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Abstract

We consider a Schrödinger equation with linearly bounded magnetic potentials
and a quadratically bounded electric potential when the coefficients of the principal
part do not necessarily converge to constants near infinity. Assuming that there exists
a suitable function f(x) near infinity which is convex with respect to the Hamilton
vector field generated by the (scalar) principal symbol, we show a microlocal smooth-
ing effect, which says that the regularity of the solution increases for all time t ∈ (0, T ]
at every point that is not trapped backward by the geodesic flow if the initial data
decays in an incoming region in the phase space. Here T depends on the potentials;
we can choose T = ∞ if the magnetic potentials are sublinear and the electric poten-
tial is subquadratic. Our method regards the growing potentials as perturbations; so
it is applicable to matrix potentials as well.

§1. Introduction

Let H(t) be a time dependent Schrödinger operator acting on Cn-valued
functions:

H(t) =
d∑

j,k=1

(Dj − aj(t, x))gjk(x)(Dk − ak(t, x)) + V (t, x), (t, x) ∈ R × Rd.
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176 Shin-ichi Doi

Here Dj = −i∂j = −i∂/∂xj ; Mn(C) is the space of all n × n complex ma-
trices; gjk = gkj ∈ C∞(Rd,R), and (gjk(x)) is positive definite for each x;
∂α

x aj , ∂α
x V ∈ C(Rt × Rd

x, Mn(C)) for all α ∈ Nd
0, and aj(t, x), V (t, x) are

Hermitian matrices for each (t, x).
Under suitable conditions, the Cauchy problem for the Schrödinger equa-

tion
(∂t + iH(·))u = 0 in D′(R × Rd,Cn), u(t0) = u0,

is well-posed in the scale of spaces associated with the oscillator Hosc = 1 −
∆ + |x|2. Let S(t, t0) (t, t0 ∈ R) denote the propagator, or the solution op-
erator. This paper is concerned with the smoothing effect of S(t, t0) and the
smoothness of its distribution kernel K(t, t0, x, y) under general conditions on
the coefficients, when

(a) c1Id ≤ (gjk(x)) ≤ c2Id on Rd for some c1, c2 > 0,
(b) (gjk(x)) does not necessarily converge to a constant matrix, and
(c) |aj(t, x)| = O(|x|) and |V (t, x)| = O(|x|2) as |x| → ∞ uniformly on

every compact time interval.

Remark. If Rd has a positive density v(x)dx, v ∈ C∞(Rd), it is natural
to consider the Schrödinger operator of the following form

H̃(t) = v(x)−1
d∑

j,k=1

(Dj − aj(t, x))v(x)gjk(x)(Dk − ak(t, x)) + Ṽ (t, x),

where Ṽ is a Hermitian potential like V . Then v(x)1/2 H̃(t) v(x)−1/2 = H(t)
with V (t, x) = Ṽ (t, x) + ( 1

2∆g,v log v(x) − 1
4gx(d log v, d log v))In. Here for

f ∈ C∞(Rd) we set ∆g,vf(x) = v(x)−1
∑d

j,k=1 ∂j

(
v(x)gjk(x)∂kf(x)

)
and

gx(df, df) =
∑d

j,k=1 gjk(x)(∂jf(x))(∂kf(x)).

What are our difficulties? When (gjk(x)) = (δjk), the previous works have
regarded the potentials of the maximal order in (c) as part of the principal part
and used the Hamilton flow of this “principal symbol” to construct important
operators such as the fundamental solution, a parametrix, and a conjugate
operator; this construction has called for deriving detailed estimates of the
Hamilton flow, which has required stronger conditions on the derivatives of the
potentials. When (gjk(x)) does not converge to a constant matrix as |x| →
∞, the nontrapped bicharacteristic curve of the principal symbol h0(x, ξ) =∑d

j,k=1 gjk(x)ξjξk has no asymptotic velocity in general, because the short-
range condition, |∇xgjk(x)| = O(|x|−1−ε) as |x| → ∞ for some ε > 0, fails; so
it seems hopeless to derive detailed estimates, or precise asymptotic behavior,
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Smoothness for Schrödinger Equations 177

of the Hamilton flow of the “principal symbol” when the maximally growing
potentials are present. When n ≥ 2, the “principal symbol” is no more scalar,
and hence the Hamilton flow cannot be defined. These are typical difficulties.

Our remedy is simple: we should regard the potentials of order (c) as
perturbations and use only qualitative properties of the Hamilton flow of the
principal symbol. To control the asymptotic behavior of the Hamilton flow,
we assume that there exists a suitable strictly convex function fcv ∈ C∞(Rd)
near infinity with respect to the Hamilton vector field Hh0 =

∑d
j=1

(
∂h0
∂ξj

∂
∂xj

−
∂h0
∂xj

∂
∂ξj

)
. Then we can regard the potentials of order (c) as perturbations, not

for all t ∈ R in general, but for all t ∈ [0, T ]. Here T > 0 is the largest number
satisfying

T · lim
R→∞

sup
t∈[0,T ],|x|≥R

d∑
j=1

|∇xaj(t, x)| + T 2 · lim
R→∞

sup
t∈[0,T ],|x|≥R

|∇xV (t, x)|
|x| ≤ c

for a constant c = c(d, h0, fcv) > 0 independent of the potentials. On this inter-
val, we use a kind of positive commutator method by constructing a conjugate
operator as a time dependent scalar pseudodifferential operator whose symbol is
an explicit function of h0, r =

√
fcv, and their Poisson bracket {h0, r} := Hh0r.

Thus we need no detailed estimates of the Hamilton flow of either the principal
symbol or the “principal symbol” (the latter should have been scalar, because
the Hamilton flow of a matrix-valued function makes no sense in general). As
a by-product, we can largely relax the conditions on the derivatives of the
coefficients and handle the matrix potentials as well.

Why can we regard the potentials as perturbations? We shall heuristically
explain this when n = 1 and (gjk(x)) = Id outside a compact set (then we can
choose r(x) = 〈x〉 :=

√
1 + |x|2). Let h(t) be the Weyl symbol of H(t) and

Φts the (2-parameter) Hamilton flow of h(t). Let K(t) be an invertible, time
dependent pseudodifferential operator with Weyl symbol k(t, x, ξ) = eλ(t,x,ξ)

for a nonnegative symbol λ (0 ≤ t ≤ T ). Under suitable conditions, we have

K(t)(∂t + iH(t))K(t)−1 = ∂t + iH(t) + P (t) + Q(t),

where the Weyl symbol of P (t) is −(∂tλ(t) + Hh(t)λ(t)), and Q(t)∗ + Q(t) is
bounded. Setting u(t) = S(t, 0)u0, we can show the estimate

‖K(t)u(t)‖2 +
∫ t

0

(P (τ )K(τ )u(τ ), K(τ )u(τ ))dτ ≤ C‖K(0)u0‖2, t ∈ [0, T ],

for a constant C > 0 independent of u0 and t ∈ [0, T ]. If −(∂tλ(t) + Hhλ(t))
is bounded from below, then we can obtain an effective microlocal estimate of
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u(·) in the set AT = {(t, x, ξ) ∈ [0, T ] × T ∗Rd \ {0}; λ(t, x, ξ) > 0}. Therefore
we require AT to be backward invariant under the (2-parameter) Hamilton flow
of h(t): Φts(x, ξ) ∈ AT if (s, x, ξ) ∈ AT and 0 ≤ t ≤ s ≤ T . Sometimes we
can replace h(t) by another “principal symbol” in requiring the last condition.
This is the case where the potentials are bounded with additional conditions
on the derivatives. Then we can choose AT = [0, T ] × S, where

S =
{

(x, ξ) ∈ T ∗Rd \ 0; 〈x〉 > R′,
x · ξ
〈x〉|ξ| < −δ′

}
(R′ � 1, 0 < δ′ � 1)

is backward invariant under the Hamilton flow of |ξ|2. However, when the
potentials are unbounded as in (c), we cannot control the order of 〈x〉 on
[0, T ] × S. So we require that 〈x〉 ≤ CT |ξ| on AT for a constant C > 0
independent of T . In fact, we can choose

AT =
{

(t, x, ξ) ∈ [0, T ] × T ∗Rd \ 0; R′ < 〈x〉 < 5(2T − t)|ξ|, x · ξ
〈x〉|ξ| < −δ′

}
.

Then this set is backward invariant under the (2-parameter) Hamilton flow of
h(t) if c(d, h0, fcv) is sufficiently small. On this set, we can compare the order of
the potentials with that of the principal part, because 〈x〉 ≤ 10T |ξ| holds there.
Therefore we can regard the potentials as perturbations when c(d, h0, fcv) is
sufficiently small.

Let us write the operator H(t) in the following form:

H(t) =


 d∑

j,k=1

Djg
jk(x)Dk


 In −

d∑
j=1

(aj(t, x)Dj + Dja
j(t, x)) + b(t, x);

aj(t, x) =
d∑

k=1

gjk(x)ak(t, x), b(t, x) = V (t, x) +
d∑

j,k=1

aj(t, x)gjk(x)ak(t, x).

Then the Weyl symbol h(t) of H(t) is

h(t, x, ξ) = h0(x, ξ)In + h1(t, x, ξ) + h2(t, x, ξ);

h0(x, ξ) =
d∑

j,k=1

gjk(x)ξjξk, h1(t, x, ξ) = −2
d∑

j=1

aj(t, x)ξj,

h2(t, x, ξ) = h2(t, x) = b(t, x) +
1
4

d∑
j,k=1

∂j∂kgjk(x) In.

We recall related results when the operator is scalar (n = 1).



�

�

�

�

�

�

�

�

Smoothness for Schrödinger Equations 179

(i) Assume gjk(x) = δjk and that with some ε > 0

|∂α
x aj(t, x)| + |∂α

x (∂taj(t, x) + ∂jV (t, x))| ≤ Cα, t ∈ R, x ∈ Rd,

|∂α
x (∂kaj(t, x) − ∂jak(t, x))| ≤ C ′

α(1 + |x|)−1−ε, t ∈ R, x ∈ Rd,

for all α ∈ Nd
0 with |α| ≥ 1. Then K(t, s, x, y) is C∞ in x, y when 0 < |t−s| ≤ T

for some T > 0 (see [6] when aj = 0 and [24, 25] in the general case). Remark
that V can be eliminated by the change of the unknown function: u(t, x) 
→
v(t, x) = u(t, x) exp(i

∫ t

0
V (τ, x)dτ ).

(ii) Assume gjk(x) = δjk, aj = 0, and

lim
R→∞

sup
t∈R,|x|≤R

|∂α
x V (t, x)| = 0 if |α| = 2;

|∂α
x V (t, x)| ≤ Cα, t ∈ R, x ∈ Rd, if |α| ≥ 3.

Then K(t, s, x, y) is C∞ in x, y when t �= s ([26]). See also [13].
(iii) Assume d = 1, g11(x) = 1, a1 = 0, and V (t, x) = V (x) ≥ C(1 +

|x|)2+ε near infinity for some ε > 0 as well as other technical conditions. Then
K(t, s, x, y) is nowhere C1 ([26]).

(iv) Assume gjk(x) = δjk, aj = 0, V (t, x) = |x|2 + W (t, x) with W (t, x) =
o(|x|2) as |x| → ∞. Then K(t, 0, x, y) is C∞ in x for every y ∈ Rd and
nonresonant t /∈ (π/2)Z under general conditions on W , and shows various
phenomena such as recurrence and dispersion of singularities for resonant t ∈
(π/2)Z depending on the growth order of W (x) ([14, 17, 21, 27, 28]).

(v) Assume for some ε > 0 and δ > 0

|∂α
x (gjk(x) − δjk)| ≤ Cα(1 + |x|)−1−ε−|α|, x ∈ Rd,

and aj(t, x) = aj(x) = O(|x|1−δ), b(t, x) = b(x) = O(|x|1−δ) as |x| → ∞ as well
as similar conditions on the derivatives. Then the Hs microlocal regularity of a
solution for the Cauchy problem increases for all t > 0 at a point in T ∗Rd \ 0 if
the point is not trapped backward by the Hamilton flow of h0 and if the initial
data decays along the backward bicharacteristics through that point ([1]).

See [3, 5] for the absence of smoothing effects due to the trapping of the
Hamilton flow of the principal symbol. See also [3, 4, 5, 9, 10, 11, 12, 15, 16,
18, 19, 20, 22, 23] for related results in other frameworks.

Our goal is to handle the mixed case of (i) ,(ii), and (v) under relaxed con-
ditions, which allow (a), (b), and (c). The case (iv) will be discussed elsewhere.

We explain the plan of this paper. Section 2 states the main results: the
well-posedness of the Cauchy problem for the Schrödinger equation (Subsec-
tion 2.1) and the smoothing effect of the associated propagator (Subsection
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2.2). Section 3 recalls the Weyl calculus of pseudodifferential operators and
proves related lemmas. Section 4 proves two well-posedness theorems of the
Cauchy problem: one for the Schrödinger equation in Section 1 and the other
for a more general Schrödinger equation appearing in Section 7. Section 5
shows how the Schrödinger operator is transformed when conjugated by an in-
vertible pseudodifferential operator. Section 6 proves first, a smoothing effect
of the Schrödinger propagator, local in time and global in an incoming region
in T ∗Rd \ 0, by using Section 5; second, a smoothing effect at every point of
T ∗Rd \ 0 that is not trapped backward by the Hamilton flow of the principal
symbol by using the result from Appendix A. Section 7 proves all assertions
in Section 2 except for Theorem 2.8. Section 8 discusses the smoothing effect
of order half, or the so-called local smoothing effect, from which Theorem 2.8
follows. Appendix A shows an energy estimate along the Hamilton flow of the
principal symbol for a general dispersive equation.

Finally I would like to thank the referee for many useful comments.
Notation. N0 = N ∪ {0}. Ck(U, V ) is the set of all Ck maps from U to V

(k ∈ N0 ∪ {∞}), and C(U, V ) = C0(U, V ); V is omitted if V = C. For locally
convex spaces E and F , L(E, F ) is the set of all continuous linear operators
from E to F , and L(E) = L(E, E); L(Cn) is identified with Mn(C). The
symbol (·, ·) denotes the inner product of L2(Rd) or L2(Rd,Cn) by abuse of
notation, and ‖ · ‖ the norm. For v ∈ Rn, 〈v〉 = (1 + |v|2)1/2. For a subset A

of T ∗Rd, set cone(A) = {(x, tξ); (x, ξ) ∈ A, t > 0}.

§2. Main Results

§2.1. Well-posedness of the Cauchy problem

Throughout Section 2, we assume that the following conditions (H1)–(H4)
hold for some 0 < δ < 1.

(H1) c1Id ≤ (gjk(x)) ≤ c2Id on Rd for some c1, c2 > 0.

(H2) For every α ∈ Nd
0 with |α| ≥ 1, there is Cα(g) > 0 such that

|∂α
x gjk(x)| ≤ Cα(g)〈x〉−1+δ(|α|−1)

, x ∈ Rd, j, k = 1, . . . , d.

(H3) For every compact set I ⊂ R and α ∈ Nd
0, there is Cα(a, I) > 0 such

that

|aj(t, x)| ≤ C0(a, I)〈x〉, t ∈ I, x ∈ Rd, j = 1, . . . , d;

|∂α
x aj(t, x)| ≤ Cα(a, I)〈x〉δ(|α|−1), t ∈ I, x ∈ Rd, j = 1, . . . , d, if |α| ≥ 1.
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(H4) For every compact set I ⊂ R and α ∈ Nd
0, there is Cα(b, I) > 0 such

that

|b(t, x)| ≤ C0(b, I)〈x〉2, t ∈ I, x ∈ Rd;

|∂α
x b(t, x)| ≤ Cα(b, I)〈x〉1+δ(|α|−1)

, t ∈ I, x ∈ Rd, if |α| ≥ 1.

The condition (H1) implies that the Hamilton vector field Hh0 is com-
plete on T ∗Rd, because h0 is constant on each integral curve. Let Φt =
exp(tHh0) (t ∈ R) be the Hamilton flow of Hh0 ; in other words, Φt(y, η) =
(x(t, y, η), ξ(t, y, η)) is the solution of the system of ordinary differential equa-
tions

ẋj(t) = ∂ξj
h0(x(t), ξ(t)), xj(0) = yj ,

ξ̇j(t) = −∂xj
h0(x(t), ξ(t)), ξj(0) = ηj (1 ≤ j ≤ d).

Next we define Sobolev spaces Bs(Rd) (s ∈ R) (cf. [7]). Let Hosc be the
self-adjoint extension of the operator 1−∆+ |x|2 with domain C∞

0 (Rd). Then
for every s ∈ R, H

s/2
osc is continuous on S(Rd) and extends to a continuous

linear operator on S′(Rd) (with the weak* topology), denoted also by H
s/2
osc .

We set
Bs(Rd) = {u ∈ S′(Rd); Hs/2

osc u ∈ L2(Rd)}.

These spaces are characterized as follows:

Bs(Rd) = {u ∈ L2(Rd); 〈x〉su ∈ L2(Rd), 〈D〉su ∈ L2(Rd)} (s ≥ 0);

Bs(Rd) = B−s(Rd)′ (s ≤ 0).

The vector-valued Sobolev spaces Bs(Rd,Cn) are similarly defined.
After preparing the Weyl calculus in Section 3, we shall prove in Lemma

4.1 that for every s ∈ R there is L(s) � 1 such that the operator Es with Weyl
symbol

es(x, ξ) = (h0(x, ξ) + |x|2 + L(s)2)s/2

is a homeomorphism from Br+s(Rd) to Br(Rd) for all r ∈ R. We use ‖Es · ‖ as
a norm of Bs(Rd) (or Bs(Rd,Cn)), where ‖ · ‖ = ‖ · ‖L2(Rd) (or ‖ · ‖L2(Rd,Cn)).

Now we state our two theorems on the well-posedness of the Cauchy prob-
lem.

Theorem 2.1. Let s ∈ R, I = [t1, t2] (t1 < t2), and t0 ∈ I. For every
u0 ∈ Bs(Rd,Cn) and f ∈ L1(I,Bs(Rd,Cn)), there exists u ∈ C(I,Bs(Rd,Cn))
satisfying

(2.1) (∂t + iH(·))u = f in D′((t1, t2) × Rd,Cn), u(t0) = u0,
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which is unique in C(I,S′(Rd,Cn)). Moreover, the solution u satisfies the
following estimate

(2.2) e−γ|t−t0|‖Esu(t) ‖ ≤ ‖Esu(t0) ‖ +
∣∣∣∣
∫ t

t0

e−γ|τ−t0|‖Esf(τ ) ‖ dτ

∣∣∣∣ , t ∈ I.

Here γ ≥ 0 depends on s ∈ R and on the constants c1, c2, Cα(g), Cα(a, I), and
Cα(b, I) in (H1)–(H4), but not on f , u0, or u. In particular, γ = 0 if s = 0.

Theorem 2.2. Let S(t, t0) ∈ L(S′(Rd,Cn)) (t, t0 ∈ R) be the operator
mapping u0 ∈ S′(Rd,Cn) to u(t) ∈ S′(Rd,Cn), where u ∈ C(R,S′(Rd,Cn))
is the solution of the Cauchy problem

(2.3) (∂t + iH(·))u = 0 in D′(R × Rd,Cn), u(t0) = u0.

(1) S(t, t) = 1 and S(t, s)S(s, r) = S(t, r) on S′(Rd,Cn) (t, s, r ∈ R).
(2) For every compact interval I, {S(t, t0)|Bs(Rd,Cn); t, t0 ∈ I} is bounded

in L(Bs(Rd,Cn)).
(3) R×R×Bs(Rd,Cn) � (t, t0, u0) 
→ S(t, t0)u0 ∈ Bs(Rd,Cn) is contin-

uous.
(4) S(t, t0)|L2(Rd,Cn) ∈ L(L2(Rd,Cn)) is unitary.
(5) If H = H(t) is time independent, then H|C∞

0 (Rd,Cn) is essentially
self-adjoint. If H denotes also its self-adjoint extension, then e−i(t−t0)Hu0 =
S(t, t0)u0 for every t, t0 ∈ R and u0 ∈ L2(Rd,Cn).

§2.2. Smoothing effects

The asymptotic behavior of Φt plays an important role in the smoothing
effect of the propagator S(t, s). We introduce several subsets of T ∗Rd \ 0
consisting of the points which are trapped forward or backward by Φt:

T+ = {X ∈ T ∗Rd \ 0; lim
t→∞

|Φt(X)| �= ∞},

T− = {X ∈ T ∗Rd \ 0; lim
t→−∞

|Φt(X)| �= ∞};

Tcpt,+ = {X ∈ T ∗Rd \ 0; {Φt(X); t ≥ 0} is relatively compact},
Tcpt,− = {X ∈ T ∗Rd \ 0; {Φt(X); t ≤ 0} is relatively compact}.

Put Tcpt = Tcpt,+∩ Tcpt,−. To control the asymptotic behavior of Φt, we assume
the following condition (H5) in addition to (H1)–(H4) stated at the beginning
of this section.
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(H5) (convexity near infinity). There exists fcv ∈ C∞(Rd), lim|x|→∞ fcv

(x) = ∞, fcv ≥ 1, such that for every α ∈ Nd
0 with |α| ≥ 2, ∂αfcv ∈ L∞(Rd)

and that for some σ > 0, R > 0

H2
h0

fcv ≥ 2σ2h0 on {(x, ξ) ∈ T ∗Rd; r(x) :=
√

fcv(x) ≥ R}.

Remark. The function fcv in (H5) satisfies fcv(x)−1 = O(|x|−2) as |x| →
∞. In fact, take M > 0 such that {x ∈ Rd; |x| ≥ M} ⊂ {x ∈ Rd; fcv(x) ≥ R2}.
For x ∈ Rd, |x| > M , take T > 0 and (y, η) ∈ T ∗Rd such that |y| = M ,
h0(y, η) = 1, |x(t, y, η)| > M (0 < t < T ), and x(T, y, η) = x, where Φt(y, η) =
(x(t, y, η), ξ(t, y, η)). This is possible because Φt is a complete geodesic flow.
Then T ≥ c|x − y| for some c > 0 independent of T, x, y by (H1), and

fcv(x) = fcv(y) + (Hh0fcv)(y, η)T +
∫ 1

0

(1 − θ)(H2
h0

fcv)(ΦθT (y, η))dθ T 2

≥ fcv(y) + (Hh0fcv)(y, η)T + σ2T 2

by (H5). Therefore lim inf |x|→∞ fcv(x)/|x|2 ≥ c2σ2.

Remark. If |∇xgjk(x)| = o(|x|−1) as |x| → ∞, then (H5) holds with
fcv(x) = 1 + |x|2.

Remark. Let a ∈ C∞([1,∞)) such that C−1 ≤ a ≤ C with C > 0
and ∂ka(r) = O(r−1) for all k ∈ N. Assume lim supr→∞ a′(r)r/a(r) <

1. If (gjk(x)) = a(|x|)2I near infinity, then (H5) is satisfied with fcv(x) =
(
∫ |x|
1

a(r)−1dr)2 near infinity. In fact, using the coordinates t =
∫ r

1
a(s)−1ds

(r = |x|) and ω = x/|x| ∈ Sd−1, we have fcv = t2 and h0 = τ2 + α(t)2p, where
τ is the dual variable of t, −p is the principal symbol of the Laplacian on Sd−1,
and α(t) = a(r)/r. Hence H2

h0
t2 = 8τ2 +8α(t)2pt/r · (a(r)− ra′(r)) ≥ ch0 near

infinity for some c > 0.
For example, when a(r) = 1+c sin(ε log r) with c ∈ R and ε > 0 satisfying

c2(1 + ε2) < 1, then (H5) holds.

The requirement that ∂αfcv ∈ L∞(Rd) for all |α| ≥ 3 is not essential in
(H5), as the following lemma shows.

Lemma 2.3. Let f ∈ C2(Rd), f ≥ 1, lim|x|→∞ f(x) = ∞, such that
for every α ∈ Nd

0 with |α| = 2,

sup
x∈Rd

|∂αf(x)| < ∞, lim
|h|→+0

sup
x∈Rd

|∂αf(x + h) − ∂αf(x)| = 0,
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and that for some σ̃ > 0, R̃ > 0,

H2
h0

f ≥ 2σ̃2h0 on {(x, ξ) ∈ T ∗Rd; f(x) ≥ R̃2}.

Then for every 0 < σ < σ̃ and R > R̃, there exists fcv ∈ C∞(Rd) such that
(H5) holds with these σ, R, and fcv.

The condition (H5) ensures the existence of a positively (or negatively)
invariant set S+(R′, σ′) (or S−(R′, σ′)) defined below, which asymptotically
includes every positive (or negative) orbit that is not relatively compact. The
role of this set becomes clearer in Section 6. Let S∗Rd = {X ∈ T ∗Rd; h0(X) =
1}. Remark that h0 ◦ Φt = h0.

Proposition 2.4 [5, Theorem 3.2]. For R′ ≥ R, 0 < σ′ < σ, set

S+(R′, σ′) = {X = (x, ξ) ∈ S∗Rd; r(x) > R′, Hh0r(X) > σ′},
S−(R′, σ′) = {X = (x, ξ) ∈ S∗Rd; r(x) > R′, −Hh0r(X) > σ′},

where R and σ are the constants in (H5).
(1)+ ΦtS+(R′, σ′) ⊂ S+(R′, σ′) if t ≥ 0.
(1)− ΦtS−(R′, σ′) ⊂ S−(R′, σ′) if t ≤ 0.
(2)+ For every X0 ∈ S∗Rd \ Tcpt,+, there exists T > 0 such that Φt(X0) ∈

S+(R′, σ′) if t ≥ T . In particular, T+ = Tcpt,+.
(2)− For every X0 ∈ S∗Rd \Tcpt,−, there exists T > 0 such that Φt(X0) ∈

S−(R′, σ′) if t ≤ −T . In particular, T− = Tcpt,−.
(3) Tcpt ∩ S∗Rd is a compact subset of {(x, ξ) ∈ T ∗Rd \ 0; r(x) < R}.

To state our main results, we need some notation. For a bounded interval
I ⊂ R, set

µ1(I, L) =
d∑

j=1

sup
t∈I,|x|≥L

|∇xaj(t, x)|, µ1(I) = lim
L→∞

µ1(I, L);

µ2(I, L) = sup
t∈I,|x|≥L

|∇xb(t, x)|
|x| , µ2(I) = lim

L→∞
µ2(I, L).

Remark. Set µ′
2(I, L) = supt∈I,|x|≥L

|∇xh2(t,x)|
|x| . Then limL→∞ µ′

2(I, L)
= µ2(I).

Remark. Set µ′
1(I, L) =

∑d
j=1 supt∈I,|x|≥L

|aj(t,x)|
|x| and µ′

1(I) = limL→∞
µ′

1(I, L). Then µ′
1(I) ≤ µ1(I), because the equation aj(t, x) = aj(t, εx) +∫ 1

ε
∇xaj(t, θx) · x dθ gives that µ′

1(I, L) ≤ εµ′
1(I, εL) + (1 − ε)µ1(I, εL) for

every 0 < ε < 1 and L ≥ 1.
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Theorem 2.5. There exists c(d, h0, r) > 0 such that for every bounded
interval I = [t1, t2] (t1 < t2) satisfying µ1(I)|I| + µ2(I)|I|2 ≤ c(d, h0, r), the
assertion below holds: If a ∈ S0

1,0 = S(1, |dx|2 + 〈ξ〉−2|dξ|2) satisfies that

supp a ∩ T− = ∅ (resp. supp a ∩ T+ = ∅)

and that π(supp a) is relatively compact, then the mappings

〈x〉−ρBs(Rd,Cn) � u0 
→ |t − t1|ρawS(t, t1)u0 ∈ C(It,Bs+ρ(Rd,Cn)),

〈x〉−ρBs(Rd,Cn) � u0


→ |t − t1|ρawS(t, t1)u0 ∈ L2(It,Bs+ρ+1/2(Rd,Cn))(
resp. 〈x〉−ρBs(Rd,Cn) � u0 
→ |t − t2|ρawS(t, t2)u0 ∈ C(It,Bs+ρ(Rd,Cn)),

〈x〉−ρBs(Rd,Cn) � u0


→ |t − t2|ρawS(t, t2)u0 ∈ L2(It,Bs+ρ+1/2(Rd,Cn))
)

are continuous for all s ∈ R and ρ ∈ [0,∞). Here π : T ∗Rd � (x, ξ) 
→ x ∈ Rd.

Remark. Theorem 2.5 is a corollary of more general theorems (see
Theorems 6.2 and 6.5). It suffices to assume that the initial data decays in an
incoming region S−(R′, σ′) (resp. in an outgoing region S+(R′, σ′)) in a sense.

Corollary 2.6. Let c(d, h0, r) > 0 be the constant in Theorem 2.5.
Then for every bounded interval I = [t1, t2] (t1 < t2) satisfying µ1(I)|I| +
µ2(I)|I|2 ≤ c(d, h0, r), the assertion below holds: For every u0 ∈ E ′(Rd,Cn)

WF (S(t, t0)u0) ⊂ T−, t1 ≤ t0 < t ≤ t2;

WF (S(t, t0)u0) ⊂ T+, t1 ≤ t < t0 ≤ t2.

Corollary 2.7. Let c(d, h0, r) > 0 be the constant in Theorem 2.5.
Then for every bounded interval I = [t1, t2] (t1 < t2) satisfying µ1(I)|I| +
µ2(I)|I|2 ≤ c(d, h0, r),

WF (K(t, t0)) ⊂ (T− × T−) ∪ (0 × T−) ∪ (T− × 0), t1 ≤ t0 < t ≤ t2;

WF (K(t, t0)) ⊂ (T+ × T+) ∪ (0 × T+) ∪ (T+ × 0), t1 ≤ t < t0 ≤ t2.

Here 0 is the zero section of T ∗Rd.

Theorem 2.8 (smoothing effect of order half). Let s ∈ R and 0 < ν �
1. Let I = [t1, t2] (t1 < t2) and t0 ∈ I.
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(1) If Tcpt = ∅, then there exists C > 0 such that the following estimates
hold:∣∣∣∣

∫ t

t0

‖〈x〉−(1+ν)/2Es+1/2u(τ )‖2dτ

∣∣∣∣ ≤ C‖Esu(t0)‖2 + C

(∫ t

t0

‖Esf(τ )‖dτ

)2

,

‖Esu(t)‖2 +
∣∣∣∣
∫ t

t0

‖〈x〉−(1+ν)/2
Es+1/2u(τ )‖2dτ

∣∣∣∣
≤ C‖Esu(t0)‖2 + C

∣∣∣∣
∫ t

t0

‖〈x〉(1+ν)/2
Es−1/2f(τ )‖2dτ

∣∣∣∣
for all t ∈ I and u ∈ C1(I,S(Rd,Cn)) with f(t) = (∂t + iH(t))u(t).

(2) For every a ∈ S(1, |dx|2+|dξ|2/〈X〉2) satisfying cone(supp a)∩Tcpt = ∅,
there exists C > 0 such that the following estimate holds:
∣∣∣∣
∫ t

t0

‖〈x〉−(1+ν)/2Es+1/2a
wu(τ )‖2dτ

∣∣∣∣ ≤ C‖Esu(t0)‖2 + C

(∫ t

t0

‖Esf(τ )‖dτ

)2

for all t ∈ I and u ∈ C1(I,S(Rd,Cn)) with f(t) = (∂t + iH(t))u(t).

Remark. In contrast to Theorem 2.5, Theorem 2.8 holds for every com-
pact interval I with no distinction between the forward, and backward, prop-
agators (especially, observe the condition cone(supp a) ∩ Tcpt = ∅ in (2)). See
Section 8 for the comparison among various nontrapping conditions.

Remark. The smoothing effect of order half fails at almost every point
in Tcpt. See [3, 5] for details in a little different framework.

§3. Weyl Calculus

In this section, we recall the Weyl calculus due to Hörmander (see [8,
Chapters 18.4-6] for details) and prove related lemmas.

For a Riemannian metric g on V = RN and a positive function m ∈
C(RN ), the symbol space S(m, g) is the set of all a ∈ C∞(RN ) such that for
every k ∈ N0

‖a‖k,S(m,g) =
k∑

j=0

sup

{
| ∂v1 · · · ∂vj

a(x) |
m(x)

∏j
i=1 gx(vi)1/2

; x ∈ RN , 0 �= vi ∈ RN

}
< ∞,

where ∂vf(x) = (d/dt)|t=0f(x + tv) and gx(v) = gx(v, v). It is a Fréchet
space with seminorms ( || · ||k,S(m,g) )k=0,1,.... A sequence (an)n=1,2,... in S(m, g)
is said to converge to a weakly in S(m, g), or simply an → a weakly in
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S(m, g), if (an) is bounded in S(m, g) and converges to a in C∞(RN ) (or
equivalently, in D′(RN )). Let S(m, g; Mn(C)) denote the Mn(C)-valued sym-
bol space S(m, g) ⊗ Mn(C) = {(ajk)1≤j,k≤n; ajk ∈ S(m, g) }; the seminorms
‖a‖k,S(m,g;Mn(C)) are defined similarly to ‖a‖k,S(m,g) except that |a(x)| =
‖a(x)‖L(Cn) in the former definition.

From now on, we consider the case where V = R2d ∼= Rd × (Rd)′. Let σ

be the canonical 2-form on R2d

σ(X, Y ) = ξ · y − η · x,

where X = (x, ξ), Y = (y, η) ∈ R2d. Let g be a Riemannian metric on R2d.
The Riemannian metric gσ on R2d is defined by

gσ
X(Y ) = sup

Y ′ 	=0

σ(Y, Y ′)2

gX(Y ′)
.

We consider three conditions on g.

(G1) (slow variation). There are c, C > 0 such that for every X, Y, Z ∈ R2d

gX(Y ) ≤ c ⇒ C−1gX(Z) ≤ gX+Y (Z) ≤ CgX(Z).

(G2) (σ temperance). There are C, N > 0 such that for every X, Y, Z ∈
R2d

gY (Z) ≤ CgX(Z)(1 + gσ
Y (X − Y ))N .

(G3) (uncertainty principle). For every X ∈ R2d

γ(X) = sup
Y ∈R2d,Y 	=0

(gX(Y )/gσ
X(Y ))1/2 ≤ 1.

In the rest of this section, we fix a Riemannian metric g satisfying (G1)–(G3).
A positive function m : R2d → (0,∞) is said to be a g weight if it satisfies the
following conditions.

(M1) (g continuity). There are c, C > 0 such that for every X, Y ∈ R2d

gX(Y ) ≤ c ⇒ C−1 ≤ m(X + Y )/m(X) ≤ C.

(M2) (σ, g temperance). There are C, N > 0 such that for every X, Y ∈
R2d

m(Y ) ≤ Cm(X)(1 + gσ
Y (X − Y ))N .
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Remark. For every nonzero Y ∈ R2d, gX(Y ) is a g weight as a function
of X. In particular, if g = ϕ2|dx|2 + Φ2|dξ|2 for positive functions ϕ and Φ,
then ϕ and Φ are g weights. For a g weight m, ms is a g weight for every s ∈ R,
and so is log m if inf m > 1.

As a symbol-to-operator correspondence, we adopt the Weyl quantization.
For a ∈ S′(R2d), the operator aw = aw(x, D) ∈ L(S(Rd),S′(Rd)) is defined by

awu(x) = aw(x, D)u (x) =
1

(2π)d

∫∫
a

(
x + y

2
, ξ

)
ei(x−y)·ξu(y)dydξ,

u ∈ S(Rd),

where the integral is in the sense of temperate distribution. Then the correspon-
dence Op : S′(R2d) � a 
→ Op(a) = aw ∈ L(S(Rd),S′(Rd)) is an isomorphism.
For A ∈ L(S(Rd),S′(Rd)), set σ(A) = (Op)−1(A), called the Weyl symbol
of A.

If a1, a2 ∈ S(R2d), then aw
1 aw

2 = (a1#a2)w with

(a1#a2)(X) = exp
(

iσ(DX , DY )
2

)
a1(X)a2(Y )|Y =X

=
N−1∑
j=0

1
j!

(
iσ(DX , DY )

2

)j

a1(X)a2(Y )|Y =X + rN (a1, a2)(X);

rN (a1, a2)(X)

=
∫ 1

0

(1 − θ)N−1

(N − 1)!
exp

(
iθσ(DX , DY )

2

) (
iσ(DX , DY )

2

)N

a1(X)a2(Y )|Y =Xdθ.

Here N ∈ N. Set r0(a1, a2) = a1#a2.
Now we recall fundamental theorems due to Hörmander.

Theorem 3.1 [8, Theorem 18.5.4]. Let m1, m2 be g weights and N ∈
N0. Then the map S(R2d) × S(R2d) � (a1, a2) 
→ rN (a1, a2) ∈ S(R2d) can
be extended to a weakly continuous bilinear map from S(m1, g) × S(m2, g) to
S(γNm1m2, g), denoted by the same symbol. Moreover, the extended bilinear
map is bounded from S(m1, g) × S(m2, g) to S(γNm1m2, g).

Theorem 3.2 [8, Theorems 18.6.2, 18.6.3, and 18.6.14]. (1) Let m

be a g weight. Then S(m, g) � a 
→ aw ∈ L(S(Rd)) (resp.
L(S′(Rd)) ) is continuous. Moreover, if an → a weakly in S(m, g), then
aw

n u → awu in S(Rd) (resp. S′(Rd) ) for all u ∈ S(Rd) (resp. S′(Rd) ). Here
S′(Rd) is endowed with the weak* topology.
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(2) The map S(1, g) � a 
→ aw ∈ L(L2(Rd)) is continuous. Moreover, if
an → a weakly in S(1, g), then aw

n u → awu in L2(Rd) for all u ∈ L2(Rd).
(3) (The sharp G̊arding inequality). If a ∈ S(γ−1, g; Mn(C)) satisfies �a =

(a + a∗)/2 ≥ 0, then there exists a continuous seminorm C(·) on S(γ−1, g; Mn

(C)) such that

�(awu, u) ≥ −C(a)‖u‖2, u ∈ S(Rd,Cn).

Here (u, v) = (u, v)L2(Rd,Cn), ‖u‖ =
√

(u, u).
(4) Let mj be a g weight, and aj ∈ S(mj, g) (j = 1, 2). Then aw

1 aw
2 =

(a1#a2)w.

Example. Let us reconsider Bs(Rd). Since H
s/2
osc ∈ S(〈X〉s, 〈X〉−2|dX|2)

with σ(Hs/2
osc ) − 〈X〉s ∈ S(〈X〉s−2

, 〈X〉−2|dX|2) (see [7]), it follows

Bs(Rd) = {u ∈ S′(Rd); Pu ∈ L2(Rd) for all P ∈ Op S(〈X〉s, 〈X〉−2|dX|2)}.

The following lemma is useful for obtaining better estimates of the remain-
der term of a symbol product.

Lemma 3.3. For g weights m1 and m2, the maps

Qθ : S(R2d) × S(R2d)

� (a1, a2) 
→ exp
(

iθσ(DX , DY )
2

)
a1(X)a2(Y )|Y =X ∈ S(R2d)

extend to weakly continuous bilinear maps from S(m1, g) × S(m2, g) to
S(m1m2, g) for all θ ∈ [0, 1], denoted by the same symbol. Moreover, for
every j ∈ N0 there are C > 0 and k ∈ N0 such that for all (θ, a1, a2) ∈
[0, 1] × S(m1, g) × S(m2, g)

‖Qθ(a1, a2)‖j,S(m1m2,g) ≤ C‖a1‖k,S(m1,g)‖a2‖k,S(m2,g).

In particular, if (a1, a2) ∈ S(m1, g) × S(m2, g) satisfies that

σ(DX , DY )Na1(X)a2(Y ) =
n∑

k=1

a1,k(X)a2,k(Y )

with some N ∈ N0, g weights mj,k, and symbols aj,k ∈ S(mj,k, g), j = 1, 2,
k = 1, . . . , n, then rN (a1, a2) ∈ S(

∑n
k=1 m1,km2,k, g).

Proof. The first part follows from the chapters 18.4-5 of [8] if uniformity
in θ is considered. The second part is valid because

rN (a1, a2)(X) =
iN

(N − 1)!2N

n∑
k=1

∫ 1

0

(1 − θ)N−1Qθ(a1,k, a2,k)(X)dθ.
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Next we prepare a series of lemmas.

Lemma 3.4. Assume that g is of the form

gX = ϕ(X)2|dx|2 + Φ(X)2|dξ|2, X ∈ R2d,

where ϕ and Φ are positive functions. Let ϕ0 be a g weight such that ϕ0 ≤ ϕ

on R2d, and set γ0 = ϕ0Φ (recall that γ = ϕΦ in this case). For N ∈ N0

and a g weight m, denote by SN (m, ϕ0, g) the set of all a ∈ S(m, g) satisfying
∂α

x a ∈ S(ϕ|α|
0 m, g) for all α ∈ Nd

0 with |α| ≤ N , which has a natural Fréchet
space structure.

(1) SN (m, ϕ0, g) ⊂ SN+1(m/γ0, ϕ0, g).
(2) If (a1, a2) ∈ SN (m1, ϕ0, g) × SN (m2, ϕ0, g), then

rk(a1, a2) ∈ SN−k(γk
0m1m2, ϕ0, g), k ≤ N ;

rk(a1, a2) ∈ S(γk−NγN
0 m1m2, g), k ≥ N.

(3) If (a1, a2) ∈ S1(m1, ϕ0, g) × S1(m2, ϕ0, g), then

a1a2 ∈ S1(m1m2, ϕ0, g); {a1, a2} ∈ S(γ0m1m2, g);

a1#a2 ∈ S1(m1m2, ϕ0, g); rk(a1, a2) ∈ S(γk−1γ0m1m2, g), k ≥ 1;

a1#a2 − a1a2 − {a1, a2}/(2i) = r2(a1, a2) ∈ S(γγ0m1m2, g);

a1#a2 + a2#a1 − 2a1a2 = r2(a1, a2) + r2(a2, a1) ∈ S(γγ0m1m2, g);

a1#a2 − a2#a1 − {a1, a2}/i = r3(a1, a2) − r3(a2, a1) ∈ S(γ2γ0m1m2, g).

Proof. (1) If a ∈ SN (m, ϕ0, g), then

∂α
x a ∈ S(ϕk

0m, g) ⊂ S(ϕk
0m/γ0, g) (|α| = k ≤ N),

∂α
x a ∈ S(ϕN

0 ϕm, g) = S(ϕN+1
0 mγ/γ0, g) ⊂ S(ϕN+1

0 m/γ0, g) (|α| = N + 1).

This implies a ∈ SN+1(m/γ0, ϕ0, g).
(2) By assumption,

1
k!

(iσ(DX , DY )/2)ka1(X)a2(Y ) =
∑

|α|+|β|=k

ik(−1)|α|

2kα!β!
∂α

ξ ∂β
x a1(X)∂β

η ∂α
y a2(Y );

∂α
ξ ∂β

x aj ∈ SN−|β|(ϕ
|β|
0 Φ|α|mj , ϕ0, g), |β| ≤ N (j = 1, 2);

∂α
ξ ∂β

x aj ∈ S(ϕN
0 ϕ|β|−NΦ|α|mj , g), |β| ≥ N (j = 1, 2).
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If k ≥ N , we have rk(a1, a2) ∈ S(γk−NγN
0 m1m2, g) by Lemma 3.3. If k ≤ N ,

we have

rk(a1, a2) =
N−1∑
j=k

1
j!

(iσ(DX , DY )/2)ja1(X)a2(Y )|Y =X + rN (a1, a2)

∈
N∑

j=k

SN−j(γ
j
0m1m2, ϕ0, g) ⊂ SN−k(γk

0m1m2, ϕ0, g)

by virtue of (1).

Lemma 3.5. Let m be a g weight such that

m(X) ≤ 〈X〉−c
, X ∈ R2d,

with some c > 0. If r ∈ S(m, g) satisfies ‖rw‖ < 1, then (1−rw)−1 ∈ L(L2(Rd))
belongs to Op S(1, g) with (1 − rw)−1 −

∑N−1
j=0 (rw)j ∈ Op S(mN , g) for every

N ∈ N.

Proof. Let N ∈ N. For every k ∈ N0, there are s ≥ 0 and C > 0 such
that

‖σ(A)‖k,S(mN ,g) ≤ C‖A‖L(B−s(Rd),Bs(Rd))

for all A ∈ L(B−s(Rd),Bs(Rd)). Take M ∈ N such that 2M ≥ N and cM ≥ s.
Since

(1 − rw)−1 −
N−1∑
j=0

(rw)j =
∑

N≤j≤2M−1

(rw)j + (rw)M (1 − rw)−1(rw)M

∈ Op S(mN , g) + L(B−s(Rd),Bs(Rd)),

we have ∥∥∥∥σ((1 − rw)−1 −
N−1∑
j=0

(rw)j)
∥∥∥∥

k,S(mN ,g)

< ∞,

which completes the proof.

Lemma 3.6. Let a ∈ S(γ−1, g) be real scalar, and let b ∈ S(1, g;
Mn(C)) such that b = b∗ ≥ cIn for a constant c > 0. Then for every 0 < c0 < c

there is C > 0 such that

(a2b)w ≥ c0(aw)2In − CIn

as a form on S(Rd,Cn).
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Proof. Set b0 = b − c0In, p0 = b
1/2
0 ∈ S(1, g; Mn(C)) and b1 = σ( bw

0 −
(pw

0 )2 ) ∈ S(γ, g; Mn(C)). If an Hermitian matrix h ∈ Mn(C) has the eigen-
values λ1, . . . , λn, then the real linear map u 
→ hu + uh on the real vec-
tor space of Hermitian matrices has the eigenvalues λj + λk (1 ≤ j, k ≤ n).
So p0p1 + p1p0 = b1 has a unique solution p1 = p∗1 ∈ S(γ, g; Mn(C)). Put
p = p0 + p1. Then

bw
2 = bw

0 − (pw)2 = bw
1 − (pw

0 pw
1 + pw

1 pw
0 + (pw

1 )2) ∈ Op S(γ2, g; Mn(C)).

On the other hand, since a is scalar,

awbwaw = ( (ab)w + {a, b}w/(2i) )aw + rw
1

= (a2b)w + {ab, a}w/(2i) + ({a, b}a)w/(2i) + rw
2 = (a2b)w + rw

2 ,

where rj ∈ S(1, g; Mn(C)). Therefore

(a2b)w = awbwaw − rw
2

= c0(aw)2In + aw(pw)2aw + awbw
2 aw − rw

2 ≥ c0(aw)2In − CIn.

Here C > 0.

Lemma 3.7. Let m1, m2, and m3 be g weights. If (a1, a2, a3) varies in
a bounded subset of S(m1, g)×S(m2, g)×S(m3, g) in such a way that a1a3 = 0,
then a1#a2#a3 remains bounded in S(γNm1m2m3, g) for every N ∈ N0. Here
γ is defined in (G3).

Proof. Since a1#a2#a3 = rN (a1#a2−rN (a1, a2), a3)+rN (a1, a2)#a3 for
every N ∈ N0, the proof is complete.

In application, we shall use a parameter-dependent version of the calculus
above. Let Λ be an index set, and let mλ be a g weight with the constants in
(M1) and (M2) independent of λ ∈ Λ. We say that aλ ∈ S(mλ, g) uniformly
in λ ∈ Λ if supλ∈Λ ‖aλ‖k,S(mλ,g) < ∞ for every k ∈ N0. Similarly, we say
that aλ ∈ SN (mλ, q0, g) uniformly in λ ∈ Λ if supλ∈Λ ‖aλ‖k,SN (mλ,q0,g) < ∞
for every k ∈ N0. Then all the statements in this section have the natural
parameter dependent version, which will be used later.

Finally, we define time dependent symbol classes.

Definition 3.8. For an interval I ⊂ R and a symbol space S the space
B(I, S) consists of all p : I → S such that p(K) is bounded in S for every
compact subset K of I and that I � t 
→ p(t) ∈ C∞(R2d, Mn(C)) is continuous.
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§4. Well-posedness of the Cauchy Problem

In this section, we assume (H1)–(H4). Define the Riemannian metric gδ

on R2d by

(gδ)X = 〈x〉2δ|dx|2 + 〈X〉−2|dξ|2, X = (x, ξ) ∈ R2d,

which satisfies (G1)–(G3). We shall use (the time dependent version of) Lemma
3.4 with

g = gδ, ϕ0 = 〈x〉−1
, γ = 〈x〉δ/〈X〉, γ0 = 1/(〈x〉〈X〉).

By the definitions,

h0 ∈ S1(〈X〉2, 〈x〉−1, gδ),

hj(·) ∈ B(R, S1(〈X〉2−j〈x〉j , 〈x〉−1, gδ; Mn(C))), j = 1, 2.

Fix a compact interval I = [t1, t2] (t1 < t2).
After preparing Lemmas 4.1–4.4, we shall prove two well-posedness theo-

rems of the Cauchy problem for Schrödinger equations.

Lemma 4.1. Let s ∈ R. For L ≥ 1, set

es,L = (h0(x, ξ) + |x|2 + L2)s/2 ∈ S1(〈X〉s, 〈x〉−1, gδ).

Then there exists L(s) ≥ 1 such that for every L ≥ L(s)

(ew
s,L)−1 = ew

−s,L(1 − rs,L
w)−1 ∈ Op S(〈X〉−s

, gδ)

with rs,L ∈ S(〈x〉δ−1〈X〉−2
, gδ) satisfying ‖rw

s,L‖ ≤ 1/2.

Remark. Setting es = es,L(s) and Es = ew
s , we can use ‖Es · ‖ as a norm

of Bs(Rd) or Bs(Rd,Cn) (see the example after Theorem 3.2).

Proof. Set 〈X〉L = (L2 + |X|2)1/2. Since

∂ξj
es,L ∈ S1(〈X〉〈X〉s−2

L , 〈x〉−1
, gδ), ∂xj

es,L ∈ S(〈x〉−1〈X〉2〈X〉s−2
L , gδ),

all uniformly in L ≥ 1, it follows that

σ(DX , DY )2es,L(X)e−s,L(Y ) =
3∑

k=1

ak,L(X)bk,L(Y );

a1,L ∈ S(〈x〉δ−1〈X〉2〈X〉s−2
L , gδ), b1,L ∈ S(〈X〉−s−2

L , gδ),

a2,L ∈ S(〈x〉−1〈X〉〈X〉s−2
L , gδ), b2,L ∈ S(〈x〉−1〈X〉〈X〉−s−2

L , gδ),

a3,L ∈ S(〈X〉s−2
L , gδ), b3,L ∈ S(〈x〉δ−1〈X〉2〈X〉−s−2

L , gδ),
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all uniformly in L ≥ 1. This implies, by Lemma 3.3, that

rs,L := −r2(es,L, e−s,L) = 1 − es,L#e−s,L ∈ S(〈x〉δ−1〈X〉2〈X〉−4
L , gδ)

uniformly in L ≥ 1. Take L(s) ≥ 1 so that ‖rw
s,L‖ ≤ 1/2 for every L ≥ L(s).

Fix L ≥ L(s). By Lemma 3.5, we have (1 − rw
s,L)−1 ∈ Op S(1, gδ). Therefore,

(ew
s,L)−1 = ew

−s,L(1 − rs,L
w)−1 = (1 − rs,L

w)−1ew
−s,L ∈ Op S(〈X〉−s

, gδ).

Lemma 4.2. EsH(t)E−1
s = H(t) + Bs(t) with Bs(·) ∈ Op B(I, S(1, gδ;

Mn(C))).

Proof. Since h1 + h2 ∈ B(I, S1(〈X〉〈x〉, 〈x〉−1, gδ; Mn(C))) and es ∈ S1

(〈X〉s, 〈x〉−1, gδ), Lemma 3.4 (3) gives

σ([Es, h
w
1 (·) + hw

2 (·)]) ∈ B(I, S(〈X〉s, gδ; Mn(C))).

Since h0 ∈ S1(〈X〉2, 〈x〉−1
, gδ), Lemma 3.4 (3) implies

σ([Es, h
w
0 ]) − {es, h0}/i ∈ S(〈x〉2δ−1〈X〉s−1, gδ) ⊂ S(〈X〉s, gδ).

Thanks to the special form of es, we have

{es, h0} =
s

2
es−2{|x|2, h0} ∈ S(〈X〉s, gδ).

Therefore, [Es, h
w
0 ] ∈ Op S(〈X〉s, gδ). In conclusion, EsH(t)E−1

s = H(t)+Bs(t)
with Bs(·) = [Es, H(·)]E−1

s ∈ Op B(I, S(1, gδ; Mn(C))).

Lemma 4.3. Let j ∈ C∞
0 (R) such that j(0) = 1 and j ≥ 0. Set

jε(X) = j(εe1(X)) and Jε = jw
ε for 0 < ε ≤ 1. Then (jε)0<ε≤1 is bounded in

S1(1, 〈x〉−1, gδ), and so is (σ([H(t), Jε]))t∈I,0<ε≤1 in S(1, gδ; Mn(C)). More-
over, σ([H(t), Jε]) → 0 weakly in S(1, gδ; Mn(C)) as ε → +0 for each t ∈ I.

Proof. By direct calculation, (jε)0<ε≤1 is bounded in S1(1, 〈x〉−1, gδ). By
Lemma 3.4 (3),

σ([hw
1 (t) + hw

2 (t), Jε]) ∈ S(1, gδ; Mn(C)),

σ([hw
0 , Jε]) − {h0, jε}/i ∈ S(〈x〉2δ−1〈X〉−1

, gδ) ⊂ S(1, gδ),

{h0, jε} = εj′(εe1) {h0, e1} = εe1j
′(εe1) {h0, e1}/e1 ∈ S(1, gδ),

all uniformly in 0 < ε ≤ 1 and t ∈ I. Since [H(t), Jε]u → 0 in S′(Rd,Cn) as
ε → +0 for all u ∈ S(Rd,Cn), the proof is complete.
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Lemma 4.4. Let s ∈ R and t0 ∈ I. Set γ = supt∈I ‖Bs(t)‖, where
EsH(t)E−1

s = H(t) + Bs(t). Then

(4.1) e−γ|t−t0|‖Esu(t) ‖ ≤ ‖Esu(t0) ‖ +
∣∣∣∣
∫ t

t0

e−γ|τ−t0|‖Esf(τ ) ‖ dτ

∣∣∣∣ , t ∈ I,

for all u ∈ C(I,Bs+2(Rd,Cn)) ∩ C1(I,Bs(Rd,Cn)). Here f(t) = (∂t + iH(t))
u(t).

Proof. Since v = Esu ∈ C(I,B2(Rd,Cn)) ∩ C1(I,B0(Rd,Cn)) satisfies

Esf(t) = (∂t + iH(t) + iBs(t))v(t),

we obtain

∂t‖v(t)‖2 = 2�(−(iH(t) + iBs(t))v(t) + Esf(t), v(t))

≤ 2‖v(t)‖( γ‖v(t)‖+ ‖Esf(t)‖ ), t ∈ I,

which implies

∂t‖v(t)‖ ≤ γ‖v(t)‖ + ‖Esf(t)‖, a.e. t ∈ I.

By a Gronwall-type inequality, we get (4.1) if t ≥ t0. We can deal with the
case t ≤ t0 similarly.

Theorem 4.5. Let s ∈ R and t0 ∈ I. For every u0 ∈ Bs(Rd,Cn) and
f ∈ L1(I,Bs(Rd,Cn)), there exists u ∈ C(I, Bs(Rd,Cn)) satisfying

(4.2) (∂t + iH(·))u = f in D′((t1, t2) × Rd,Cn), u(t0) = u0,

which is unique in C(I,S′(Rd,Cn)). Moreover, the estimate (4.1) holds.

Proof. Uniqueness. Suppose that u ∈ C(I,S′(Rd,Cn)) is a solution
of (4.2) with u0 = 0 and f = 0. Since {u(t); t ∈ I} is bounded in some
Bs+4(Rd,Cn), it follows from the equation that u ∈ C(I,Bs+2(Rd,Cn)) (in
fact, Lipshitz continuous) and hence u ∈ C1(I,Bs(Rd,Cn)). By (4.1), we get
u = 0.

Existence. We treat the case t1 = t0 (we can treat the case t2 = t0 similarly
and hence the remaining case by combining the both cases). For simplicity, we
assume t0 = 0 and t2 = T > 0.

First, assume u0 ∈ Bs+4(Rd,Cn) and f ∈ C(I,Bs+4(Rd,Cn)). If there is
a solution u ∈ C(I,S′(Rd,Cn)), then u ∈ C1(I,S′(Rd,Cn)) and it satisfies

(4.3)
∫ T

0

(−(∂t + iH(t))v(t), u(t))dt = (v(0), u0) +
∫ T

0

(v(t), f(t))dt
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for every v ∈ Y = {v ∈ C1(I,S(Rd,Cn)); v(T ) = 0}. Set

X = {φ(·) = −(∂t + iH(·))v(·); v ∈ Y}.

By Lemma 4.4 we have supt∈I ‖E−s−4v(t)‖ ≤ C‖φ‖∈L1(I,B−s−4(Rd,Cn)), and
the functional

X � φ(·) = −(∂t + iH(·))v(·) 
→ (v(0), u0) +
∫ T

0

(v(t), f(t))dt ∈ C

is bounded if X is regarded as a subspace of L1(I,B−s−4(Rd,Cn)). By the
Hahn-Banach theorem, there is u ∈ L∞(I,Bs+4(Rd,Cn)) such that (4.3) holds
for all v ∈ Y . (In fact, the Hahn-Banach theorem is not necessary, because we
can prove that X is dense in L1(I,B−s−4(Rd,Cn))). Taking v ∈ C∞

0 ((0, T ) ×
Rd,Cn), we obtain

(∂t + iH(·))u = f in D′((0, T ) × Rd,Cn),

which implies u ∈ C1(I,Bs(Rd,Cn)). By integrating (4.3) by parts, we have
(v(0), u(0)) = (v(0), u0) for all v ∈ Y ; hence u(0) = u0. So u ∈ C1(I,Bs(Rd,

Cn)) is the solution of (2.1).
Next, assume u0 ∈ Bs(Rd,Cn) and f ∈ L1(I,Bs(Rd,Cn)). Take u0,j ∈

Bs+4(Rd,Cn) and fj ∈ C(I,Bs+4(Rd,Cn)) such that u0,j → u0 in Bs(Rd,Cn)
and fj → f in L1(I,Bs(Rd,Cn)) as j → ∞. Let uj ∈ C1(I,Bs(Rd,Cn)) be
the solution of (2.1) with u0 and f replaced by u0,j and fj . Then (uj) is a
Cauchy sequence in C(I,Bs(Rd,Cn)) by Lemma 4.4, and its limit u satisfies
(4.1) and (4.2).

For the proof of Theorem 2.5, we need to generalize Theorem 4.5 so that it
can allow a nonsymmetric perturbation of lower order. For simplicity, we treat
only the forward Cauchy problem with I = [0, T ] and t0 = 0.

Theorem 4.6. Let p(t) = ih0In + ip1(t) + p2(t) + p3(t) (t ∈ [0, T ])
such that

(H6) p1 = p∗1 ∈ B([0, T ], S1(〈x〉〈X〉, 〈x〉−1, gδ; Mn(C)));

(H7) p2 =
∑N

j=0 α2
jβj , where αj ∈ B([0, T ], S(〈X〉/〈x〉δ, gδ)) is real

scalar, and βj = β∗
j ∈ B([0, T ], S(1, gδ; Mn(C))) satisfies βj ≥ In (j = 0, 1, . . . ,

N);

(H8) p3 ∈ B([0, T ], S(〈X〉/〈x〉δ, gδ; Mn(C))) such that �p3 ≥ −CIn with
C > 0.
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(1) For every s ∈ R, there are C1, C2 > 0 such that

‖Esu(t) ‖ ≤ C1‖Esu(0) ‖ + C1

∫ t

0

‖Esf(τ ) ‖ dτ,(4.4)

N∑
j=0

∫ t

0

‖αw
j (τ )Esu(τ )‖2dτ ≤ C2

(
‖Esu(0) ‖ +

∫ t

0

‖Esf(τ ) ‖ dτ

)2

,(4.5)

for all t ∈ [0, T ] and u ∈ C([0, T ],Bs+2(Rd,Cn))∩C1([0, T ],Bs(Rd,Cn)). Here
f = (∂t + pw(t))u.

(2) Let s ∈ R. For every u0 ∈ Bs(Rd,Cn) and f ∈ L1([0, T ],Bs(Rd,Cn)),
there is u ∈ C([0, T ],Bs(Rd,Cn)) satisfying

(4.6) (∂t + pw(t))u = f in D′((0, T ) × Rd,Cn), u(0) = u0,

which is unique in C([0, T ],S′(Rd,Cn)). Moreover, for every j = 0, . . . , N ,
αw

j (·)Esu(·) ∈ L2([0, T ], L2(Rd,Cn)), and the estimates (4.4) and (4.5) hold.

Proof. (1) Let s ∈ R. By Lemma 4.1 and Theorem 3.1,

[Es, p
w
2 (t) + pw

3 (t)]E−1
s = −i(Hes

p2(t)/es)w + rw
1 (t)

with r1 ∈ B([0, T ], S(1, gδ; Mn(C))). Similarly to the proof of Lemma 4.2, we
obtain

[Es, ih
w
0 In + ipw

1 (t)] E−1
s = rw

2 (t)

with r2 ∈ B([0, T ], S(1, gδ; Mn(C))). To sum up,

p̃w(t) = Esp
w(t)E−1

s = (p(t) − iHes
p2(t)/es + r1(t) + r2(t))w.

By Theorem 3.2 and Lemma 3.6,

pw
2 (t) + pw

3 (t) ≥ 2−1
N∑

j=0

αw(t)2In − C1In

with C1 > 0. Since v = Esu ∈ C([0, T ],B2(Rd,Cn)) ∩ C1([0, T ],B0(Rd,Cn))
satisfies Esf = (∂t + p̃w(t))v, we obtain

∂t‖v(t)‖2 = 2� (−(p2(t) + p3(t) + r1(t) + r2(t))wv(t) + Esf(t), v(t) )

≤ 2‖v(t)‖( C2‖v(t)‖ + ‖Esf(t)‖ ) −
N∑

j=0

‖αw
j (t)v(t)‖2, t ∈ [0, T ],



�

�

�

�

�

�

�

�

198 Shin-ichi Doi

which implies

∂t‖v(t)‖ ≤ C2‖v(t)‖ + ‖Esf(t)‖, a.e. t ∈ [0, T ].

By a Gronwall-type inequality, we get (4.4). Since

N∑
j=0

∫ t

0

‖αw
j (τ )v(τ )‖2dτ

≤ ‖v(0)‖2 + 2C2t sup
τ∈[0,t]

‖v(τ )‖2 + 2 sup
τ∈[0,t]

‖v(τ )‖ ·
∫ t

0

‖Esf(τ )‖dτ,

we obtain (4.5) by virtue of (4.4).
(2) The proof of (1) shows that (4.4) and (4.5) hold also when f is defined

as f(t) = (∂t + p(T − t)∗w)u(t). By taking u(·) = v(T − ·), we obtain the
following: for every s ∈ R, there is C > 0 such that

‖Esv(t) ‖ ≤ C‖Esv(T ) ‖ + C

∫ T

t

‖Esf(τ ) ‖ dτ, 0 ≤ t ≤ T,

for all v ∈ C([0, T ],Bs+2(Rd,Cn))∩C1([0, T ],Bs(Rd,Cn)) with f(t) = (−∂t +
p(t)∗w)v(t). After this preparation, we can prove the first part of (2) similarly
to Theorem 4.5 if we define

X = {φ(·) = (−∂t + p(·)∗w)v(·) ∈ L1(I,B−s−4(Rd,Cn)); v ∈ Y}.

We can prove the second part, additional regularities of solutions, by approxi-
mation argument in view of (4.5).

§5. Transformation of the Schrödinger Operator

This section shows how the Schrödinger operator transforms when conju-
gated by an invertible pseudodifferential operator. The result will be used in
the next section.

Let g be a Riemannian metric on R2d satisfying (G1)–(G3). We assume
that g is of the form

gX = ϕ(X)2|dx|2 + Φ(X)2|dξ|2,

where ϕ and Φ are positive functions. Then ϕ and Φ are g weights by (G1)–
(G3). Let ϕ0 be a g weight such that ϕ0 ≤ ϕ, and set γ = ϕΦ ≤ 1 and γ0 = ϕ0Φ.
Let (φL)L≥1 be a bounded family of S(1, g) such that 1 − φL ∈ C∞

0 (R2d),
0 ≤ φL ≤ 1, and suppφL ⊂ {X ∈ R2d; |X| ≥ L}.
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Lemma 5.1. Let W be a g weight such that c0 ≤ W ≤ γ−1 with some
c0 > 0, and define G = Wg. Then G satisfies (G1)–(G3). Moreover, every g

weight is a G weight.

Proof. There are 0 < c < 1 and C > 0 such that if gX(X − Y ) ≤ c,
then 1/C ≤ W (X)/W (Y ) ≤ C and 1/C ≤ gX/gY ≤ C, which gives 1/C2 ≤
GX/GY ≤ C2. Thus GX(X − Y ) ≤ cc0 implies 1/C2 ≤ GX/GY ≤ C2. By
definition, supY 	=0 GX(Y )/Gσ

X(Y ) = (W (X)γ(X))2 ≤ 1. We now consider
the σ temperance of G. Since gY (X − Y ) ≤ c implies GY ≤ C2GX , we
assume gY (X − Y ) ≥ c. Then gσ

Y (X − Y ) ≤ c−1gY (X − Y )gσ
Y (X − Y ) ≤

c−1γ(Y )2gσ
Y (X − Y )2 ≤ c−1Gσ

Y (X − Y )2; therefore,

(5.1) 1 + gσ
Y (X − Y ) ≤ c−1(1 + Gσ

Y (X − Y ))2.

On the other hand, there are C1 > 0 and N > 0 such that gY ≤ C1gX(1 +
gσ

Y (X−Y ))N and W (Y ) ≤ C1W (X)(1+gσ
Y (X−Y ))N . Thus, GY ≤ C2

1c−2N (1+
Gσ

Y (X − Y ))4NGX .
Let m be a g weight. Then G continuity of m follows from g continuity;

σ, G temperance from (5.1).

We recall that the symbol rj(·, ·) (the j-th remainder term of the symbol
product) is defined just before Theorem 3.1.

Lemma 5.2. Assume γ ≤ C〈X〉−c with some c > 0 and C > 0. Let W

be a g weight such that W ≥ c0 with some c0 > 1 and that (log W )2 ≤ γ−1,
and define G = (log W )2g.

(1) If λ ∈ S1(log W, ϕ0, g) and λ ≤ m log W + C with m, C ∈ R, then
eλ ∈ S1(Wm, ϕ0 log W, G).

(2) Let Wj be g weights, pj ∈ S1(Wj , ϕ0, g), and λj ∈ S1(log W, ϕ0, g)
(j = 1, 2). Then

r0(eλ1p1, e
λ2p2)e−(λ1+λ2) − p1p2 ∈ S(W1W2γ0(log W )2, g);

rN (eλ1p1, e
λ2p2)e−(λ1+λ2) ∈ S(W1W2γ0γ

N−1(log W )2N , g), N ∈ N.

If in addition λ1 = 0 or λ2 = 0, then

r0(eλ1p1, e
λ2p2)e−(λ1+λ2) − p1p2 ∈ S(W1W2γ0 log W, g);

rN (eλ1p1, e
λ2p2)e−(λ1+λ2) ∈ S(W1W2γ0γ

N−1(log W )N , g), N ∈ N.

(3) Let λ ∈ S1(log W, ϕ0, g). Set λL = λφL and rL = r2(eλL , e−λL). Then
rL ∈ S(γγ0(log W )4, g) for each L ≥ 1 and there is L0 ≥ 1 such that ‖rw

L‖ ≤ 1/2
for every L ≥ L0. In particular, ((eλL)w)−1 = (e−λL)w(1 + rw

L )−1.
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(4) Let λL be the symbol in (3) with L ≥ L0 being fixed. Let W0 be a g

weight, and a ∈ S1(W0, ϕ0, g). Then

(eλL)waw( (eλL)w )−1 = (a + Hλa/i − H2
λa/2)w + rw

with r ∈ S(W0γ0γ
2(log W )5, g).

Remark. The function log W is a g weight because so is W and inf
W > 1.

Remark. If ϕ0 = ϕ, then the claims (1)–(4) are simplified: γ0 = γ

in (1)–(4); λ ∈ S(log W, g) and eλ ∈ S(Wm, G) replace λ ∈ S1(log W, ϕ0, g)
and eλ ∈ S1(Wm, ϕ0 log W, G) respectively in (1); pj ∈ S(Wj, g) and λj ∈
S(log W, g) replace pj ∈ S1(Wj , ϕ0, g) and λj ∈ S1(log W, ϕ0, g) respectively in
(2); λ ∈ S(log W, g) replaces λ ∈ S1(log W, ϕ0, g) in (3); a ∈ S(W0, g) replaces
a ∈ S1(W0, ϕ0, g) in (4).

Proof. (1) This is by simple calculation.
(2) Choose mj , Cj ≥ 0 so that |λj | ≤ mj log W +Cj (j = 1, 2). Let N ∈ N.

For every k ∈ N0 there are M ∈ N, M > N , and C > 0 such that

‖a‖k,S(W1W2γ0γN−1(log W )2N ,g) ≤ C‖a‖k,S(W 2m1+2m2W1W2γM (log W )2M ,G)

for all a ∈ S(W 2m1+2m2W1W2γ
M (log W )2M , G) by the assumption γ ≤ C

〈X〉−c, because every g weight is polynomially bounded. Since rN (eλ1p1, e
λ2p2)

= eλ1+λ2
∑M

j=N qj with

qj(X) = e−(λ1(X)+λ2(X)) 1
j!

(iσ(DX , DY )/2)jeλ1(X)p1(X)eλ2(Y )p2(Y )|Y =X

∈ S(W1W2γ0γ
j−1(log W )2j , g) (j = N, N + 1, . . . , M − 1)

qM (X) = rM (eλ1p1, e
λ2p2)e−(λ1+λ2) ∈ S(W 2m1+2m2W1W2γ

M (log W )2M , G),

we have

‖rN (eλ1p1, e
λ2p2)e−(λ1+λ2)‖k,S(W1W2γ0γN−1(log W )2N ,g) < ∞.

This implies

rN (eλ1p1, e
λ2p2)e−(λ1+λ2) ∈ S(W1W2γ0γ

N−1(log W )2N , g),

r0(eλ1p1, e
λ2p2)e−(λ1+λ2) − p1p2 = r1(eλ1p1, e

λ2p2)e−(λ1+λ2).

The other statements can be proved similarly.
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(3) By (2) we have rL ∈ S(γγ0(log W )4, g) for each L ≥ 1. In the rest of
the proof of (3), all statements are uniform in L ≥ 1. Take m, C ≥ 0 such that
|λ| ≤ m log W + C. Take N ∈ N such that sup W 2m(log W )2NγN−1 < ∞. By
definition, rL = r2(eλL , e−λL) =

∑N−1
j=2 cj,L + rN (eλL , e−λL), where

cj,L(X) =
1
j!

(iσ(DX , DY )/2)jeλL(X)e−λL(Y )|Y =X ∈ S(γj(log W )2j , g).

Since supp cj,L ⊂ supp λL, we have
∑N−1

j=2 cj,L ∈ S(L−c, g). On the other hand,

σ(DX , DY )NeλL(X)e−λL(Y ) =
N∑

k=0

a1,k,L(X)a2,k,L(Y ),

where a1,k,L ∈ S(WmϕkΦN−k(log W )N , G), a2,k,L ∈ S(WmϕN−kΦk

(log W )N , G), and supp aj,k,L ⊂ supp λL. Thus a1,k,L ∈ S(L−cγ−1WmϕkΦN−k

(log W )N , G). By Lemma 3.3 we get rN (eλL , e−λL) ∈ S(L−cW 2m(log W )2N

γN−1, G) ⊂ S(L−c, G). Therefore, ‖rw
L‖ = O(L−c) as L → ∞.

(4) Fix L ≥ L0. Since e±λL − e±λ ∈ C∞
0 (R2d), we have

(eλL)waw((eλL)w)−1 = aw + [(eλL)w, aw](e−λL)w(1 + rw
L )−1

= aw + [(eλ)w, aw](e−λ)w + cw
1 + cw

2

where c1 ∈ S(R2d) and cw
2 = [(eλ)w, aw](e−λ)w( (1 + rw

L )−1 − 1 ). By (2), we
have

σ( [(eλ)w, aw] ) = eλ(Hλa/i + b),

b = e−λ( r3(eλ, a) − r3(a, eλ) ) ∈ S(W0γ0γ
2(log W )3, g);

r0(eλ(Hλa/i + b), e−λ) = Hλa/i − H2
λa/2 + c3 ∈ S(W0γ0 log W, g),

c3 = r2(eλHλa/i, e−λ) + r0(eλb, e−λ) ∈ S(W0γ0γ
2(log W )5, g).

Since rL ∈ S(γ0γ(log W )4, g), we have c2 ∈ S(W0γ
2
0γ(log W )5, g). Therefore,

(eλL)waw((eλL)w)−1 = aw + (Hλa/i − H2
λa/2)w + cw

1 + cw
2 + cw

3

with c1 + c2 + c3 ∈ S(W0γ0γ
2(log W )5, g).

Lemma 5.3. Assume γ ≤ C〈X〉−c with some c > 0 and C > 0. Let W

be a g weight such that W ≥ c0 with some c0 > 1 and that (log W )2 ≤ γ−1, and
define G = (log W )2g. Let λ ∈ B([0, T ], S1(log W, ϕ0, g)), and set λL(t, X) =
λ(t, X)φL(X).
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(1) There is L0 ≥ 1 such that if L ≥ L0 then

((eλL(t))w)−1 = (e−λL(t))w(1 + rw
L (t))−1,

where rL(t) ∈ B([0, T ], S(γγ0(log W )4, g)) with supt∈[0,T ] ‖rw
L (t)‖ ≤ 1/2.

(2) Let W0 be a g weight, and assume ∂tλ ∈ B([0, T ], S(W0γ0 log W, g)).
If L ≥ L0 and h ∈ B([0, T ], S1(W0, ϕ0, g)), then

(eλL(t))w(∂t + ihw(t))( (eλL(t))w )−1

=∂t + i( h(t) − H2
λ(t)h(t)/2 + {λ(t), ∂tλ(t)}/2 )w − (∂tλ(t)

+ Hh(t)λ(t))w + cw(t)

with c ∈ B([0, T ], S(W0γ0γ
2(log W )5, g)).

Proof. The proof of (1) is similar to that of Lemma 5.2. Since ∂tλ ∈
B([0, T ], S(W0γ0 log W, g)), it follows that

(eλL(t))w ∂t ( (eλL(t))w )−1 = ∂t − (eλL(t)∂tλL(t))w( (eλL(t))w )−1

= ∂t − (eλ(t)∂tλ(t))w(e−λ(t))w + cw
1 (t) + cw

2 (t)

= ∂t − (∂tλ(t) + {λ(t), ∂tλ(t)}/(2i) )w + cw
1 (t) + cw

2 (t) + cw
3 (t).

Here c1 ∈ B([0, T ],S(R2d)),

cw
2 (t) = −(eλ(t)∂tλ(t))w(e−λ(t))w( (1 + rw

L (t))−1 − 1 )

∈ Op B([0, T ], S(W0γ
2
0γ(log W )5, g)),

c3(t) = −r2(eλ(t)∂tλ(t), e−λ(t)) ∈ B([0, T ], S(W0γ0γ
2(log W )5, g)).

The remaining proof of (2) is similar to that of Lemma 5.2.

§6. Smoothing Effects

In this section, we assume (H1)–(H5). We use our main assumption (H5)
only in the part (d) of the proof of Lemma 6.1. We apply the results in Section
5 to the following case

g = gδ = 〈x〉2δ|dx|2 + 〈X〉−2|dξ|2,
ϕ0 = 1/〈x〉, γ = 〈x〉δ/〈X〉, γ0 = 1/(〈x〉〈X〉),
W = 〈X〉δ1

e , G = (log W )2g = (δ1 log 〈X〉e)2gδ,

where 〈X〉e = (e2 + |X|2)1/2 and δ1 = inf( (〈X〉/〈x〉δ)1/2/ log 〈X〉e ) > 0; δ1

is chosen so that the condition (log W )2 ≤ 1/γ, or (δ1 log 〈X〉e)2 ≤ 〈X〉/〈x〉δ,
holds.
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Let T > 0, R < R1 < R2 and 0 < σ0 < σ1 < σ2 < σ, where R and σ are
the constants in (H5). Take φ, ψ, χ ∈ C∞(R) such that

(i) supp φ ⊂ (R1,∞), φ(t) = 1 if t ≥ R2, φ′ ≥ 0,
√

φ,
√

φ′ ∈ C∞(R),
(ii) supp ψ ⊂ (−∞,−σ1), ψ(t) = 1 near (−∞,−σ2], ψ′ ≤ 0,

√
ψ,

√
−ψ′ ∈

C∞(R),
(iii) supp χ ⊂ (−∞, 2T ), χ(t) = 1 if t ≤ 3T/2, χ′ ≤ 0,

√
χ,

√
−χ′ ∈

C∞(R).
For ρ ≥ 0 and 0 < ν � 1, we define

q =
√

h0, θ = Hh0r/q,

w(t) = (r + σ0tq)ρ(2 − r−ν),

λ(t) = φ(r)ψ(θ)χ(t + r/(Mq)) log w(t) (t ∈ [0, T ]).

Here M = 2 sup |θ| + 1. Observing that

r/q ≤ 2MT on ∪0≤t≤T supp χ(t + r/(Mq)),

MT/2≤ r/q ≤ 2MT on ∪0≤t≤T supp χ′(t + r/(Mq)),

where the support is as functions in (x, ξ) ∈ T ∗Rd, we have

λ∈B([0, T ], S1(log 〈X〉e, 〈x〉
−1

, gδ)),

∂tλ(·)∈B([0, T ], S(〈x〉−1〈X〉 log 〈X〉e, gδ)).

Take φ1, ψ1, χ1 ∈ C∞(R) such that 0 ≤ φ1, ψ1, χ1 ≤ 1, supp φ1 ⊂ (R1,∞),
φ1(t) = 1 on supp φ, supp ψ1 ⊂ (−∞,−σ1), ψ1(t) = 1 on supp ψ, supp χ1 ⊂
(−∞, 2T ), χ1(t) = 1 on supp χ. Since

r/q ≤ 2MT on supp χ1(r/(Mq)),

3MT/2≤ r/q ≤ 2MT on suppχ′
1(r/(Mq)),

we have

λ1 = φ1(r)ψ1(θ)χ1(r/(Mq)) ∈ S1(1, 〈x〉−1, gδ).

Clearly, λ1 = 1 on ∪t∈[0,T ]supp λ(t). Take ψ2 ∈ C∞
0 (R) such that ψ2 = 1 in a

neighborhood of supp ψ′, supp ψ2 ⊂ (−σ2,−σ1) and 0 ≤ ψ2 ≤ 1.
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By direct calculation, we have

− (∂t + Hh(t))λ(t) =
4∑

j=0

αj(t)2βj(t);

α0(t)2 = νqr−1−ν(2 − r−ν)−1φ(r)ψ(θ)χ(t + r/(Mq)), β0(t) = −q−1Hh(t)r,

α1(t)2 = ρq(r + σ0tq)−1φ(r)ψ(θ)χ(t + r/(Mq)),

β1(t) = −(σ0In + q−1Hh(t)(r + σ0tq)),

α2(t)2 = −χ′(t + r/(Mq))φ(r)ψ(θ) logw(t), β2(t) = In + Hh(t)(r/Mq),

α3(t)2 = qφ′(r)ψ(θ)χ(t + r/(Mq)) log w(t), β3(t) = β0(t) = −q−1Hh(t)r,

α4(t)2 = −r−1qφ(r)ψ′(θ)χ(t + r/(Mq)) log w(t), β4(t) = rq−1(Hh(t)θ).

Here αj(t) ≥ 0. By modifying βj(t) outside supp αj(t), we define β̃j(t):

β̃j(t) = λ1βj(t) + (1 − λ1)In (j = 0, 1, 2, 3),

β̃4(t) = λ1ψ2(θ)β4(t) + (1 − λ1ψ2(θ))In.

By the definitions,

αj ∈ B([0, T ], S((〈x〉−1〈X〉 log 〈X〉e)1/2, gδ)) ⊂ B([0, T ], S(〈X〉/〈x〉δ, gδ)),

β̃j = β̃∗
j ∈ B([0, T ], S(1, gδ; Mn(C))).

Set µ1(T, R1) = µ1([0, T ], R1) + µ′
1([0, T ], R1), µ2(T, R1) = µ′

2([0, T ], R1),
and µ(T, R1) = µ1(T, R1)T + µ2(T, R1)T 2. Then limR1→∞ µ(T, R1) ≤ 2µ1

([0, T ])T + µ2([0, T ])T 2 (see Subsection 2.2).

Lemma 6.1. There are µ0 > 0 and cj > 0, depending only on d, h0 and
r (not on T or R1), such that if µ(T, R1) ≤ µ0, then β̃j ≥ cjIn (j = 0, . . . , 4).

Proof. In this proof, we denote by C1, C2, . . . positive constants depend-
ing only on d, h0 and r. We derive estimates on [0, T ]× supp λ1 in (a), (b), (c),
and on [0, T ] × supp (λ1ψ2) in (d). The claims for β̃0(= β̃3), β̃1, β̃2, β̃4 follow
from (a), (b), (c), (d) in this order.

(a) Since

−Hh0r ≥ σ1q,

|Hh1(t)r| ≤C1µ1(T, R1)r ≤ 2MTC1µ1(T, R1)q,

|Hh2(t)r|= 0,

it follows
−(Hh(t)r)/q ≥ (σ1 − 2MTC1µ1(T, R1))In ≥ c0In

with c0 = σ1/2 > 0 if µ(T, R1) is small enough.
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(b) Since

|σ0tHh1(t)q| ≤ C2σ0Tµ1(T, R1)q,

|σ0tHh2(t)q| ≤ C3σ0Tµ2(T, R1)r ≤ 2MT 2C3σ0µ2(T, R1)q,

we obtain

− (σ0In + (Hh(t)r)/q + σ0t(Hh(t)q)/q)

≥ (σ1 − σ0 − 2MTC1µ1(T, R1) − C2σ0Tµ1(T, R1)

− 2MT 2C3σ0µ2(T, R1))In

≥ c1In

with c1 = (σ1 − σ0)/2 > 0 if µ(T, R1) is small enough.
(c) Since

|Hh0(r/q)| = |θ| ≤ M/2,

|Hh1(t)(r/q)| ≤ C4µ1(T, R1)r/q ≤ 2MTC4µ1(T, R1),

|Hh2(t)(r/q)| ≤ C5µ2(T, R1)r2/q2 ≤ (2MT )2C5µ2(T, R1),

we have

In + Hh(t)(r/Mq)≥ (1 − 1/2 − 2TC4µ1(T, R1)

−4MT 2C5µ2(T, R1))In ≥ c2In

with c2 = 1/4 > 0 if µ(T, R1) is small enough.
(d) By virtue of (H5), we have

Hh0θ = (2−1H2
h0

(r2) − (Hh0r)
2)/(rq) ≥ (σ2 − σ2

2)q/r.

Moreover,

|Hh1(t)θ| ≤ C6µ1(T, R1) ≤ 2MTC6µ1(T, R1)q/r,

|Hh2(t)θ| ≤ C7µ2(T, R1)r/q ≤ (2MT )2C7µ2(T, R1)q/r.

Therefore, we obtain

rq−1Hh(t)θ ≥ (σ2 − σ2
2 − 2MTC6µ1(T, R1) − (2MT )2C7µ2(T, R1))In ≥ c4In

with c4 = (σ2 − σ2
2)/2 > 0 if µ(T, R1) is small enough.

Hereafter in this section, we assume µ(T, R1) ≤ µ0 so that the conclusion
of Lemma 6.1 holds.
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Let (φL)L≥1 be a bounded family of S(1, gδ) such that 1−φL ∈ C∞
0 (R2d),

0 ≤ φL ≤ 1, and supp φL ⊂ {X ∈ R2d; |X| ≥ L}. Set λL(t, X) = λ(t, X)φL(X).
By Lemma 5.3 there exists L0 ≥ 1 such that if L ≥ L0 then

((eλL(t))w)−1 = (e−λL(t))w(1 + rw
L (t))−1,

where rL(t) ∈ B([0, T ], S(γγ0(log W )4, gδ)) with supt∈[0,T ] ‖rw
L (t)‖ ≤ 1/2. Fix

L ≥ L0 and set K(t) = kw(t) = (eλL(t))w. Then

K ∈ Op B([0, T ], S1(〈X〉ρ, 〈x〉−1 log 〈X〉e, G)), K−1 ∈ Op B([0, T ], S(1, G)).

By the definition, supp λ(t, ·) ⊂ cone (S−(R1, σ1)); and

α0(t, x, ξ)2 =
νq(x, ξ)

r(x)1+ν(2 − r(x)−ν)
, eλ(t,x,ξ) = (r(x)+ σ0tq(x, ξ))ρ(2− r(x)−ν)

if (x, ξ) ∈ cone (S−(R2, σ2)) and r(x) ≤ MTq(x, ξ)/2.
The following theorem means that the solution of the Schrödinger equation

gains the regularity in S−(R2, σ2) if the initial data decays in S−(R1, σ1).

Theorem 6.2. For every u0 ∈ Bs(Rd,Cn) and f ∈ L1([0, T ],Bs(Rd,

Cn)), let u ∈ C([0, T ], Bs(Rd,Cn)) be the solution of

(6.1) (∂t + iH(·))u = f in D′((0, T ) × Rd,Cn), u(0) = u0.

Assume that K(0)u0 ∈ Bs(Rd,Cn) and K(·)f(·) ∈ L1([0, T ],Bs(Rd,Cn)).
Then v = K(·)u(·) ∈ C([0, T ], Bs(Rd,Cn)) and αw

j (·)v(·) ∈ L2([0, T ], Bs

(Rd,Cn)) (j = 0, 1, . . . , 4). Moreover, there are C1, C2 > 0, independent of
u0, f , and u, such that the following estimates hold: for all 0 ≤ t ≤ T

‖EsK(t)u(t) ‖ ≤ C1‖EsK(0)u0 ‖ + C1

∫ t

0

‖EsK(τ )f(τ ) ‖ dτ,

4∑
j=0

∫ t

0

‖αw
j (τ )EsK(τ )u(τ )‖2dτ

≤ C2

(
‖EsK(0)u0 ‖ +

∫ t

0

‖EsK(τ )f(τ ) ‖ dτ

)2

.

Proof. By Lemma 5.3,

K(t)(∂t + iH(t))K(t)−1

= ∂t + i( h(t) − H2
λ(t)h(t)/2 + {λ(t), ∂tλ(t)}/2 )w

− (∂tλ(t) + Hh(t)λ(t))w + cw(t)

= ∂t + P (t)
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with c ∈ B([0, T ], S(1, gδ; Mn(C))). The conditions (H6)–(H8) in Theorem 4.6
are valid if we set

p1(t) = h1(t) + h2(t) − H2
λ(t)h(t)/2 + {λ(t), ∂tλ(t)}/2,

p2(t) = −(∂tλ(t) + Hh(t)λ(t)), p3(t) = c(t).

Since v = K(·)u(·) ∈ C([0, T ], Bs−ρ(Rd,Cn)) ⊂ C([0, T ],S′(Rd,Cn)) is the
solution of

(∂t + iP (·))v = K(·)f in D′((0, T ) × Rd,Cn), v(0) = K(0)u0,

Theorem 4.6 completes the proof.

The next task is to prove increase in regularity at every point that is not
trapped backward by Φt if the initial data decays in an incoming region. To
express this property, it is convenient to introduce

Definition 6.3. For an open subset U of S∗Rd, Sµ
cpt(U) is the set of all

p ∈ S(〈ξ〉µ, |dx|2 + 〈ξ〉−2|dξ|2) satisfying supp p ⊂ cone(K) for some compact
set K ⊂ U .

Lemma 6.4. Let U be a relatively-compact open subset of S∗Rd, and
set Γ = ∪0≤t≤t0Φt(U), where t0 > 0 is an arbitrarily fixed constant. Let s ∈ R
and ρ ≥ 0. Then for every a ∈ S0

cpt(Γ), there are b ∈ S0
cpt(U) and a constant

C > 0 such that the a priori estimate below holds:

‖wt(D)ρ〈D〉sawu(t)‖2 +
∫ t

0

‖wτ (D)ρ〈D〉s+1/2awu(τ )‖2dτ(6.2)

≤ C

∫ t

0

‖wτ (D)ρ〈D〉s+1/2bwu(τ )‖2dτ + C‖Esu0‖2, 0 ≤ t ≤ T,

for all u0 ∈ S(Rd,Cn) with u(t) = S(t, 0)u0. Here wt(ξ) = 1 + t〈ξ〉 (t ≥ 0).

Lemma 6.4 is a little modification of [5, Theorem 2.1] and will be proved
at the end of this section. Admitting this lemma, we shall prove

Theorem 6.5. Let V be a relatively-compact open subset of S∗Rd such
that V ∩ T− = ∅. Let s ∈ R and ρ ≥ 0.

(1) For every a ∈ S0
cpt(V ), there is C > 0 such that the estimate below

holds:

‖wt(D)ρ〈D〉sawu(t)‖2 +
∫ t

0

‖wτ (D)ρ〈D〉s+1/2awu(τ )‖2dτ(6.3)

≤ C‖EsK(0)u0 ‖2, 0 ≤ t ≤ T,

for all u0 ∈ S(Rd,Cn) with u(t) = S(t, 0)u0.
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(2) Let u0 ∈ Bs(Rd,Cn) satisfy K(0)u0 ∈ Bs(Rd,Cn). Then for every
a ∈ S0

cpt(V ),

wt(D)ρ〈D〉sawu(t) ∈ C([0, T ], L2(Rd,Cn)),

wt(D)ρ〈D〉s+1/2
awu(t) ∈ L2([0, T ], L2(Rd,Cn)).

Moreover, there is C > 0, independent of u0, such that the estimate (6.3) holds.

Proof. (1) By Proposition 2.4, there is t0 > 0 such that U = Φ−t0(V ) ⊂
S−(R2, σ2), because R2 > R and 0 < σ2 < σ. Set Γ = ∪0≤t≤t0Φt(U). Let
a ∈ S0

cpt(V ) ⊂ S0
cpt(Γ). By Lemma 6.4, there are b ∈ S0

cpt(U) and a con-
stant C > 0 such that the a priori estimate (6.2) holds. So it is sufficient
to prove the claim below in view of Theorem 6.2. For simplicity, we set
S(m) = S(m, |dx|2+〈ξ〉−2|dξ|2) and define B([0, T ], S(〈ξ〉swr

t )) as the set of all
a ∈ C([0, T ], C∞(R2d)) such that a(t) ∈ S(〈ξ〉swr

t ) uniformly in t ∈ [0, T ].

Claim. There are c1 ∈ B([0, T ], S(1)) with supp c1(t, ·) ⊂ supp b, and
c2 ∈ B([0, T ],S) such that

wt(D)ρ〈D〉s+1/2bw = cw
1 (t)αw

0 (t)EsK(t) + cw
2 (t), 0 ≤ t ≤ T.

Proof of the claim. Note that

α0(t) = ( νqr−1−ν/(2 − r−ν) )1/2, k(t) = (r + σ0tq)ρ(2 − r−ν)

for all X ∈ cone (U) and t ∈ [0, T ] if q(X) � 1. Take b1, b2 ∈ Scpt(U) such
that b1 = 1 in a neighborhood of supp b and b2 = 1 in a neighborhood of
supp b1. Since b2α0(t) ∈ B([0, T ], S(〈ξ〉1/2)), b2es ∈ S(〈ξ〉s), and b2k(t) ∈
B([0, T ], S(wt(ξ)ρ)), we have

aw
1 (t) := bw

1 αw
0 (t)EsK(t) = bw

1 (b2α0(t))w(b2es)w(b2k(t))w + rw
1 (t)

∈ Op B([0, T ], S(〈ξ〉s+1/2wt(ξ)ρ))

with r1 ∈ B([0, T ],S). Moreover, �a1(t, X) ≥ C〈ξ〉s+1/2
wt(ξ)ρ for all X ∈

supp b and t ∈ [0, T ] if q(X) � 1. Write wt(D)ρ〈D〉s+1/2
bw = aw

0 (t)+rw
2 (t) with

a0 ∈ B([0, T ], S(〈ξ〉s+1/2
wt(ξ)ρ)), supp a0(t) ⊂ supp b, and r2 ∈ B([0, T ],S).

Take cj ∈ B([0, T ], S(〈ξ〉−j)), supp cj(t) ⊂ supp b, such that

c0(t, X) = a0(t, X)/a1(t, X),

cj(t, X) = −
j∑

k=1

1
k!

(
iσ(DX , DY )

2

)k

cj−k(t, X)a1(t, Y )|Y =X/a1(t, X)

(j ≥ 1)
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when q(X) � 1. Choose c ∈ B([0, T ], S(1)), supp c(t) ⊂ supp b, such that c −∑
j<N cj ∈ B([0, T ], S(〈ξ〉−N )) for all N ∈ N. Then aw

0 (t) = cw(t)aw
1 (t)+ r3(t)

with r3 ∈ B([0, T ],S). Therefore

wt(D)ρ〈D〉s+1/2bw = cw(t)bw
1 αw

0 (t)EsK(t)+rw
4 (t) = c̃w(t)αw

0 (t)EsK(t)+rw
5 (t)

with r4, r5 ∈ B([0, T ],S) and c̃ ∈ B([0, T ], S(1)), supp c̃(t) ⊂ supp b.
(2) Take a sequence (vk)k∈N in S(Rd,Cn) which converges to K(0)u0 in

Bs(Rd,Cn). Put uk(t) = S(t, 0)u0,k with u0,k = K(0)−1vk ∈ S(Rd,Cn). Since
(K(0)u0,k)k∈N converges to K(0)u0 in Bs(Rd,Cn), it follows from (6.3) that
(〈D〉swt(D)ρawuk(·))k∈N is a Cauchy sequence in C([0, T ], L2(Rd,Cn)), and so
is (〈D〉s+1/2wt(D)ρawuk(·))k∈N in L2([0, T ], L2(Rd,Cn)). On the other hand,
(uk)k∈N converges to u in C([0, T ],S′(Rd,Cn)). This completes the proof.

Proof of Lemma 6.4. We first localize the problem. Take φ ∈ C∞
0 (Rd)

such that φ = 1 in a neighborhood of the base projection of Γ. Take φ1 ∈
C∞

0 (Rd,R) such that φ1 = 1 in a neighborhood of supp φ, and set h̃(t, x, ξ) =
h(t, φ1(x)x, ξ) and h̃j(t, x, ξ) = hj(t, φ1(x)x, ξ) (j = 0, 1, 2). Then h̃0 ∈ S(〈ξ〉2)
and h̃j ∈ B([0, T ], S(〈ξ〉2−j ; Mn(C))) (j = 1, 2). Put H̃(t) = h̃w(t).

Apply Lemma A.3 to the case where m = 2 and h(t) = h̃(t), h0 = h̃0,
h1(t) = h̃1(t) + h̃2(t). Let u0 ∈ S(Rd,Cn) and set u(t) = S(t, 0)u0. Put
v(t) = φu(t). Since (∂t + iH̃(t))v(t) = [ iH(t), φIn ]u(t) =: f(t), we have

‖wt(D)ρ〈D〉sawv(t)‖2 +
∫ t

0

‖wτ (D)ρ〈D〉s+1/2
awv(τ )‖2dτ

≤ C

∫ t

0

‖wτ (D)ρ〈D〉s+1/2
bwv(τ )‖2dτ + C

∫ t

0

‖wτ (D)ρ〈D〉sãwf(τ )‖2dτ

+C‖〈D〉sãwv(0)‖2 + C sup
0≤τ≤t

‖〈D〉s−L
v(τ )‖2 + C

∫ t

0

‖〈D〉s−L
f(τ )‖2dτ

for all 0 ≤ t ≤ T . This completes the proof, because aw(1 − φ), ãw(1 −
φ), bw(1−φ) ∈ OpS, ãw[ iH(t), φIn ] ∈ Op B([0, T ],S), and ‖EsS(t, 0)u0‖ ≤ C

‖Esu0‖.

§7. Proofs for Section 2

Proof of Theorem 2.1. Theorem 2.1 is contained in Theorem 4.5.

Proof of Theorem 2.2. Since (1)–(4) follows directly from Theorem 2.1,
we prove only (5). Let H1 be the operator H with domain C∞

0 (Rd,Cn). If u ∈
L2(Rd,Cn) satisfies Hu ∈ L2(Rd,Cn), then Jεu ∈ S(Rd,Cn) and HJεu →
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Hu in L2(Rd,Cn) as ε → +0 by Lemma 4.3. This implies that S(Rd,Cn),
hence C∞

0 (Rd,Cn), is a core for H∗
1 . Thus, H1 is essentially self-adjoint. Let

t0 ∈ R and u0 ∈ L2(Rd,Cn). Then u(t) = e−i(t−t0)Hu0 ∈ C(R, L2(Rd,Cn))
is a solution of (2.3). By uniqueness, e−i(t−t0)Hu0 = S(t, t0)u0 for every
t ∈ R.

Proof of Lemma 2.3. Take ρ ∈ C∞
0 (Rd) such that ρ ≥ 0,

∫
Rd ρ(x)dx = 1,

supp ρ ⊂ {x ∈ Rd; |x| < 1}, ρ(−x) = ρ(x) (x ∈ Rd); set ρε(x) = ε−dρ(x/ε)
(0 < ε < 1). Define fε = ρε ∗f . By the definition, fε ≥ 1 and lim|x|→∞ fε(x) =
∞. For every α ∈ Nd

0 with |α| ≥ 2, write α = β + γ with |β| = 2. Then
∂αfε = (∂γρε) ∗ (∂βf) ∈ L∞(Rd). Since

∫
Rd yjρ(y)dy = 0, we have

|fε(x) − f(x)|=
∣∣∣∣
∫
Rd

ρε(y)(f(x − y) − f(x) + y · ∇xf(x))dy

∣∣∣∣
≤ ε2

∑
|α|=2

1
α!

∫
Rd

|yα|ρ(y)dy sup
y∈Rd

|∂αf(y)|.

More directly,

|∂α(fε(x) − f(x))| ≤ ε

∫
Rd

|y|ρ(y)dy sup
y∈Rd

|∇∂αf(y)|

if |α| = 1, and

|∂α(fε(x) − f(x))| ≤ sup
x,h∈Rd,|h|≤ε

|∂α
x (f(x + h) − f(x))|

if |α| = 2. So for every 0 < σ < σ̃ and R > R̃, there exists 0 < ε0 � 1 such
that for every 0 < ε ≤ ε0

H2
h0

fε ≥ 2σ2h0 if fε(x) ≥ R2.

Set fcv = fε0 .

Proof of Theorem 2.5. The continuity of the forward propagator follows
from Theorem 6.5 because K(0)〈x〉−ρ ∈ Op S(1, G). If u ∈ C(I,S′(Rd,Cn))
satisfies (∂t+ihw(t, x, D))u(t) = f(t), then v(t) = u(−t) satisfies (∂t+ihw(−t, x,

−D))v(t) = −f(−t). Moreover, T+ = {(x, ξ); (x,−ξ) ∈ T−}. So the continuity
of the backward propagator for ∂t+ihw(t, x, D) follows from that of the forward
propagator for ∂t + ihw(−t, x,−D).

Proof of Corollary 2.6. This follows easily from Theorem 2.5.

Proof of Corollary 2.7. Let I = [t1, t2] be an interval satisfying the con-
dition. Let t1 ≤ t0 ≤ t ≤ t2. If A is a compactly supported pseudodifferential
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operator of order 0 such that its essential support has no intersection with T−
(resp. T+), then AS(t, t0) (resp. AS(t0, t)) has a C∞ distribution kernel by
Theorem 2.5; hence

WF (K(t, t0)) ⊂ (T− × T ∗Rd) ∪ (0 × T ∗Rd \ 0),(7.1)

WF (K(t0, t)) ⊂ (T+ × T ∗Rd) ∪ (0 × T ∗Rd \ 0).(7.2)

Since K(t, t0)(x, x′) = K(t0, t)(x′, x), we have

(7.3) WF (K(t, t0)) = {(x, ξ; x′, ξ′); (x′,−ξ′; x,−ξ) ∈ WF (K(t0, t))}.

Further, T− = {(x, ξ); (x,−ξ) ∈ T+}. Combining these with (7.2), we get

(7.4) WF (K(t, t0)) ⊂ (T ∗Rd × T−) ∪ (T ∗Rd \ 0 × 0).

The upper estimate of WF (K(t, t0)) follows from (7.1) and (7.4), and that of
WF (K(t0, t)) follows consequently.

§8. Smoothing Effect of Order Half

This section discusses the smoothing effect of order half for the Schrödinger
equation in Section 1. We assume (H1)–(H4) throughout this section. We shall
use Lemma 3.4 (3) with

g = gδ = 〈x〉2δ|dx|2 + 〈X〉−2|dξ|2,

ϕ0 = 1/〈x〉, γ = 〈x〉δ/〈X〉, γ0 = 1/(〈x〉〈X〉).

Set q =
√

h0. Consider several conditions on the principal symbol h0.

(H9) (Global escape function). There exists a ∈ C∞(R2d,R) such that for
every α, β ∈ Nd

0

|∂β
x ∂α

ξ a(x, ξ)| ≤ Cα,β〈x〉1−|β|〈ξ〉−|α|, x, ξ ∈ Rd, if |β| = 0, 1;(8.1)

|∂β
x ∂α

ξ a(x, ξ)| ≤ Cα,β〈x〉δ(|β|−1)〈ξ〉−|α|, x, ξ ∈ Rd, if |β| ≥ 1;(8.2)

and that for some c > 0 and C > 0

Hh0a(x, ξ) ≥ cq(x, ξ) − C, x, ξ ∈ Rd.

(H10) (Escape function near infinity). There exists a ∈ C∞(R2d,R) such
that for every α, β ∈ Nd

0, (8.1) and (8.2) hold and that for some c > 0, C > 0,
and R > 0

Hh0a(x, ξ) ≥ cq(x, ξ)− C for |x| ≥ R, ξ ∈ Rd.

(H11) (Finite escape time). For every compact set K ⊂ S∗Rd, there exists
tK > 0 such that Φt(K) ∩ K = ∅ for all t ≥ tK .
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Remark. If |∇gjk(x)| = o(|x|−1) as |x| → ∞ for all j, k, then (H10)
holds with a = x · ξ/(1 + h0)1/2 or a = Hh0 |x|2/(1 + h0)1/2.

Remark. The condition (H5) implies (H10): we can choose a in (H10)
as a = Hh0fcv/(1 + h0)1/2.

Lemma 8.1. Under (H5), all conditions (H11), Tcpt = ∅, T+ = ∅, and
T− = ∅ are equivalent.

Proof. If X0 ∈ Tcpt,+, then the positive limit set of X0 is relatively com-
pact, and hence the total orbit of each positive limit point of X0 is relatively
compact. Thus Tcpt,+ �= ∅ implies Tcpt �= ∅. Similarly, Tcpt,− �= ∅ implies
Tcpt �= ∅. By Proposition 2.4, Tcpt,+ = T+ and Tcpt,− = T−. So Tcpt = ∅,
T+ = ∅, and T− = ∅ are equivalent. Clearly, (H11) implies Tcpt = ∅. For the
assertion that Tcpt = ∅ implies (H11), see the proof of the lemma 1.3 of [2].

Lemma 8.2. (H9) is equivalent to (H10) and (H11).

Proof. Suppose (H9). Then for all X ∈ T ∗Rd with q(X) = L � 1

d

dt
a(Φt(X)) = Hh0a(Φt(X)) ≥ 1, t ≥ 0,

which implies a(Φt(X)) ≥ t + a(X), t ≥ 0. Therefore for every compact set
K ⊂ {X ∈ T ∗Rd; q(X) = L}, Φt(K) ∩ K = ∅ if t ≥ 2 supX∈K |a(X)| + 1. This
gives (H11).

The proof of the converse is similar to that of the lemma 1.5 of [2].

Remark. We summarize the relations among the conditions above:

(H5) ⇒ (H10),

(H5) + (Tcpt = ∅) ⇔ (H5) + (T+ = ∅) ⇔ (H5) + (T− = ∅) ⇔ (H5) + (H11),

(H5) + (H11) ⇒ (H10) + (H11) ⇔ (H9).

Lemma 8.3 (non-trapping case). Assume (H9). For every 0 < ν � 1
there exist a real-valued symbol λ ∈ S1(1, 〈x〉−1

, gδ) and constants c, C > 0 such
that

−Hh0λ(X) ≥ c〈x〉−1−ν〈X〉 − C, X = (x, ξ) ∈ T ∗Rd.

Proof. This lemma is a minor modification of the lemma 2.3 of [2].
Let 0 < ε � 1 be a parameter to be fixed later. Take ψ, χ ∈ C∞(R) such

that
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(i) supp ψ ⊂ (ε,∞), ψ(t) = 1 near [2ε,∞), ψ′ ≥ 0,
(ii) supp χ ⊂ (−∞, 1), χ(t) = 1 if t ≤ 1/2, 0 ≤ χ ≤ 1.

Set ψ+(t) = ψ(t), ψ−(t) = ψ(−t), ψ0(t) = 1 − ψ+(t) − ψ−(t). Define

r(x) = 〈x〉, θ = a/〈x〉,

λ =
(
−θψ0(θ) + (M0 − (1 + |a|)−ν)

(
ψ−(θ) − ψ+(θ)

))
χ(r/q).

Here M0 = 2 + 2ε. Since q ≥ r on supp χ(r/q) and |a| ≥ εr on supp (ψ+(θ) +
ψ−(θ)), we have λ ∈ S1(1, 〈x〉−1, gδ). By (H9) we have

Hh0θ =
(
Hh0a − θHh0r

)
/r ≥ c0q/r − C0 on supp ψ0(θ)

with constants c0, C0 > 0 if ε is small enough. Fix such ε. By direct calculation,
we obtain

−Hh0λ =
(
(Hh0θ)ψ0(θ) + ν(1 + |a|)−1−ν(Hh0a)

(
ψ−(θ) + ψ+(θ)

))
χ(r/q)

+ (Hh0θ)
(
M0 − (1 + |a|)−ν − |θ|

)(
−ψ′

−(θ) + ψ′
+(θ)

)
χ(r/q)

−
(
−θψ0(θ) + (M0 − (1 + |rθ|)−ν)

(
ψ−(θ) − ψ+(θ)

))
χ′(r/q)Hh0r/q

≥
(
(Hh0θ)ψ0(θ) + ν(1 + |a|)−1−ν(Hh0a)

(
ψ−(θ) + ψ+(θ)

))
χ(r/q) − C1

≥
(
(c0q/r)ψ0(θ) + c1(1 + |a|)−1−νq

(
ψ−(θ) + ψ+(θ)

))
χ(r/q) − C2

≥c2r
−1−νq χ(r/q) − C2

≥c3〈x〉−1−ν〈X〉 − C3,

with constants c1, c2, c3, C1, C2, C3 > 0.

Lemma 8.4 (general case). Assume (H5). Let φR ∈ C∞(R) such that
φR(t) = 1 if t ≥ R′ for some R′ > R, supp φR ⊂ (R,∞), and φ′

R ≥ 0. Let
0 < ν � 1. Then there exist a real-valued symbol λ ∈ S1(1, 〈x〉−1

, gδ) and
constants c, C > 0 such that

−Hh0λ(X) ≥ cφR(r)〈x〉−1−ν〈X〉 − C, X = (x, ξ) ∈ T ∗Rd.

Proof. This lemma is a minor modification of the lemma 2.4 of [2]. Set
a = Hh0fcv/(1 + h0)1/2 = 2rHh0r/(1 + h0)1/2. By (H5)

Hh0a = H2
0fcv/(1 + h0)1/2 ≥ c0q − C0 on {(x, ξ) ∈ T ∗Rd; r(x) ≥ R}

for some c0, C0 > 0. For every 0 < ν � 1, define λ as in the proof of Lemma
8.3:

λ =
(
−θψ0(θ) + (M0 − (1 + |a|)−ν)

(
ψ−(θ) − ψ+(θ)

))
χ(r/q).
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Put λ̃ = φR(r)λ. Then λ̃ ∈ S1(1, 〈x〉−1, gδ) and aλ ≤ 0. Therefore

−Hh0 λ̃ =−φ′
R(r)(Hh0r)λ − φR(r)Hh0λ

≥−φR(r)Hh0λ ≥ cφR(r)〈x〉−1−ν〈X〉 − C

with constants c, C > 0.

Theorem 8.5 (smoothing effect of order half). Let s ∈ R and 0 < ν �
1. Let I = [t1, t2] (t1 < t2) and t0 ∈ I.

(1) Assume (H9). Then the two estimates in Theorem 2.8 (1) holds.
(2) Assume (H5). Then the assertion of Theorem 2.8 (2) holds.

Proof. For simplicity, we consider only the case where I = [0, T ] and
t0 = 0. Let u ∈ C1([0, T ],S(Rd,Cn)) with f(t) = (∂t + iH(t))u(t). By Lemma
4.2, EsH(t)E−1

s = H(t) + Bs(t) with Bs(·) ∈ Op B([0, T ], S(1, gδ; Mn(C))).
Then v = Esu ∈ C1([0, T ],S(Rd,Cn)) satisfies

Esf(t) = (∂t + iH(t) + iBs(t))v(t).

We shall denote by C1, C2, . . . several constants independent of t ∈ [0, T ] and u.
(1) Suppose (H9). Take λ satisfying Lemma 8.3. We may assume ‖λw‖ ≤

1/2. Then

i[ H(t), λw ] + iBs(t)∗λw − iλwBs(t) = (Hh0λ)wIn + bw(t)

with b ∈ B([0, T ], S(1, gδ; Mn(C))). By Lemma 8.3, the Sharp G̊arding inequal-
ity gives

−(Hh0λ)w ≥ C−1
1 E1/2〈x〉−1−ν

E1/2 − C2

as a quadratic form on S(Rd). Define a norm N(v) of L2(Rd,Cn) by N(v)2 =
((1 + λw)v, v). (We define N(v) = ((1 − λw)v, v) if I = [−T, 0] and t0 = 0.)
Then

d

dt
N(v(t))2 = ((Hh0λIn + b(t))wv(t), v(t)) + (i(Bs(t)∗ − Bs(t))v(t), v(t))

+ 2�((1 + λw)Esf(t), v(t))

≤ −C−1
1 ‖〈x〉−(1+ν)/2E1/2v(t)‖2 + C3N(v(t))2

+ 2�((1 + λw)Esf(t), v(t)).

Since
|((1 + λw)Esf(t), v(t))| ≤ N(Esf(t)) · N(v(t)),



�

�

�

�

�

�

�

�

Smoothness for Schrödinger Equations 215

we have

C−1
1

∫ t

0

‖〈x〉−(1+ν)/2E1/2v(τ )‖2dτ

≤ N(v(0))2 + C3t sup
τ∈[0,t]

N(v(τ ))2 + 2 sup
τ∈[0,t]

N(v(τ ))
∫ t

0

N(Esf(τ ))dτ.

Applying Theorem 2.1, we obtain the first estimate. Since

2|((1 + λw)Esf(t), v(t))|

≤ C4‖〈x〉(1+ν)/2
Es−1/2f(τ )‖ · ‖〈x〉−(1+ν)/2

E1/2v(τ )‖

≤ (2C1)−1‖〈x〉−(1+ν)/2E1/2v(τ )‖2 + C5‖〈x〉(1+ν)/2Es−1/2f(τ )‖2,

we obtain

d

dt
N(v(t))2 ≤− (2C1)−1‖〈x〉−(1+ν)/2

E1/2v(t)‖2

+ C6N(v(t))2 + C5‖〈x〉(1+ν)/2
Es−1/2f(t)‖2.

By a Gronwall-type inequality, we get

e−C6tN(v(t))2 + (2C1)−1

∫ t

0

e−C6τ‖〈x〉−(1+ν)/2
E1/2v(τ )‖2dτ

≤ N(v(0))2 + C5

∫ t

0

e−C6τ‖〈x〉(1+ν)/2
Es−1/2f(τ )‖2dτ.

This implies the second estimate.
(2) Suppose (H5). Applying Lemma 8.4 and imitating the proof of the

theorem 1.2 of [2], we can construct a real-valued symbol λ0 ∈ S1(1, 〈x〉−1, gδ)
such that

−Hh0λ0 ≥ 〈x〉−1−ν〈X〉|a|2 − C7, x, ξ ∈ Rd.

By the sharp G̊arding inequality, we have

−(Hh0λ0)w ≥ C−1
8 |〈x〉−(1+ν)/2Es+1/2a

wE−1
s |2 − C9

as a quadratic form on S(Rd). Then the rest of the proof goes similarly to the
first part of the proof of (1).
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A. Estimate along the Hamilton Flow for a Dispersive Equation

This appendix, independent of Sections 1, 2, 4–8, aims at deriving an
energy estimate along the Hamilton flow of the principal symbol for a general
dispersive operator ∂t + iH(t) by slightly modifying the proof in the section
6 of [5]. Here g = |dx|2 + 〈ξ〉−2|dξ|2, σ(H(t)) = h(t) = h0In + h1(t), h0 ∈
S(〈ξ〉m, g), and h1(·) ∈ B([0, T ], S(〈ξ〉m−1

, g; Mn(C))); h0 satisfies that for a
constant C > 0, h0(x, ξ) ≥ C−1|ξ|m − C, (x, ξ) ∈ T ∗Rd, and that h0(x, ξ) is
homogeneous of degree m in ξ if h0(x, ξ) ≥ 1/4.

Let ȟ0 ∈ C∞(T ∗Rd \ 0) be the homogeneous function of degree m in ξ

such that ȟ0 = h0 if h0 ≥ 1/4. Let Φt be the Hȟ0
-flow. Set q = ȟ

1/m
0 . Let

U be a relatively compact, open subset of S∗Rd = {z ∈ T ∗Rd \ 0; h0(z) = 1},
and put Γ = ∪0≤t≤t0Φt(U) for an arbitrarily fixed t0 > 0.

Lemma A.1. (1) For every f ∈ C∞
0 (Γ), there is u ∈ C∞

0 (Γ) such that
Hh0u + f ∈ C∞

0 (U).
(2) For every nonnegative function f ∈ C∞

0 (Γ), there is a nonnegative
function u ∈ C∞

0 (Γ) such that u > 0 on {X ∈ S∗Rd; f(X) > 0} and that
Hh0u + f ∈ C∞

0 (U).

Proof. (1) By compactness, there exist t1, . . . , tJ ∈ [0, t0] satisfying supp
f ⊂ ∪J

j=1Φtj
(U). Take φj ∈ C∞

0 (Φtj
(U)) such that φj ≥ 0,

∑J
j=1 φj = 1 in a

neighborhood of supp f . Set

u(X) :=
J∑

j=1

∫ tj

0

(φjf) ◦ Φt(X)dt.

Then u ∈ C∞
0 (Γ) and Hh0u + f ∈ C∞

0 (U).
(2) The function u ∈ C∞

0 (Γ) constructed as above satisfies all the proper-
ties.

Set wt(ξ) = 1 + t〈ξ〉m−1 (t ≥ 0) and denote by B([0, T ], S(〈ξ〉bwρ
t , g) ) the

set of all p(·) ∈ C([0, T ], C∞(R2d)) such that {p(t)w−ρ
t }0≤t≤T is bounded in

S(〈ξ〉b, g) (b, ρ ∈ R). Let θ ∈ C∞(R) such that 0 ≤ θ ≤ 1, θ(t) = 0 if t < 1/4,
and θ(t) = 1 if t ≥ 1/2.

Lemma A.2. Let s ∈ R, ρ ≥ 0, N ∈ N. Then for every compact set
K of Γ, there are fj ∈ C∞(T ∗Rd \ 0), fj ≥ 0, homogeneous of degree 0 in ξ

(j = 0, 1, . . . , N), and v(t) ∈ B([0, T ], S(wt, g)), v(t) > 0, satisfying (i)–(iii).
(i) v(t)−1 ∈ B([0, T ], S(w−1

t , g)), ∂tv ∈ B([0, T ], S(〈ξ〉m−1
wt, g)).
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(ii) f0 > 0 on K, fj > 0 on supp fj−1 ∩S∗Rd (j = 1, 2, . . . , N), supp fN ∩
S∗Rd ⊂ Γ.

(iii) There exists a constant λ0 > 0 such that for each λ ≥ λ0, we can find
C > 0 and α ∈ B([0, T ]; S(〈ξ〉2s+m−1

w2ρ
t , g)), supp α(t, ·, ·) ⊂ cone(K ′) for a

compact set K ′ of U , such that

−(∂tP (t) + iH(t)∗P (t) − iP (t)H(t))

≥ 1
2

N∑
j=0

λj((q(m−1)/2qj(t))w)2In − αw(t)In − Cwt(D)2ρ〈D〉2s+m−2−N
In

for all t ∈ [0, T ] as a quadratic form on H(∞)(Rd,Cn). Here

P (t) =
N∑

j=0

λjqw
j (t)2, qj(t) = qs−j/2fjv(t)ρθ(q) ∈ B([0, T ], S(〈ξ〉s−j/2wρ

t , g)).

Proof. By Lemma A.1 we can choose aj , b ∈ C∞
0 (Γ), aj ≥ 0 (j = 0, 1, . . . ,

N) so that
(a) a0 > 0 on K, aj > 0 on supp aj−1 (j = 1, 2, . . . , N);
(b) −Hh0aj = bj − αj with bj ∈ C∞

0 (Γ), bj ≥ 0, and αj ∈ C∞
0 (U) (j =

0, 1, . . . , N);
(c) −Hh0b = 1 − β near supp aN with β ∈ C∞

0 (U).
In fact, let a−1 : S∗Rd → R such that a−1 = 1 on K and a−1 = 0 outside
K. Take a nonnegative function bj ∈ C∞

0 (Γ) such that bj = 1 near supp aj−1,
and choose a nonnegative function aj ∈ C∞

0 (Γ) such that aj > 0 on {X ∈
S∗Rd; bj(X) > 0} and that αj := Hh0aj + bj ∈ C∞

0 (U), inductively in j =
0, 1, . . . , N + 1, and set b = aN+1 and β = αN+1.

Take M > 1 such that ‖h1(t, x, ξ)‖L(Cn) ≤ Mqm−1/4 for all t ∈ [0, T ] and
x, ξ ∈ Rd if h0 ≥ 1/4. Take ε > 0 such that eb ≥ ε. Extend aj , αj , bj , b, β as
homogeneous functions of degree 0. Set f(t) = eb+εtqm−1. For j = 0, 1, . . . , N ,
put

qj(t) = qs−j/2aje
Mbf(t)ρθ(q) ∈ B([0, T ], S(〈ξ〉s−j/2wρ

t (ξ), g)).

Define v(t) ∈ B([0, T ], S(wt, g)) as a modification of f(t) outside supp θ(q) so

that (i) is valid. Set fj = aje
Mb. Then (ii) is valid. By calculation,

−(∂t + Hh0) qj(t)2 = 2Mqm−1qj(t)2 + 2qm−1qj(t)2ρ(eb − ε)/f(t)

+2q2s−j+m−1ajbje
2Mbf(t)2ρθ(q)2 − βj(t).

Here βj ∈ B([0, T ], S(〈ξ〉2s−j+m−1
w2ρ

t , g)), suppβj(t, ·, ·) ⊂ supp αj ∪ supp β.
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By the product formula and the (sharp) G̊arding inequality,

−(∂t qw
j (t)2In + iH(t)∗qw

j (t)2 − iqw
j (t)2H(t))(A.1)

= (−(∂t + Hh0)qj(t)2In + 2qj(t)2�h1(t) )w − γw
j1(t)

=
(
2(Mqm−1In + �h1(t))qj(t)2 + cj(t)v(t)2ρIn

)w − γw
j1(t) − βw

j (t)In

= 2(q(m−1)/2qj(t))w (MIn + �h1(t)q1−mθ(2q))w (q(m−1)/2qj(t))w

+(v(t)ρ)wcw
j (t)(v(t)ρ)wIn − γw

j2(t) − βw
j (t)In

≥ ((q(m−1)/2qj(t))w)2In − C1〈D〉2s−j+m−2wt(D)2ρIn − βw
j (t)In.

Here cj ∈ B([0, T ], S(〈ξ〉2s−j+m−1, g)), cj ≥ 0, was estimated from below
by −C〈D〉2s−j+m−2wt(D)2ρIn by using the sharp G̊arding inequality; γjk ∈
B([0, T ], S(〈ξ〉2s−j+m−2w2ρ

t , g; Mn(C))) (k = 1, 2), and C1 > 0.
Take ãj ∈ C∞

0 (Γ) such that ãj ≥ 0, ãj = 1 in a neighborhood of supp aj ,
and aj+1 > 0 on supp ãj . Extend ãj as a homogeneous function of degree 0, and
set dj = ãjθ(2q). By microlocal ellipticity, there are ej(·) ∈ B([0, T ], S(1, g))
and r0,j(·) ∈ B([0, T ]; S(〈ξ〉−∞, g)) such that

ew
j (t)(q(m−1)/2qj+1(t))w + rw

0,j(t) = 〈D〉s+(m−j−2)/2wt(D)ρdw
j

for j = 0, 1, . . . , N . Here qN+1(t, x, ξ) = 〈ξ〉s−(N+1)/2wt(ξ)ρ. Multiplying (A.1)
by dw

j from both sides, we have

− (∂t qw
j (t)2In + iH(t)∗qw

j (t)2 − iqw
j (t)2H(t))

≥((q(m−1)/2qj(t))w)2In − C2|〈D〉s+(m−j−2)/2
wt(D)ρdw

j |2In

− dw
j βj(t)wdw

j In − rw
1,j(t)In

≥((q(m−1)/2qj(t))w)2In − C((q(m−1)/2qj+1(t))w)2In − β̃j
w
(t)In − rw

2,j(t)In.

Here r1,j , r2,j ∈ B([0, T ], S(〈ξ〉−∞, g)), β̃j ∈ B([0, T ], S(〈ξ〉2s−j+m−1w2ρ
t , g))

with supp β̃j(t, ·, ·) ⊂ supp αj ∪ supp β, and C, C2 > 0.
Define P (t) =

∑N
j=0 λjqw

j (t)2 with a parameter λ > 0. Then for every λ ≥
λ0 := 2C there are C ′ > 0 and α ∈ B([0, T ], S(〈ξ〉2s+m−1

w2ρ
t , g)), satisfying

supp α(t, ·, ·) ⊂ (∪N
j=0suppαj) ∪ supp β, such that

−(∂t P (t) + iH(t)∗P (t) − iP (t)H(t))

≥ 1
2

N∑
j=0

λj((q(m−1)/2qj(t))w)2In − αw(t)In − C ′〈D〉2s+m−N−2
wt(D)2ρIn.
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Lemma A.3. Let s ∈ R, ρ ≥ 0 and L � 1. Then for every a ∈ S0
cpt(Γ),

there are ã ∈ S0
cpt(Γ), b ∈ S0

cpt(U), and a constant C > 0 such that the a priori
estimate below holds:

‖wt(D)ρ〈D〉sawu(t)‖2 +
∫ t

0

‖wτ (D)ρ〈D〉s+(m−1)/2
awu(τ )‖2dτ

≤ C

∫ t

0

‖wτ (D)ρ〈D〉s+(m−1)/2
bwu(τ )‖2dτ + C

∫ t

0

‖wτ (D)ρ〈D〉sãwf(τ )‖2dτ

+C‖〈D〉sãwu(0)‖2 + C sup
0≤τ≤t

‖〈D〉s−Lu(τ )‖2 + C

∫ t

0

‖〈D〉s−Lf(τ )‖2dτ

for all t ∈ [0, T ] and u ∈ C1([0, T ], H∞(Rd,Cn)) with f(t) = (∂t + iH(t))u(t).

Proof. For L � 1, take N ∈ N such that N + 2 − m > 2L + 2ρ(m − 1).
Take a compact set K ⊂ Γ such that supp a ⊂ coneK, apply Lemma A.2 with
this compact set K, and take ã ∈ S0

cpt(Γ) such that ã(X) = 1 if X ∈ supp fN

and h0(X) ≥ 1/4. Fix λ ≥ λ0 and define two seminorms

Nk(t, u) =


 N∑

j=0

λj‖(qk(m−1)/2qj(t))wu‖2




1/2

(k = 0, 1).

Note that (P (t)u, u) = N0(t, u)2. Then there exists C > 0 such that

‖wt(D)ρ〈D〉s+k(m−1)/2
awu‖2 ≤ CNk(t, u)2 + C‖〈D〉s−L

u‖2,(A.2)

Nk(t, u)2 ≤ C‖wt(D)ρ〈D〉s+k(m−1)/2ãwu‖2 + C‖〈D〉s−Lu‖2(A.3)

for all u ∈ H∞(Rd,Cn) and 0 ≤ t ≤ T .
Let u ∈ C1([0, T ], H∞(Rd,Cn)) and set f(t) = (∂t + iH(t))u(t). Then we

have
d

dt
N0(t, u(t))2

= ( (∂t P (t) + iH(t)∗P (t) − iP (t)H(t))u(t), u(t)) + 2�(P (t)f(t), u(t))

≤ −N1(t, u(t))2/2 + (αw(t)u(t), u(t)) + C‖wt(D)ρ〈D〉s+(m−2−N)/2u(t)‖2

+ N0(t, u(t))2 + N0(t, f(t))2.

By a Gronwall-type inequality, we get

e−tN0(t, u(t))2 +
∫ t

0

e−τN1(τ, u(τ ))2dτ/2

≤ N0(0, u(0)) +
∫ t

0

e−τ
(
(αw(τ )u(τ ), u(τ ))

+C‖wτ (D)ρ〈D〉s+(m−2−N)/2u(τ )‖2 + N0(τ, f(τ ))2
)
dτ.
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By (A.2), (A.3), and a similar estimate about the term containing α(·), we can
complete the proof.
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