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Smoothness of Solutions for Schrodinger
Equations with Unbounded Potentials
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Abstract

We consider a Schrodinger equation with linearly bounded magnetic potentials
and a quadratically bounded electric potential when the coefficients of the principal
part do not necessarily converge to constants near infinity. Assuming that there exists
a suitable function f(z) near infinity which is convex with respect to the Hamilton
vector field generated by the (scalar) principal symbol, we show a microlocal smooth-
ing effect, which says that the regularity of the solution increases for all time ¢ € (0, T
at every point that is not trapped backward by the geodesic flow if the initial data
decays in an incoming region in the phase space. Here T" depends on the potentials;
we can choose T' = oo if the magnetic potentials are sublinear and the electric poten-
tial is subquadratic. Our method regards the growing potentials as perturbations; so
it is applicable to matrix potentials as well.

81. Introduction

Let H(t) be a time dependent Schrédinger operator acting on C™-valued

functions:

d
H(t)= > (D; - a;(t,2))g"* (x)(Di — ax(t, x)) + V(t,z), (t,z) € R x R%
j,k=1
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Here D; = —i0; = —i0/0z;; M,(C) is the space of all n x n complex ma-
trices; ¢’F = g € C°(R% R), and (¢%(z)) is positive definite for each z;
0%a;, 00V € C(Ry x R, M, (C)) for all a € N¢, and a,(t,z), V(t,z) are
Hermitian matrices for each (¢, z).
Under suitable conditions, the Cauchy problem for the Schrédinger equa-
tion
(O 4+ iH(-)u=01in D'(R x R4, C"),  u(ty) = uo,

is well-posed in the scale of spaces associated with the oscillator Hose = 1 —
A + |z]2. Let S(t,to) (t,to € R) denote the propagator, or the solution op-
erator. This paper is concerned with the smoothing effect of S(t,%9) and the
smoothness of its distribution kernel K (¢,tg,z,y) under general conditions on
the coefficients, when

(a) e11q < (¢7%(2)) < caly on R for some cp, ¢y > 0,

(b) (¢7%(z)) does not necessarily converge to a constant matrix, and

(c) laj(t,z)] = O(|z]) and |V (t,x)| = O(|z|?) as |z| — oo uniformly on
every compact time interval.

Remark.  If RY has a positive density v(x)dz, v € O (RY), it is natural
to consider the Schrédinger operator of the following form

d
H(t)=v(z)"" Y (D — a(t,x))o(@)g’ ()(Dy. — ax(t, ) + V (¢, ),

jk=1

where V is a Hermitian potential like V. Then v(x)"/2 H(t)v(z)~Y/? = H(t)
with V(t,z) = V(t,z) + (3040 logv(z) — Lg,(dlogv,dlogv))I,. Here for
J e CoRY) we set Agyuf(@) = v(@)t 54 85 (v(@)g (2)0kf (2)) and
9o (df, df) = 325 ey 9% (@)(9; £ (2)) (O f ().

What are our difficulties? When (g% ()) = (67%), the previous works have
regarded the potentials of the maximal order in (c¢) as part of the principal part
and used the Hamilton flow of this “principal symbol” to construct important
operators such as the fundamental solution, a parametrix, and a conjugate
operator; this construction has called for deriving detailed estimates of the
Hamilton flow, which has required stronger conditions on the derivatives of the
potentials. When (g7%(x)) does not converge to a constant matrix as |z| —
00, the nontrapped bicharacteristic curve of the principal symbol hg(x,&) =
Z;‘l,kzl ¢’%(2)€;&, has no asymptotic velocity in general, because the short-
range condition, |V,¢/*(z)| = O(|z|717¢) as |z| — oo for some & > 0, fails; so
it seems hopeless to derive detailed estimates, or precise asymptotic behavior,
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of the Hamilton flow of the “principal symbol” when the maximally growing
potentials are present. When n > 2, the “principal symbol” is no more scalar,
and hence the Hamilton flow cannot be defined. These are typical difficulties.

Our remedy is simple: we should regard the potentials of order (c) as
perturbations and use only qualitative properties of the Hamilton flow of the
principal symbol. To control the asymptotic behavior of the Hamilton flow,
we assume that there exists a suitable strictly convex function f., € C®(R%)

near infinity with respect to the Hamilton vector field Hp, :Z?zl (‘g—gf’% —
J J

gixi %). Then we can regard the potentials of order (c¢) as perturbations, not
for all ¢ € R in general, but for all ¢ € [0,T]. Here T' > 0 is the largest number
satisfying

d

T- lim sup Z |Veaj(t, o) +T% lim sup

V.V (¢t x)]| <
R—0c0tef0,1),|z|>R R—cotei0,1),|z|>R ||

j=1
for a constant ¢ = ¢(d, ho, fe,) > 0 independent of the potentials. On this inter-
val, we use a kind of positive commutator method by constructing a conjugate
operator as a time dependent scalar pseudodifferential operator whose symbol is
an explicit function of hg, r = \/fey, and their Poisson bracket {hg, r} := Hp, 7.
Thus we need no detailed estimates of the Hamilton flow of either the principal
symbol or the “principal symbol” (the latter should have been scalar, because
the Hamilton flow of a matrix-valued function makes no sense in general). As
a by-product, we can largely relax the conditions on the derivatives of the
coefficients and handle the matrix potentials as well.

Why can we regard the potentials as perturbations? We shall heuristically
explain this when n = 1 and (¢’*(z)) = I outside a compact set (then we can
choose r(x) = (z) := y/1+|z[?). Let h(t) be the Weyl symbol of H(t) and
D, the (2-parameter) Hamilton flow of h(¢). Let K (t) be an invertible, time
dependent pseudodifferential operator with Weyl symbol k(t,z,&) = e ®®:8)
for a nonnegative symbol A (0 < ¢ < T'). Under suitable conditions, we have

K(t)(0p +iH () K(t) ™" =0 +iH(t) + P(t) + Q(t),
where the Weyl symbol of P(t) is —(9;A(t) + HpyA(t)), and Q(t)* + Q(t) is
bounded. Setting u(t) = S(¢,0)ug, we can show the estimate

15 ()u(t)|® +/0 (P()K (T)u(r), K(r)u(r))dr < CK(0)uol*, ¢ € [0,T],

for a constant C' > 0 independent of uy and ¢ € [0,T]. If —(OA(t) + HrA(t))
is bounded from below, then we can obtain an effective microlocal estimate of
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u(+) in the set Ar = {(t,z,€) € [0,T] x T*R%\ {0}; A(t,z,€) > 0}. Therefore
we require Ap to be backward invariant under the (2-parameter) Hamilton flow
of h(t): Pis(x,&) € Ar if (s,2,€) € Ar and 0 < t < s < T. Sometimes we
can replace h(t) by another “principal symbol” in requiring the last condition.
This is the case where the potentials are bounded with additional conditions
on the derivatives. Then we can choose Ar = [0,T] x S, where

z&
(z)€]

is backward invariant under the Hamilton flow of |£|2. However, when the

S:{(az,g)eT*Rd\O;(x>>R’, <—5’} (RF>1,0<d<1)

potentials are unbounded as in (c), we cannot control the order of (z) on
[0,T] x S. So we require that (z) < CT|{] on Ap for a constant C > 0
independent of T'. In fact, we can choose

_ T *d . ! x ! )
AT_{(t, ) €10, T] x T*R®\ 0; R" < (x) < 5(2T — t)|¢], <>|£| 5}

Then this set is backward invariant under the (2-parameter) Hamilton flow of
h(t) if e(d, ho, fe) is sufficiently small. On this set, we can compare the order of
the potentials with that of the principal part, because (x) < 107|¢| holds there.
Therefore we can regard the potentials as perturbations when c¢(d, ho, fep) is
sufficiently small.

Let us write the operator H(t) in the following form:

d d
H(t) = Z ngjk(a:)D;C I, — Z(aj(t,x)Dj + Djaj(t,x)) + b(t, x);

Jk=1 J=1

d
Zgﬂk x)ag(t,z), bt,z) )+ Z a;(t x)ag(t, ).
Then the Weyl symbol h(t) of H(t) is
h(t,z,&) = ho(x,§)In + hi(t, 2, §) + ha(t, z,§);
d
ho(x,8) = > ¢*(@)&&,  M(t,z,8) = —2Za3 t, )65,
k=1

ho(t,x,&) = ha(t,z) = b(t, ) Z 0;0kg’* (2)

Jkl

We recall related results when the operator is scalar (n = 1).
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(i) Assume ¢g7%(z) = 67* and that with some £ > 0

05 a;(t, x)| + |0 (Da;(t,z) + 0;V (t,2))| < Co, t € R,z €RY,
102 (Oa;(t, ) — djar(t,x))| < ChL(1+ |z[)™' ¢, te R,z €RY,

for all & € N¢ with || > 1. Then K (¢, s,z,y) is C*® in z,y when 0 < [t—s| < T
for some T' > 0 (see [6] when a; = 0 and [24, 25] in the general case). Remark
that V' can be eliminated by the change of the unknown function: u(t,z) —
v(t,z) = u(t,z) exp(i fg V(r,z)dr).

(ii) Assume ¢’*(z) = 6% a; = 0, and

lim sup |09V (t,z)|=0 if|al=2;
R—00 teR,|z|<R

02V (t,z)| < C,, te€R,zeRY if o > 3.

Then K(t,s,2,y) is C* in x,y when t # s ([26]). See also [13].

(iii) Assume d = 1, g''(z) = 1, a; = 0, and V(t,2) = V(2) > C(1 +
|z])?*¢ near infinity for some £ > 0 as well as other technical conditions. Then
K(t,s,z,y) is nowhere C' ([26]).

(iv) Assume ¢’k (z) = 7% a; = 0, V(t,z) = |z|* + W (t,z) with W (¢,z) =
o(|z]?) as |z| — oo. Then K(t,0,z,y) is C* in z for every y € RY and
nonresonant t ¢ (mw/2)Z under general conditions on W, and shows various
phenomena such as recurrence and dispersion of singularities for resonant ¢ €
(7/2)Z depending on the growth order of W(z) ([14, 17, 21, 27, 28]).

(v) Assume for some € > 0 and 6 >0

0%(g7F (z) — 67F)| < Co(1 4 |z)) 157 lel 2z e RY,

and @’ (t, ) = a’ (x) = O(|z|*~?), b(t,z) = b(x) = O(Jz|*~°%) as |z| — oo as well
as similar conditions on the derivatives. Then the H® microlocal regularity of a
solution for the Cauchy problem increases for all ¢t > 0 at a point in T*R<\ 0 if
the point is not trapped backward by the Hamilton flow of hy and if the initial
data decays along the backward bicharacteristics through that point ([1]).

See [3, 5] for the absence of smoothing effects due to the trapping of the
Hamilton flow of the principal symbol. See also [3, 4, 5, 9, 10, 11, 12, 15, 16,
18, 19, 20, 22, 23] for related results in other frameworks.

Our goal is to handle the mixed case of (i) ,(ii), and (v) under relaxed con-
ditions, which allow (a), (b), and (c¢). The case (iv) will be discussed elsewhere.

We explain the plan of this paper. Section 2 states the main results: the
well-posedness of the Cauchy problem for the Schrédinger equation (Subsec-
tion 2.1) and the smoothing effect of the associated propagator (Subsection
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2.2). Section 3 recalls the Weyl calculus of pseudodifferential operators and
proves related lemmas. Section 4 proves two well-posedness theorems of the
Cauchy problem: one for the Schrodinger equation in Section 1 and the other
for a more general Schrodinger equation appearing in Section 7. Section 5
shows how the Schrodinger operator is transformed when conjugated by an in-
vertible pseudodifferential operator. Section 6 proves first, a smoothing effect
of the Schrodinger propagator, local in time and global in an incoming region
in T*R?\ 0, by using Section 5; second, a smoothing effect at every point of
T*R?\ 0 that is not trapped backward by the Hamilton flow of the principal
symbol by using the result from Appendix A. Section 7 proves all assertions
in Section 2 except for Theorem 2.8. Section 8 discusses the smoothing effect
of order half, or the so-called local smoothing effect, from which Theorem 2.8
follows. Appendix A shows an energy estimate along the Hamilton flow of the
principal symbol for a general dispersive equation.

Finally I would like to thank the referee for many useful comments.

Notation. Ng = NU{0}. C¥(U,V) is the set of all C* maps from U to V
(k € Nog U {o0}), and C(U,V) = C°(U,V); V is omitted if V = C. For locally
convex spaces E and F, L(E, F) is the set of all continuous linear operators
from E to F, and L(E) = L(E,E); L(C") is identified with M, (C). The
symbol (-,-) denotes the inner product of L?(R%) or L?(R%,C") by abuse of
notation, and || - || the norm. For v € R", (v) = (1 4+ |v|?)'/2. For a subset A
of T*RY, set cone(A) = {(x,t&); (z,£) € A, t > 0}.

82. Main Results

82.1. Well-posedness of the Cauchy problem

Throughout Section 2, we assume that the following conditions (H1)—(H4)
hold for some 0 < ¢ < 1.

(H1) e114 < (¢%(2)) < caly on R for some ¢q,ca > 0.
(H2) For every a € N& with |a| > 1, there is C,(g) > 0 such that

102 g7F(2)| < Culg)(x) U peRE jk=1,...,d

(H3) For every compact set I C R and a € Ng, there is Cy(a, I) > 0 such
that

@ (t,)] < Cola, ) (), teLzeRY, j=1,..,d

0907 (t,2)| < Cola, (@)1 el zeRY, j=1,....d, if|a]>1.
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(H4) For every compact set I C R and o € N¢, there is C, (b, I) > 0 such
that

b(t, )| < Co(b, I){z)?, tel,zeRY
09b(t, )| < Co(b, () 0D p e[ 2 e R, if ol > 1.
The condition (H1) implies that the Hamilton vector field Hy, is com-
plete on T*R?, because ho is constant on each integral curve. Let ®;, =
exp(tHp,) (t € R) be the Hamilton flow of Hp,; in other words, ®;(y,n) =

(z(t,y,m),&(t,y,n)) is the solution of the system of ordinary differential equa-
tions

j(t) = Og; ho(x(t),£(1)),  2;(0)
&) = =0u;ho(z(1),€(t)),  &(0) =
Next we define Sobolev spaces B¥(RY) (s € R) (cf. [7]). Let Hys. be the

self-adjoint extension of the operator 1 — A + |z|? with domain C§°(R?). Then
for every s € R, HSS/E is continuous on S(RY) and extends to a continuous

Y
;i (1<j<d).

linear operator on S'(R?) (with the weak* topology), denoted also by HiZ.
We set
B*(RY) = {u e &'(RY); H:/2u € L>(RY)}.

osc

These spaces are characterized as follows:

B*(RY) = {u € L*(RY); (z)°u € L*(RY), (D)’u € L* (R} (5> 0);
B*(RY) =B *(RY) (s<0).

The vector-valued Sobolev spaces B*(R?, C") are similarly defined.

After preparing the Weyl calculus in Section 3, we shall prove in Lemma
4.1 that for every s € R there is L(s) > 1 such that the operator E, with Weyl
symbol

es(2,€) = (ho(x,€) + |z[* + L(s)*)*/?

is a homeomorphism from B"**(R9) to B"(R?) for all 7 € R. We use | E; - || as
a norm of B*(RY) (or BY(RY, C"), where ||| = || - | s2qre) (01 || | p2cs o)

Now we state our two theorems on the well-posedness of the Cauchy prob-
lem.

Theorem 2.1. Let s € R, I = [t1,t2] (t1 < t2), and to € I. For every
ug € B*(RY,C") and f € L*(I,B*(RY,C")), there exists u € C(I,B*(R%, C"))
satisfying

(21) (3,5 + ZH())U = f m D/((tl,tg) X Rd, C:n)7 u(to) = Ug,
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which is unique in C(I,S'(R% C™)). Moreover, the solution u satisfies the
following estimate

t
/e‘”’lT—tolHEsf(T) ldr|, tel.

to

(22) el Bou(t) || < || Bou(to) || +

Here v > 0 depends on s € R and on the constants c1, ca, Co(g), Cala,I), and
Cyo(b,I) in (H1)—(H4), but not on f, ug, or u. In particular, v =0 if s = 0.

Theorem 2.2.  Let S(t,to) € L(S' (R4, C™)) (t,t0 € R) be the operator
mapping vy € S'(R?, C") to u(t) € S'(R?, C"), where u € C(R,S' (R4, C"))
is the solution of the Cauchy problem

(2.3) (O +iH(-))u=0in D'(R x R C"), u(ty) = uo.

S(t,t) =1 and S(t,5)S(s,r) = S(t,r) on S’ (R4, C") (t,s,7 €R).
Bs(Rd,cn); tyto € I} is bounded

(1)
(2) For every compact interval I, { S(t,to)
in L(B*(R%, C)).

(4) S(t,to)|2(ra,cny € L(L* (R, C™)) is unitary.

(5) If H = H(t) is time independent, then H|geo(ra cny is essentially
self-adjoint. If H denotes also its self-adjoint extension, then e *(t—to)Hy —
S(t,to)ug for every t,tg € R and ug € L*(R%, C").

§2.2. Smoothing effects

The asymptotic behavior of ®; plays an important role in the smoothing
effect of the propagator S(t,s). We introduce several subsets of T*R? \ 0
consisting of the points which are trapped forward or backward by ®;:

Ty = {X e TR\ 0; lim |@,(X)| # oo},
T ={X e T'R%\ 0; lim [@4(X)] # oo}
Teprr ={X € T*R*\ 0; {®4(X);t > 0} is relatively compact},
Topt,— = {X € T*R%\ 0; {®;(X);t < 0} is relatively compact}.
Put Tept = Tept,+N Tepe,—. To control the asymptotic behavior of ®;, we assume

the following condition (H5) in addition to (H1)—(H4) stated at the beginning
of this section.
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(H5) (convexity near infinity). There exists fo, € C*(R%), lim|z| o0 fou
() = 00, fey > 1, such that for every a € N¢ with |a| > 2, 9% f., € L>®(RY)

and that for some 0 >0, R > 0
Hiy feo > 20%ho  on {(2,€) € T*RYr(x) := \/ feu(z) > R}.

Remark.  The function f,, in (H5) satisfies f.,(z)~! = O(|z|72) as |z| —
oo. In fact, take M > 0 such that {z € R%;|z| > M} C {z € RY; f.,(x) > R?}.
For z € RY, |z| > M, take T > 0 and (y,n) € T*R? such that |y| = M
ho(y,m) =1, |x(t,y,n)| > M (0 <t <T), and (T, y,n) = x, where ®,(y,n) =
(z(t,y,7m),&(t,y,m)). This is possible because P, is a complete geodesic flow.
Then T > ¢|z — y| for some ¢ > 0 independent of T, z, y by (H1), and

1
feo(@) = feuo(y) + (Hpg feu) (Y, m)T Jr/O (1- 9)(H20fcv)(fl)9T(y, n))do T?
2 feo(y) + (Hpo feo)(y,m)T + o?T?
by (H5). Therefore iminf ;o0 feo(2)/]2]? > c?0?. O

Remark.  If |V,¢°%(z)| = o(|z|71) as |z| — oo, then (H5) holds with
Jeo(z) =1+ |z|% O

Remark. Let a € C*([1,00)) such that C~! < a < C with C > 0
and d%a(r) = O(r~1) for all k € N. Assume limsup,_ . a'(r)r/a(r) <
1. If (gjk( )) = a(|z|)?I near infinity, then (H5) is satisfied with fw( ) =
flz )~1dr)? near infinity. In fact, using the coordinates t = [ a(s)™'ds
(r = |x|) and w = x/|z| € S, we have f., =t and hg = 72 + a(t)?p, where
7 is the dual variable of ¢, —p is the principal symbol of the Laplacian on %1,
and a(t) = a(r)/r. Hence Hj t* = 87% 4 8a(t)?pt/r- (a(r) —ra'(r)) > cho near
infinity for some ¢ > 0.

For example, when a(r) = 1+ c¢sin(elogr) with ¢ € R and ¢ > 0 satisfying
c?(1+¢€?) < 1, then (H5) holds. a

The requirement that 9%f., € L>(R?) for all |a| > 3 is not essential in
(H5), as the following lemma shows.

Lemma 2.3. Let f € C?*(RY), f > 1, lim|y| oo f(x) = 00, such that
for every a € N& with |a| = 2,

sup |0%f(z)| < oo, lim sup |0%f(z+h) —0%f(z)] =0,
reR2 || =>+0 pcra
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and that for some ¢ > 0, R>0,
Hji f >25%ho  on {(z,€) € T"RY; f(x) > R?}.

Then for every 0 < o < & and R > R, there exists f., € C°(R%) such that
(H5) holds with these o, R, and fe.

The condition (H5) ensures the existence of a positively (or negatively)
invariant set S;(R’,0’) (or S_(R’,0’)) defined below, which asymptotically
includes every positive (or negative) orbit that is not relatively compact. The
role of this set becomes clearer in Section 6. Let S*R% = {X € T*R%; ho(X) =
1}. Remark that hg o ®; = hy.

Proposition 2.4 [5, Theorem 3.2]. For R' > R,0< ¢’ <o, set

S (R,o)={X = (2,8) € S*R%r(x) > R/, Hp,r(X) > '},
S_(R',0') = {X = (,€) € S*R%r(2) > R/, —Hp,r(X) > o'},

where R and o are the constants in (H5).

(1)+ ®.5+(R',0") C S¢(R',0') if t > 0.

(1)~ ®,S_(R',0’) Cc S_(R,0’) ift <0.

(2)1 For every Xo € S*RI\ Tppt 4, there exists T > 0 such that ®,(X,) €
S{(R,o") ift >T. In particular, T4 = Tep +-

(2)_ For every Xo € S*RI\ Tppr,—, there exists T > 0 such that ®,(X,) €
S_(R',o") ift < —=T. In particular, T_ = Typ _.

(3) Tept N S*RY ds a compact subset of {(x,€) € T*RI\ 0;7r(x) < R}.

To state our main results, we need some notation. For a bounded interval
I CR, set

d
:ul(IvL) :Z sup |vmaj(tax)|a ,Ufl(I) = lim Nll(IvL);
=1 telle|>L L—oo
+0(t, .
pe(I,L) = sup M, pe(l) = lim po(1, L).
tel,|z|>L | L—oo

Remark.  Set ps(I, L) = supse 4>1 W Then limy,_, o p5(1, L)
= pa(I).

le? o) yng ph(I) =limyp 00

Remark.  Set p)(I,L) = Z?:l SUDse |2|>L 7] ‘ ‘
pi(I,L). Then pj(I) < pi1(I), because the equation a’(t,z) = a’(t,ex) +
f; V. (t,0z) - xdf gives that pi(I,L) < epi(I,eL) + (1 — e)ui(I,eL) for

every 0 <e<land L > 1.
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Theorem 2.5.  There exists c¢(d, ho,r) > 0 such that for every bounded
interval I = [t1,ts] (t1 < ta) satisfying pa(D|I| + p2(DI|? < e(d, ho,r), the
assertion below holds: If a € S = S(1, |dx|* + (€)72|de?) satisfies that

suppaNT_ =0 (resp. suppaNTL = 0)
and that w(supp a) is relatively compact, then the mappings
() PB* (R, C™) 3 ugp — |t — t1|Pa™ S(t,t1)up € C(I;, B5TP(R?, C™)),
(x)7"B*(R%, C™) 3 g
[t —t1PaS(t, 1 )ug € L2(I;, BSHPHY/2(RE, C™))
(resp. (a) "B (RY.C") 3 g - [t — ol a” S(t ta)ug € C(L, B (R, C™)),
(2) "B (R%, C") 5 ug
s |t — to]Pa®S(t, ta)ug € LA(I,, BSHPH1/2(RY, c”)))

are continuous for all s € R and p € [0,00). Herew : T*R? > (x,¢) — x € R4,

Remark.  Theorem 2.5 is a corollary of more general theorems (see
Theorems 6.2 and 6.5). It suffices to assume that the initial data decays in an
incoming region S_(R’,0’) (resp. in an outgoing region Sy (R’,0’)) in a sense.

Corollary 2.6.  Let c¢(d,ho,r) > 0 be the constant in Theorem 2.5.
Then for every bounded interval I = [t1,ts] (t1 < t2) satisfying pi(I)|I| +
w2(D|I1? < e(d, ho,r), the assertion below holds: For every ug € &' (R?, C")

WF(S(t, to)Uo) CT_, t1<tyg<t<lty;

WF(S(t, to)Uo) C T+, t1 <t <tyg < ta.

Corollary 2.7.  Let ¢(d,hg,r) > 0 be the constant in Theorem 2.5.
Then for every bounded interval I = [t1,t2] (t1 < t2) satisfying pi(I)|I] +
p2(I)|I1? < e(d, ho, 1),

WF(K(tﬂf())) C (T, X T,) U (O X T,) U (T, X 0), t1 <tg <t <ta;
WF(K(t,to)) C (T+ X T+) U (O X T+) U (T+ X O), t1 <t <ty < ta.

Here 0 is the zero section of T*R?.

Theorem 2.8 (smoothing effect of order half). Let s € R and0 <v <
1. Let I = [tl,tQ] (tl < t2) and tg € I.
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(1) If Topr = 0, then there exists C > 0 such that the following estimates
hold:

/n YR ()2

/W| yTAI2E ()| 2dr

<QWU%W“%%/HEf)dﬁi

1Eu(®)]® +

t
<c7Ew@@W+Cﬂ/nuMH”@&qﬁfvm%T
to

for allt € T and u € CH(I,S(R?, C")) with f(t) = (0; + iH(t))u(t).
(2) For every a € S(1, |dz|?+|d€|? /(X)?) satisfying cone(supp a)Tpp =0,
there exists C > 0 such that the following estimate holds:

n<>“ﬂ”sﬂpaw>nw
to

for allt € I and u € C*(I,S(R4, C™)) with f(t) = (0p +iH(t))u(t).

<0Eumm%w(/nEf>wQQ

Remark.  In contrast to Theorem 2.5, Theorem 2.8 holds for every com-
pact interval I with no distinction between the forward, and backward, prop-
agators (especially, observe the condition cone(suppa) N T, = 0 in (2)). See
Section 8 for the comparison among various nontrapping conditions.

Remark.  The smoothing effect of order half fails at almost every point
in Type. See [3, 5] for details in a little different framework.

83. Weyl Calculus

In this section, we recall the Weyl calculus due to Hormander (see [8,
Chapters 18.4-6] for details) and prove related lemmas.

For a Riemannian metric ¢ on V = R and a positive function m €
C(RY), the symbol space S(m,g) is the set of all a € C>°(R") such that for
every k € Ny

Oy, -+ Oy, a(x

9) Zsup{ | - ,a@)| ;xERN,O;«éviERN}<oo,
(r) 1:191(%‘)1/2

where 9, f(z) = (d/dt)|i=0f(x + tv) and g.(v) = g(v,v). It is a Fréchet

space with seminorms ( ||-||x,s(m.g) Jk=o0,1,.... A sequence (ayn)p=1,2,... in S(m, g)

is said to converge to a weakly in S(m,g), or simply a, — a weakly in
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S(m,g), if (a,) is bounded in S(m,g) and converges to a in C=(RY) (or
equivalently, in D'(RY)). Let S(m, g; M,,(C)) denote the M, (C)-valued sym-
bol space S(m,g) ® M,(C) = {(ajr)i1<jk<n;ajr € S(m,g)}; the seminorms
llallk,s(m,g:0,,(c)) are defined similarly to |lallx,s(m,q) except that |a(x)] =
lla(x)| L(cny in the former definition.

From now on, we consider the case where V = R?? = R x (R?)'. Let o

be the canonical 2-form on R2¢
o(X,)Y)=¢ - y—n-ux,

where X = (z,€), Y = (y,n) € R?*?. Let g be a Riemannian metric on R24.
The Riemannian metric g° on R?? is defined by

o

a(Y,Y")?
Y)=sup ————.
gX( ) Y’;EO QX(Y/)

We consider three conditions on g.

(G1) (slow variation). There are ¢, C' > 0 such that for every X,Y, Z € R??

9x(Y) S e = C7gx(2) < gx4v(Z) < Cyx(2).

(G2) (o temperance). There are C, N > 0 such that for every XY, 7 €
R2d
9v(Z) < Cgx(Z)(1+ g7 (X = Y)V.

(G3) (uncertainty principle). For every X € R24

YX)=  sup (gx(Y)/g%(Y)/? <L
YER24 Y #£0

In the rest of this section, we fix a Riemannian metric g satisfying (G1)—(G3).
A positive function m : R2¢ — (0, 00) is said to be a g weight if it satisfies the
following conditions.

(M1) (g continuity). There are ¢, C' > 0 such that for every X,Y € R??

gx(Y)<c= 0 <m(X +Y)/m(X) < C.

(M2) (o, g temperance). There are C, N > 0 such that for every X,Y €
R2d
m(Y) < Cm(X)(1+ g7 (X = Y))V.
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Remark.  For every nonzero Y € R%4, gx(Y) is a g weight as a function
of X. In particular, if g = ¢?|dz|* + ®?|d¢|? for positive functions ¢ and ®,
then ¢ and ® are g weights. For a g weight m, m?® is a g weight for every s € R,
and so is logm if inf m > 1.

As a symbol-to-operator correspondence, we adopt the Weyl quantization.
For a € §'(R?%), the operator a¥ = a¥(x, D) € L(S(R%),S'(R?)) is defined by

(“%) (e ) €y () dyde,

a”u(z) = a"(z,D)u(

u € S(RY),

where the integral is in the sense of temperate distribution. Then the correspon-
dence Op : §’'(R??) 3 a — Op(a) = a® € L(S(RY),S’(R?)) is an isomorphism.
For A € L(S(RY),S'(R%)), set o(A) = (Op)~1(A), called the Weyl symbol
of A.

If a1,a; € S(R??), then a¥ay¥ = (a1#taz)™ with

(arttan) (00) =exp (7232 ) an(0)aa( -
N—-1 1
il

<0DxDY>> a1(X)a(Y)ly=x +ra(ar, az)(X);
7=0

rn (a1, az2)(X)

_ /01 (1(]; 9_)1;)!1 o (ié)a(D;,Dy)) (ia(D);,Dy))Nal(X)az(Y”Y:Xdo_

Here N € N. Set r9(a1,az2) = a1#as.
Now we recall fundamental theorems due to Héormander.

Theorem 3.1 [8, Theorem 18.5.4].  Let mq, ma be g weights and N €
Ny. Then the map S(R?*) x S(R??) > (ay,as) — rn(ai,az) € S(R*?) can
be extended to a weakly continuous bilinear map from S(mq,g) x S(ma,g) to
S(yNmyima, g), denoted by the same symbol. Moreover, the extended bilinear
map is bounded from S(my,g) x S(ma,g) to S(yNmima, g).

Theorem 3.2 [8, Theorems 18.6.2, 18.6.3, and 18.6.14]. (1) Let m
be a g weight. Then S(m,g) > a — a*¥ € L(S(RY) (resp.
L(S'(RY))) is continuous. Moreover, if a, — a weakly in S(m,g), then
a¥u — a®u in S(RY) (resp. S'(RY)) for all u € S(R?) (resp. S'(R%)). Here
S'(RY) is endowed with the weak* topology.
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(2) The map S(1,9) > a — a® € L(L*(R%)) is continuous. Moreover, if
an, — a weakly in S(1,g), then a®u — a®u in L*(R?) for all u € L*(RY).

(3) (The sharp Garding inequality). Ifa € S(yv~1, g; M,,(C)) satisfies Ra =
(a+a*)/2 >0, then there exists a continuous seminorm C(-) on S(y~1, g; M,
(C)) such that

R(a“u,u) > —C(a)|ul®, ue SR, C™).
Here (u,v) = (u,v)2ma,cn), |lull = v/ (u,u).

(4) Let m; be a g weight, and a; € S(m;,9) (j = 1,2). Then af’ay =
(al#ag)w.

Example. Let us reconsider B*(R?). Since HZ e SUX)®,(X)?dX|?)
with o(HaZ) — (X)* € S((X)*2 (X)) 2[dX|?) (see [7]), it follows

B*(RY) = {u € §'(RY); Pu e L*(RY) for all P € Op S((X)*,(X)?|dX|*)}. U

The following lemma is useful for obtaining better estimates of the remain-
der term of a symbol product.

Lemma 3.3.  For g weights my and mso, the maps

Qo : S(R*) x S(R*)
iGU(Dx, Dy)

> 20 a()aa(Yly-x € SRH)

3 (a1, az) — exp (

extend to weakly continuous bilinear maps from S(mq,g) x S(me,g) to
S(mima,g) for all 8 € [0,1], denoted by the same symbol. Moreover, for
every j € Ng there are C > 0 and k € Ng such that for all (0,a1,a2) €
[0,1] x S(m1,g) x S(ma,g)

Qo (a1, a2)ll;,5(mima.g) < Cllatllk,smy,g)lla2llk,s(ms.q)-

In particular, if (a1,a2) € S(mq,g) x S(ma,g) satisfies that
n
o(Dx, Dy)Na1(X)as(Y) = a1 5(X)ag x(Y)
k=1

with some N € Ny, g weights m;j, and symbols a;, € S(mjk,9), j = 1,2,
k=1,...,n, then rn(a1,a2) € SO h_; m1xmak, g).

Proof. The first part follows from the chapters 18.4-5 of [8] if uniformity
in 0 is considered. The second part is valid because

. n
ZN

TN _ 1\19N 1 — N1 al g, a .
1)12¥ kz_l/o (1-=0)"""Qo(a1,k,a2)(X)do. [

rn (a1, a2)(X) = o
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Next we prepare a series of lemmas.
Lemma 3.4.  Assume that g is of the form
9x = p(X)*|de]? + @(X)*|d¢[*, X € R*,

where ¢ and ® are positive functions. Let pg be a g weight such that g < ¢
on R%4, and set yg = po® (recall that v = @® in this case). For N € Ny
and a g weight m, denote by Sy(m, o, g) the set of all a € S(m, g) satisfying
0%a € S((p‘oa‘m, g) for all « € N¢ with |a| < N, which has a natural Fréchet
space structure.

(1) SN(m7SDO7g) C SN+1(m/’7078007g)'
(2) If (a17a2) S SN(thOOmg) X SN(m278007g)7 then

(a1, a2) € Sy_k(Yemima, o, 9), k < N;

Tk(alaU’?) S S(’YkiN’-Y(J)lem%g% k 2 N.

(3) If (a1’a2) € Sl(mlaw()ag) X Sl(m2’§00,g), then

araz € S1(mima, o, 9); {a1, a2} € S(yomimaz, g);

ar#as € S1(mima, 0o, 9);  Tr(ar,az) € S(Y Yyomima, g), k> 1;
a1#as — aras —{ay,as}/(21) = ro(ay, as) € S(yyomims, g);

ar#az + ag#ta; — 2a1az = r2(a1, az) + r2(az, a1) € S(yyomima, g);

a1#az — as#ar — {a1,az}/i = r3(ar, az) — r3(az, a1) € S(v*yomima, g).

Proof. (1) If a € Sy(m, o, g), then

%a € S(pim, g) C S(etm/v0,9) (laf =k < N),
0%a € S(pd om, g) = S(eh T'my/v0,9) € S(0d Trm/v0,9) (la| = N +1).

This implies a € Sy11(m/vo0, ©0,9)-
(2) By assumption,

k(1)
%(ia(DX,Dy)/2)ka1(X)a2(Y): > %8?85@1()()3583@(}/);
la|+|8]=Fk

9¢0la; € SNf\ﬁ\(wl)Bl‘I)lalmja@ng)v B <N (j=1,2);
0800a; € S(ph PN ollm; g), B> N (j=1,2).
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If k > N, we have ri(a1,a2) € S(Y* "Ny myma,g) by Lemma 3.3. If k < N,
we have

N—-1
1
ri(a1, az) = F(W(nyDY)ﬂ) a1 (X)as(Y)|y=x + (a1, a2)
j=k
N .
€ ZSij(’Y(J)mlm% 0,9) C Sn—k(Y6mama, @0, 9)
=k
by virtue of (1). O

Lemma 3.5. Let m be a g weight such that
m(X) < (X)7°, X € R,

with some ¢ > 0. Ifr € S(m, g) satisfies |[r™|| < 1, then (1—r¥)~1 € L(L*(RY))
belongs to Op S(1,g) with (1 —r*)~t — Z;V:—Ol (rv) € OpS(m¥,g) for every
N eN.

Proof. Let N € N. For every k € Ny, there are s > 0 and C > 0 such
that

lo(A)llk,s(mm,g) < Cl AL+ (R?),B:(RAY)

for all A € L(B~%(RY), B5(R%)). Take M € N such that 2M > N and cM > s.
Since

N-1
(1= S M) )
j=0 N<j<2M—1
€ OpS(m™, g) + L(B*(RY), B*(R)),
we have
N-1
o((1—r" < 00,
j= k,S(mN,g)
which completes the proof. O

Lemma 3.6. Let a € S(y~t,g) be real scalar, and let b € S(1,g;
M, (C)) such that b = b* > cI,, for a constant ¢ > 0. Then for every 0 < ¢y < ¢
there is C > 0 such that

(a®b)" > co(a™)?I, — C1I,

as a form on S(R?, C").
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Proof. Set by = b — col,, po = b(l)/2 € S(1,9; M,(C)) and by = o(by —
(p¥)?) € S(v,9; M,,(C)). If an Hermitian matrix h € M, (C) has the eigen-
values A1,...,A\,, then the real linear map u +— hu + uh on the real vec-
tor space of Hermitian matrices has the eigenvalues \; + i (1 < 4,k < n).
So pop1 + p1po = by has a unique solution p; = pi € S(v,9; M,,(C)). Put
p=po +p1. Then

by = by — (p")* = b — (pyp¥ +pi'py + (p)%) € Op S(v2, g; M, (C)).
On the other hand, since a is scalar,

a”b’a"” = ((ab)” +{a,b}"/(24) )a* + r{’
= (@2b)" + {ab,a}"/(20) + ({a, b}a)"/(20) + ¥ = (a%B)" + 1%,

where r; € S(1, g; M,,(C)). Therefore

(a®b)¥ = a"b%a® — 1y

=co(a®)?I, +a®(p”)*a"™ + a“b¥a" —ry¥ > co(a™)?I, — CI,.
Here C' > 0. O

Lemma 3.7.  Let my, ma, and ms be g weights. If (a1,a2,as) varies in
a bounded subset of S(mq,g) x S(ma, g) x S(ms, g) in such a way that a;az =0,
then ai#as#az remains bounded in S(yNmimams, g) for every N € No. Here
v is defined in (G3).

Proof.  Since ay#as#az = ry(a1#as—rn(ay,a2),a3)+rn(a1, az)#ag for
every N € Ny, the proof is complete. O

In application, we shall use a parameter-dependent version of the calculus
above. Let A be an index set, and let m) be a g weight with the constants in
(M1) and (M2) independent of A € A. We say that ay € S(my, ¢) uniformly
in A € Aif supyep [[axllk,s(my,q) < 00 for every k € No. Similarly, we say
that ax € Sn(ma,qo,g) uniformly in A € A if supycp [[axlk, 55 (mr,q0.9) < O©
for every k € Ny. Then all the statements in this section have the natural
parameter dependent version, which will be used later.

Finally, we define time dependent symbol classes.

Definition 3.8.  For an interval I C R and a symbol space S the space
B(I,S) consists of all p : I — S such that p(K) is bounded in S for every
compact subset K of I and that I 3 ¢ — p(t) € C*°(R??, M,,(C)) is continuous.
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84. Well-posedness of the Cauchy Problem

In this section, we assume (H1)-(H4). Define the Riemannian metric gs
on R?¢ by

(95)x = (2)*|dz> + (X) 2|d¢?, X = (x,€) € R*,

which satisfies (G1)—(G3). We shall use (the time dependent version of) Lemma
3.4 with

9=9s, p0= (@) ", 7= (@) /(X), 70 = 1/((2)(X)).

By the definitions,

ho € Sl(<X>27 <:L’>71,g(;),
hJ() S B(:R,7 Sl(<X>2_j<$>j7 <$>_17g5;Mn(C)))’ J=12

Fix a compact interval T = [t1, 2] (t1 < t2).
After preparing Lemmas 4.1-4.4, we shall prove two well-posedness theo-
rems of the Cauchy problem for Schrodinger equations.

Lemma 4.1. Let s€ R. For L > 1, set
es.p = (ho(w, &) + |2 + L) € S1({X)", (z) ", 95).
Then there exists L(s) > 1 such that for every L > L(s)

(evp) ™t =e?, L(L—rsr®) "' € OpS((X) ™", gs)

with re 1, € S(<x>671<X>72,g(5) satisfying |[ry | < 1/2.

Remark.  Setting e; = e, 1,(5) and E; = e, we can use || E - || as a norm
of B5(RY) or B¥(R%, C") (see the example after Theorem 3.2).

Proof. Set (X), = (L? +|X|?)*/2. Since
dg,es.L € SLX)N(X)L % (@) g5), Oayes € S((2)HX)(X)T %, g8),

all uniformly in L > 1, it follows that

o(Dx, Dy)?es (X)e s (Y ZakL )br, L (Y);

arz € S({z)’ (X ><>z%%» mles«XLS%%>
azz € S((z) HXNX)5 2 05), bar € S((a) HXNX) 2, g5),
az € SU(X)5 2 05), bar € S(()’ (X)X 98),
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all uniformly in L > 1. This implies, by Lemma 3.3, that
5—1 2 —4
rer = —Ta(es,e—s1) =1 —egpH#e_gp € S((x)" (X) <X>L . 95)

uniformly in L > 1. Take L(s) > 1 so that [|ry,| < 1/2 for every L > L(s).
Fix L > L(s). By Lemma 3.5, we have (1 —7;)~! € Op S(1, gs). Therefore,
(ewp)t=et [(1-re) =1 -752") e, L €OpS(X) ", gs). O

Lemma 4.2. E H(t)E;' = H(t) + Bs(t) with Bs(-) € Op B(I, S(1, gs;
M (C))).

Proof. Since hy 4 hy € B(I,S1((X){(z), (x) ", g5; M,,(C))) and e, € S
(X)®%, (z)™", g5), Lemma 3.4 (3) gives

o([Bs BY () + B O)) € BU,S(X)", 955 Ma(C)).
Since hg € S1((X)*, (z) ", g5), Lemma 3.4 (3) implies
o([Es hY) = {es, ho}/i € S((@) 71X g5) € S((X)", 95).
Thanks to the special form of e, we have
{esho} = Seaa{lal? ho} € S((X)". g5).

Therefore, [Es, h¥] € Op S((X)*, g5). In conclusion, EsH (t)E; 1 = H(t)+Bs(t)
with Bs() = [EsaH()]Es_l € OpB(I,S(l,gJ,Mn(C))) u

Lemma 4.3. Let j € C§°(R) such that j(0) = 1 and j > 0. Set
Je(X) = j(eer(X)) and J. = j¥ for 0 < e < 1. Then (je)o<e<1 S bounded in
S1(1,(x) ", gs), and so is (o([H(t), J.)))ieroce<1 in S(1,gs; Mn(C)). More-
over, o([H(t), J:]) — 0 weakly in S(1,g5; Mn(C)) as € — +0 for each t € I.

Proof. By direct calculation, (je)o<e<1 is bounded in Sy (1, (z)7", gs). By
Lemma 3.4 (3),

o ([P (8) + hy (1), J.]) € S(1, gs; M, (C)),
o([hy, J.]) — {ho, je} /i € S(()* (X)), g5) € S(1,95),
{ho,je} = €j'(ce1) {ho,e1} = ce1j’(eer) {ho, e1}/e1 € S(1, gs).

all uniformly in 0 < e < 1 and t € I. Since [H(t),J.Ju — 0 in &'(R?, C") as
e — +0 for all u € S(R?, C"), the proof is complete. O
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Lemma 4.4. Let s € R and tg € I. Set v = sup,c; || Bs(t)||, where
EsH(t)E;Y = H(t) + By(t). Then

t
(4.1) el Bgu(t) || < || Esulto) || + ‘/ e 1Tl By f(r) |l dr|, tel,
to

for allu € C(I,B5+2(R4,C™)) N CHI,B5(R4, C")). Here f(t) = (0; +iH(t))
u(t).

Proof. Since v = Equ € C(I,B*(R4,C")) N CH(I,B°(R%,C")) satisfies
we obtain
Oullo(®)]|* = 2R(—(H (t) +iBs(t))o(t) + Es f(t), v(t))
<2[w@I (v + 1B f D), e,
which implies
o) < Vo] + | B D, ae. tel.

By a Gronwall-type inequality, we get (4.1) if ¢ > t;. We can deal with the
case t <ty similarly. O

Theorem 4.5. Let s € R and to € I. For every ug € B*(R4,C") and
f € LYI,B5(R%, C")), there exists u € C(I, B*(R%, C")) satisfying

(4.2) (875 + ZH())U =fin D/((tl,tg) X Rd, Cn), u(to) = ug,

which is unique in C(I,S'(RY,C")). Moreover, the estimate (4.1) holds.

Proof. Uniqueness. Suppose that v € C(I,S'(R%,C")) is a solution
of (4.2) with up = 0 and f = 0. Since {u(t);t € I} is bounded in some
Bs+t4(R4, C"), it follows from the equation that u € C(I,B**?(R% C")) (in
fact, Lipshitz continuous) and hence u € C'(I, B*(R%, C")). By (4.1), we get
u = 0.

Existence. We treat the case t; = to (we can treat the case to = to similarly
and hence the remaining case by combining the both cases). For simplicity, we
assume tg = 0 and to =T > 0.

First, assume ug € B*t4(R%, C") and f € C(I, Bs4(R%,C")). If there is
a solution u € C(I, S’ (R4, C")), then u € C1(I,S'(R%,C")) and it satisfies

T T
(4.3) A(%&+m@ﬁ@m®%=@@mdﬁ4@@i@%
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for every v € ¥ = {v € C*(I,8(R?, C™)); v(T) = 0}. Set
X ={o()=—=(0 +iH())v(-);v € V}.

By Lemma 4.4 we have sup,c; [|E_s_4v(t)|| < Cll¢llerr(1,8-+—4ma,cry), and
the functional

T
X 2 ¢(:) = —(9 +iH())v(-) = (v(0),u0) +/0 (v(t), f(#))dt € C

is bounded if X is regarded as a subspace of L'(I,B~*"4(R%,C")). By the
Hahn-Banach theorem, there is u € L% (I, B*T*(R?, C")) such that (4.3) holds
for all v € Y. (In fact, the Hahn-Banach theorem is not necessary, because we
can prove that X is dense in L*(I, B~*~%(R¢,C"))). Taking v € C§°((0,T) x
R4, C"), we obtain

(O +iH(:))u = f in D'((0,T) x RY, C"),

which implies u € C*(I, B*(R%, C")). By integrating (4.3) by parts, we have
(v(0),u(0)) = (v(0),ug) for all v € V; hence u(0) = ug. So u € C(I,B*(R4,
C"™)) is the solution of (2.1).

Next, assume ug € B5(R?,C") and f € L*(I,B°(R% C")). Take ug; €
BsH4 (R4, C") and f; € C(I, B*+4(R?, C")) such that ug ; — ug in B*(R?4, C")
and f; — f in LY(I,B5(R%,C")) as j — oo. Let u; € C*(I,B%(R%, C")) be
the solution of (2.1) with ug and f replaced by wug; and f;. Then (u;) is a
Cauchy sequence in C(I,8°(R%,C")) by Lemma 4.4, and its limit u satisfies
(4.1) and (4.2). O

For the proof of Theorem 2.5, we need to generalize Theorem 4.5 so that it
can allow a nonsymmetric perturbation of lower order. For simplicity, we treat
only the forward Cauchy problem with I = [0,7] and ¢y = 0.

Theorem 4.6.  Let p(t) = ihol, + ip1(t) + p2(t) + p3(t) (¢t € [0,7T])
such that

(H6)  p1=pi € B([0,T),S1((2)(X), (&), g5; Mu(C)));

H7)  p2 = XN 028, where a; € B([0,T], S(X)/(x)’, g5)) is real
scalar, and B; = B; € B([0,T1],S(1, gs; My (C))) satisfies 3; > I, (j =0,1,...,
N);

(H8) ps3 € B([0,T], S(<X>/<x>6,gg;Mn(C))) such that $p3 > —C1I,, with
C > 0.
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(1) For every s € R, there are Cy,Cs > 0 such that

(44) | Bault) | < C1l| Bau(0) || + € / | B f(r) | dr,

2

N t t
¥ (1) Egu(r)||?dr > sU sfr)|ldr)
(4.5) ;/ o (r) Esu(r)|2dr < C (nE‘ <o>||+/0 | Euf( >d)

forallt € [0,T) andu € C([0,T], B*+2(R%, C"))NC*([0,T], B°(R%, C")). Here
f=00+p" ().

(2) Let s € R. For every ug € B*(R%,C") and f € L'([0,T], B*(R4, C")),
there is u € C([0,T], B*(R%, C")) satisfying
(46) (at +pw(t))u = f in Dl((ov T) X Rdv Cn)v ’LL(O) = Uo,

which is unique in C([0,T],S' (R, C")). Moreover, for every j = 0,..., N,
a¥(-)Equ(-) € L*([0,T], L*(R?,C")), and the estimates (4.4) and (4.5) hold.

Proof. (1) Let s € R. By Lemma 4.1 and Theorem 3.1,

(B, 08 () + 95 (O1ET ! = —i(He,pa(t)/es)” +11(2)

with r; € B([0,T],S(1, gs; M,,(C))). Similarly to the proof of Lemma 4.2, we
obtain

[Es, iy I +ipy ()] BS' =13(1)
with ro € B([0,T7], S(1, gs; M,,(C))). To sum up,
(1) = Bp" (B = (p(t) = iHe,pa(t) o5 + (1) + 72(1))"

By Theorem 3.2 and Lemma 3.6,
py () +py () =27y ()L, — Cil,

with C; > 0. Since v = Equ € C([0,T], B}(R4,C")) n C1([0,T], B°(R%, C"))
satisfies E, f = (0; + p*(¢))v, we obtain
Aullo@)* = 2R (= (p2(t) + ps(t) +r1(t) +72(1)) v (t) + Es f(1), 0(t))

N
< 20O Callo@)I + 1B f@)I1) = D llag 0pu®)]?, ¢ € [0,T],

j=0
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which implies
Alv@)l < Collo@®) + [ Esf ()], ae. t€[0,T].

By a Gronwall-type inequality, we get (4.4). Since

/ o (ryolr) Pdr

< [lv(0)||* +2Cot 81[1p]|| u(r)|* +2 s [[o( / |Esf(7)]ld,
T€[0
we obtain (4.5) by virtue of (4.4).
(2) The proof of (1) shows that (4.4) and (4.5) hold also when f is defined
as f(t) = (0 + p(T — t)*)u(t). By taking u(-) = v(T — -), we obtain the
following: for every s € R, there is C' > 0 such that

T
I Esv(®) [| < Cll Eso(T) || + C/ I Esf(r)|[dr, 0 <t <T,
t

for all v € C([0,T], B5+2(R%, C")) N CY([0,T], B*(R%,C")) with f(t) = (-0, +
p(t)*™)v(t). After this preparation, we can prove the first part of (2) similarly
to Theorem 4.5 if we define

X ={(-) = (=8 +p()™)u(-) € LI, B~ (R, C"));v € Y}

We can prove the second part, additional regularities of solutions, by approxi-
mation argument in view of (4.5). O

85. Transformation of the Schrédinger Operator

This section shows how the Schrédinger operator transforms when conju-
gated by an invertible pseudodifferential operator. The result will be used in
the next section.

Let g be a Riemannian metric on R?? satisfying (G1)-(G3). We assume
that g is of the form

g9x = p(X)?|dz|* + ®(X)?|dg ?,

where ¢ and ® are positive functions. Then ¢ and ® are g weights by (G1)—
(G3). Let ¢ be a g weight such that ¢y < ¢, and set v = ¢® < 1 and 9 = po®.
Let (¢r)r>1 be a bounded family of S(1,g) such that 1 — ¢ € C5°(R??),
0<¢r <1,and supp¢r, C {X € R*%;|X| > L}.
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Lemma 5.1.  Let W be a g weight such that co < W < y~! with some
co > 0, and define G = Wg. Then G satisfies (G1)-(G3). Moreover, every g
weight is a G weight.

Proof. There are 0 < ¢ < 1 and C' > 0 such that if gx(X —Y) < ¢,
then 1/C < W(X)/W(Y) < C and 1/C < gx/gy < C, which gives 1/C? <
Gx/Gy < C% Thus Gx(X —Y) < ccg implies 1/C? < Gx /Gy < C%. By
definition, supy_,Gx(Y)/G%(Y) = (W(X)y(X))* < 1. We now consider
the o temperance of G. Since gy (X —Y) < ¢ implies Gy < C?Gx, we
assume gy (X —Y) > ¢. Then ¢3(X —Y) < ¢ lgy(X —YV)g3 (X - Y) <
Y (Y)299 (X —Y)? < 1G9 (X — Y)?; therefore,

(5.1) 1+ g3 (X -Y)<c ' 1+ G (X -Y))2

On the other hand, there are C; > 0 and N > 0 such that gy < Cigx(1+
gH(X=Y )N and W(Y) < O1W (X)(1+¢%(X—=Y))N. Thus, Gy < CZc 2V (1+
G (X —Y)*NGx.

Let m be a g weight. Then G continuity of m follows from ¢ continuity;
o, G temperance from (5.1). O

We recall that the symbol r;(-,-) (the j-th remainder term of the symbol
product) is defined just before Theorem 3.1.

Lemma 5.2.  Assume y < C(X)™° with some ¢ >0 and C > 0. Let W
be a g weight such that W > ¢y with some co > 1 and that (logW)? < 471,
and define G = (log W)?g.

(1) If A € S1(logW,p0,9) and A < mlogW + C with m,C € R, then
er € S1 (W™, polog W, G).

(2) Let W; be g weights, p; € S1(Wj,¢0,9), and \;j € Si(logW, ¢, g)
(j=1,2). Then

ro(eMpr, e2py)e”MHA2) b ipy € S(W Waro(log W)?, g);

rN(e)‘lpl, e’\ng)e_()‘1+’\2) € S(Wlev(wN_l(log W)QN,g)7 N € N.
If in addition Ay =0 or Ay =0, then

ro(eMpr, e*2py)e” MR —pipy € S(Wy Wayg log W, g);

rN(e)‘lpl, 6>\2p2)67()\1+>\2) S S(W1W2707N71(10g W)N,g), N € N.

(3) Let A € Si(log W, g, g). Set A\f, = Aoy, and rp, = ra(e e ). Then
rr, € S(yyo(log W)4, g) for each L > 1 and there is Ly > 1 such that ||| < 1/2
for every L > L. In particular, ((e)¥)™1 = (e7 )W (1 4 r¥) 1.
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(4) Let A be the symbol in (3) with L > Lg being fized. Let Wy be a g
weight, and a € S1(Wo,¢0,9). Then

(e’\L)waw( (e/\L)w )71 = (a+ Hxa/i — Hia/?)w +r
with r € S(Woyoy?(log W)?, g).

Remark.  The function logW is a g weight because so is W and inf
W > 1

Remark. If ¢y = ¢, then the claims (1)—(4) are simplified: 9 = ~
in (1)-(4); A € S(logW, g) and e* € S(W™,G) replace A € Sy (logW, o, 9)
and e € Sy (W™, pglog W, G) respectively in (1); p; € S(W,,g) and \; €
S(log W, g) replace p; € S1(W;, ¢o,g) and A; € S1(log W, ¢, g) respectively in
(2); A € S(logW, g) replaces A € S1(log W, g, g) in (3); a € S(Wy, g) replaces
a € S1(Wo, o, 9) in (4).

Proof. (1) This is by simple calculation.
(2) Choose m;,C; > 0so that [A;| < mjlogW+C; (j =1,2). Let N € N.
For every k € Ny there are M € N, M > N, and C > 0 such that

”a’”k,S(Wle'yo'yN*l(log W)2N g) < C”aHk,S(WZ"”l*z"Q W1 WayM (log W)2M 3)

for all a € S(W2mit2m2 1y, WoyM (logW)2M @) by the assumption v < C
(X)~¢, because every g weight is polynomially bounded. Since 7y (e*py,e?2ps)
= eMtAz ZJAiN ¢; with

1 .
g;(X) = e- MO0 —(ig (D, Dy ) /2)7 X Ppy (X)X py (V) |y =x
j

€ SWiWayoy "tlogW)¥,g9) (j=N,N+1,...,M —1)
g (X) = rM(e’\lpl,eMpg)e_(’\ﬁM) S S(W2m1+2m2W1W2'yM(log VV)QM,G)7

we have

—(>\1+>\2)||k S(

[rn (eMpr, e*pa)e WiWaroyN—1(log W)2N g) < OO.

This implies

ra(eMpr, e*2pe)e” A2 € W oy L (log W)V g),

—(A1+A2) *()\H*)\z).

ro(eMpr, e pa)e pip2 = r1(eMpr, e po)e

The other statements can be proved similarly.
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(3) By (2) we have 71, € S(yy0(logW)4, g) for each L > 1. In the rest of
the proof of (3), all statements are uniform in L > 1. Take m, C > 0 such that
|IA\| < mlogW + C. Take N € N such that sup W2™(logW)*¥yV~=1 < 0. By
definition, r = ro(e*r, e ) = Z;V:_Ql cj.r + (e, e ), where

Cj7L(X) = %(io’(Dx,Dy)/z)j(i)\L (X)@iAL (Y)|y:X € S(’yj(logW)Qj,g).

Since supp ¢, C supp Az, we have Z o cj L € S(L7¢, g). On the other hand,

O’(Dx,Dy)Ne)\L( _)\L Zal k, L a2,k,L(Y)>

where ajrr € S(WmFON*logW)V G), aspr € SWmpN-kpk
(log W)™, @), and supp ajx,r Csupp Ar. Thus a1 € S(L=ey tWmpkeN—Fk
(logW)N G). By Lemma 3.3 we get ry(e*r, e *t) € S(L=W?m(logW)*N
AN=1G) C S(L™¢,G). Therefore, ||r¥|| = O(L=¢) as L — oo.

(4) Fix L > Ly. Since et — et* € C5°(R?9), we have

~— —

() a (X)) 7h = a® + (M), @) (e M) (1 + ) T
=a" + ()", a"](e™)" + ' +¢f

where ¢; € S(R?) and ¢¥ = [(e*)”,a®](e”)*((1 +r¥)~1 —1). By (2), we
have

a([(eM)¥,a"]) = e Hya/i +b),
b=e(rs(e},a) = r3(a,e)) € S(Woroy*(log W)?, g);
ro(eM(Hya/i+b), e ) = Hya/i — H3a/2 + c5 € S(Woyolog W, g),
c3 = ro(e Hya/i,e ) +1o(e?b, e7) € S(Wovoy?(log W)®, g).

Since 7, € S(voy(log W)4, g), we have co € S(Woyay(log W)?, g). Therefore,

() a®((e)*) ™" = a® + (Hra/i — H3a/2)" + ¢ +c§ +cf
with ¢; + ¢ + e3 € S(Wovoy? (log W)?, g). O

Lemma 5.3.  Assume v < C(X) © with some ¢ >0 and C > 0. Let W
be a g weight such that W > co with some ¢ > 1 and that (logW)? < ~~1, and
define G = (logW)?3g. Let X\ € B([0,T],S1(log W, ¢0,9)), and set A(t, X) =
Alt, X)L (X).
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(1) There is Lo > 1 such that if L > Lg then

(X0)*) 7 = () (14 r (1),
where r1,(t) € B([0,T], S(vyo(log W)%, g)) with supiepo, ) Iy (B < 1/2.
(2) Let Wy be a g weight, and assume O\ € B([0,T],S(WovyologW, g)).
If L > Lo and h € B([0,T],S1(Wo,v0,9)), then
() (9, + ih* (1) (X))~
=0 +i(h(t) = H3)h(t)/2 + {\(1), BA(1)}/2)" = (DeA(D)
+ Hypn)A(£))" + (1)

with ¢ € B([0,T), S(Woyoy*(log W)?, g)).

Proof. The proof of (1) is similar to that of Lemma 5.2. Since 9\ €
B([0,T], S(Wyyo log W, g)), it follows that
(X0)0 9, ((M0)7)1 = 5, — (OB ( (D))
= 0, — (OIAD) () 4 el (1) + e ()
= 0 = (O M) + {A(1), QA1) }/(20) )" + ¢y’ (1) + 5 (E) + 5 (D).
Here ¢; € B([0,T], S(R??)),

e (t) = —(MIND) (e M) (L +rE () 1)
€ Op B([0,T], S(Woygv(log W)?, 9)),
es(t) = —ra(XVOA(1), e ) € B((0, T), S(Woryoy*(log W)°, 9)).

The remaining proof of (2) is similar to that of Lemma 5.2. O

86. Smoothing Effects

In this section, we assume (H1)-(H5). We use our main assumption (H5)
only in the part (d) of the proof of Lemma 6.1. We apply the results in Section
5 to the following case

g=gs = (2)*|dz|* + (X)*|dg/?,
po=1/(x), v=(@)/(X), 70 =1/((z)(X)),
W=(X)", G=(logW)%g=(61log(X),)?gs,

e

where (X), = (€2 + |X|?)Y/2 and §; = inf(((X)/(z)*)}/2/log (X)) > 0; 01
is chosen so that the condition (logW)? < 1/v, or (6;log (X),)? < (X)/(z)°,
holds.
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Let T >0, R< Ry < Ry and 0 < 09 < 01 < 03 < 0, where R and o are
the constants in (H5). Take ¢,v, x € C°°(R) such that

(i) supp ¢ C (Ry,00), ¢(t) = 1if t > Ra, ¢’ >0, /&, /¢ € C*(R),

(ii) supp e C (—o0,—01), ¥(t) = 1 near (—oo, —02], ¥’ < 0, V/i,/—¢' €
C=(R),

(iii) suppx C (—00,2T), x(t) = 1if t < 37T/2, ¥’ < 0, /X,vV—X €
C>*(R).
For p>0and 0 < v < 1, we define

g=+/'ho, 0= Hy,r/q,
w(t) = (r + ootq)’ (2 —r7"),
A(t) = o(r)y(0)x(t +r/(Mg)) logw(t) (t € [0,T1).

Here M = 2sup|d| + 1. Observing that

r/q<2MT on  Up<i<rsupp x(t +r/(Mq)),
MT/2<r/q<2MT on Up<i<rsuppXx'(t+r/(Mgq)),

where the support is as functions in (x,¢) € T*R?, we have

AE B([O, T], SI(IOg X>e7 <$>_1795))7
OA() € B([0, T, S({a) " (X) log (X),, g5))-

Take ¢1,¢1,X1 € COO(R) such that 0 < ¢1aw1axl < 1a Supp(bl - (R17OO)7

¢1(t) = 1 on supp ¢, supp ¢y C (—00,—01), ¥1(t) = 1 on supp ¢, supp x1 C
(—00,2T), x1(t) = 1 on supp x. Since

r/q<2MT on supp x1(r/(Mq)),
3MT/2<r/q<2MT  on supp x(r/(Mq)),

we have
A1 = o1 (M1 (0)xa(r/(Mq)) € Si(1, (x) ™", g5).

Clearly, A1 = 1 on Uge[orsupp A(t). Take 1o € C5°(R) such that ¢ = 1 in a
neighborhood of supp ¢’, supp ¢s C (—o2, —01) and 0 < ¢ < 1.
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By direct calculation, we have
4
— (O + Hy@) A1) = > (1) B;(¢

ao(t)® = var=' 72 = 7)o (O)x(t + 1/ (Mq)),  Bo(t) = —¢~ Hywyr,
a1(t)* = pa(r + ootq) " G(r)(O)x(t + r/(Mq)),

B1(t) = —(00ln + ¢~ Hpwy (r + o0tq)),
az(t)? = —x'(t +1/(Mq))d(r)(0) logw(t), Ba(t) = In + Hy) (r/Ma),
az(t)? = g’ (r)v(O)x(t +1/(Mg))logw(t), B3(t) = fo(t) = —q~ ' Hyeyr,
ay(t)? = —r~qd(r)¢' (O)x(t +r/(Mq)) logw(t), Ba(t) =rq~" (Hanb).

Here a;(t) > 0. By modifying 3;(t) outside supp a;(t), we define j3;(t):

Bi(t) = MB;(t) + (1= M) (5 =0,1,2,3),
Ba(t) = Airpa(0) Ba(t) + (1 — Mib2(0)) 1,
By the definitions,

a; € B((0,T], S(({z) " (X) log (X),)"/*, g5)) € B((0,T], S((X) /()" g5)),
Bj = 55 € B([0,T1], (1, g5: My (C)))-

Set pu (T, R1) = pa ([0, 7], B1) + pi ([0, T, R), pa(T, Ra) = pp([0, T, Ra),
and u(T,Ry) = py(T, R1)T + po(T, R1)T?. Then limpg, oo u(T, R1) < 241
([0, T)T + p2([0,T])T? (see Subsection 2.2).

Lemma 6.1.  There are j19 > 0 and c; > 0, depending only on d, hg and
r (not on T or Ry), such that if w(T, Ry) < po, then B; > ¢jI, (5 =0,...,4).

Proof. In this proof, we denote by C1,Cs, ... positive constants depend-
ing only on d, hy and r. We derive estimates on [0, T] X supp A1 in (a) (b), (c),
and on [0,7T] x supp (A1¢2) in (d). The claims for Bo(= B3), b1, B2, B4 follow
from (a), (b), (¢), (d) in this order.

(a) Since
—Hp,r > 014,
|Hp, (1yr| < Crpa (T, Ry)r < 2MTCypn (T, Ra)g,
|Hp,(tyr| =0,
it follows

—(Hpyr)/q > (01 = 2MTCrpa (T, Ry)) 1, > coly
with ¢g = 01/2 > 0 if u(T, Ry) is small enough.
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(b) Since
loot Hp, (#)q] < Coo0T i (T, R1)q,
lootHp, 1)a| < C3o0T (T, Ri)r < 2MT?Csoous(T, R1)q,

we obtain

— (00l + (Hpwyr)/q + oot (Hn)a)/q)

> (01 — 09 —2MTCiu1 (T, Ry) — CoooTu1 (T, Ry)
— 2MT*Csoop2(T, R1))In

> caly

with ¢1 = (01 — 00)/2 > 0 if u(T, Ry) is small enough.
(c) Since

|Hpo(r/q)| = 10| < M/2,
| Hp, 1) (r/q)| < Capr (T, Ry)r/q < 2MTCypur (T, Ry),
|Hpy () (r/q)] < Copa(T, R)r? /q* < (2MT)*Cspua(T, Ry),

we have

In + Hh(t)(T/Mq) Z (1 - 1/2 - 2TC4P’1(T7 Rl)
—4AMT?*Csps(T, Ry)) 1, > o1,

with co =1/4 > 0 if (T, Ry) is small enough.
(d) By virtue of (H5), we have

Hy,0 = (27 Hj (r%) = (Hyor)?)/(rq) > (0® = 03)q/r.
Moreover,

|Hp, (1y0] < Copr (T, R1) < 2MTCopn (T, Ra)q/T,
|Hpy1)0] < Crpia(T, Ry)r/q < (2MT)?Crpa(T, R1)q/r.

Therefore, we obtain
rq ' Hypy0 > (0 — 05 — 2MTCopur (T, R1) — (2MT)*Crpa(T, R1)) I, > cal,
with ¢4 = (0% — 03)/2 > 0 if u(T, Ry) is small enough. O

Hereafter in this section, we assume (T, Ry) < pg so that the conclusion
of Lemma 6.1 holds.
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Let (¢1)>1 be a bounded family of S(1, gs) such that 1 — ¢, € C§°(R??),
0< ¢y <1,andsupp ¢y C {X € R?%;|X| > L}. Set Ar(t, X) = (¢, X)or(X).
By Lemma 5.3 there exists Ly > 1 such that if L > L then

(@) )™t = (e Wy (1 4y (1),

where 71(t) € B([0,T],S(yy0(log W)?, g5)) with supsepo,r IT7 ()| < 1/2. Fix
L > Ly and set K(t) = k“(t) = (e**®)*. Then

K € Op B([0,T], $1({X)", (z) ' log (X),,G)), K~'€O0pB([0,T],5(1,G)).

By the definition, supp A(¢,-) C cone (S_(Ry,01)); and

(1,6 = Bt M) — (r(2) + )1 (2= 1(0) )

if (x,&) € cone (S_(Rg2,02)) and r(z) < MTq(z,£)/2.
The following theorem means that the solution of the Schrédinger equation
gains the regularity in S_(Rz,02) if the initial data decays in S_(Ry,01).

Theorem 6.2.  For every up € B*(R%, C") and f € L'([0,T], B*(R?
C™)), let u € C([0,T], B*(R%,C™)) be the solution of

(6.1) (0y +iH(-))u= f in D'((0,T) x R¢,CM), u(0) = up.

Assume that K(0)ug € B*(RY,C") and K(-)f(-) € L([0,T],B°(R%,C")).
Then v = K(-)u(-) € C([0,T],B*(R%,C")) and o¥(-)v(-) € L*([0,T], B*®
(R4, C")) (j = 0,1,...,4). Moreover, there are Cy,Co > 0, independent of
ug, f, and u, such that the following estimates hold: for all 0 <t <T

| B (t)u(t) || < Col| EuK (O)us || + Cy / | EK(r) f(r) || dr,
4 t
g / o (7) L K (r)u(r) | dr

‘ 2
< Cy (IIESK(O)uo +/0 | EsK () f(7) IIdT> :

Proof. By Lemma 5.3,

K(t)(0y + iH(t)K ()™

= O +i( h(t) — Hipyh(t)/2 + {\(t), O A()}/2)"
— (O A(t) + Hpyy A1) + ¢ (t)

=0, + P(t)
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with ¢ € B([0,T1], S(1, g5; M,,(C))). The conditions (H6)—(H8) in Theorem 4.6
are valid if we set

pi(t) = ha(t) + hao(t) — H3 ) h(t)/2 + {A(t), DA(1)} /2,
p2(t) = —(O () + Hyn A1),  p3(t) = c(t).

Since v = K(-)u(-) € C([0,T],B*~*(R¢,C")) c C([0,T],S'(R%, C")) is the
solution of

(@ +iP())v = K(-)f in D'((0,T) x RY,C"),  v(0) = K(0)uo,
Theorem 4.6 completes the proof. d

The next task is to prove increase in regularity at every point that is not
trapped backward by ®; if the initial data decays in an incoming region. To
express this property, it is convenient to introduce

Definition 6.3.  For an open subset U of S*R, S% ,(U) is the set of all
p € SUEV, |dx|? + (€)7?|d€|?) satisfying suppp C cone(K) for some compact

set K CU.

Lemma 6.4. Let U be a relatively-compact open subset of S*R%, and
set T' = Up<i<t, @1 (U), where to > 0 is an arbitrarily fized constant. Let s € R
and p > 0. Then for every a € Sg,,(T), there are b € SJ,
C > 0 such that the a priori estimate below holds:

(U) and a constant

t
(6.2)  |lwe(D)* (D) a™u(t)|* + / lw, (D)?(D)* 2 avu(r)|2dr
0
t
< c/ [wy (D) (DY 2 (1) |2dr + C||Esuol?, 0<t<T,
0

for all ug € S(RY, C™) with u(t) = S(t,0)ug. Here wy(&) =1+ ¢(&) (t >0).

Lemma 6.4 is a little modification of [5, Theorem 2.1] and will be proved
at the end of this section. Admitting this lemma, we shall prove

Theorem 6.5.  Let V be a relatively-compact open subset of S*R? such
that VNT_ =0. Let s € R and p > 0.

(1) For every a € S, (V), there is C > 0 such that the estimate below
holds:

¢
(6.3) lw(D)?(D)* a"u(t)||? +/ lwr (D) (D) 2avu(r)|Pdr
0
< C| EsK(O0)uo ||?, 0<t<T,
for all up € S(RY, C™) with u(t) = S(t,0)uq.
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(2) Let ug € B*(R%, C") satisfy K(0)ug € B*(R?, C"). Then for every
ac Sgpt(V)7

w; (D) (D)’ a*u(t) € C([0,T], L>(R4,C")),
wi(D)*(D)* 20" u(t) € L*([0, T], L*(R?,C™)).

Moreover, there is C > 0, independent of ug, such that the estimate (6.3) holds.

Proof. (1) By Proposition 2.4, there is ¢y > 0 such that U = &_; (V) C
S_(Rz,02), because Ry > R and 0 < 02 < 0. Set I' = Up<y<4, @1(U). Let
a € S0, (V) € S2,,(T). By Lemma 6.4, there are b € SJ,(U) and a con-
stant C' > 0 such that the a priori estimate (6.2) holds. So it is sufficient
to prove the claim below in view of Theorem 6.2. For simplicity, we set
S(m) = S(m, |dz|?+ (€)|d¢|?) and define B([0,T], S((£)*wr)) as the set of all
a € C([0,T],C>=(R??)) such that a(t) € S({£)°w}) uniformly in t € [0,7]. O

Claim.  There are ¢; € B([0,77,5(1)) with suppei(t,-) C suppb, and
¢2 € B([0,T],S) such that
wi (D) (DY 250 = v (1)l (D EK (t) + c¥(t), 0<t<T.
Proof of the claim. Note that
ao(t) = (war=1=" (2 — ) V2, K(t) = (r + 0otq)?(2 — ")

for all X € cone(U) and t € [0,T] if ¢(X) > 1. Take b1,by € Scp(U) such
that by = 1 in a neighborhood of suppb and b, = 1 in a neighborhood of
suppby. Since baag(t) € B([0,T], S((€)Y?)), bres € S((€)*), and byk(t) €
B([0,T], S(w(§)*")), we have

al (t) = b alf (1) B (t) = by (baao(t))* (baes)” (bak(t))® + 11(¢)
e Op B([0,T1, S((€)* 2w (€)*))

with r; € B([0,T],S). Moreover, Raq(t, X) > C(f)sﬂ/gwt(f)p for all X €
suppbandt € [0,T] if ¢(X) > 1. Write wt(D)”<D>S+1/2bw = af (t)+rY¥ (t) with
ag € B([O,T],S(<£>s+1/2wt(§)”)), supp ag(t) C suppb, and ro € B([0,T],S).
Take ¢; € B([0,T], S((¢)™7)), supp¢;(t) C suppb, such that

co(t, X) = ap(t, X)/a1(t, X),

J . k
it == 3 1 (FEEP) ot a6V o/ )
k=1

(=1
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when ¢(X) > 1. Choose ¢ € B([0,T],S(1)), supp ¢(t) C supp b, such that ¢ —
Y ion ¢ € B([0,T],5((€)™™)) for all N € N. Then aff () = c* (t)a¥’(t) +73(2)
with r5 € B([0,T],S). Therefore

wy(D)P(D)* 200 = e ()bl alf (1) B K (1) + 7§ (1) = ()l () B K () + 12 (t)

with 4,75 € B([0,T],S) and ¢ € B([0,T1],5(1)), supp &(t) C supp b.

(2) Take a sequence (vy)ren in S(R?, C") which converges to K (0)ug in
B#(R4, C™). Put uk(t) = S(t,0)ug x with ugr = K(0) 1o, € S(RY, C™). Since
(K(0)ugx)ren converges to K(0)ug in B¥(R4, C"), it follows from (6.3) that
((D)*w;(D)Pa®u(-))ken is a Cauchy sequence in C([0,T], L?(R%, C")), and so
is ((D)*"2wy(D)Pa®up(-))ken in L2([0, T], L2(R%, C™)). On the other hand,
(ur)ken converges to u in C([0,T], S'(R?, C")). This completes the proof. [

Proof of Lemma 6.4. We first localize the problem. Take ¢ € C§°(RY)
such that ¢ = 1 in a neighborhood of the base projection of I'. Take ¢; €
Cs° (R4, R) such that ¢; = 1 in a neighborhood of supp ¢, and set iL(Lm,f) =
h(t, ¢1(x)w, €) and hy(t, o, €) = hy(t, ¢1(z)z,€) (j = 0,1,2). Then ho € S((¢)*)
and h; € B([0,T], S((¢)>7; M,,(C))) (j =1,2). Put H(t) = ™ (t).

Apply Lemma A.3 to the case where m = 2 and h(t) = }Nl(t), ho = ho,
hi(t) = hi(t) 4 ho(t). Let up € S(R? C") and set u(t) = S(t,0)ug. Put
v(t) = gu(t). Since (0 + iH (t))v(t) = [iH(t), oI, Ju(t) =: f(t), we have

D)D) au(®I + [ oo (D) (D) 2av(r) P
<0 [ IueDp () a4 [ un(D) (D) 50

+C||(D)*a*v(0)||* + C sup H<D>57LU(T)H2+C/O (DY " f(7)|*dr

0<r<t

for all 0 < ¢t < T. This completes the proof, because a*(1 — ¢), a“(1 —
), b“(1—¢) € OpS, a*[iH(t),¢l,] € Op B([0,T],S), and || E;S(t,0)uol| < C
(| Esuol- O

87. Proofs for Section 2

Proof of Theorem 2.1. Theorem 2.1 is contained in Theorem 4.5. u

Proof of Theorem 2.2. Since (1)—(4) follows directly from Theorem 2.1,
we prove only (5). Let H; be the operator H with domain C§°(R9, C"). If u €
L*(R4, C") satisfies Hu € L?*(RY,C"), then J.u € S(RY, C") and HJ.u —
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Hu in L*(R%,C") as ¢ — +0 by Lemma 4.3. This implies that S(R%, C"),
hence C5°(R%, C"), is a core for Hf. Thus, H; is essentially self-adjoint. Let
to € R and up € L?>(R%, C"). Then u(t) = e~ i(t=t)Hy, ¢ C(R, L?(R%, C™))
is a solution of (2.3). By uniqueness, e *(¢=t)Hyy = S(t to)ug for every

tcR. O

Proof of Lemma 2.3. Take p € C§°(R?) such that p > 0, [z, p(x)dz =1,
suppp C {z € R%[z] < 1}, p(=2) = p(z) (z € R?); set p.(z) = e p(a/e)
(0 < e <1). Define f. = pe x f. By the definition, f. > 1 and lim;|o fe(z) =
0. For every a € N¢ with |a| > 2, write « = 8+« with || = 2. Then
9 f- = (07pc) x (9°f) € L*(R?). Since [ray;jp(y)dy = 0, we have

0) = F@I=| [ pe)(7Ce =) = )+ Vs o)
2 l (o1 su e
<e az_:z ~ /Rd v*lp)dy sup [9°F(y)]

More directly,

0" (@) = @) e [ ooy sup 90" )

yeER?

if |o| =1, and

0%(fe(x) = f@)I < sup  [O7(f(z+h) = f(z))]
z,heR |h|<e
if |a] = 2. So for every 0 < ¢ < & and R > R, there exists 0 < gy < 1 such
that for every 0 < e < gg

Hp fe >20%hg  if fo(x) > R%.

Set fcv:feo- O

Proof of Theorem 2.5. The continuity of the forward propagator follows
from Theorem 6.5 because K (0)(z) * € OpS(1,G). If u € C(I,S'(R%,C"))
satisfies (0 +ih" (¢, z, D))u(t) = f(t), then v(t) = u(—t) satisfies (9;+ih™ (—t, z,
—D))v(t) = —f(—t). Moreover, T = {(z,£); (x,—§) € T_}. So the continuity
of the backward propagator for 9;4+ih™ (¢, x, D) follows from that of the forward
propagator for 0y + ih"(—t,z, —D). O

Proof of Corollary 2.6. This follows easily from Theorem 2.5. 1

Proof of Corollary 2.7. Let I = [t1,t2] be an interval satisfying the con-
dition. Let t; < tg <t < ty. If A is a compactly supported pseudodifferential



SMOOTHNESS FOR SCHRODINGER EQUATIONS 211

operator of order 0 such that its essential support has no intersection with 7_
(resp. T4), then AS(t,tg) (resp. AS(to,t)) has a C'° distribution kernel by
Theorem 2.5; hence

(7.1) WEF(K(t,t)) C (T- x T*R) U (0 x T*R?4\ 0),

(7.2) WE(K(to,t)) C (T x T*RY) U (0 x T*R%\ 0).

Since K (t,to)(z,2") = K(to,t)(z', x), we have

(7.3) WE(K(t to)) = {(z,&2",£); (2, =12, =€) € WF(K (to, 1)) }-

Further, T = {(z,£); (x,—¢) € T+ }. Combining these with (7.2), we get

(7.4) WE(K(t,ty)) C (T*RY x T_) U (T*R*\ 0 x 0).

The upper estimate of WF (K (t,tg)) follows from (7.1) and (7.4), and that of

WF(K (to,t)) follows consequently. O
§8. Smoothing Effect of Order Half

This section discusses the smoothing effect of order half for the Schrédinger
equation in Section 1. We assume (H1)-(H4) throughout this section. We shall
use Lemma 3.4 (3) with

9= g5 = ()" |daf* +(X)?|a¢]?,
s
po=1/(x), 7= ()" /(X), v =1/((2)(X))
Set ¢ = v/hy. Consider several conditions on the principal symbol hg.

(H9) (Global escape function). There exists a € C*°(R??, R) such that for
every «, 3 € Ng

(81)  1070ga(x,€) < Caple) 7T, wgeRY i[5 =0,1;
(82)  [070¢a(r,€)| < Capla)*? T, w g e R 16 2 1,
and that for some ¢ > 0 and C' > 0
Hy,a(z, &) > cq(z,€) — C, 2, € RY
(H10) (Escape function near infinity). There exists a € C*°(R?¢,R) such
that for every a, 3 € N¢, (8.1) and (8.2) hold and that for some ¢ > 0, C > 0,

and R >0
Hp a(z,8) > cq(z,§) — C for |z| > R, € € RY.

(H11) (Finite escape time). For every compact set K C S*R?, there exists
tr > 0 such that ®,(K)NK =0 for all t > tg.
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Remark.  1f Vg% (z)| = o(|z|™1) as |z| — oo for all j,k, then (H10)
holds with a =z - £/(1+ ho)'/? or a = Hy,|z|?/(1 + ho)'/2.

Remark.  The condition (H5) implies (H10): we can choose a in (H10)
as a = Hp, foo/(1+ ho)*/2.

Lemma 8.1.  Under (H5), all conditions (H11), Tpp = 0, Ty = 0, and
T_ =0 are equivalent.

Proof. If Xo € Tepi +, then the positive limit set of X is relatively com-
pact, and hence the total orbit of each positive limit point of X is relatively
compact. Thus T,y + # 0 implies Tppe # 0. Similarly, T,y — # 0 implies
Tept # 0. By Proposition 2.4, Tppe+ = T4 and Top— = T-. So Tep = 0,
Ty =0, and T = () are equivalent. Clearly, (H11) implies T,,; = (). For the
assertion that T, = () implies (H11), see the proof of the lemma 1.3 of [2]. [

Lemma 8.2.  (H9) is equivalent to (H10) and (H11).

Proof. Suppose (H9). Then for all X € T*R? with ¢(X) =L > 1

%a@t(x» = Haa(@(X) > 1, >0,

which implies a(®:(X)) > ¢ + a(X), t > 0. Therefore for every compact set
Kc{X eT*R%q(X) =L}, ®(K)NK =0 if t > 2supyeg |a(X)|+ 1. This
gives (H11).

The proof of the converse is similar to that of the lemma 1.5 of [2]. O

Remark.  We summarize the relations among the conditions above:

(H5) = (H10),
(H5) + (Tepe = 0) & (H5) + (T =0) & (H5) + (T- =0) < (H5) + (HI1),
(H5) + (H11) = (H10) + (H11) < (H9).

Lemma 8.3 (non-trapping case).  Assume (H9). For every 0 < v < 1
there exist a real-valued symbol X € Sy (1, (x) ™", g5) and constants ¢,C > 0 such
that

—Hp MX) > cla) XY - C, X =(z,6) e T*R™

Proof. This lemma is a minor modification of the lemma 2.3 of [2].
Let 0 < € < 1 be a parameter to be fixed later. Take v, x € C*°(R) such
that
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(i) supp ¥ C (g,00), ¥ (t) = 1 near [2g,00), ¢’ > 0,
(ii) supp x C (—o0,1), x(t) =11t <1/2,0< x < 1.

Set 114 (1) = (1), (1) = $(=t), volt) = 1~ b4 (1) — ¥ (t). Define
T(:)S) = <$>7 0= a/(x),
— (~000(0) + (Mo — (1 -+ a) ™) (v-(6) = +(6)) ) x(r/a).

Here My = 2 + 2¢. Since ¢ > r on supp x(r/q) and |a| > er on supp (¢4 (0) +
¥_(6)), we have A € S(1, (z) ", g5). By (H9) we have

H, 0= (Hhoa — 0Hh07')/r > coq/r — Cy on supp ¢p(0)

with constants ¢y, Cy > 0 if € is small enough. Fix such €. By direct calculation,
we obtain

—Hio A =((Hno0)0(0) + v(1 + lal) ™'~ (Hiy) (¢ (6) +v+(0)) )x(r/a)
+ (Hpo) (Mo = (1 + lal) ™" = 10]) (= +w+ (0))x(r/a)
— (~6w0(6) + (M — (1+ o)) 04(0)))X (/) Har/q
> ((Hn0)160(6) + v(1 + |al) "'~ (Hna) (w (6)+ w+<e>))x<r/q> -
> ((coa/m)o(0) + e1(1+ Jal) g (v-(6) + 4. (0)) ) x(r/a) -

>cor™ Vax(r/q) —

>es(x) (X)) — Cs,
with constants ¢, ca, c3, C1, Co, C3 > 0. O

Lemma 8.4 (general case).  Assume (H5). Let pp € C°(R) such that
or(t) =1 ift > R’ for some R’ > R, supp ¢ C (R,0), and ¢ > 0. Let
0 < v < 1. Then there exist a real-valued symbol A € Si(1,(x)"", g5) and
constants ¢,C > 0 such that

—Hp AX) > cor(r)(@) (X)) = C, X = (z,6) € T*R™

Proof. 'This lemma is a minor modification of the lemma 2.4 of [2]. Set
a = Hpyq feo/(1+ ho)Y/? = 2rHp /(1 + ho)'/2. By (H5)
Hpoa = H§ feuo/(1+ ho)'/* > cog = Co on {(x,€) € T"R%r(w) = R}

for some ¢y, Cy > 0. For every 0 < v < 1, define A as in the proof of Lemma
8.3:

= (=0v0(8) + (Mo — (1+ |a) ™) (4 (6) =24 (6)) ) x(r/a).
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Put A = ¢r(r)A\. Then A € S1(1, (z) ™", gs) and aX < 0. Therefore

_Hho;\ = _¢IR(T)(H’IOT)/\ - ¢R(T)Hh0/\
> —¢r(r)HpgA > cp(r)(z)” (X)) = C

with constants ¢, C' > 0. O

Theorem 8.5 (smoothing effect of order half). Lets € R and0 <v <
1. Let I = [tl,tg] (tl < tg) and ty € I.

(1) Assume (H9). Then the two estimates in Theorem 2.8 (1) holds.

(2) Assume (H5). Then the assertion of Theorem 2.8 (2) holds.

Proof. For simplicity, we consider only the case where I = [0,7] and
to = 0. Let u € C1([0,T], S(R?, C™)) with f(t) = (0; +iH(t))u(t). By Lemma
4.2, E;H(t)E;Y = H(t) + Bs(t) with By(-) € Op B([0,T7],5(1, gs; M,,(C))).
Then v = Esu € C1([0,T],S(R%, C")) satisfies

B f(t) = (8, + iH(¢) + iBy(t))v(t).

We shall denote by Cy, Cs, . .. several constants independent of ¢ € [0, T and w.
(1) Suppose (H9). Take X satisfying Lemma 8.3. We may assume [|[A*|| <
1/2. Then

i[HE), A ] 4 iB,(£)* XY — iAY By (t) = (Hpg\) "I, + b* (t)

with b € B([0,T], S(1, gs; M(C))). By Lemma 8.3, the Sharp Garding inequal-
ity gives
—(HnoN)" > C7 By o) 7V By jp — Co

as a quadratic form on S(R?). Define a norm N (v) of L*(R%, C") by N(v)? =
(T + A*")v,v). (We define N(v) = ((1 — A¥)v,v) if I = [-T,0] and ¢, = 0.
Then

CZN( ())* = ((Hyy M + (1) "0(t), v(8)) + (i((Bs(t)" = Bs()v(t), v(t))

)
F2R((L+ M) B, f(t),v(1))
< —CrY )" TP By pu(t)|? + CaN (u(t))?
F2R((1+ A)Ef(t), v(1)).

Since

[(L+A")Es (), v())] < N(Es f(2)) - N(v(t)),
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we have

t
- / 2y~ 2B, o(r) P

< N(v(0))? 4 Cst sup N(v(1))?+2 sup N(v / N(Esf(r
T€[0,t] T€[0,t]

Applying Theorem 2.1, we obtain the first estimate. Since

2|((1 4 A*) By f(1), 0(t))]
< Cal(@) T PE o f(D)] - )Ty p0(n)|
< (201) Y z) "2 Ey pu(r) )| + Osl| () TP B o (7)),

we obtain

LN w(t)? < — 20) (@) I2E, u(t)|

dt
+ CoN(v(1))? + Cs | (@) TP By o f(8)]1

By a Gronwall-type inequality, we get

t
e CtN(u(t))? + (201)_1/ e~ |[(z) "By u(r)|2dr
0

t
< N((0))? + Cs / O || @) V2R, o f (1) Pdr.
0

This implies the second estimate.

(2) Suppose (H5). Applying Lemma 8.4 and imitating the proof of the
theorem 1.2 of [2], we can construct a real-valued symbol \g € S1(1, (z)~1, gs)
such that

—Hpo Ao > (2) 7 (X)af? - Cr, z,€ € R
By the sharp Garding inequality, we have
—(Hpyho)" = C (@)™ 2By 00 BT — G

as a quadratic form on S(R?). Then the rest of the proof goes similarly to the
first part of the proof of (1). O
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A. Estimate along the Hamilton Flow for a Dispersive Equation

This appendix, independent of Sections 1, 2, 4-8, aims at deriving an
energy estimate along the Hamilton flow of the principal symbol for a general
dispersive operator 9; + iH (t) by slightly modifying the proof in the section
6 of [5]. Here g = |dz|? + (€)°|d€|2, o(H(t)) = h(t) = hol, + hi(t), ho €
SUEY™, g), and hy(-) € B([0,T),S((&)™ ", g; M, (C))); ho satisfies that for a
constant C' > 0, ho(z,£&) > C7E™ — O, (z,€) € T*R, and that ho(x, &) is
homogeneous of degree m in & if ho(z,£) > 1/4.

Let hg € C®(T*R%\ 0) be the homogeneous function of degree m in &
such that hg = hg if hg > 1/4. Let ®, be the Hj, -flow. Set ¢ = ﬁé/m. Let
U be a relatively compact, open subset of S*R? = {z € T*R?\ 0; ho(z) = 1},
and put I' = Up<y<4, @4 (U) for an arbitrarily fixed ¢y > 0.

Lemma A.1. (1) For every f € C§°(T'), there is u € C§°(I') such that
Hp,u+ f € Cge(U).

(2) For every nonnegative function f € C§°(T'), there is a nonnegative
function v € C§°(T) such that u > 0 on {X € S*RY; f(X) > 0} and that
Hp,u+ f € Cge(U).

Proof. (1) By compactness, there exist t1,...,t; € [0, ] satisfying supp
f C UL @, (U). Take ¢; € C§°(®,,(U)) such that ¢; >0, 37 ¢; = Lina
neighborhood of supp f. Set

J t;
=3 [ o mxar

Then u € C§°(I') and Hpyu + f € C3°(U).
(2) The function u € C§°(I") constructed as above satisfies all the proper-
ties. O

Set wy(€) = 1+ (&)™ " (t > 0) and denote by B([0,T], S((¢)’w?, g)) the
set of all p(-) € C([0,T],C>(R>??)) such that {p(t)w; *}o<i<r is bounded in
SU€), g) (b,p € R). Let € C®(R) such that 0 < 6 < 1, 6(t) =0if t < 1/4,
andﬁ()—llf >1/2.

Lemma A.2. Letse€ R,p >0, N € N. Then for every compact set
K of T, there are f; € C°(T*R4\ 0), f; > 0, homogeneous of degree 0 in &
(j=0,1,...,N), and v(t) € B([0,T], S(w¢, g)), v(t) > 0, satisfying (1)—(iii).
(i) o(t)~" € B0, T}, S(wi L, 9), By € B(0,T], S((&)™ wi, ).
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(ii) fo>0on K, f; >0 onsupp f;_1NS*R? (j =1,2,...,N), supp fx N
S*R? CT.

(iii) There exists a constant Ao > 0 such that for each A > Ao, we can find
C >0 and o € B([0,T); S((&)** T w*, g)), suppalt,-,-) C cone(K') for a
compact set K' of U, such that

—(B,P(t) + iH (t)* P(t) — iP(t)H(t))

1N

> 5 DN ((q 7V 2g5(0)")? L, — 0" (1)1 — Cun(D)* (DY 2N,

Jj=0

for allt € [0,T] as a quadratic form on H(>)(R? C"). Here
N _ ,

P(t) =3 Na' @ g(t) =g f0(t)000) € B0, T], 8((&)" " *uf, 9)).
§=0

Proof. By Lemma A.1 we can choose a;,b € C3°(T'), a; >0 (j=0,1,...,
N) so that

(a) ap >0on K, a; >0onsuppa;—1(j=1,2,...,N);

(b) —Hp,a; = b; — o with b; € C§°(T'), b; > 0, and «o; € CF°(U) (j =
0,1,...,N);

(¢) —Hpyb =1 —  near suppay with g € C§°(U).
In fact, let a_q : S*R? — R such that a_; = 1 on K and a_; = 0 outside
K. Take a nonnegative function b; € C§°(I") such that b; = 1 near suppa;_1,
and choose a nonnegative function a; € C§°(I') such that a; > 0 on {X €
S*R%b;(X) > 0} and that a; := Hpya; +b; € C§°(U), inductively in j =
0,1,...,N+1,and set b=an41 and = any1-

Take M > 1 such that [|hy (¢, 2, &) (cry < Mg™ /4 for all ¢ € [0,T] and
z,& € R4 if hg > 1/4. Take € > 0 such that ¢ > e. Extend aj,a;,b;,b, 3 as
homogeneous functions of degree 0. Set f(t) = e’ +etqg™~'. For j =0,1,...,N

) )

put

a;(t) = ¢ a;eM £(1)70(q) € B((0, T), S((€)* ™ *wf (€), 9)-
Define v(t) € B([0,T], S(w:, g)) as a modification of f(t) outside supp 6(q) so
that (i) is valid. Set f; = a;eM®. Then (ii) is valid. By calculation,

—(0¢ + Hpy) q;(t)* =2Mq™ ' q;(t)* 4+ 2¢™ ' q;(t)*p(e® — &)/ f(t)
202, MY (1)26()? — (1)

Here 8; € B([0,T],S({&)** 7™ w}*, g)), supp B;(t,-,-) C suppa; Usupp f.
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By the product formula and the (sharp) Garding inequality,

(A1) =B qf (t)* T +iH(8) g’ (t)* — iq} () H (1))
= (= (0 + Hp,)q; (1) +2qj() ha(8))" = ~ji(t)
= (2Mq" ™ Ly + Sha (1)) g;(1)? +c]() ()*1,)" —%1(75) B ()1
= 2(q" M 2g; (1)) (M1 + Sha(t)g' ™0(24))” (¢ D ?q;(t))"
+(w(®)P) e () (w()?) In = 7j5(t) — B () In

> (@ V2q;(0) ") L — CLD)* T Pwy (D)L, — B (D)1

Here ¢; € B([0,T],S((&)>* 777" g)), ¢; > 0, was estimated from below
by —C{(D)** ="y, (D)? I, by using the sharp Garding inequality; vz €
B([0,T], S((€)** 7T 2w2P  g: M, (C))) (k= 1,2), and C; > 0.

Take a; € C§°(T") such that a; > 0, a; = 1 in a neighborhood of suppa;,
and a;j41 > 0 on supp @;. Extend a; as a homogeneous function of degree 0, and
set d;j = a;6(2¢). By microlocal ellipticity, there are ¢;(-) € B([0,77,5(1,9))
and 70 ;(-) € B([0,T]; S({§)”>°, g)) such that

¥ () (g g (8)" + 1y (1) = (D) Py (D)edy

for j=0,1,...,N. Here qyy1(t,z,&) = (E)Sf(NH)/th(f)p. Multiplying (A.1)
by d from both sides, we have

— (9 g (1)L, + iH ()" g% ()? — iq¥ (t)2H (1))
>((¢" =V 2g;(1))*)2 1, — Co|(D)* T2 2y (D)Pav 1,

—dyBi(t)dy L, — (),
>((q" D 2q5(6) ") Lo — C((¢" 24541 (8))") Ln = 85" ()T — 155 (£) .
—00 s 2s—j+m—1_2p

Here Tl,jaTNQ,j € B([OaT]aS(<£> 79))7 ﬂj € B([OaT]aS(<£> wy 79))
with supp 3;(t, -, ) C supp a; U supp 3, and C,Cy > 0.

Define P(t) = Z;V:O )\jq;f“ (t)? with a parameter A\ > 0. Then for every A >
Ao := 2C there are €’ > 0 and a € B([0,T], S((€)** 7™ w2, g)), satisfying
supp a(t, -, ) C (U;V:Osupp o) Usupp 3, such that

—(8, P(t) + iH(t)* P(t) — iP(t)H(t))

N

1 . o

> 3 E N ((qU=D/2q,(4))*)21,, — a® (t) I, — C!(DY2Hm=N=2,, (DY
Jj=0
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Lemma A.3. LetseR,p>0and L > 1. Then for everya € Sgpt(l“)7

there are a € SO, ('), b € Sg,,(U), and a constant C > 0 such that the a priori

estimate below holds:

lwe (D) (D) a®u(t)||* + / lw, (D)?(DY* D2 (r) | 2dr
0
< C [ fwe (D)D) "I Ry (r)|2dr + C / lw, (D)?(D)*a" f (7)||2dr

+COI(D) @ u(0)|* + C sup |[(D)* "u(7)|? +C/ (D) =" f()|*dr
0<r<t 0
for allt € [0,T] and u € C1([0,T], H*®(R4, C™)) with f(t) = (0, +iH(t))u(t).

Proof. For L >> 1, take N € N such that N +2 —m > 2L 4 2p(m — 1).
Take a compact set K C I' such that supp a C cone K, apply Lemma A.2 with

this compact set K, and take a € SO, (') such that a(X) = 1 if X € supp fy

and ho(X) > 1/4. Fix A > )¢ and define two seminorms

1/2
N
Ne(tu) = (Z Aj||<qk<m1>/2qj<t>>wu2) (k=0,1).
=0

Note that (P(t)u,u) = No(t,u)?. Then there exists C > 0 such that
(A2) |l (D)?(D) D2y 2 < ONg(t,u)? + C(D)° "l %,
(A3)  Ni(t,u)? < Cllw (D)D)= D2qwy)12 4 0 |(D)* 2

for all u € H*(R4,C") and 0 <t < T.
Let u € C1([0,T], H* (R4, C")) and set f(t) = (0; + iH (t))u(t). Then we
have
%No(t,’u,(t))2
= (O P(t) +iH(t)" P(t) — tP(t)H(t))u(t), u(t)) + 2R(P(t) f (1), u(?))
< =Nt u(t)?/2+ (@ (u(t), u(t) + Cllun(D) (D) =20 2y )2
+ No(t, u(t))® + No(t, f(t))*.

By a Gronwall-type inequality, we get

e*tNg(t,u(t))z—k/O e*TNl(T,u(T))QdT/Q

< No(0,u(0)) + /0 t e (@ (F)u(r),u(r))

+C s (DY (D)2 ()|[2 4 No(r, £(7))? ) dr.



220

SHIN-ICHI Dot

By (A.2), (A.3), and a similar estimate about the term containing «(-), we can

complete the proof. O
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