −∆j ⊗ I + I ⊗ Hβ . The �-function for operators
of this form is extensively studied in [1], Theorem 8.3.6:

�A
Hβ

(λ) = inf
λ1+λ2=λ

{
�Aβ

Hβ (λ1) + �Aβ⊥

−∆j
(λ2)

}
.

But �Aβ⊥

−∆j
(λ2) = ∞ if λ2 < 0 and �Aβ⊥

−∆j
(λ2) = λ2 if λ2 ≥ 0, and hence

�A
Hβ

(λ) = infµ≤λ

{
�Aβ

Hβ (µ) + (λ − µ)
}

. By assumption, �̃Aβ

Hβ (λ) = inf{λ −
µ
∣∣ µ ∈ τ (Hβ), µ ≤ λ}, and so �̃Aβ

Hβ is zero on τ (Hβ) and strictly positive on
IR\τ (Hβ) (since τ (Hβ) is assumed to be closed). Thus, in view of ii) of Propo-
sition 5.1, �Aβ

Hβ (λ) = 0 if λ ∈ κ(Hβ) and �Aβ

Hβ (λ) = �̃Aβ

Hβ (λ) elsewhere. From



�

�

�

�

�

�

�

�

90 Serge Richard

these relations one easily finds that �A
Hβ

(λ) = inf{λ − µ
∣∣ µ ∈ κ(Hβ), µ ≤ λ}

for each β � o.
d) By using the result of c) and ii) of Lemma 5.2, one gets that �̃A

H(λ) =
inf{λ − µ

∣∣ µ ∈ τ (H), µ ≤ λ}, because ∪β�o κ(Hβ) = ∪β�o [∪γ≤β σp(Hγ)] =
τ (H). Since τ (H) is a finite union of closed sets, it is closed. Hence �̃A

H is
strictly positive outside τ (H) and zero on τ (H), so that one may apply the
result of a) with α = o. By taking into account the statement ii) of Proposition
5.1, one sees that �A

H(λ) = 0 if λ ∈ κ(H) and �A
H(λ) > 0 if λ �∈ κ(H). Hence

µA(H) = IR \ κ(H).

Collecting the results obtained so far, we can now prove Theorem 1.1.
We mention that if the operator H is of class C1,1(A), the C1

u(A)-condition of
Proposition 5.2 is fulfilled.

Proof of Theorem 1.1. Since the potential V is ∆-bounded (with relative
bound less than one) and is of class C1,1(A), H is of class C1,1(A). From
(4), one has σess(H) = ∪α�o σ(Hα). But σ(Hα) =

[
inf σ(Hα),∞

)
because

Hα = −∆j ⊗ I + I ⊗ Hα for j such that αj �= 0, cf. [17]. This implies i). ii)
is part of Proposition 5.2. iv) results from our Proposition 5.2 and Proposition
7.4.6 of [1]. Finally, iii) is a well-known consequence of iv).

In order to ascertain that the C1,1(A)-condition is not too restrictive with
respect to the cartesian anisotropy, let us indicate two examples of cartesian
potentials of class C1,1(A).

Example 2. For any cartesian potential Ṽ , we consider the following
approximation Vm of Ṽ . Let m be any positive number and ξ an asymptotic
localization function. Set ξ0(y) := 1 − ξ(y) − ξ(−y) for y ∈ IR and ξα(x) :=∏

{j|αj �=0} ξ(αjxj)
∏

{k|αk=0} ξ0(xk) for x ∈ IRn and α ∈ L. We now define

Vm(x) :=
∑

α∈L ξα

(
x
m

)
Ṽ α(x) for x ∈ IRn. Some calculations show that Vm is a

Mourre potential (cf. Definition 2.2) and that limm→∞ ‖Ṽ (Q)−Vm(Q)‖H2→H =
0. Let V be equal to Vm +VLR +VSR, with VLR (VSR) a long-range (short-range)
potential satisfying limr→∞

∥∥∥ξ ( |Q|
r

) (
VLR(Q) + VSR(Q)

)∥∥∥
H2→H

= 0. Then V

is a cartesian potential of class C1,1(A).

Example 3. Let Vj be a bounded function on IRj having limits as xj →
±∞ and converging to these limits in a short-range or long-range way. Then
V :=

∏n
j=1 Vj is a cartesian potential of class C1,1(A). To check this assertion,

we first observe that if U is a self-adjoint operator in Hα of class C1,1(Aα) for
some α ∈ L, then U is also of class C1,1(A). Furthermore, the product of a finite
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number of bounded potentials of class C1,1(A) belongs to the same class (this is
easily proved by using Lemma 6.2.1 and Proposition 5.2.3 of [1]). Finally, both
requirement of definition 4.1 are satisfied by the potential V , which is therefore
cartesian. Note that the example given in the Introduction is of this type.

§6. The Asymptotic Velocity

In this section, we prove the existence of the asymptotic velocity and state
some of its properties. This velocity is going to play an essential role in the
definition of the wave operators. Most of the results of this section are inspired
or adapted from Section 6.6 of [4]. However, since cartesian potentials and N-
body potentials differ substantially, none of the result of this reference can be
directly quoted. We refer to that book for further comments on the asymptotic
velocity and other applications.

Proposition 6.1. Let V be a cartesian potential such that H = −∆+V

is of class C1
u(A). Assume also that for each j ∈ {1, . . . , n} and for some

asymptotic localization function ξ,

(5)
∫ ∞

0

∥∥∥∥ξ(±Qj

r

)
∇jV (Q)

∥∥∥∥
H2→H−2

dr < ∞.

Then,

i) there exists a n-tuple P of commuting self-adjoint operators such that for
all f ∈ C0(IRn):

s − lim
t→+∞

eiHtf

(
Q

2t

)
e−iHt = f(P),

ii) for each η ∈ C0(IR) and each f ∈ C0(IRn), [η(H), f(P)] = 0, i.e. the
asymptotic velocity P commutes with the Hamiltonian H,

iii) the subspace of the states with zero asymptotic velocity is equal to the sub-
space spanned by the eigenvectors of H.

Since the limit t → −∞ could be handled similarly, we simply do not
consider it. The entire section is devoted to the proof of this proposition and
therefore, unless otherwise stated, it is always assumed that the potential V

satisfies its hypotheses. The proofs involve a considerable number of commu-
tator computations, which will of course not be presented in full details. We
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start with some considerations on the notations and with a technical lemma
that will be used freely subsequently.

Let us consider an operator-valued mapping Φ : [1,∞) � t �→ Φ(t) ∈
B(H). If there exists some constant c < ∞ such that ‖Φ(t)‖ ≤ c for all
t ≥ 1, then Φ is said to be a bounded operator-valued mapping. We write
Φ ∈ BC1

(
[1,∞),B(H)

)
if the mapping is bounded and differentiable in norm

with bounded derivative. Let m be any positive integer and t ∈ [1,∞). Then
Φ
(
or by a slight abuse of notation Φ(t)

)
belongs to Lm

(
(1,∞), dt

)
if ‖Φ(·)‖ ∈

Lm
(
(1,∞), dt

)
, to o(t−m) if limt→∞ tm‖Φ(t)‖ = 0, or to O(t−m) if tm‖Φ(t)‖ ≤

c < ∞ for all t ≥ 1. We say that Φ is integrable along the evolution (with respect
to H) if there exists a constant c < ∞ such that

∫∞
1

|〈e−iHtϕ, Φ(t)e−iHtϕ〉|dt ≤
c‖ϕ‖2 for all ϕ ∈ H.

For each α ∈ L we define the open subset of IRn:

Yα := {x ∈ IRn
∣∣ αjxj > 0 for all j with αj �= 0}.

If α � o we also use the more familiar notation Y ±
j := {x ∈ IRn

∣∣±xj > 0} with
j and the sign ± given by the only αj �= 0. Let us make an obvious but very
useful observation. For each α ∈ L and each f ∈ Cc(IRn) with support in Yα

there exists δ > 0 such that
∏

{j|αj �=0} ξ
(
αj

xj

δ

)
f(x) = f(x) for any asymptotic

localization function ξ and all x ∈ IRn.
In the sequel, unless explicitly mentioned, all functions η, f, . . . are as-

sumed to be real.

Lemma 6.1. For each η ∈ C∞
c (IR), each j ∈ {1, . . . , n}, each α ∈ L

and all t ≥ 1, the following statements are true:

i) if f is a twice differentiable function on IRn with bounded derivatives of
order 0, 1 and 2, then

[
η(H), f

(
Q
2t

)]
(H + i) ∈ O(t−1),

ii) if f ∈ C2
c (IRn) with support in Y ±

j , then η(H)f
(

Q
2t

)
∇jV (Q)η(H) ∈

L1
(
(1,∞), dt

)
,

iii) if f ∈ Cc(IRn) with support in Y ±
j , then [Pj , η(H)]f

(
Q
2t

)
∈ L1

(
(1,∞), dt

)
∩

o(t0),

iv) if f ∈ Cc(IRn) with support in Yα, then f
(

Q
2t

) (
η(H) − η(Hα)

)
∈ o(t0),

v) the operator (Pj + i)Qjη(H)(1 + Q2)−1/2 belongs to B(H).
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The proof of this lemma is given in the Appendix. Let us however men-
tion that the statement i) requires only the hypothesis that V be ∆-bounded
with relative bound less than one. In line with iv), one could also prove some
anisotropic non-propagation estimates at suitable energies. More general re-
sults of this type can be found in [2].

For each operator-valued mapping Φ ∈ BC1
(
[1,∞),B(H)

)
we define its

Heisenberg derivative DΦ : let ϕ, ψ in H2 (the domain of H) and t ≥ 1, then

(6) 〈ψ,DΦ(t)ϕ〉 := i〈Hψ, Φ(t)ϕ〉 − i〈ψ, Φ(t)Hϕ〉 +
〈

ψ,
d

dt
Φ(t)ϕ

〉
.

One notices that 〈ψ, eiHtDΦ(t)e−iHtϕ〉 is equal to d
dt 〈ψ, eiHtΦ(t)e−iHtϕ〉 for

each ϕ, ψ ∈ H2. If, for each t ≥ 1, DΦ(t) extends continuously to a bounded
operator (we keep the same notation for this extension), and if there ex-
ists some constant c < ∞ such that ‖DΦ(t)‖ ≤ c for all t ≥ 1, then we
write Φ ∈ BC1

H

(
[1,∞),B(H)

)
. In our applications Φ(t) will often be equal

η(H)f
(

Q
2t

)
η(H) with η ∈ C∞

c (IR) and f a bounded function defined on

IRn. Then a sufficient condition such that Φ ∈ BC1
H

(
[1,∞),B(H)

)
is that

f ∈ C2(IRn) and that all first order partial derivatives of f have a bounded
support.

As mentioned in the Introduction, we shall prove various propagation esti-
mates. For this purpose, we review two standard results that will be constantly
used (proofs can be found in the Appendix).

Lemma 6.2. Consider a self-adjoint operator-valued mapping Φ belong-
ing to BC1

(
[1,∞),B(H)

)
. Assume that there exist some bounded operator-

valued mappings B, L, F , with L ∈ L1
(
(1,∞), dt

)
and F integrable along the

evolution, such that one of the following two inequalities is satisfied for all t ≥ 1
and each ϕ ∈ H2:

±〈ϕ,DΦ(t)ϕ〉 ≥ 〈ϕ,B∗(t)B(t)ϕ〉+ 〈ϕ,F (t)ϕ〉+ 〈ϕ,L(t)ϕ〉.

Then there exists c < ∞ such that
∫∞
1

‖B(t)e−iHtϕ‖2dt ≤ c‖ϕ‖2 for all ϕ ∈ H2.

Lemma 6.3. Consider an operator-valued mapping Φ which belongs to
BC1

(
[1,∞),B(H)

)
, and let H1 and H2 be two self-adjoint operators in H of

domain D1 and D2 respectively. Assume that there exist a finite integer N and
some bounded operator-valued mappings Ek, Fk and L such that for all ϕ ∈ D1,
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ψ ∈ D2 and all t ≥ 1:∣∣∣∣i〈H2ψ, Φ(t)ϕ〉 − i〈ψ, Φ(t)H1ϕ〉 +
〈

ψ,
d

dt
Φ(t)ϕ

〉∣∣∣∣(7)

≤
N∑

k=1

‖Ek(t)ψ‖‖Fk(t)ϕ‖ + ‖L(t)‖‖ψ‖‖ϕ‖.

Assume furthermore that L belongs to L1
(
(1,∞), dt

)
and that there is a con-

stant c < ∞ such that for each k ∈ {1, . . . , N},
∫∞
1

‖Ek(τ )e−iH2τψ‖2dτ ≤
c2‖ψ‖2 for all ψ ∈ D2 and

∫∞
1

‖Fk(τ )e−iH1τϕ‖2dτ ≤ c2‖ϕ‖2 for all ϕ ∈ D1.
Then s − limt→∞ eiH2tΦ(t)e−iH1t exists.

In most of our applications H1 and H2 are equal to H, and therefore (7)
is nothing but |〈ψ,DΦ(t)ϕ〉|.

The next lemma contains two statements usually called maximal velocity
estimates. Both are proved under the single assumption that the potential V be
∆-bounded with relative bound less than one. It slightly extends the validity
of similar results obtained in [4].

To shorten some equations below and when the context leaves no doubt,
the arguments of certain functions are not repeated all along the proofs.

Lemma 6.4. For each η ∈ C∞
c (IR), there exists a constant cη > 0 with

the property that
i) for each f ∈ C∞

c (IR) with support in (cη,∞), there exists c < ∞ such
that for all ϕ ∈ H,∫ ∞

1

∥∥∥∥f ( |Q|
2t

)
η(H)e−iHtϕ

∥∥∥∥2
dt

t
≤ c‖ϕ‖2,

ii) if f is a C∞-function on IR with support in (cη,∞) and such that f = 1
in a neighbourhood of ∞, then

(8) s − lim
t→∞

eiHtη(H)f
(
|Q|
2t

)
η(H)e−iHt = 0.

Proof. We fix a number c′η ∈ IR such that suppη ⊂ (−∞, c′η) and a
function η̃ ∈ C∞

c

(
(−∞, c′η)

)
satisfying η̃η = η and 0 ≤ η̃ ≤ 1. We let c′′η be

a positive constant such that supj ‖χ(−∞,c′η ]
(H)Pj‖ ≤ c′′η/n, where χ

I
is the

characteristic function of the interval I. We now fix the constant cη such that
cη > c′′η .
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a) For the proof of i), choose f̃ ∈ C∞
c (IR) with support in (cη,∞) and such

that f̃f = f and 0 ≤ f̃ ≤ 1. For t ≥ 1, set Φ(t) := η(H)F
(

|Q|
2t

)
η(H) with

F (s) =
∫ s

−∞ f2(τ )dτ . Then Φ ∈ BC1
H

(
[1,∞),B(H)

)
and one has

−DΦ(t) =
1
t
η

{
|Q|
2t

f2

(
|Q|
2t

)
− 1

2
P · Q

|Q|f
2

(
|Q|
2t

)
− 1

2
f2

(
|Q|
2t

)
Q

|Q| · P
}

η.

By using i) of Lemma 6.1, one can check that

η̃(H)P · Q

|Q|f
2 + f2 Q

|Q| · P η̃(H) = f

{
η̃P · Q

|Q| f̃ + f̃
Q

|Q| · P η̃

}
f + O(t−1).

Our choice of c′′η implies that −c′′η ≤ 1
2

{
η̃P · Q

|Q| f̃ + f̃ Q
|Q| · P η̃

}
≤ c′′η . Further-

more one has |Q|
2t f2

(
|Q|
2t

)
≥ cηf2

(
|Q|
2t

)
, and hence −DΦ(t) ≥ 1

t ηf{cη−c′′η}fη+

O(t−2). Since cη − c′′η > 0 and by observing that for any ϕ ∈ H, η̃(H)ϕ belongs
to H2, the statement i) is seen to be a consequence of Lemma 6.2.

b) For f as in i) or ii), let f̃ ∈ C∞
c (IR) with support in (cη,∞) be such that

f̃f ′ = f ′ and 0 ≤ f̃ ≤ 1. For r ≥ 1 set Φr(t) := η(H)f
(

|Q|
2rt

)
η(H) and observe

that Φr is an operator-valued mapping belonging to BC1
H

(
[1,∞),B(H)

)
. As

in a) above, one finds that

DΦr(t) =
1
t
ηf̃

{
1
2r

η̃P · Q

|Q|f
′ +

1
2r

f ′ Q

|Q| · P η̃ − |Q|
2rt

f ′
}

f̃η + O(t−2).

All terms between brackets are norm bounded independently of t for t ≥
1. So by applying Lemma 6.3 and by using i) one gets the existence of
s − limt→∞ eiHtΦr(t)e−iHt.

c) Let us show that this limit is zero if f satisfies the hypothesis of i).
Indeed, one may then choose f̃ ∈ C∞

c (IR) with support in (cη,∞) and such
that f̃f = f . Then by i) there exists c < ∞ such that for all ϕ ∈ H,

∫ ∞

1

∣∣〈ϕ, eiHtΦr(t)e−iHtϕ〉
∣∣ dt

t
≤ ‖f‖L∞

∫ ∞

1

∥∥∥∥f̃ ( |Q|
2rt

)
η(H)e−iHtϕ

∥∥∥∥2
dt

t

≤ c‖ϕ‖2.

This implies that limt→∞〈ϕ, eiHtΦr(t)e−iHtϕ〉 must be zero for each ϕ ∈ H,
and hence w − limt→∞ eiHtΦr(t)e−iHt = 0 by polarization.

d) Let f satisfy the hypothesis ii) and assume in addition that f ′ = g2

for some g ∈ C∞
c (IR). Let f̃ ∈ C∞

c (IR) with support in (cη,∞) be such that
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f̃f ′ = f ′ and 0 ≤ f̃ ≤ 1. As in a), one finds that

DΦr(t) =
1
t
ηg

{
1
2r

η̃P · Q

|Q| f̃ +
1
2r

f̃
Q

|Q| · P η̃ − |Q|
2rt

}
gη + O(t−2r−2)

≤ −
(

cη −
c′′η
r

)
1
t
ηf ′η + O(t−2r−2) ≤ O(t−2r−2).

Inserting this inequality in the formal identity

eiHtΦr(t)e−iHt = eiHtoΦr(to)e−iHto +
∫ t

to

eiHτDΦr(τ )e−iHτdτ

with t ≥ to ≥ 1, one obtains the existence of some c < ∞ such that for all
ϕ ∈ H2,

(9) 0 ≤ 〈ϕ, eiHtΦr(t)e−iHtϕ〉 ≤ 〈ϕ, eiHtoΦr(to)e−iHtoϕ〉 + c‖ϕ‖2t−1
o r−2.

Both terms on the r.h.s. of (9) are independent of t and tend to zero as r

increases. Since the existence of s − limt→∞ eiHtΦr(t)e−iHt was shown in b),
the inequalities in (9) imply that

(10) s − lim
r→∞

(
s − lim

t→∞
eiHtΦr(t)e−iHt

)
= 0.

Now set Φ1(t) = Φr(t) + Φ̃r(t) with Φ̃r(t) := η
{
f
(

|Q|
2t

)
− f

(
|Q|
2rt

)}
η.

Since the function
{
f (·) − f

( ·
r

)}
has compact support in (cη,∞) for any r ≥ 1,

the equation (8) is obtained by choosing r large enough and by using (10) and
the result of c).

e) To prove ii) without assuming an additional condition for f , choose any
real function g ∈ C∞

c (IR) such that suppg ⊂ (cη,∞) and
∫∞
−∞ g2(y)dy = 1, and

set F (x) =
∫ x

−∞ g2(y)dy. If f satisfies the hypothesis of ii), then f −F satisfies
that of i), and (8) follows by combining the results of c) and d).

In the next lemma, a certain distortion of the mapping IRn � x �→ 1
2x2 ∈ IR

will play a crucial technical role. We refer to [9] and especially to [4] for similar
constructions used in the N-body problem. For δ > 0, let m

δ
∈ C∞(IR) be a real

convex function such that m
δ
(y) = 1

2δ2 if |y| ≤ δ and m
δ
(y) = 1

2y2 if |y| ≥ 2δ.
We set r

δ
(x) :=

∑n
j=1 m

δ
(xj) for x ∈ IRn. Observe that r

δ
is a C∞-function on

IRn with ∂2
jkr

δ
(x) := ∂2r

δ

∂xj∂xk
(x) = 0 if j �= k and ∂2

jjrδ
(x) ≥ ξ2

(
−xj

2δ

)
+ ξ2

(xj

2δ

)
for any asymptotic localization function ξ and all x ∈ IRn.

Lemma 6.5. For each η ∈ C∞
c (IR), each j ∈ {1, . . . , n} and each f ∈

C∞
c (IRn) with support in Y ±

j , there exists a constant c < ∞ such that for all
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ϕ ∈ H,

(11)
∫ ∞

1

∥∥∥∥f (Q

2t

)(
Pj −

Qj

2t

)
η(H)e−iHtϕ

∥∥∥∥2
dt

t
≤ c‖ϕ‖2.

Furthermore,

s − lim
t→∞

f

(
Q

2t

)(
Pj −

Qj

2t

)
η(H)e−iHt = 0.

Proof. Let us fix a number c′η ∈ IR such that suppη ⊂ (−∞, c′η) and a
function η̃ ∈ C∞

c

(
(−∞, c′η)

)
satisfying η̃η = η and 0 ≤ η̃ ≤ 1. Let cη be the

positive constant depending on η given by the previous lemma.
a) Consider h ∈ C∞

c (IR) such that h(|x|)f(x) = f(x) for all x ∈ IRn and
h(y) = 1 if y ∈ [0, cη + 1). For δ > 0 and t ≥ 1, set

L(t) :=
1
2

(
P − Q

2t

)
· ∇r

δ

(
Q

2t

)
+

1
2
∇r

δ

(
Q

2t

)
·
(

P − Q

2t

)
+ r

δ

(
Q

2t

)
,

and Φ(t) := η(H)h
(

|Q|
2t

)
L(t)h

(
|Q|
2t

)
η(H). One can check that Φ belongs to

BC1
H

(
[1,∞),B(H)

)
and that

DΦ(t) = η{Dh}Lhη + ηhL{Dh}η − ηh∇V (Q) · ∇r
δ
hη(12)

+
1
t
ηh

[
P − Q

2t

]
T

∂2r
δ

[
P − Q

2t

]
hη + O(t−3),

where ∂2r
δ

is the matrix of second derivatives of r
δ
. In order to be able to use

Lemma 6.2, we obtain now some estimates for each term of (12).
Some commutator calculations, using repeatedly i) of Lemma 6.1, show

that η{Dh}Lhη + ηhL{Dh}η can be rewritten as 1
t ηg

(
|Q|
2t

)
Ψ(t)g

(
|Q|
2t

)
η +

O(t−2), where Ψ is a bounded operator-valued mapping and g belongs to
C∞

c (IR) and satisfies the conditions suppg ⊂ (cη,∞) and g(y)h′(y) = h′(y)
for all y ≥ 0. The statement i) of the previous lemma implies that the term
1
t ηgΨgη is integrable along the evolution. We also observe that h2∇jrδ

belongs
to C∞

c (IRn) and has its support in Y −
j ∪ Y +

j . Therefore, using ii) of Lemma
6.1, the term ηh∇V · ∇r

δ
hη belongs to L1

(
(1,∞), dt

)
. Finally, the properties

of r
δ

mentioned before this lemma imply that

ηh

[
P − Q

2t

]
T

∂2r
δ

[
P − Q

2t

]
hη ≥ ηh

(
Pj −

Qj

2t

)
ξ2

(
±Qj

4δt

)(
Pj −

Qj

2t

)
hη

for any asymptotic localization function ξ and each j ∈ {1, . . . , n}. Thus, by ap-
plying Lemma 6.2 with B∗(t)B(t) = 1

t ηh
(
Pj − Qj

2t

)
ξ2
(
±Qj

4δt

)(
Pj − Qj

2t

)
hη,
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one obtains that there exists c < ∞ such that for each j ∈ {1, . . . , n} and all
ϕ ∈ H:

(13)
∫ ∞

1

∥∥∥∥ξ(±Qj

4δt

)(
Pj −

Qj

2t

)
h

(
|Q|
2t

)
η(H)e−iHtϕ

∥∥∥∥2
dt

t
≤ c‖ϕ‖2.

Since f has a compact support in Y ±
j , we may now fix j and δ such that

ξ
(
±xj

2δ

)
f(x) = f(x) for all x ∈ IRn. Then the first assertion of the lemma is a

simple consequence of (13) and of the estimate
[
Pj , h

(
|Q|
2t

)]
∈ O(t−1).

b) For t ≥ 1, set

Φ(t) := η(H)
{

Pj −
Qj

2t

}
f

(
Q

2t

)
η̃2(H)f

(
Q

2t

){
Pj −

Qj

2t

}
η(H),

and notice that Φ belongs to BC1
H

(
[1,∞),B(H)

)
. One can check that

DΦ(t) = −2
t
Φ(t) − η∇jV fη̃2f

{
Pj −

Qj

2t

}
η − η

{
Pj −

Qj

2t

}
fη̃2f∇jV η

+
1
2t

η

{
Pj −

Qj

2t

}{(
P − Q

2t

)
· ∇f + ∇f ·

(
P − Q

2t

)}
η̃2f

{
Pj −

Qj

2t

}
η

+
1
2t

η

{
Pj −

Qj

2t

}
fη̃2

{(
P − Q

2t

)
· ∇f + ∇f ·

(
P − Q

2t

)}{
Pj −

Qj

2t

}
η.

Having in mind the use of Lemma 6.3, we collect some estimates for each of
these terms.

The second and the third terms on the r.h.s. belong to L1
(
(1,∞), dt

)
because η∇jV fη̃ and η̃f∇jV η are integrable in norm and the remaining factors
are norm bounded independently of t for t ≥ 1. Some further commutator
calculations based on Lemma 6.1 show that the last two terms of the r.h.s. can
be rewritten as 1

2tη
{

Pj − Qj

2t

}
g
(

Q
2t

)
Ψ(t)g

(
Q
2t

){
Pj − Qj

2t

}
η +O(t−2), where

Ψ is a bounded operator-valued mapping and g is a C∞
c (IRn)-function with

support in Y ±
j and satisfying gf = f . One has now the estimate

1
2t

∣∣∣∣〈ψ, η

{
Pj −

Qj

2t

}
gΨg

{
Pj −

Qj

2t

}
ηϕ

〉∣∣∣∣
≤ c

t

∥∥∥∥g{Pj −
Qj

2t

}
ηψ

∥∥∥∥ ∥∥∥∥g{Pj −
Qj

2t

}
ηϕ

∥∥∥∥
for some positive constant c < ∞ and all ψ, ϕ ∈ H.

Since the term −2
t Φ(t) satisfies a similar estimate, we can apply Lemma 6.3

with Ek = Fk =
√

c
t g
{

Pj − Qj

2t

}
η. By taking into account the first statement
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of the present lemma we obtain the existence of s − limt→∞ eiHtΦ(t)e−iHt. It
follows that the limit limt→∞

∥∥∥η̃(H)f
(

Q
2t

)(
Pj − Qj

2t

)
η(H)e−iHtϕ

∥∥∥ exists for
each ϕ ∈ H. By commuting η̃(H) to the right with the help of i) and iii)
of Lemma 6.1, we get that limt→∞

∥∥∥f (Q
2t

)(
Pj − Qj

2t

)
η(H)e−iHtϕ

∥∥∥ exists for
each ϕ ∈ H. But this limit has to be equal to zero because of (11).

We now prove the existence of the asymptotic velocity. One major ingre-
dient is a class of functions with some special property. Let F be the set of
all functions f ∈ C∞

c (IRn) such that, for each j ∈ {1, . . . , n}, there exists a
neighbourhood of the hypersurface xj = 0 in which f does not depend on xj .
One can check that F is dense in C0(IRn).

Lemma 6.6. For each f ∈ C0(IRn), the following limit exists:

s − lim
t→∞

eiHtf

(
Q

2t

)
e−iHt.

Proof. By density in H of the set of vectors of the form η2(H)ϕ with η ∈
C∞

c (IR) and ϕ ∈ H, it is enough to prove that s−limt→∞ eiHtf
(

Q
2t

)
e−iHtη2(H)

exists, which is equivalent by i) of Lemma 6.1 with the existence of

(14) s − lim
t→∞

η(H)eiHtf

(
Q

2t

)
e−iHtη(H).

Since F is dense in C0(IRn), there is also no loss of generality in assuming that
f ∈ F . For t ≥ 1, set

Φ(t) := η

{
1
2

(
P − Q

2t

)
· ∇f

(
Q

2t

)
+

1
2
∇f

(
Q

2t

)
·
(

P − Q

2t

)
+ f

(
Q

2t

)}
η.

One observes that Φ ∈ BC1
H

(
[1,∞),B(H)

)
and that, similarly to (12),

(15) DΦ(t) = −η∇f · ∇V (Q)η +
1
t
η

[
P − Q

2t

]
T

∂2f

[
P − Q

2t

]
η + O(t−3).

For each j ∈ {1, . . . , n}, ∇jf belongs to C∞
c (IRn) and has its support in Y −

j ∪
Y +

j . Thus by ii) of Lemma 6.1 the first term on the r.h.s. of (15) belongs to
L1
(
(1,∞), dt

)
. The second term is equal to

n∑
j,k=1

1
t
η

(
Pj −

Qj

2t

)
gj

(
Q

2t

)
{∂2

jkf}gk

(
Q

2t

)(
Pk − Qk

2t

)
η,
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where each gj belongs to C∞
c (IRn), has support in Y −

j ∪ Y +
j and satisfies

gj∇jf = ∇jf . By applying Lemma 6.3 and by using the first statement of
Lemma 6.5, one obtains the existence of s − limt→∞ eiHtΦ(t)e−iHt. But the
second assertion of Lemma 6.5 implies that this limit is equal to (14), which
therefore exists.

Assume for a while that f is a complex function belonging to C0(IRn).
By writing f = f1 + if2 with f1, f2 two real C0(IRn)-functions, one gets from
the previous lemma the existence of s − limt→∞ eiHtf

(
Q
2t

)
e−iHt, which we

denote by P(f). Since P(fg) = P(f)P(g) and P(f̄) = P(f)∗ for two complex
functions f, g ∈ C0(IRn), the mapping P : C0(IRn) → B(H) is a morphism
between two C∗-algebras. Let BO(IRn) be the unital C∗-algebra of bounded
Borel functions on IRn. We say that a sequence {fk}k∈N in C0(IRn) is bound-
edly convergent if the limit limk→∞ fk(x) ≡ f(x) exists for each x ∈ IRn and
|fk(x)| ≤ c for some constant c < ∞ independent of k and x (f belongs then
to BO(IRn), cf. [1], Section 8.1.1). It is also proved in this reference that the
morphism P has a unique extension to a morphism P̃ : BO(IRn) → B(H) such
that s − limk→∞ P̃(fk) = P̃(f) if {fk}k∈N converges boundedly to f .

Let χΞ denote the characteristic function of the Borel set Ξ ⊂ IRn and
1IΞ := P̃(χΞ). Then 1I : IRn ⊃ Ξ �→ 1IΞ ∈ B(H) determines a projection-valued
measure on IRn. In the next lemma we shall prove that 1IIRn is the identity
operator in B(H), and therefore 1I becomes a spectral measure on IRn. So,
if P :=

∫
IRn x1I(dx) is the n-tuple of commuting self-adjoint operators in H

determined by 1I, then clearly P(f) = f(P). The n-tuple P is commonly called
the asymptotic velocity.

Lemma 6.7. i) The projection-valued measure 1I satisfies the relation
1IIRn = I.

ii) For each η ∈ C0(IR) and each f ∈ C0(IRn) one has [η(H), f(P)] = 0,
i.e. the asymptotic velocity P commutes with the Hamiltonian H.

Proof. a) Let f ∈ C∞
c (IR) be such that f = 1 in a neighbourhood of 0.

Then, since
{

f
(

|·|
r

)}
r≥1

converges boundedly to the function IRn � x �→ 1, the

relation 1IIRn = I is satisfied if s − limr→∞ s − limt→∞ eiHtf
(

|Q|
2rt

)
e−iHt = I.

Let η ∈ C∞
c (IR) and r ≥ 1. Using i) of Lemma 6.1, one observes that

s− lim
t→∞

{
I − eiHtf

(
|Q|
2rt

)
e−iHt

}
η2 = s− lim

t→∞
eiHtη

{
I − f

(
|Q|
2rt

)}
ηe−iHt.
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The r.h.s. is zero for r large enough (depending on η) by the second assertion of
Lemma 6.4. Hence s− limr→∞ s− limt→∞

{
I − eiHtf

(
|Q|
2rt

)
e−iHt

}
η2(H) = 0.

Since the set of vectors of the form η2(H)ϕ with η ∈ C∞
c (IR) and ϕ ∈ H is

dense in H, this finishes the proof of i).
b) The proof that [η(H), f(P)] = 0 for each η ∈ C∞

c (IR) and each f ∈
C∞

c (IRn) is easily obtained with the help of the statement i) of Lemma 6.1.
The assertion ii) follows then by density of C∞

c (IRn) in C0(IRn) and density of
C∞

c (IR) in C0(IR).

The next statement is usually called minimal velocity estimate. It is a non-
trivial consequence of the Mourre estimate obtained in Section 5. We point out
that the C1

u(A)-condition of Proposition 6.1 is required in order to fulfil the
hypotheses of Proposition 5.2. Let us recall that κ(H) is a closed countable set
which contains the thresholds and the eigenvalues of H.

Lemma 6.8. For each η ∈ C∞
c

(
IR \ κ(H)

)
, there exists εη > 0 such

that for some c < ∞ and all ϕ ∈ H,∫ ∞

1

∥∥∥∥χ[0,εη ]

(
|Q|
2t

)
η(H)e−iHtϕ

∥∥∥∥2
dt

t
≤ c‖ϕ‖2.

Proof. Let η̃ ∈ C∞
c

(
IR \ κ(H)

)
be such that η̃η = η and 0 ≤ η̃ ≤ 1. Let

θ := minλ �A
H(λ) for λ ∈ suppη̃. It follows from Propositions 5.1 and 5.2 that θ

is strictly positive and that η̃(H)[iH, A]η̃(H) ≥ θη̃2(H).
We now fix εη and ε′η such that 0 < εη < ε′η < θ

2n

(
supj ‖η̃(H)Pj‖

)−1.
The case η̃(H) = 0 is excluded because the statement is then trivial. If B(0, δ)
denotes the open ball in IRn of center 0 and radius δ > 0, let f ∈ F be such
that suppf ⊂ B(0, ε′η) and f = 1 on B(0, εη). Let also f̃ ∈ C∞

c (IRn) with
support in B(0, ε′η) be such that f̃f = f and 0 ≤ f̃ ≤ 1. For t ≥ 1, set

M(t) :=
(
P − Q

2t

)
·∇f

(
Q
2t

)
+f

(
Q
2t

)
and Φ(t) := η(H)Mη̃(H)A

t η̃(H)M∗η(H).
The statement v) of Lemma 6.1 assures that Φ is a bounded operator-valued
mapping. Moreover, one can easily check that Φ is differentiable in norm with
bounded derivative. It follows then that Φ ∈ BC1

H

(
[1,∞),B(H)

)
. So, let us

calculate the Heisenberg derivative of Φ:

DΦ(t) = −η∇f · ∇V η̃
A

t
η̃M∗η − ηMη̃

A

t
η̃∇f · ∇V η(16)

+
1
t
η

[
P − Q

2t

]
T

∂2f

[
P − Q

2t

]
η̃
A

t
η̃M∗η + hc

+ηMη̃

{[
iH,

A

t

]
− A

t2

}
η̃M∗η + O(t−2).
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In order to be able to use Lemma 6.2 we obtain now some estimates for each
of these terms.

Since f ∈ F, the statement ii) of Lemma 6.1 implies that the first two
terms on the r.h.s. of (16) belong to L1

(
(1,∞), dt

)
. Some further commutator

calculations (based on Lemma 6.1) show that the third and the fourth terms
on the r.h.s. of (16) can be rewritten as∑n

j,k=1
1
t η
(
Pj − Qj

2t

)
gj

(
Q
2t

)
Ψjk(t)gk

(
Q
2t

)(
Pk − Qk

2t

)
η(17)

+O(t−2) + 1
t L

1
(
(1,∞), dt

)
,

where Ψjk = (∂2
jkf)η̃ A

t η̃M∗η̃ + η̃Mη̃ A
t η̃(∂2

jkf) is a bounded operator-valued
mapping and each gj belongs to C∞

c (IRn), has its support in Y −
j ∪ Y +

j and
satisfies gj∇jf = ∇jf . By taking Lemma 6.5 into account, one finds that the
first term of (17) is integrable along the evolution.

For the fifth term on the r.h.s. of (16) one can check that

ηMη̃

[
iH,

A

t

]
η̃M∗η ≥ θ

t
ηMη̃2M∗η =

θ

t
ηMM∗η + O(t−2) +

1
t
L1
(
(1,∞), dt

)
,

where the equality has been obtained with the help of i) and iii) of Lemma 6.1.
Furthermore, since A = 1

4 (P · Q + Q · P ), one finds that (by commuting the
first f̃ to the right for the second inequality)∥∥∥∥f̃ η̃

A

t
η̃f̃

∥∥∥∥≤ ∥∥∥∥f̃ η̃P · Q

2t
η̃f̃

∥∥∥∥+ O(t−1) ≤ n sup
j

{
‖η̃Pj‖

∥∥∥∥f̃ Qj

2t

∥∥∥∥}+ O(t−1)

≤ nε′η sup
j

‖η̃Pj‖ + O(t−1),

which is less than θ
2 + O(t−1). It follows that

−1
t
ηMf̃η̃

A

t
η̃f̃M∗η ≥ − θ

2t
ηMM∗η + O(t−2)

and hence one gets that:

(18) ηMη̃

{[
iH,

A

t

]
− A

t2

}
η̃M∗η ≥ θ

2t
ηMM∗η + O(t−2) +

1
t
L1
(
(1,∞), dt

)
.

From the inequality (a + b)(a + b)∗ ≥ (1 − ν)aa∗ + (1 − 1
ν )bb∗, valid for any ν

with 0 < ν < 1 one deduces that (take ν = 1
2 )

(19) ηMM∗η ≥ 1
2
ηf2η − η

{
P − Q

2t

}
· ∇f∇f ·

{
P − Q

2t

}
η.
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One can check with Lemma 6.5 that the term 1
t η
{
P − Q

2t

}
·∇f∇f ·

{
P − Q

2t

}
η

is integrable along the evolution. Thus by inserting (19) into (18), by applying
then Lemma 6.2 with the term B∗(t)B(t) equal to θ

4tηf2η and by taking into
account all previous estimates, one obtains the expected result.

In the next lemma, we prove that the subspace of H of the states with
zero asymptotic velocity is equal to the subspace spanned by the eigenvectors
of H.

Lemma 6.9. The range of E{0}(P) is equal to the range of Ep(H).

Proof. First, let ϕ ∈ H such that Hϕ = λϕ. For each f ∈ C0(IRn) and
t ≥ 1, one has∥∥∥∥eiHtf

(
Q

2t

)
e−iHtϕ − f(0)ϕ

∥∥∥∥=
∥∥∥∥ei(H−λ)tf

(
Q

2t

)
ϕ − f(0)ϕ

∥∥∥∥
=
∥∥∥∥(f

(
Q

2t

)
− f(0)

)
ϕ

∥∥∥∥ .

The r.h.s. tends to zero as t increases, and therefore f(P)ϕ = f(0)ϕ, or equiva-
lently ϕ ∈ E{0}(P)H. Since Ep(H) and E{0}(P) are closed subspaces, it follows
that any ϕ ∈ Ep(H)H belongs to E{0}(P)H.

Let us now show that E{0}(P)H is orthogonal to the continuous subspace
of H with respect to H. So let ϕ ∈ E{0}(P)H, i.e. f(P)ϕ = f(0)ϕ for each f ∈
C0(IRn). It is enough to prove that 〈ψ, ϕ〉 = 0 for any ψ satisfying η(H)ψ = ψ

with η ∈ C∞
c

(
IR \ κ(H)

)
. Let εη be given by the previous lemma, and let

f ∈ C∞
c (IRn) with support in B(0, εη) be such that f(0) �= 0. We observe

that s − limt→∞ ηeiHtf2
(

Q
2t

)
e−iHtη = 0 since the limit exists and since there

exists c < ∞ such that
∫∞
1

∥∥∥f (Q
2t

)
η(H)e−iHtυ

∥∥∥2
dt
t ≤ c‖υ‖2 for all υ ∈ H.

We finally have

〈ψ, ϕ〉 =
1

f2(0)
〈ηψ, f2(P)ηϕ〉 =

1
f2(0)

lim
t→∞

〈
ηeiHtf2

(
Q

2t

)
e−iHtηψ, ϕ

〉
= 0.

§7. Asymptotic Completeness

In this last section, we prove the existence of some suitably defined wave
operators and, as a by-product, obtain the asymptotic completeness. For this
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purpose, we assume firstly that V is a cartesian potential such that H = −∆+V

is of class C1
u(A), and secondly that V satisfies the requirement

(20)
∫ ∞

0

∥∥∥∥ξ((β − α) · Q

r

)(
V α(Q) − V β(Q)

)∥∥∥∥
H2

α→Hα

dr < ∞

for each α ∈ L, each β � α and some asymptotic localization function ξ. This
last assumption means that each function V α tends to its asymptotic limits in
a short-range way.

Let us show that the above hypotheses are sufficient for the existence
of the asymptotic velocity for each operator Hα. Indeed, let α, β ∈ L and
j ∈ {1, . . . , n} be such that β � α, αj = 0 and βj = ±1. In such a sit-
uation V β does not depend on xj , and thus ∇jV

α(Q) is formally equal to
iPj

(
V α(Q) − V β(Q)

)
−i
(
V α(Q) − V β(Q)

)
Pj . Then some simple calculations,

using this observation and the assumption (20), show that for each j such that
αj = 0:

(21)
∫ ∞

0

∥∥∥∥ξ(±Qj

r

)
∇jV

α(Q)
∥∥∥∥
H2

α→H−2
α

dr < ∞.

Let us notice that in the special case α = o, (21) is nothing but (5). So, for each
α ∈ L, V α is a cartesian potential relative to Lα which satisfies (21) and such
that Hα = −∆α+V α is of class C1

u(Aα) (cf. Lemma 5.2). A proposition similar
to Proposition 6.1 can therefore be stated for Hα, with the only difference that
the corresponding asymptotic velocity Pα is a |α|-tuple instead of a n-tuple.
For the case α = o, we keep the notation P instead of Po.

Moreover, a direct consequence of Lemma 9.4.8 of [1] is that if the re-
quirement (20) is assumed, then this condition is also satisfied with the norm
‖ · ‖H2→H instead of the norm ‖ · ‖H2

α→Hα
. It follows that (21) is fulfilled with

the norm ‖ · ‖H2→H−2 instead of the norm ‖ · ‖H2
α→H−2

α
. We notice furthermore

that (21) is trivially satisfied for k such that αk �= 0 (since V α does not depend
on the variable xk) and that V α is a cartesian potential relative to L. Hence,
since Hα = −∆ + V α is of class C1

u(A), the hypotheses of Proposition 6.1 are
fulfilled with Hα instead of H, and all developments of the previous section can
be rewritten in terms of Hα. Let Pα denote the asymptotic velocity obtained
for the operator Hα. The relation between Pα and Pα will be given later on.

Let us mention that there exist situations for which the condition (20) can
easily be checked.

Example 4. If V is the sum of a Mourre potential Vm constructed in
Example 2 and of a short-range potential VSR satisfying the additional condition
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limr→∞

∥∥∥ξ ( |Q|
r

)
VSR(Q)

∥∥∥
H2→H

= 0 for some asymptotic localization function

ξ, then (20) is automatically satisfied. A similar conclusion is obtained if in
Example 3 each Vj reaches its limits in a short-range way. In both situations
all hypotheses of Theorems 1.1 and 1.2 are fulfilled.

Proposition 7.1. Let V be a cartesian potential such that H = −∆+V

is of class C1
u(A). Assume moreover that the condition (20) is satisfied. Then

for each α ∈ L, the following wave operators exist:

W+
αo := s − lim

t→+∞
eiHαte−iHtEYα

(P),

W+
oα := s − lim

t→+∞
eiHte−iHαtE

Yα
(Pα).

These operators satisfy the relations

(22) W+
oαEΞ(Pα) = EΞ(P)W+

oα and W+
αoEΞ(P) = EΞ(Pα)W+

αo

for any Borel subset Ξ of Yα.

Proof. In order to prove the existence of W+
αo, it is enough to show that

for each η ∈ C∞
c (IR) and each f in a dense subset of all C0(IRn)-functions with

support in Yα, the limit s − limt→∞ eiHαte−iHtf(P)η2(H) exists.
a) Let f ∈ F be such that suppf ⊂ Yα. For t ≥ 1, set M(t) := f

(
Q
2t

)
+

∇f
(

Q
2t

)
·
(
P − Q

2t

)
and Φ(t) := η(Hα)M(t)η(H). One can check that Φ be-

longs to BC1
(
[1,∞),B(H)

)
. Let us assume for a while that the limit s −

limt→∞ eiHαtΦ(t)e−iHt exists. Then one observes that (in the strong topology)

lim
t→∞

eiHαtη(Hα)M(t)η(H)e−iHt = lim
t→∞

eiHαtη(H)M(t)η(H)e−iHt

= lim
t→∞

eiHαtη(H)f
(

Q

2t

)
η(H)e−iHt = lim

t→∞
eiHαte−iHtf(P)η2(H),

where we have used successively iv) of Lemma 6.1, the second assertion of
Lemma 6.5 and the hypothesis f ∈ F, and finally the existence of the asymptotic
velocity P. Thus the existence of s−limt→∞ eiHαte−iHtf(P)η2(H) follows from
the existence of s − limt→∞ eiHαtΦ(t)e−iHt, and the latter will be established
below with the help of Lemma 6.3.

b) One can check that

iHαΦ(t) − iΦ(t)H + d
dtΦ(t) = −iη(Hα)

(
V (Q) − V α(Q)

)
Mη(H)(23)

+η(Hα)
{
−∇f · ∇V + 1

t

[
P − Q

2t

]
T

∂2f
[
P − Q

2t

]}
η(H) + O(t−2).
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Since ∇jf has support in Y −
j ∪ Y +

j , the term η(Hα)∇f · ∇V η(H) belongs
to L1

(
(1,∞), dt

)
(the proof of this fact is similar to that of the statement ii) of

Lemma 6.1). One observes that the term 1
t η(Hα)

[
P − Q

2t

]
T

∂2f
[
P − Q

2t

]
η(H)

in (23) is equal to

(24)
n∑

j,k=1

1
t
η(Hα)

(
Pj −

Qj

2t

)
gj

(
Q

2t

)
{∂2

jkf}gk

(
Q

2t

)(
Pk − Qk

2t

)
η(H),

where each gj belongs to C∞
c (IRn), has support in Y −

j ∪ Y +
j and satisfies

gj∇jf = ∇jf . In relation with (24), it is useful to recall (from Lemma 6.5)
that for each k ∈ {1, . . . , n}, there exists c < ∞ such that∫ ∞

1

∥∥∥∥gk

(
Q

2t

)(
Pk − Qk

2t

)
η(H)e−iHtϕ

∥∥∥∥2
dt

t
≤ c‖ϕ‖2

for all ϕ ∈ H, and that a similar result can be obtained with Hα instead of H

(see the discussion before Example 4).
We finally notice that

∫∞
1

∥∥∥∏{j|αj �=0} ξ
(
αj

Qj

δr

)
(V − V α)

∥∥∥
H2→H

dr < ∞
for each δ > 0. This follows directly from (20) and Lemma 9.4.8 of [1] by
inserting and removing suitable terms between V and V α. Then by choosing δ

such that
∏

{j|αj �=0} ξ
(
αj

xj

δ

)
f(x) = f(x) for all x ∈ IRn, one can easily show

that η(Hα)(V − V α)Mη(H) belongs to L1
(
(1,∞), dt

)
.

In view of the preceding estimates, the existence of

s − lim
t→∞

eiHαtΦ(t)e−iHt

is seen to be a direct consequence of Lemma 6.3.
c) By similar arguments, we can show the existence of W+

oα. For the last
assertion of the proposition, one easily observes that W+

oαf(Pα) = f(P)W+
oα

and that W+
αof(P) = f(Pα)W+

αo for each f ∈ C0(IRn) with support in Yα. The
conclusion follows then by taking a sequence {fk}k∈N of functions in C0(IRn)
with suppfk ⊂ Yα such that this sequence converges boundedly to χΞ .

Proof of Theorem 1.2. Since Zα is a subset of Yα, the existence of Ω+
α

follows from Proposition 7.1. One gets from the relations (22) that

Ran
(
W+

oαEZα
(Pα)

)
⊂ EZα

(P)H and Ran
(
W+

αoEZα
(P)

)
⊂ EZα

(Pα)H.

The Lemma B.5.1 of [4] implies then the second part of the assertion i).
Clearly I =

∑
α∈L E

Zα
(P) and by using Lemma 6.9 and the absence of

singularly continuous spectrum, one obtains the equalities:

Hac(H) =
⊕
α�=o

E
Zα

(P)H =
⊕
α�=o

RanΩ+
α .
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The statement iii) is due to the relation between Pα and Pα. Since Hα =
−∆α⊥ ⊗ I + I ⊗Hα, and since the asymptotic velocity for the operator −∆j is
Pj , one has (Pα)j = Pj if αj �= 0 and (Pα)j = (Pα)j if αj = 0. Then E

Zα
(Pα)

is obtained from the fact that Zα is a cartesian product and from the relation
E{0}(Pα) = Ep(Hα).

Appendix

Proof of Lemma 6.1. If z ∈ C \ σ(H), let us write R(z) for (H − z)−1. In
order to express η(H) in terms of the resolvent of H we shall make use of the
formula (6.1.26) of [1] for m ≥ 2:

η(H) =
1
π
�
∫

IR

[
m−1∑
k=0

ik

k!
η(k)(λ)

]
R(λ + i)dλ(25)

+
1
π
�
∫

IR

∫ 1

0

im

(m − 1)!
µm−1η(m)(λ)R(λ + iµ)dλdµ.

We shall also use the first resolvent equation

(26) R(λ + iµ) =
[
I +

(
λ + i(µ − 1)

)
R(λ + iµ)

]
R(i),

and the fact that if p, k, m are positive integers, with m ≥ p + 1, then the
integrals ∫

IR
|η(k)(λ)|

[
1 + |λ|

]p
dλ and(27) ∫

IR

∫ 1

0
|η(m)(λ)|

[
1 +

(
|λ| + |µ − 1|

)
1
|µ|

]p

µm−1dλdµ

are finite.
a) Let us replace η(H) by (25) in the statement i) and observe that

(28)
[
R(z), f

(
Q

2t

)]
=

1
t
R(z)

{
iP · ∇f

(
Q

2t

)
− 1

4t
∆f

(
Q

2t

)}
R(z).

By taking z = λ+ iµ and using (26) for the resolvents on the r.h.s. of (28), one
obtains that the norm of

[
R(z), f

(
Q
2t

)]
(H + i) is less than

1
t

(
1 +

(
|λ| + |µ − 1|

) 1
|µ|

)2
∥∥∥∥R(i)

{
iP · ∇f − 1

4t
∆f

}∥∥∥∥ ‖R(i)(H + i)‖.

Since the two norms are bounded uniformly in t for t ≥ 1, the statement i) is
now easily proved by taking into account (27) with m = 3.
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b) For the proof of the first statement of iii), let ξ be an asymptotic localiza-
tion function and δ > 0 such that ξ

(
±xj

δ

)
f(x) = f(x) for all x ∈ IRn. We start

by replacing η(H) by (25) in the statement iii). By using that ξ(2y)ξ′(y) = ξ′(y)
for all y ∈ IR, some commutator calculations show that

[Pj , R(z)]ξ
(
±Qj

2δt

)
= iR(z)ξ

(
±Qj

2δt

)
∇jV (Q)R(z)(29)

∓ 1
δtξ

′
(
±Qj

2δt

)
R(z)ξ

(
±Qj

δt

)
∇jV (Q)R(z)PjR(z) +

(
1

2δt

)2 R
where R is equal to

iR∇jV (Q)Rξ′′
(
±Qj

2δt

)
R

+R

{
−4iPjξ

′′
(
±Qj

2δt

)
± 1

δt
ξ′′′
(
±Qj

2δt

)}
Rξ

(
±Qj

δt

)
∇jV (Q)RPjR

+R∇jV (Q)R
{
−4iξ′′

(
±Qj

2δt

)
Pj ∓

1
δt

ξ′′′
(
±Qj

2δt

)}
RPjR.

(we have written R for R(z)). Again, by taking z = λ + iµ and using (26) for
the resolvents of the first two terms on the r.h.s. of (29), one obtains that their
norm is less than(

1 +
(
|λ| + |µ − 1|

) 1
|µ|

)2
∥∥∥∥R(i)ξ

(
±Qj

2δt

)
∇jV (Q)R(i)

∥∥∥∥(30)

+c
(
1 +

(
|λ| + |µ − 1|

) 1
|µ|

)3
∥∥∥∥R(i)ξ

(
±Qj

δt

)
∇jV (Q)R(i)

∥∥∥∥ ‖PjR(i)‖,

where c = 1
δ‖ξ′‖L∞ is independent of t, η and µ (one has used that 1

t ≤ 1 for all
t ≥ 1). Similarly, one can check that the norm of R is less than a polynomial
in
(
1 +

(
|λ| + |µ − 1|

)
1
|µ|

)
of order 4 with coefficients independent of t, λ and

µ. One finishes the proof by taking into account (27) with m = 5 and by
observing that the two norms in (30) and the factor

(
1

2δt

)2 in (29) belong to
L1
(
(1,∞), dt

)
.

c) For the second statement of iii) let us denote by α the only element of
L such that α � o and αj = ±1. One observes that [Pj , V (Q)] = [Pj , V (Q) −
V α(Q)] since V α does not depend on xj . Hence, one has

[Pj , R(z)] =
{
R(z)

(
V (Q)−V α(Q)

)}
PjR(z)−R(z)Pj

{(
V (Q)−V α(Q)

)
R(z)

}
.

Then, the same method and the same arguments already used in a) and b) may
be applied. Since ξ

(
±Qj

2δt

) (
V (Q) − V α(Q)

)
R(i) ∈ o(t0) by definition of the

cartesian potential V , one obtains that [Pj , η(H)]f
(

Q
2t

)
∈ o(t0).
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d) For the statement v), let us observe that

(Pj + i)QjR(z)(1 + Q2)−1/2

= (Pj + i)R(z)Qj(1 + Q2)−1/2 − 2i(Pj + i)R(z)PjR(z)(1 + Q2)−1/2.

In order to make the calculation of the commutator [Qj , R(z)] properly, one has
invoked the invariance of H2 under the group {eiyQj}y∈IR and the statement
(a) of Theorem 6.3.4 of [1]. Then the end of the proof follows the scheme of
the previous points.

e) For the statement ii), let δ > 0 and ξ be an asymptotic localization
function such that ξ

(
±xj

δ

)
f(x) = f(x) for all x ∈ IRn. One has

η(H)f
(

Q
2t

)
∇jV (Q)η(H) = f

(
Q
2t

)
η(H)ξ

(
±Qj

2δt

)
∇jV (Q)η(H)

+
[
η(H), f

(
Q
2t

)]
(∆ + i)(∆ + i)−1ξ

(
±Qj

2δt

)
∇jV (Q)η(H).

One observes that f
(

Q
2t

)
and

[
η(H), f

(
Q
2t

)]
(∆ + i) are norm bounded in-

dependently of t for t ≥ 1 (use i) for the second term). By taking (5) into
account, one gets the expected result.

f) The proof of iv) is similar to the one given in the paragraph b) of
Lemma 4.1. If δ > 0 and ξ is an asymptotic localization function, one ob-
serves that

{
1 −

∏
{j|αj �=0} ξ

(
αj

xj

2δt

)}
t≥1

is an approximate unit for the ideal

〈Jα · C0(IRn∗)〉. Since η(H) − η(Hα) belongs to this ideal, it follows that
limt→∞

∥∥∥∏{j|αj �=0} ξ
(
αj

Qj

2δt

) (
η(H) − η(Hα)

)∥∥∥ = 0.

Proof of Lemma 6.2. Since the following inequality is satisfied for all t ≥ 1
and all ϕ ∈ H2:

〈ϕ, B∗(t)B(t)ϕ〉 ≤ ±〈ϕ,DΦ(t)ϕ〉 − 〈ϕ, F (t)ϕ〉 − 〈ϕ, L(t)ϕ〉,

one obtains that∫ ∞

1

‖B(t)e−iHtϕ‖2dt≤
∣∣∣∣∫ ∞

1

〈e−iHtϕ,DΦ(t)e−iHtϕ〉dt

∣∣∣∣
+
∫ ∞

1

|〈e−iHtϕ, F (t)e−iHtϕ〉|dt + ‖ϕ‖2

∫ ∞

1

‖L(t)‖dt.

But one has noticed that 〈e−iHtϕ,DΦ(t)e−iHtϕ〉 = d
dt 〈e−iHtϕ, Φ(t)e−iHtϕ〉,

and hence
∣∣∫∞

1
〈e−iHtϕ,DΦ(t)e−iHtϕ〉dt

∣∣ ≤ 2‖Φ‖L∞‖ϕ‖2. The conclusion is
now straightforward.
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Proof of Lemma 6.3. Let ψ ∈ D2, ϕ ∈ D1 and 1 ≤ s < t. One has∣∣〈ψ,
{
eiH2tΦ(t)e−iH1t − eiH2sΦ(s)e−iH1s

}
ϕ
〉∣∣

≤
∫ t

s

∣∣∣∣〈ψ, eiH2τ

(
iH2Φ(τ ) − iΦ(τ )H1 +

d

dτ
Φ(τ )

)
e−iH1τϕ

〉∣∣∣∣ dτ

≤
N∑

k=1

(∫ t

s

‖Ek(τ )e−iH2τψ‖2dτ

) 1
2
(∫ t

s

‖Fk(τ )e−iH1τϕ‖2dτ

) 1
2

+
(∫ t

s

‖L(τ )‖dτ

)
‖ψ‖‖ϕ‖.

Thus, one gets that∥∥eiH2tΦ(t)e−iH1tϕ − eiH2sΦ(s)e−iH1sϕ
∥∥(31)

= sup
ψ∈D2,‖ψ‖=1

∣∣〈ψ,
{
eiH2tΦ(t)e−iH1t − eiH2sΦ(s)e−iH1s

}
ϕ
〉∣∣

≤ c

N∑
k=1

(∫ t

s

‖Fk(τ )e−iH1τϕ‖2dτ

) 1
2

+
(∫ t

s

‖L(τ )‖dτ

)
‖ϕ‖.

Since (31) can be made arbitrarily small by choosing s large enough, one gets
the existence of s − limt→∞ eiH2tΦ(t)e−iH1tϕ for all ϕ ∈ D1, which implies the
result of this lemma.
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[3] Davies, E. B. and Simon, B., Scattering Theory for Systems with Different Spatial
Asymptotics on the Left and Right, Comm. Math. Phys., 63 (1978), 277-301.
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