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Some Continuous Field Quantizations,
Equivalent to the C*-Weyl Quantization

By

Reinhard Honegger∗ and Alfred Rieckers∗∗

Abstract

Starting from a (possibly infinite dimensional) pre-symplectic space (E, σ), we
study a class of modified Weyl quantizations. For each value of the real Planck
parameter ~ we have a C*-Weyl algebraW(E, ~σ), which altogether constitute a con-
tinuous field of C*-algebras, as discussed in previous works. For ~ = 0 we construct
a Fréchet–Poisson algebra, densely contained in W(E, 0), as the classical observables
to be quantized. The quantized Weyl elements are decorated by so-called quantiza-
tion factors, indicating the kind of normal ordering in specific cases. Under some
assumptions on the quantization factors, the quantization map may be extended to
the Fréchet–Poisson algebra. It is demonstrated to constitute a strict and continu-
ous deformation quantization, equivalent to the Weyl quantization, in the sense of
Rieffel and Landsman. Realizing the C*-algebraic quantization maps in regular and
faithful Hilbert space representations leads to quantizations of the unbounded field
expressions.

§1. Introduction

Initiated especially by the seminal paper [1] there has been in the last years
an extensive study of various forms of the so-called deformation quantization
(cf., e.g., [2], [3], [4], [5], [6], [7], [8] and references therein), which associates a
quantum mechanical algebraic structure with a rather arbitrary, finite dimen-
sional Poisson manifold. Perhaps the most elaborated mathematical realization
of Dirac’s abstract q-number quantization goes in terms of representation inde-
pendent C*-algebras. In connection with the deformation concept it has been
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114 Reinhard Honegger and Alfred Rieckers

called strict deformation quantization by Rieffel and Landsman (cf., e.g., [9],
[10], [11], [12], [13]). Already for finite dimensional Poisson manifolds mathe-
matical quantization theory has clarified important relationships between the
classical observables (and states) and their quantum mechanical counterparts.
For systems with infinitely many degrees of freedom, usually called ‘field sys-
tems’, the procedure of a mathematically rigorous quantization is, of course,
much more complicated.

In Section 2 we recapitulate the general notions of strict and continuous de-
formation quantizations and of equivalent strict quantizations, supplementing
some structural insights, onto which our subsequent investigations are based.

In Section 3 we present the conceptual frame for our intended class of
quantizations, starting with a general, but preferentially infinite dimensional,
pre–symplectic space (E, σ) and making use of the uniquely associated C*-Weyl
algebras W(E, ~σ), as introduced in [14]. The Planck parameter ~ varies in a
subset I of R and accumulates at zero. For each ~ the algebra W(E, ~σ) may be
viewed as the twisted group C*-algebra of the vector group E with respect to
the multiplier (f, g) 7→ exp

{
− i

2~σ(f, g)
}

on E. The generating Weyl elements
W ~(f), f ∈ E, satisfy the canonical commutations relations (CCR) in Weyl
form, to which we shall refer as the ‘Weyl relations’,

W ~(f)W ~(g) = exp{− i
2~σ(f, g)}W ~(f + g) , W ~(f)∗ = W ~(−f) .

The case ~ = 0 signifies the classical theory (without twisting). According
to Dirac’s ingenious suggestion [15], [16], the start out for quantization is not the
commutative but the Poisson product. We equip first the linear hull ∆(E, 0),
of classical Weyl elements W 0(f), f ∈ E, with an algebraic Poisson bracket.
In order to enrich the set of classical observables to be quantized we complete
∆(E, 0) by means of a Fréchet-topology to the Poisson algebra P∞ς . For defining
the phase space manifold in terms of a dual E′

τ of E, a locally convex topology τ

is introduced on E. A function realization on E′
τ of the classical Weyl elements

allows for the introduction of the classical (smeared) fields Φ0(f), and their
powers, by differentiation. The fundamental Poisson brackets of the (infinite
dimensional) phase space are expressed either by the Poisson brackets of the
Weyl elements or by those of the smeared fields.

A continuous field of the C*-Weyl algebras is introduced for discussing
continuity properties in dependence of the varying parameter ~ ∈ I.

In Section 4 a generalization of the C*-algebraic Weyl quantization of [14] is
put forward by associating the classical Weyl elements W 0(f) with the quantum
mechanical ones W ~(f) times a ‘quantization factor’. There are various reasons
for doing so. Since we have in mind the application of the quantization theory to
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QED (in non-covariant gauges for a Hamiltonian formalism) we were compelled
by the different kinds of normally ordered correlation functions in quantum
optics. In fact, our class of quantizations constitutes an extreme generalization
of the one-parameter family of quantum n-point functions, apparently first
discussed in [17], [18], and then reproduced in text books on this subject (cf.,
e.g., [19]). It is also connected with the well known method in general quantum
field theory to factor out the state-dependent 2-point functions from the n-point
functions for revealing the true interaction effects.

From the more mathematical point of view it is tempting to replace the
2-cocycle for the Weyl quantization by equivalent ones. It speaks for the inher-
ent consistency of the involved notions, that equivalent 2-cocycles give rise to
equivalent strict deformation quantizations in the sense of [13]. The more diffi-
cult part is, to demonstrate the characteristic mathematical properties for the
modified Weyl quantizations. Accommodating the line of reasoning of [14] to
the altered quantization maps, we prove, in fact, that we again have strict and
continuous deformation quantizations, provided we use the concept of a con-
tinuous field of C*-algebras in the unrestricted sense of Dixmier to cope with
the unbounded quantization factors. Also the Poisson algebra and the range I

of the Planck parameter have to be carefully adjusted, if the quantization is to
display the desired features.

In Section 5 we deal with the quantum mechanical observables in Hilbert
space representations. Since for infinitely many degrees of freedom there ex-
ists an abundance of essentially different representations, it is very satisfactory,
that the C*-algebraic results, especially the norm-continuity of the *-algebraic
operations in ~, offer devices for formulating the ‘correspondence asymptotics’
to the classical theory by using arbitrary regular faithful Hilbert space repre-
sentations of the C*-Weyl algebras.

Much more subtle is what we call ‘direct field quantization’, where the clas-
sical field expressions are directly mapped onto unbounded operator expressions
in a Hilbert space. In this work, we only indicate how the represented quantiza-
tions of Weyl elements may lead to direct field quantizations, where the higher
products of field operators incorporate various ordering conditions, leaving the
physical and mathematical details to another work [20].

§2. Strict and Continuous Quantizations

Let us first introduce some basic notational conventions. If not speci-
fied otherwise every (bi-) linear map is understood to be (bi-) linear over the
complex field C. By the linear hull LH{M} we mean all (finite) complex
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linear combinations of the elements of the set M . We consider exclusively
*-algebras over the complex field C, equipped with an associative, but pos-
sibly non-commutative product (in general denoted without a multiplication
symbol) and with an involutive, antilinear, and anti-multiplicative *-operation.
A linear functional ω on a *-algebra A with identity 1, expressed in terms of
the duality bracket 〈ω;A〉, A ∈ A, is called a state, if it satisfies the positivity
condition 〈ω;A∗A〉 ≥ 0 for all A ∈ A and the normalization 〈ω;1〉 = 1. A
representation (Π,HΠ) of the *-algebra A is a *-homomorphism Π from A into
the C*-algebra L(HΠ) of all bounded operators of a complex Hilbert space HΠ.
(Π,HΠ) is called non-degenerate, if Π(A)HΠ is dense in HΠ, or equivalently, if
Π(1) = 1Π. A C*-norm ‖.‖ on a *-algebra A is an algebra norm which satisfies
the C*-property ‖A∗A‖ = ‖A‖2 for all A ∈ A.

For a set P the *-algebraic operations of functions A : P → C and B : P →
C are defined pointwise in the usual way

(2.1)
(A + zB)[F ] := A[F ] + zB[F ] , (AB)[F ] := A[F ]B[F ] , A∗[F ] := A[F ] ,

for z ∈ C and for all F ∈ P. That are especially the algebraic operations
of the commutative *-algebra C∞(P), consisting of the infinitely differentiable
functions A : P → C on a differentiable manifold P. Whenever we consider the
set P as a (possibly infinite dimensional) phase space we write the functional
dependence as P 3 F 7→ A[F ], using the square bracket. As the natural C*-
norm ‖.‖0 on *-algebras of bounded continuous functions A on P, the sup-norm

(2.2) ‖A‖0 := sup{|A[F ]| | F ∈ P}

is chosen.
A Poisson algebra (P, {., .}) is here defined purely algebraically, without

reference to a function representation. It consists of a commutative *-algebra
P endowed with a (bilinear) Poisson bracket {., .} : P × P → P, which is
anticommutative, real, and fulfills the Jacobi identity, in formulas

{A,B} = −{B,A} , {A,B}∗ = {A∗, B∗} , ∀A,B ∈ P ,

{A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0 , ∀A,B, C ∈ P .

The Poisson bracket is supposed to satisfy the Leibniz rule with respect to the
commutative algebraic product

{A,BC} = {A,B}C + B{A,C} , ∀A,B, C ∈ P .

Note, as mentioned in our above notational conventions, a Poisson algebra P is
always meant as a *-algebra over the complex field: A Poisson algebra PR over
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the real field leads by complexification P = PR + iPR to a complex Poisson
algebra, and conversely, the selfadjoint part PR := {A ∈ P | A∗ = A} of a
complex Poisson algebra P constitutes a real Poisson algebra.

In order to work within a C*-algebraic frame it is assumed that P is ‖.‖0-
dense in a commutative C*-algebra A0, where ‖.‖0 denotes the norm on A0.
In general the Poisson bracket {., .} is not ‖.‖0-continuous, and hence cannot
be continued to all of the C*-algebra A0, as especially may be seen from the
example in Eq. (2.3) below.

In classical Hamiltonian mechanics Poisson algebras P usually arise as
*-algebras of differentiable, C-valued functions on a Poisson manifold P, where
P is the phase space of the classical (field) system. Each Poisson bracket {., .}
on a differentiable finite dimensional manifold P has the form

(2.3) {A,B} = Σ(dA, dB) , ∀A,B ∈ C∞(P) ,

with a Poisson tensor Σ, a smooth antisymmetric bivector tensor field on the
complexified cotangent bundle CT ∗P [21, III.8.6]. The Poisson algebra P is then
a sub-*-algebra of C∞(P). As an example one may take for P the infinitely
differentiable functions with compact support C∞c (P). If P is a flat space, the
continuous almost periodic functions all derivatives of which are also almost
periodic, constitute another useful Poisson algebra (cf. Subsection 3.3). As
C*-norm ‖.‖0 we have the sup-norm from Eq. (2.2), so that for our examples
one obtains as C*-algebra A0 the continuous functions vanishing at infinity,
resp. the continuous almost periodic functions on P.

A quantum (field) system at the value ~ 6= 0 is described by a non-
commutative C*-algebra A~, for which the ~-scaled commutator is defined by

(2.4) [A,B]~ := i
~ (AB −BA) , ∀A,B ∈ A~ .

In order to perform the classical correspondence limit ~ → 0, we introduce
for the ~-values a subset I of the real line R, so that 0 ∈ I is an accumulation
point of I0 := I\{0}.

For each ~ ∈ I0 a quantization map Q~ : P → A~ associates a quantum
observable with each classical one from P. Q~ should be linear and should map
selfadjoint classical observables onto selfadjoint quantum observables. Thus
one demands the *-preservation Q~(A∗) = Q~(A)∗ for all A ∈ P. Since the
quantum algebra A~ is non-commutative, a quantization map cannot respect
products, and so cannot be a *-algebraic homomorphism. Thus, the image
Q~(P) is a *-invariant subspace of A~, but in general not a sub-*-algebra of
A~.
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It has been Dirac [22], who had formalized Bohr’s classical correspondence
limit I0 3 ~ → 0 as an asymptotic equality of the ~-scaled commutator with
the Poisson bracket. The various concise mathematical formulations of this
limit developed, however, much later. We follow here the C*-algebraic version
of Rieffel and Landsman.

Definition 2.1 (Strict Deformation Quantization). Let I ⊆ R be as
above. A strict quantization (A~, Q~)~∈I of the Poisson algebra (P, {., .}) con-
sists for each value ~ ∈ I of a linear, *-preserving map

Q~ : P → A~ ,

where A~ is a C*-algebra with norm ‖.‖~, such that Q0 is the identical embed-
ding of P into A0, and such that for all A,B ∈ P the following conditions are
satisfied:

(a) [Dirac’s Condition] The ~-scaled commutator (2.4) approaches the Pois-
son bracket as I0 3 ~ → 0, that is, lim

~→0
‖[Q~(A), Q~(B)]~ −Q~({A,B})‖~

= 0.

(b) [von Neumann’s Condition] In the limit ~ → 0 one has the asymptotic
product homomorphy lim

~→0
‖Q~(A)Q~(B)−Q~(AB)‖~ = 0.

(c) [Rieffel’s Condition] I 3 ~ 7→ ‖Q~(A)‖~ is continuous.

The strict quantization (A~, Q~)~∈I of the Poisson algebra (P, {., .}) is
called a strict deformation quantization, if for each ~ ∈ I0 one has in addition:

(d) [Deformation Condition] The map Q~ : P → A~ is injective, and its im-
age Q~(P) is closed with respect to the product of A~, i.e., Q~(A)Q~(B) ∈
Q~(P) for all A,B ∈ P (the latter is equivalent for Q~(P) being a sub-*-
algebra of A~).

Dirac’s condition is part of any quantization prescription in one form or the
other. The C*-algebraic framework conforms to the tradition in quantum field
theory. Von Neumann’s condition has no counterpart in theoretical physics,
and von Neumann has rather emphasized its invalidity in the sense of a strict
homomorphism. It is independent from Dirac’s condition in virtue of a different
scaling. Rieffel’s condition is a technically non-trivial smoothness demand. A
richness property for the image of the quantization map is always obtainable
by the restriction of A~ to the smallest sub-C*-algebra containing Q~(P).
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In the case of a strict deformation quantization one gets the connection to
the usual deformation quantization by equipping the space of classical observ-
ables P with the deformed, non-commutative product ·~ according to

A ·~ B := Q−1
~ (Q~(A)Q~(B)) , ∀A,B ∈ P .

This renders P into a *-algebra with product ·~, which is *-algebraically iso-
morphic to the image Q~(P), a possibility which has inspired the mathematical
research work on quantization.

Even stronger continuity conditions, which may be of interest for the clas-
sical limit in quantum field theory, are expressible by means of continuous fields
of C*-algebras in the sense of J. Dixmier [23, Chapter 10].

For our above subset I ⊆ R let
∏

~∈I A~ be the cartesian product of the
family of C*-algebras A~, ~ ∈ I, which may be considered as a bundle over the
base manifold I. The elements K of

∏
~∈I A~ are then considered as sections

I 3 ~ 7→ K(~) ∈ A~, which we also write as [~ 7→ K(~)] ∈
∏

~∈I A~. If the
*-algebraic operations (scalar multiplication, addition, product, *-operation)
are taken pointwise, then

∏
~∈I A~ becomes a *-algebra. For each ~ ∈ I the

point evaluation is denoted by α~, that is, α~(K) := K(~).

Definition 2.2 (Continuous Field of C*-Algebras). A continuous field
of C*-algebras ({A~}~∈I ,K) consists of a sub-*-algebra K of

∏
~∈I A~ such that

the following conditions are valid:

(a) I 3 ~ 7→ ‖K(~)‖~ is continuous for all K ∈ K.

(b) For each ~ ∈ I the set {K(~) | K ∈ K} coincides with A~.

(c) K is locally complete, that is, K ∈
∏

~∈I A~ is an element of K, if for each
~0 ∈ I and each ε > 0 there exists an H ∈ K and a neighborhood U0 of ~0

so that ‖K(~)−H(~)‖~ < ε ∀~ ∈ U0.

The elements K of K are called continuous sections.

Let us refer a subsequently used result from [23]:

Lemma 2.3. If K ∈ K and u : I → C is continuous, then [~ 7→
u(~)K(~)] ∈ K.

For a given continuous field of C*-algebras K, the bounded continuous
sections K ∈ K constitute the C*-algebra Kb with the C*-norm

(2.5) ‖K‖sup := sup
~∈I

‖K(~)‖~ .
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Dixmier and also Landsman restrict to the sub-C*-algebra of continuous sec-
tions I 3 ~ 7→ ‖K(~)‖~ vanishing at infinity.

We now give a notion of a continuous quantization, which is slightly more
general than that in [13], but is adapted to the Weyl quantization and especially
to the equivalent quantizations treated in the present investigation.

Definition 2.4 (Continuous Quantization). Let be given a Poisson al-
gebra (P, {., .}), a continuous field of C*-algebras ({A~}~∈I ,K) with I ⊆ R as
above, and a linear, *-preserving map

Q : P −→ K .

Then the tripel ({A~}~∈I ,K;Q) is called a continuous quantization of (P, {., .}),
if the following conditions are valid:

(a) P ⊆ A0, and α0(Q(A)) = A for all A ∈ P.

(b) Dirac’s condition is fulfilled for Q~ := α~ ◦Q, ~ ∈ I.

In a continuous quantization ({A~}~∈I ,K;Q), the first entry sets the C*-
algebraic frame, the second entry selects the special continuous sections, espe-
cially the behavior of ~ 7→ ‖K(~)‖~, and the third specifies the chosen connec-
tions between the classical observables and the continuous sections. Thus, the
above mapping Q : P → K is a global quantization map, which has strong con-
tinuity properties, but does not require unnecessary boundedness conditions
(or even vanishing norm) for the sections in the unphysical limit ~ → ±∞,
provided I = R.

If ({A~}~∈I ,K;Q) is a continuous quantization, then (A~, Q~)~∈I is a strict
quantization for Q~ = α~ ◦ Q. (To prove this it remains only to check the
validity of von Neumann’s condition: For K := Q(A)Q(B) − Q(AB) ∈ K it
is K(~) = Q~(A)Q~(B) − Q~(AB), especially ~ 7→ ‖K(~)‖~ is continuous by
Definition 2.2(a).) Note, that a continuous quantization does in general not
induce a strict deformation quantization.

The converse reasoning, starting with a family of strict quantizations, is
covered by the following immediate result.

Proposition 2.5. Let (A~, Q~)~∈I be a strict quantization of the Pois-
son algebra (P, {., .}) so that the *-algebraic span of Q~(P) is dense in A~ for
each ~ ∈ I (richness condition). Then the following assertions are equivalent:

(i) I 3 ~ 7→ ‖P (Q~(A1) · · ·Q~(Am))‖~ is continuous for all Ak ∈ P, all m ∈
N, and all polynomials P on Rm.
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(ii) There exists a continuous quantization ({A~}~∈I ,K;Q) of (P, {., .}) satis-
fying Q~ = α~ ◦Q for every ~ ∈ I.

Since only the ~ → 0-properties are specified, a strict quantization of a
Poisson algebra is highly non-unique. Rieffel’s continuity property allows for
an elegant notion of equivalent strict quantizations (cf. [13]):

Definition 2.6 (Equivalent Quantizations). Two strict quantizations
(A~, Q~)~∈I and (A′ ~, Q′

~)~∈I of the same Poisson algebra P are called equiv-
alent, if A~ = A′ ~ for all ~ ∈ I, and if

I 3 ~ 7→ ‖Q~(A)−Q′
~(A)‖~

is continuous for every A ∈ P.

Since Q0(A) = A = Q′
0(A) in virtue of Definition 2.1, the norm difference

‖Q~(A)−Q′
~(A)‖~ for two equivalent quantizations vanishes for ~ → 0.

Observation 2.7. If two strict quantizations Q~ : P → A~ resp. Q′
~ :

P → A~ arise from continuous quantizations Q : P → K resp. Q′ : P → K
with the same continuous field of C*-algebras ({A~}~∈I ,K), then (A~, Q~)~∈I

and (A~, Q′
~)~∈I are automatically equivalent.

§3. Bundle of Weyl Algebras

In the present Section we start from an arbitrary but fixed pre-symplectic
space (E, σ), that is a real vector space E equipped with a non-trivial pre-
symplectic form σ : E × E → R, which is by definition R-bilinear and anti-
symmetric. The pre-symplectic form σ is called non-degenerate, if σ(f, g) = 0
∀g ∈ E implies f = 0, in which case it is called a symplectic form.

§3.1. The C*-Weyl algebra

We may regard E as a vector group equipped with the discrete topology,
over which we define for each ~ ∈ R the multiplier

E × E 3 (f, g) 7−→ exp{− i
2~σ(f, g)} .(3.1)

For constructing the twisted group Banach- resp. C*-algebra we start from an
abstract *-algebra given as the linear hull

∆(E, ~σ) := LH{W ~(f) | f ∈ E}



i
i

i
i

i
i

i
i

122 Reinhard Honegger and Alfred Rieckers

of linearly independent elements W ~(f), f ∈ E, called Weyl elements, which
may be realized in various ways. Equipped with the twisted product (arising
from the multiplier (3.1)) and the *-operation according to the Weyl relations

W ~(f)W ~(g) = exp{− i
2~σ(f, g)}W ~(f + g) ,(3.2)

W ~(f)∗ = W ~(−f) , ∀f, g ∈ E ,

the linear hull ∆(E, ~σ) becomes a *-algebra (since every polynomial of the
Weyl elements reduces to a linear combination and thus to an element of
∆(E, ~σ)). The *-algebra ∆(E, ~σ) has the identity 1

~ := W ~(0), and the
Weyl elements W ~(f) are algebraic unitaries. Note that an arbitrary element

A ∈ ∆(E, σ) decomposes uniquely into a linear combination A =
n∑

k=1

zkW (fk)

with different fk’s from E and coefficients zk ∈ C.
The completion ∆(E, ~σ)

1
of the *-algebra ∆(E, ~σ) with respect to the

norm ∥∥ n∑
k=1

zkW ~(fk)
∥∥

1
:=

n∑
k=1

|zk|

(n ∈ N, zk ∈ C, different fk’s from E) is the twisted group Banach-*-algebra of
the discrete vector group E. The Weyl algebra W(E, ~σ) arises as the envelop-
ing C*-algebra of the Banach-*-algebra ∆(E, ~σ)

1
[23], and thus constitutes

the twisted group C*-algebra of E with respect to the multiplier (3.1). The
C*-norm on W(E, ~σ) is denoted by ‖.‖~; it varies with the values ~ ∈ R in
contrast to the Banach norm ‖.‖1. Furthermore,

(3.3) ‖A‖~ ≤ ‖A‖1 , ∀A ∈ ∆(E, ~σ)
1
,

and ∆(E, ~σ)
1

is the proper, but ‖.‖~-dense sub-*-algebra of W(E, ~σ) con-
sisting of those A ∈ W(E, ~σ) which possess the unique decomposition A =∑

k zkW (fk) with different fk’s from E, k ∈ N, and coefficients zk ∈ C, sat-
isfying ‖A‖1 =

∑
k |zk| < ∞. Note, we briefly write

∑
k . . . for the possibly

infinite series
∞∑

k=1

. . . .

The Weyl algebra can be characterized uniquely as follows, where it is not
necessary to demand the above linear independence of the Weyl elements [24]:

Theorem 3.1. W(E, ~σ) is the unique C*-algebra, which is generated
by non-zero elements W ~(f), f ∈ E, satisfying (3.2), and for which every
projective group representation π~ of E with multiplier (3.1), arises from one
of its representations Π~, such that π~(f) = Π~(W ~(f)) for all f ∈ E.
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It holds, moreover, that W(E, ~σ) is simple, if and only if σ is non-
degenerate and ~ 6= 0.

For twisted group algebras we refer e.g. to [25], [26], [27], [28]; for further
results concerning the Weyl algebra, see also [29], [30], [31], [32], [33], [34], [35].

§3.2. Continuous field of C*-Weyl algebras

Having so far treated the Weyl algebras W(E, ~σ) for each parameter
~ ∈ R separately, we now piece them together to arrive at their cartesian
product bundle

∏
~∈RW(E, ~σ), consisting of sections K = [~ 7→ K(~)] with

K(~) ∈ W(E, ~σ) ∀~ ∈ R. We follow [14] for the construction of a continuous
field of C*-Weyl algebras, where here I is set equal to R.

The Weyl relations (3.2) ensure that the linear hull

(3.4) ∆WF(E, σ) := LH{ [~ 7→ exp{−i~s}W ~(f)] | (s, f) ∈ R× E}

is a sub-*-algebra of the bundle *-algebra
∏

~∈RW(E, ~σ) (‘WF’ for ‘Weyl
algebra field’). The generating elements [~ 7→ exp{−i~s}W ~(f)], where (s, f)
varies in the cartesian product R× E, are linearly independent.

The Weyl relations imply that W ~(f)∗W ~(g)∗W ~(f)W ~(g) = exp{−i~σ

(f, g)}1~, and thus the *-algebra ∆WF(E, σ) is *-algebraically generated by
the sections [~ 7→ W ~(f)], f ∈ E, since we assumed σ non–trivial. Here ‘*-
algebraically generated’ means that ∆WF(E, σ) is the smallest sub-*-algebra
of

∏
~∈RW(E, ~σ) which contains all of the [~ 7→ W ~(f)], f ∈ E. That

{K(~) | K ∈ ∆WF(E, σ)} = ∆(E, ~σ) is ‖.‖~-dense in W(E, ~σ) is already
known, and one may show that the sections from ∆WF(E, σ) are continuous.
Now ∆WF(E, σ) can be locally completed to a continuous field K in the sense
of Definition 2.2(c): K consists of those sections K ∈

∏
~∈RW(E, ~σ), for

which there exists for each ~0 ∈ R and each ε > 0 an H ∈ ∆WF(E, σ) and a
neighborhood U0 of ~0 with ‖K(~)−H(~)‖~ < ε ∀~ ∈ U0.

Theorem 3.2. There exists a unique continuous field of C*-algebras
({W(E, ~σ)}~∈R,K) such that [~ 7→ W ~(f)] ∈ K for all f ∈ E.

Obviously, [~ 7→ exp{−i~s}W ~(f)] ∈ Kb for each tuple (s, f) ∈ R× E for
the C*-algebra Kb of bounded continuous sections of our continuous field K
of C*-Weyl algebras. Consequently, ∆WF(E, σ) is a sub-*-algebra of Kb, the
norm-closure of which is denoted by C∗

WF(E, σ) (the C*-norm ‖.‖sup of Kb is
given in Eq. (2.5)). Clearly, C∗

WF(E, σ) is the smallest sub-C*-algebra of Kb

containing all the sections [~ 7→ W ~(f)], f ∈ E.
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Lemma 3.3. If K ∈ C∗
WF(E, σ) and u : R → C is continuous and

almost periodic, then [~ 7→ u(~)K(~)] ∈ C∗
WF(E, σ).

Proof. We have that
∥∥[~ 7→ (

∑
k zk exp{−i~sk})1~]

∥∥
sup

= sup~ |
∑

k zk

exp{−i~sk}| is just the sup-norm on the C*-algebra of almost periodic functions
on R, for which the functions ~ 7→ exp{−i~s} are total [36, Section 101].
So [~ 7→ u(~)1~] ∈ C∗

WF(E, σ) for every continuous almost periodic function
u : R → C. Now take the product with K ∈ C∗

WF(E, σ).

Because of the linear independence of the [~ 7→ exp{−i~s}W ~(f)], (s, f) ∈
R×E, we may introduce into our *-algebra ∆WF(E, σ) the vector space norm
‖.‖1 by ∥∥ n∑

k=1

zk[~ 7→ exp{−i~sk}W ~(fk)]
∥∥

1
:=

n∑
k=1

|zk|

for different tuples (sk, fk) ∈ R×E and arbitrary zk ∈ C and n ∈ N. Obviously,

‖K‖sup ≤ ‖K‖1 , ∀K ∈ ∆WF(E, σ) .

As for the Weyl algebra in Subsection 3.1 we go over to the ‖.‖1-completion

of ∆WF(E, σ), denoted by ∆WF(E, σ)
1
. The ‖.‖1-continuous extension of the

*-algebraic operations from ∆WF(E, σ) ensures ∆WF(E, σ)
1

to be a Banach-
*-algebra. In [14] it is shown that ∆WF(E, σ)

1
is a ‖.‖sup-dense sub-*-algebra

of C∗
WF(E, σ), which consists of those sections K ∈ C∗

WF(E, σ) which have the
unique decomposition

(3.5) K = [~ 7→ K(~)] =
∑

k zk[~ 7→ exp{−i~sk}W ~(fk)]

with coefficients zk ∈ C satisfying ‖K‖1 =
∑

k |zk| < ∞ for different tuples
(sk, fk) ∈ R×E, k ∈ N. Note that by Subsection 3.1 K(~) =

∑
k zk exp{−i~sk}

W ~(fk) ∈ ∆(E, ~σ)
1
. We summarize the above relations in terms of the fol-

lowing inclusions

(3.6) ∆WF(E, σ) ⊆ ∆WF(E, σ)
1
⊆ C∗

WF(E, σ) ⊆ Kb ⊆ K ,

which have the meaning of being sub-*-algebras. The identity of each *-al-
gebra is given by [~ 7→ 1

~], and for every (s, f) ∈ R×E the continuous section
[~ 7→ exp{−i~s}W ~(f)] is a unitary.
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§3.3. Classical poisson algebras

The bundle of Weyl algebras {W(E, ~σ)}~∈R has for ~ = 0 the fiber
W(E, 0) corresponding to commuting Weyl elements W 0(f), f ∈ E. Espe-
cially ∆(E, 0), ∆(E, 0)

1
, as well as W(E, 0) are commutative *-algebras.

Because of the linear independence of the Weyl elements, the bilinear ex-
tension of

(3.7) {W 0(f),W 0(g)} := σ(f, g)W 0(f + g) , ∀f, g ∈ E ,

leads to a well defined Poisson bracket {., .} on the *-algebra ∆(E, 0).
In order to construct larger Poisson algebras we follow [14] and suppose

from now on the existence of a semi-norm ς on E such that

(3.8) |σ(f, g)| ≤ c ς(f) ς(g) , ∀f, g ∈ E ,

for some constant c > 0. For non-degenerate σ one easily concludes that ς has
to be a norm on E. The definition

P∞ς := {A =
∑

k zkW 0(fk) ∈ ∆(E, 0)
1
|
∑

k ς(fk)m |zk| < ∞ for all m ∈ N}

leads to a Fréchet-*-algebra (as sub-*-algebra of ∆(E, 0)
1
) with the locally con-

vex Hausdorff topology arising from the increasing system of norms (different
fk’s)

(3.9)
∥∥∑

kzkW 0(fk)
∥∥n

ς
:=

n∑
m=0

∑
kς(fk)m |zk| , n ∈ N .

By construction, ∆(E, 0) is a dense sub-*-algebra of P∞ς with respect to its
Fréchet-topology. Especially, for every n ∈ N there is a constant cn ≥ 1 with

(3.10) ‖AB‖n
ς ≤ cn ‖A‖n

ς ‖B‖
n
ς , ∀A,B ∈ P∞ς .

By use of the estimation (3.8) one may show that the Poisson bracket {., .}
defined in (3.7) is jointly continuous with respect to the Fréchet-topology, and
thus extends continuously from ∆(E, 0) to a jointly Fréchet-continuous Poisson
bracket on P∞ς , making (P∞ς , {., .}) to a Poisson algebra.

The Poisson bracket {., .} may be realized in terms of a bivector field, ap-
plied to differentials. For this we introduce an arbitrary locally convex Haus-
dorff vector space topology τ on E. On the topological dual space E′

τ of E

we consider the σ(E′
τ , E)-topology, and so the bidual is given by (E′

τ )′ = E.
According to [24] the commutative C*-Weyl algebra W(E, 0) is *-isomorphic
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to the C*-algebra of the almost periodic, σ(E′
τ , E)-continuous functions on E′

τ ,
and we may regard each element A ∈ W(E, 0) as an almost periodic function
A : E′

τ → C. The Weyl elements W 0(f) are realized in terms of the periodic
functions

(3.11) W 0(f) : E′
τ → C , F 7→ exp{iF (f)} ≡ W 0(f)[F ] .

The topological dual E′
τ may be considered as the phase space manifold of our

classical field theory. One may introduce a differentiable structure onto E′
τ , by

means of which the usual Poisson bracket has the form

{A,B}[F ] := −σ(dF A1, dF B1)− iσ(dF A1, dF B2)(3.12)

−iσ(dF A2, dF B1) + σ(dF A2, dF B2)

with constant bivector field (cf. Eq. (2.3)), where A and B are differentiable,
C-valued functions on the manifold E′

τ , having real resp. imaginary parts A1,
B1 resp. A2, B2. For the periodic functions W 0(f) from Eq. (3.11) one obtains
the total differentials dF W 0(f) = iW 0(f)[F ] f , which leads back to the Poisson
bracket relations Eq. (3.7).

This illustrates, that the above Poissonian structure is independent of the
chosen locally convex topology τ on E (leading to the phase space manifold E′

τ ).
Hence our Poisson and C*-algebras of the classical field theory do not depend
on the phase space but arise functorially from the pre-symplectic test function
space (E, σ). Modified and larger Poisson algebras are elaborated in [37].

§4. Equivalent Strict Deformation Quantizations

Again we are given in this Section an arbitrary pre-symplectic space (E, σ)
with non-trivial σ. For convenience we use here the quantization concepts of
Section 2 for I = R; the quantization results for a smaller I ⊂ R are then
immediate, see Corollary 4.7 below.

The various quantizations, we are considering here, are indexed by a cer-
tain class of functions w : R × E → C. The physical motivation for these
factors w(~, f) is mentioned in the Introduction and further elucidated in the
forthcoming publication [20].

Definition 4.1 (Quantization Factor). A mapping w : R × E → C,
(~, f) 7→ w(~, f) is called a quantization factor, if

(a) w(~, f) 6= 0 and w(~, f) = w(~,−f) for all f ∈ E and all ~ ∈ R.

(b) w(0, f) = 1 = w(~, 0) for each f ∈ E and every ~ ∈ R.
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(c) R 3 ~ 7→ w(~, f) is continuous for every f ∈ E.

The set of all quantization factors is denoted by QF.
A quantization factor w is called ~-locally bounded, if for each ~0 ∈ R there

exists a neighborhood U0 so that the restricted map U0×E 3 (~, f) 7→ w(~, f)
is bounded. The set of all ~-locally bounded quantization factors is denoted by
QFb.

Of course, a w ∈ QFb may be globally unbounded as ~ → ±∞.
Let us first consider our continuous field of C*-Weyl algebras

({W(E, ~σ)}~∈R,K) from Theorem 3.2, with associated C*-algebra Kb of the
bounded continuous sections, and with the smallest sup-C*-algebra C∗

WF(E, σ)
containing the fields [~ 7→ W ~(f)], f ∈ E. For each w ∈ QF we introduce the
sections

Kw(f) := [~ 7→ w(~, f)W ~(f)] ∈
∏

~∈RW(E, ~σ) .

Proposition 4.2. Let w ∈ QF. Then the section Kw(f) is an element
of K for every f ∈ E. Furthermore, ({W(E, ~σ)}~∈R,K) is the unique contin-
uous field of C*-algebras such that Kw(f) ∈ K for all f ∈ E.

For each f ∈ E it holds: If R 3 ~ 7→ w(~, f) is bounded, then Kw(f) ∈ Kb,
and if R 3 ~ 7→ w(~, f) is almost periodic, then Kw(f) ∈ C∗

WF(E, σ).

Proof. Kw(f) ∈ K follows immediately by Lemma 2.3 and Defini-
tion 4.1(c), cf. also Lemma 3.3. Since w(~, f) 6= 0 for all ~ ∈ R, the in-
verse function ~ 7→ w(~, f)−1 exists, being continuous, too. Thus Kw(f) ∈ K,
if and only if K1(f) ∈ K (K1(f) means with constant w ≡ 1). The uniqueness
statement follows now from that in Theorem 3.2.

For each quantization factor w we define a global quantization map Qw :
∆(E, 0) → K by the linear extension of

(4.1) Qw(W 0(f)) := Kw(f) = [~ 7→ w(~, f)W ~(f)] ,

which is *-preserving by the relation w(~, f) = w(~,−f) in Definition 4.1(a).
Using the point evaluation α~ from Section 2 for our continuous field of C*-Weyl
algebras, we arrive for each ~ ∈ R at the quantization map

(4.2) Qw
~ := α~ ◦Qw : ∆(E, 0) →W(E, ~σ) , Qw

~ (W 0(f)) = w(~, f)W ~(f) ,

which has to be linearly extended. Provided a ~-locally bounded quantization
factor w, one may extend the quantization maps Qw resp. Qw

~ from ∆(E, 0) to

the Banach-*-algebra ∆(E, 0)
1
.
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Proposition 4.3. Suppose w ∈ QFb. Then it follows for not neces-
sarily different fk’s from E, k ∈ N, and for coefficients zk ∈ C, satisfying∑

k |zk| < ∞, that∑
k zkKw(fk) = [~ 7→

∑
k zkw(~, fk)W ~(fk)] ∈ K .

Consequently, the above quantization maps Qw and Qw
~ extend ‖.‖1–

continuously from ∆(E, 0) to ∆(E, 0)
1
. More precisely, for summable coeffi-

cients zk ∈ C we have

Qw(
∑

k zkW 0(fk)) =
∑

k zkKw(fk) ∈ K ,(4.3)

Qw
~ (

∑
k zkW 0(fk)) =

∑
k zkw(~, fk)W ~(fk) ∈ ∆(E, ~σ)

1
.

Moreover, if w is (globally) bounded, i.e. |w(~, f)| ≤ d, ∀~ ∈ R, ∀f ∈ E,
for some constant d > 0, then Qw(A) ∈ Kb for all A ∈ ∆(E, 0)

1
(cf. the

inclusions (3.6)).

Proof. w being ~-locally bounded, there exists for each ~0 ∈ R a neig-
borhood U0 of ~0 and a constant a0 > 0 with |w(~, f)| ≤ a0 for all f ∈ E

and all ~ ∈ U0. Thus for each ~ ∈ R it follows that
∑

k zkw(~, fk)W ~(fk) ∈
∆(E, ~σ)

1
by Subsection 3.1. Consequently, we obtain the well defined section

K :=
∑

k zkKw(fk) in the cartesian product bundle
∏

~∈RW(E, ~σ). But for
such a local neighborhood U0 we have

‖K(~)−Kn(~)‖~ ≤ ‖K(~)−Kn(~)‖1 ≤ a0

∞∑
k=n+1

|zk| , ∀~ ∈ U0 ,

where Kn :=
n∑

k=1

zkKw(fk) ∈ K, n ∈ N. That is, K is approximated locally

uniformly in ~ from K, which yields K ∈ K by the local completeness of K in
Definition 2.2(c). Now it is obvious that Qw is continuous with respect to the
Banach norm ‖.‖1 on ∆(E, 0) and the locally uniform convergence in K. The
rest is immediate.

Note that for the ‖.‖1-continuous extension of the quantization map Qw
~

from (4.3), it suffices that E 3 f 7→ w(~, f) is bounded only for the given value
~ 6= 0.

In virtue of the above Proposition the quantization maps Qw and Qw
~ are

defined on the enlarged Poisson algebra (P∞ς , {., .}) from Subsection 3.3 for ~-
locally bounded quantization factors w, only. So let us treat in the subsequent
investigations the two cases, which we describe with the use of a variable symbol
Γ, running through the different sets of quantization factors, as follows:
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(1) For the Poisson algebra P := ∆(E, 0) we take the whole set Γ := QF as
range for the allowed quantization factors w.

(2) For the enlarged Poisson algebra P := P∞ς we restrict the range of allowed
quantization factors w to the ~-locally bounded ones, i.e. to Γ := QFb.

Case (2) assumes the existence of a semi–norm ς on E satisfying the estima-
tion (3.8). We formulate now our first main result.

Theorem 4.4 (Continuous and Strict Deformation Quantizations). Let
the quantization maps Qw and Qw

~ be as above. Then for both cases (1) and (2)
the following assertions are valid for each w ∈ Γ:

(a) ({W(E, ~σ)}~∈R,K;Qw) constitutes a continuous quantization of
(P, {., .}).

(b) (W(E, ~σ), Qw
~ )~∈R constitutes a strict deformation quantization of

(P, {., .}).

Proof. Part (a) for case (1). We only have to establish Dirac’s condition
from Definition 2.1(a) for Qw

~ = α~ ◦ Qw, ~ ∈ R. With the Poisson bracket
expressions (3.7), the Weyl relations (3.2), and

∥∥W ~(f + g)
∥∥

1
= 1 we obtain

for arbitrary f, g ∈ E that∥∥[Qw
~ (W 0(f)), Qw

~ (W 0(g))]~ −Qw
~ ({W 0(f),W 0(g)})

∥∥
1

=
∥∥w(~, f)w(~, g) i

~
(
W ~(f)W ~(g)−W ~(g)W ~(f)

)
−w(~, f + g)σ(f, g)W ~(f + g)

∥∥
1

=
∣∣w(~, f)w(~, g) i

~
(
exp{− i

2~σ(f, g)} − exp{ i
2~σ(f, g)}

)
−w(~, f + g)σ(f, g)|

=
∣∣∣∣w(~, f)w(~, g)

(
i
exp{− i

2~σ(f, g)} − 1
~ − i

exp{ i
2~σ(f, g)} − 1

~

)
− w(~, f + g)σ(f, g)

∣∣∣∣
~→0−→ 0 ,

by the differential limits lim
~→0

exp{± i
2~σ(f, g)} − 1

~ =
d exp{± i

2~σ(f, g)}
d~ |~=0 =

± i
2σ(f, g), and since ~ 7→ w(~, h) is continuous with w(0, h) = 1 for each h ∈ E

by the Definition 4.1 of a quantization factor. With the triangle inequality
one immediately checks that Dirac’s condition is valid for all A,B ∈ ∆(E, 0)
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with respect to the Banach norm ‖.‖1, and by (3.3) also for the C*-norms ‖.‖~,
~ ∈ R.

Part (b) for case (1). Since for fixed ~ ∈ R the factors w(~, f) represent only
constants we have Qw

~ (∆(E, 0)) = ∆(E, ~σ), which is indeed a sub-*-algebra of
W(E, ~σ). The Weyl elements W ~(f), f ∈ E, being linearly independent for
each ~ ∈ R, also for ~ = 0, proves Qw

~ to be injective.
Part (a) for case (2). Since w is supposed to be ~-locally bounded, there

exists for 0 = ~0 ∈ R a neigborhood U0 and a constant b0 > 0 with |w(~, f)| ≤
b0 for all f ∈ E and all ~ ∈ U0. The mean value theorem of differential calculus
for one real variable implies∣∣∣∣∣exp{± i

2~σ(f, g)} − 1
~

∣∣∣∣∣ ≤ 1
2
|σ(f, g)| ≤ c

2
ς(f) ς(g) , ∀ 0 6= ~ ∈ R , ∀f, g ∈ E ,

leading to the inequality
∥∥[Qw

~ (W 0(f)), Qw
~ (W 0(g))]~ −Qw

~ ({W 0(f),W 0(g)})
∥∥

1

≤ 2b0c ς(f)ς(g) for all 0 6= ~ ∈ U0 and all f, g ∈ E by (3.8). Since for arbitrary
A =

∑
k ukW 0(fk) and B =

∑
l vlW

0(gl) from P∞ς (with coefficients uk, vl ∈ C
and fk, gl ∈ E) the majorant is summable, we may subsequently exchange the
limit ~ → 0 with

∑
k,l . . . by Lebesgue’s dominated convergence theorem, and

so we get Dirac’s condition,

‖[Qw
~ (A), Qw

~ (B)]~ −Qw
~ ({A,B})‖1

≤
∞∑

k,l=1

|uk| |vl|
∥∥[Qw

~ (W 0(f)), Qw
~ (W 0(g))]~

−Qw
~ ({W 0(f),W 0(g)})

∥∥
1

~→0−→ 0 .

Part (b) for case (2). The injectivity of Qw
~ follows as above. It remains to

prove that Qw
~ (A)Qw

~ (B) ∈ Qw
~ (P∞ς ) for all A,B ∈ P∞ς . Since Qw

~ (A)Qw
~ (B) =

Qw
~ (C) with C ∈ ∆(E, 0)

1
defined by C :=

∑
k,l w(~, fk)w(~, gl) exp{− i

2~σ

(fk, gl)}ukvlW
0(fk + gl) for our above A =

∑
k ukW 0(fk) and B =

∑
l vl

W 0(gl), we only have to show that C ∈ P∞ς . Up to the terms w(~, fk)w(~, gl)
exp{− i

2~σ(fk, gl)}, this is just the commutative product of A and B from
Subsection 3.3. Since these terms are uniformly bounded in the test functions
fk and gl (|w(~, f)| ≤ a0 for all f ∈ E with some constant a0 > 0 by the ~-local
boundedness of w), we conclude from the structure of the norms (3.9) that
estimation (3.10) remains valid, i.e., ‖C‖n

ς ≤ a2
0cn ‖A‖n

ς ‖B‖
n
ς for all n ∈ N,

and find that in fact C ∈ P∞ς .

Clearly, when we restrict, for given ~-locally bounded factor w, the quanti-
zation maps Qw and Qw

~ to an arbitrary sub-Poisson algebra P̃ with ∆(E, 0) ⊂
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P̃ ⊂ P∞ς (proper inclusions), then we arrive again at a continuous quantiza-
tion Qw, which provides, however, only a strict quantization, but in general
not a strict deformation quantization (Qw

~ )~∈R of (P̃, {., .}) by the following
reasoning: On P̃ the Qw

~ act injectively, too, but Qw
~ (A)Qw

~ (B) possibly may
not be an element of Qw

~ (P̃) for some A,B ∈ P̃\∆(E, 0), which in view of Defi-
nition 2.1(d) prevents (Qw

~ )~∈R from being a strict deformation quantization
of P̃.

Remark 4.5 (Weyl Quantization). The results on the Weyl quantization
of [14] follow as a special case from the foregoing Theorem by selecting the
trivial quantization factor w ≡ 1. Especially, we have Q1(A) ∈ ∆WF(E, σ)

1
for

all A ∈ ∆(E, 0)
1
.

Since by Proposition 4.2 we have for every quantization factor w the same
continuous field of C*-Weyl algebras K, we immediately conclude from Obser-
vation 2.7:

Theorem 4.6 (Equivalent Quantizations). Let all be as in Theorem 4.4.
For each of the two cases (1) and (2) it holds: The strict deformation quanti-
zations (W(E, ~σ), Qw

~ )~∈R of (P, {., .}), where w varies in the pertinent Γ, are
mutually equivalent in the sense of Definition 2.6. Especially, each of them is
equivalent to the Weyl quantization.

The above conclusions may be restricted to some smaller subsets I than R:

Corollary 4.7. Suppose w ∈ QF to be only ~–locally bounded for ~ from
a subset I ⊂ R as in Section 2. Then Theorem 4.4(b) remains valid for the
enlarged Poisson algebra P = P∞ς when restricting from R to I. That is, beside
(W(E, ~σ), Qw

~ )~∈R being a strict deformation quantization of (∆(E, 0), {., .}),
it follows that (W(E, ~σ), Qw

~ )~∈I is a strict deformation quantization of
(P∞ς , {., .}).

The equivalence Theorem 4.6 is valid for P = P∞ς , too, when restricting to
I, and when Γ consists of those w ∈ QF which are ~–locally bounded within I.

Theorem 4.4(a) also may be formulated for I instead of R; we omit details.

A quantization factor w ∈ QF may be transformed by means of Bogoliubov
*-automorphisms α~

T on W(E, ~σ), which by construction satisfy

α~
T (W ~(f)) = W ~(Tf) , ∀f ∈ E ,

for each ~ ∈ R, respectively. Here T is an element of the group symp(E, σ)
of all symplectic transformations on the pre-symplectic space (E, σ). (Recall
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that T ∈ symp(E, σ) is an R-linear bijection on E with σ(f, g) = σ(Tf, Tg);
[24]). With Eq. (4.2) it is immediately checked that for each T ∈ symp(E, σ)
and every ~ ∈ R one gets

(α~
T )−1 ◦Qw

~ ◦ α0
T = QwT

~ ,

where the quantization factor wT ∈ QF is given by

wT (~, f) := w(~, T f) , ∀f ∈ E , ∀~ ∈ R .

The strict deformation quantization (W(E, ~σ), Qw
~ )~∈R of (∆(E, 0), {., .}) is in

this manner transformed into the strict deformation quantization (W(E, ~σ),
QwT

~ )~∈R of the Poisson algebra (∆(E, 0), {., .}). Similar deformations of the
quantization factor arise from gauge transformations of the second kind α~

F ~

(W ~(f)) := exp
{
iF ~(f)

}
W ~(f) with F ~ ∈ E′

τ a real smeared field, and by
certain completely positive mappings (e.g., [34]), which depend continuously
on ~. These constructions may be extended to the enlarged Poisson algebra
P∞ς only under certain boundedness resp. continuity conditions on w and T

resp. F ~. (The gauge transformations do not preserve the field-compatibility
of w given in Definition 5.2 below).

Let us sketch a connection to the equivalence concept of 2-cocycles in the
theory of central group extensions (e.g., [25]). For our given pre-symplectic
space (E, σ) one easily checks that for each w ∈ QF the map

Σw
~ : E × E → C′ , (f, g) 7→ w(~, f)w(~, g)

w(~, f + g)
exp{− i

2~σ(f, g)}

is a 2-cocycle over the multiplicative complex group C′ := C\{0}. This covers
Eq. (3.1) for the trivial factor w ≡ 1, corresponding to the Weyl quantization,
cf., Remark 4.5. One may introduce something like a generalized Heisenberg
group H(Σw

~ ) by extending the additive group E centrally by C′ via Σw
~ , which

is performed by equipping the cartesian product E ×C′ with the group multi-
plication

(f, u) •w (g, v) := (f + g, u v Σw
~ (f, g)) .

(If σ and w are smooth in a τ -topology, then H(Σw
~ ) may be made to a possibly

infinite dimensional Lie group, as is, e.g., carried through in [38] for nuclear
symplectic spaces.)

Observation 4.8 (Equivalent Cocycles and Isomorphic Heisenberg
Groups). The 2-cocycles Σw

~ , where w varies in QF, are mutually equivalent.
Thus the group extensions H(Σ~

w), w ∈ QF, are isomorphic.



i
i

i
i

i
i

i
i

Equivalent Quantizations 133

For every quantization factor w ∈ QF the corresponding quantized Weyl
elements

Q~
w(W 0(f)) = w(~, f)W ~(f) =: W ~

w(f)

satisfy the modified Weyl relations

W ~
w(f)W ~

w(g) = Σw
~ (f, g)W ~

w(f + g) , W ~
w(f)∗ = W ~

w(−f) .

Observation 4.8 illustrates, that a Heisenberg group is not a characterization of
a quantization proper, being the same for all quantizations in our investigation,
but characterizes, in a certain sense, the algebraic frame for quantizations.

§5. Field Quantizations

The preceding discussions on strict quantization dealt with the abstract
C*-Weyl algebras. Many investigations in the literature, which concern defor-
mation or even strict quantization methods, use special Hilbert space repre-
sentations. In order to find the connection to usual quantum field theory one
applies Stone’s theorem to the Weyl elements, unitarily represented in a Hilbert
space. That is, one differentiates for ~ 6= 0 in a regular representation Π~ of
W(E, ~σ) the unitaries Π~(W ~(tf)) to the parameter t ∈ R:

(5.1) Φ~
Π(f) ≡ ΦΠ~(f) := −i

d

dt
Π~(W ~(tf))

∣∣∣∣
t=0

, f ∈ E ,

(regularity means that for each f ∈ E the map R 3 t 7→ Π~(W ~(tf)) is
strongly continuous, cf. [35]). The field operators Φ~

Π(f), f ∈ E, and thus
the physical contents of the theory, may differ essentially from each other in
the various representations of W(E, ~σ). Perturbation theory is in a certain
sense connected with series of increasing field powers and thus should, in a
mathematical realization, depend on the special representation.

Our C*-algebraic quantization theory of Section 4 provides a strategy for
a representation dependent quantization, which then is used to quantize also
field expressions. Here we follow this procedure of field quantizations. The
forthcoming publication [20] is devoted to the converse process, which is more in
the spirit of quantum field theory. There quantizations are formulated directly
in terms of fields, which under certain conditions may give rise to the previous
C*-algebraic quantizations using Weyl elements.

Let us select for the following a fixed family Π ≡ (Π~)~ of regular, non-
degenerate, and faithful representations Π~ of W(E, ~σ), 0 6= ~ ∈ R. Recall
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that the algebras W(E, ~σ) are simple for non–degenerate σ, and so all rep-
resentations are faithful. Observe the norm preservation of any faithful rep-
resentation. For dealing with the fields it may be advantageous to choose the
elements of a representation family Π compatible with each other by setting
Π~ := Π~≡1 ◦β~ with suitable *-isomorphisms β~ from W(E, ~σ) onto W(E, σ)
for the values ~ 6= 0. The next result gives a scheme for constructing such β~,
which is further expounded in [37].

Lemma 5.1. For ~ 6= 0 let T~ : E → E be an R-linear bijection such
that σ(T~f, T~g) = ~σ(f, g) for all f, g ∈ E. Then there exists a unique *-
isomorphism β~ from W(E, ~σ) onto W(E, σ) such that β~(W ~(f)) = W 1(T~f)
for all f ∈ E.

To formulate quantizations of field observables we have need for a special
subclass of quantization factors.

Definition 5.2 (Field-Compatible Quantization Factor). The quanti-
zation factor w ∈ QF is called to be field-compatible, if for each ~ ∈ R and all
f, g ∈ E the mapping R 3 t 7→ w(~, tf + g) is infinitely differentiable, and if
d
dtw(~, tf)|t=0 = 0. The set of field-compatible quantization factors is denoted
by QFfc, and that of ~-locally bounded, field-compatible quantization factors
by QFb,fc.

Beside the family Π, let us choose a fixed field-compatible quantization
factor w ∈ QFfc. Then the Π-dependent quantization mappings Qw

Π,~ : P →
Π~(W(E, ~σ)) are defined for each ~ 6= 0 similarly to Eq. 4.2, namely by the
linear and possibly ‖.‖1-continuous extension of

(5.2) Qw
Π,~(W 0(f)) := w(~, f)Π~(W ~(f)) , ∀f ∈ E .

If w ∈ QFfc is not ~-locally bounded, then only P = ∆(E, 0) is possible, but for
w ∈ QFb,fc also P = P∞ς is allowed, in accordance with the cases (1) and (2)
from Section 4.

Being formulated in terms of the representation independent norm topol-
ogy the previous ~-asymptotic results on the Qw

~ take over to the Qw
Π,~. In a

completely analogous manner as before one may introduce a continuous family
({Π~(W(E, ~σ))}~∈I ,KΠ) of represented C*-Weyl algebras and a global quan-
tization map Qw

Π : P → KΠ.

Proposition 5.3. Let Π ≡ (Π~)~ be an arbitrary family of regular, non-
degenerate, and faithful representations Π~ of W(E, ~σ), 0 6= ~ ∈ R. Then the
following assertions are valid:
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(a) ({Π~(W(E, ~σ))}~∈I ,KΠ;Qw
Π) constitutes a continuous quantization of

(P, {., .}).

(b) (Π~(W(E, ~σ)), Qw
Π,~)~∈R constitutes a strict quantization of (P, {., .}).

For discussing field expressions let us employ in the classical case ~ = 0
the realization of W(E, 0) by almost periodic functions on some phase space
manifold E′

τ , known from Subsection 3.3. Here the field observable functions
Φ0(f) : E′

τ → R, F 7→ F (f) are obtained in a similar way as the quantum fields
in Eq. (5.1), namely by pointwise differentiation

Φ0(f)[F ] := −i
d

dt
W 0(tf)[F ]

∣∣∣∣
t=0

= F (f) , ∀F ∈ E′
τ ,

of the periodic phase space functions W 0(f) from (3.11).
As a guiding idea we approximate quantized higher field powers by bounded

elements of the represented Weyl algebra analogously as for the classical field
expressions, where for the latter one has

Φ0(f1) · · ·Φ0(fn) = (−i)n ∂n

∂t1 · · · ∂tn
W 0(

n∑
k=1

tkfk)
∣∣∣∣
t1=···=tn=0

.

This suggests for each value ~ 6= 0 the prolongation of the quantization map-
ping Qw

Π,~ from (5.2) to unbounded quantum field polynomials by the linear
extension of

Qw
Π,~(Φ0(f1) · · ·Φ0(fn)) := (−i)n ∂n

∂t1 · · · ∂tn
Qw

Π,~
(
W 0(

n∑
k=1

tkfk)
)∣∣∣∣

t1=···=tn=0

(5.3)

= (−i)n ∂n

∂t1 · · · ∂tn
w(~,

n∑
k=1

tkfk)Π~
(
W ~(

n∑
k=1

tkfk)
)∣∣∣∣

t1=···=tn=0

,

where n ∈ N resp. the fk ∈ E are arbitrary, and the tk are real differentiation
parameters. Since d

dtw(~, tf)|t=0 = 0 by Definition 5.2, one realizes for n = 1
that it holds

Qw
Π,~(Φ0(f)) = Φ~

Π(f) , ∀f ∈ E ,

the so-called ‘field compatibility’ of w.
Differentiating the Weyl relations one arrives at the ~-scaled commutators

(defined in Eq. (2.4)) for the quantum fields,

[Φ~
Π(f),Φ~

Π(g)]~ = −σ(f, g)1~
Π , ∀f, g ∈ E ,
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the original canonical commutation relations (CCR). With (3.12) it is imme-
diate to check that the classical field observables realize the Poisson bracket
relations

{Φ0(f),Φ0(g)} = −σ(f, g)10 , ∀f, g ∈ E ,

where 10[F ] ≡ 1 is the unit function on E′
τ . These two formulas are formally

in accordance with the Dirac condition in the stationary sense.
The higher derivatives in Eq. (5.3) lead to modified products of the quan-

tized fields, such as may arise by various kinds of normal ordering (e.g., [20]).
Observe that for each field polynomial only a finite set of test functions

is involved. It is known that for a finite dimensional subspace M of E there
always exists a common subspace of entire analytic vectors for the selfadjoint
field operators Φ~

Π(f) with f ∈ M , which is dense in the representation Hilbert
space of Π~.

Since the Weyl relations and the quantizations factors do not depend on the
representation family Π the preceding definitions of the quantized field mono-
mials lead — up to the domains of definition — to isomorphic commutators, for
all Π~, ~ 6= 0. In this sense there is inherent, also for field expressions, a com-
mon algebraic structure. Fields Φ~

Π(f), with f in the null space of σ, commute
with all other field expressions and thus constitute superselection observables.
They are affiliated with the center of each representation von Neumann alge-
bra, but in general, these centers contain also non-trivial limits of bounded
functions of the fields.

Acknowledgement

This work has been supported by the Deutsche Forschungsgemeinschaft.
The authors acknowledge discussions with M. Benner.

References

[1] Bayen, F., Flato, M., Fronsdal, C., Lichnerovicz, A. and Sternheimer, D., Deformation
theory and quantization, J. Operator Theory, 3 (1980), 237-269.

[2] DeWilde, M. and Lecompte, P. B. A., Existence of star-products and of formal defor-
mations of a Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys.,
7 (1983), 487-496.

[3] , Formal deformations of a Poisson Lie algebra of a symplectic manifold and
star products. existence, equivalence, derivations, In M. Hazewinkel and M. Gersten-
haber eds., Deformation Theory of Algebras and Structures and Applications, Kluwer,
Dordrecht, 1988.

[4] Omori, H., Maeda, Y. and Yoshioka, A., Existence of a closed star product, Lett. Math.
Phys., 26 (1992), 285-294.

[5] Weinstein, A., Deformation quantization, Séminaire Bourbaki 46ème annee, 789, (1994).
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