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Abstract

The problem of multiplying elements of the conjugate dual of certain kind of
commutative generalized Hilbert algebras, which are dense in the set of C∞-vectors of
a self-adjoint operator, is considered in the framework of the so-called duality method.
The multiplication is defined by identifying each distribution with a multiplication
operator acting on the natural rigged Hilbert space. Certain spaces, that are an
abstract version of the Bessel potential spaces, are used to factorize the product.

§1. Introduction

Distributions are, as is well-known, typical objects that can be multiplied
only if some very particular circumstances occur. Nevertheless, products of
distributions, sometimes understood only in formal sense, frequently appear in
physical applications (for instance in quantum field theory) and play a relevant
role in the theory of partial differential equations. For these reasons many
possibilities of defining a (partial) multiplication have been suggested in the
literature (see [1] for an overview) dating back to the famous Schwartz paper
devoted to the impossibility of multiplying two Dirac delta measures massed
at the same point [2].

Reconsidering an idea developed in [3], we study in this paper the possibil-
ity of making of the space S′(Rn) a partial *-algebra in the sense of [4]. As is
clear, the multiplication of a test function times a tempered distribution, makes
of (S′(Rn),S(Rn)) a quasi*-algebra in the sense of Lassner [5, 6] but, in this
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set-up, the corresponding lattice of multipliers is rather trivial. For this reason,
moving within the framework of the so-called duality method [1, Sect. II.5],
Russo and one of us proposed a way of refining the multiplication in S′(Rn).
This basically consists in considering distributions as multiplication operators
acting on a space D of test functions and then in discussing the possibility of
multiplying these operators. To be more definite let us introduce some notation
and basic definitions.

Let D be a dense subspace of Hilbert space H. Let us endow D with a
locally convex topology t, stronger than the one induced on D by the Hilbert
norm and let D′[t′] be its topological conjugate dual endowed with the strong
dual topology t′ defined by the set of seminorms

(1) F �→ ‖F‖M := sup
φ∈M

|〈F, φ〉|

where M runs in the family of bounded subsets of D[t]. In this way we get the
familiar triplet

D ⊂ H ⊂ D′

called a rigged Hilbert space.
Given a rigged Hilbert space, D ⊂ H ⊂ D′ , we denote with L(D,D′)

the set of all continuous linear maps from D[t] into D′[t′]. The space L(D,D′)
carries a natural involution A → A† defined by

〈A†f, g〉 = 〈Ag, f〉 ∀f, g ∈ D.

Furthermore, we denote by L+(D) the *-algebra of all closable operators in
H with the properties D(A) = D,D(A∗) ⊇ D and both A and A∗ leave D
invariant ( * denotes here the usual Hilbert adjoint). The involution in L+(D)
is defined by A → A+ = A∗
D. The space L+(D) is not, in general a subset
of L(D,D′) but, for instance, when t is the so called graph-topology [7] defined
by L+(D) on D then L+(D) ⊂ L(D,D′) and (L(D,D′),L+(D)) is a quasi
*-algebra. In this case, A† = A+, ∀A ∈ L+(D) (for this reason we denote
with † both involutions).

If U ∈ S′(Rn), then the map LU : φ ∈ S(Rn) → Uφ ∈ S′(Rn) is contin-
uous. Hence, the problem of multiplying two distributions U, V ∈ S′(Rn) can
be viewed in terms of multiplication of the corresponding operators LU , LV in
L(S(Rn),S′(Rn)) and then investigating conditions under which LU ·LV = LW

for some W ∈ S′(Rn). This was partially done in [3] also to a certain degree of
abstractness: therein, in fact, tempered distributions were considered as a spe-
cial case of the so called A-distributions defined as elements of the (conjugate)



�

�

�

�

�

�

�

�

Partial *-algebras of Distributions 261

dual of D∞(A) where A is a self-adjoint operator in L2(Ω) and Ω is an open
subset of Rn.

The basic idea for solving the general problem of multiplying operators of
L(D,D′), with a suitable choice of D, consists [8] in factorizing the operators
through some intermediate spaces between D and D′ that we call interspaces.
In this way, under certain conditions that make of a family of interspaces a
multiplication framework [11], L(D,D′) becomes a partial *-algebra [4, 9, 10].

A partial *-algebra is a vector space A with involution a → a∗ [i.e. (a + λb)∗ =
a∗ + λb∗; a = a∗∗] and a subset Γ ⊂ A × A such that (i) (a, b) ∈ Γ implies
(b∗, a∗) ∈ Γ; (ii) (a, b) and (a, c) ∈ Γ and λ ∈ C imply (a, b + λc) ∈ Γ; and (iii)
if (a, b) ∈ Γ, then there exists an element ab ∈ A and for this multiplication the
distributive property holds in the following sense: if (a, b) ∈ Γ and (a, c) ∈ Γ
then, by (ii), (a, b + c) ∈ Γ and

ab + ac = a(b + c).

Furthermore (ab)∗ = b∗a∗. The product is not required to be associative.
The partial ∗-algebra A is said to have a unit if there exists an element e

(necessarily unique) such that e∗ = e, (e, a) ∈ Γ, ea = ae = e, ∀a ∈ A.
If (a, b) ∈ Γ then we say that a is a left multiplier of b [and write a ∈ L(b)] or

b is a right multiplier of a [b ∈ R(a)]. For S ⊂ A we put LS =
⋂
{L(a) : a ∈ S};

the set RS is defined in analogous way. The set MS = LS ∩ RS is called the
set of universal multipliers of S.

The paper is organized as follows. In Section 2 we discuss (mostly summa-
rizing or reformulating known results) the general problem of the multiplication
in L(D,D′).
In Section 3 we consider the particular case where D is a dense (in the graph
topology) subspace of D∞(A), with A a self-adjoint operator in Hilbert space H
and we assume that D is, at once, a (sort of) generalized commutative Hilbert
algebra. The structure of partial *-algebra of the corresponding conjugate dual
space D′ is investigated, by associating to each distribution F ∈ D′ a multi-
plication operator LF ∈ L(D,D′). The problem is first considered from an
abstract point of view. Then, for a fixed family of Banach spaces {Eα} and a
domain D, which is a core for all powers of A, we consider the multiplication
framework generated by the spaces

Ls,α
A = {F ∈ D′ : (1 + A2)

s
2 F ∈ Eα}.

This abstract family of spaces is interesting in its own since it reduces, when
A = −i d

dx and {Eα} = {Lp(Rn)}, to the so called Bessel potential spaces.



�

�

�

�

�

�

�

�

262 Camillo Trapani and Francesco Tschinke

In Section 4, the ideas developed in the previous sections are applied to the
rigged Hilbert space generated by the tempered distributions.

§2. L(D,D′) as Partial *-Algebra

The problem of multiplying operators of L(D,D′) has been first considered
by Kürsten [8]. Other studies have been carried out in [12] and, more recently,
in [13]. In order to keep the paper sufficiently self-contained, we summarize in
this Section the basic definitions and main results.

Let
D ⊂ H ⊂ D′

be a rigged Hilbert space with D[t] a semireflexive space.
Let E [tE ] be a locally convex space satisfying

(2) D ↪→ E ↪→ D′

where ↪→ denotes continuous embeddings with dense range. Let E ′ denote the
conjugate dual of E [tE ] endowed with its own strong dual topology tE′ . Then
by duality, E ′ is continuously embedded in D′ and the embedding has dense
range. Also D is continuously embedded in E but in this case the image of D
is not necessarily dense in E ′, unless E is semi-reflexive. In order to avoid this
difficulty, we endow E with the Mackey topology τ (E , E ′) := τE and E ′ with
τ (E ′, E) := τE′ . The same can be done, of course, with the spaces D and D′

themselves. If (2) holds for the initial topologies, then it holds also when each
space is endowed with the Mackey topology.
Following [11], a subspace E of D′ satisfying (2) and endowed with τE will be
called an interspace. Clearly, if E is an interspace, then E ′[τE′ ] is an interspace
too.

Let E ,F be interspaces and L(E ,F) the linear space of all continuous linear
maps from E into F . Following [8], we define

C(E ,F) =
{

A ∈ L(D,D′) : A = Ã � D for some Ã ∈ L(E ,F)
}

.

It is not difficult to prove that L†(D) = C(D,D) ∩ C(D′,D′).
Let now A, B ∈ L(D,D′) and assume that there exists an interspace E

such that B ∈ L(D, E) and A ∈ C(E ,D′); it would then be natural to define

A · Bf = Ã(Bf), f ∈ D.

This product is not, however, well defined, because it may depend on the choice
of the interspace E . As shown by Kürsten [8], this pathology is due to the fact
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that D is not necessarily dense in the intersection E ∩F of two interspaces E ,F ,
endowed with the projective topology τE ∧ τF . For this reason, we give the
following definition.

Definition 2.1. A family L0 of interspaces in the rigged Hilbert space
(D[t],H,D′[t′]) is said to be tight (around D) if E ∩ F is an interspace for any
pair of interspaces E , F ∈ L0.

Definition 2.2. Let L0 be a tight family of interspaces in the rigged
Hilbert space (D[t],H,D′[t′]). The product A · B of two elements of L(D,D′)
is defined, with respect to L0, if there exist three interspaces E ,F ,G ∈ L0 such
that A ∈ C(F ,G) and B ∈ C(E ,F). In this case the multiplication A · B is
defined by:

A · B =
(
ÃB̃

)
� D

or, equivalently, by:
A · Bf = ÃBf, f ∈ D.

where Ã (resp., B̃) denote the extension of A (resp., B) to E (resp., F).

This definition does not depend on the particular choice of the interspaces
E ,F ,G ∈ L0 [8, Proposition 3.2] but may depend on L0. Of course, we may
also suppose that E = D and G = D′. With this choice, for the product A ·B to
make sense, we need only to require the existence of one interspace F such that
A ∈ C(F ,D′) and B ∈ C(D,F). The price is, of course, a loss of information on
the range of A · B. Nevertheless, given a tight family of interspaces around D,
L(D,D′) is not, in general, a partial *-algebra with respect to the multiplication
defined above. This is due to the fact that a family of interspaces around D
is not necessarily closed under the operation of taking duals and under finite
intersections. We give the following definition [11]:

Definition 2.3. A family L of interspaces in the rigged Hilbert space
(D[t],H,D′[t′]) is called a multiplication framework if

(i) D ∈ L

(ii) ∀E ∈ L, its dual E ′ also belongs to L

(iii) ∀E ,F ∈ L, E ∩ F ∈ L.

In many instances, however, instead of the notion of multiplication frame-
work, a lighter condition can be of some usefulness: we call generating a tight
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family of interspaces L0 closed under duality and enjoying the following prop-
erty:

• D is dense in E1 ∩ · · · ∩ En, endowed with its own projective topology, for any
finite set {E1, . . . , En} of elements of L0.

Proposition 2.4. Let L be a multiplication framework in the rigged
Hilbert space (D[t],H,D′[t′]). Then L(D,D′) with the multiplication defined
above is a (non-associative) partial *-algebra.

The same statement holds true if we replace the multiplication framework
L with a generating family of interspaces.

In [13], a particular generating family has been constructed in the case
where the rigged Hilbert space is that generated by a single self-adjoint operator
A with domain D(A) in H. As usual we put

D∞(A) =
∞⋂

n=1

D(An).

Endowed with the topology tA generated by the set of seminorms

f → ‖Anf‖, n ∈ N,

D∞(A) is a Fréchet and reflexive domain; let us denote with D−∞(A) its conju-
gate dual with respect to the scalar product of H and endow it with the strong
dual topology t′A.

Let {Eα}α∈I be a family of interspaces, such that each Eα is a Banach
space with norm ‖ · ‖α. If the family is closed under duality between D−∞(A)
and D∞(A), then we can define an involution α → ᾱ in the set of indeces, such
that Eᾱ  (Eα)′. We assume, in particular, that the sesquilinear form which
puts Eα and Eᾱ in conjugate duality extends the inner product of D. Thus:

|〈F, G〉| ≤ ‖F‖α‖G‖ᾱ ∀F ∈ Eα ∀G ∈ Eᾱ.

Let U(t) be a one-parameter group of unitaries generated by A and Û(t) its
continuous extension to D−∞(A). Then, the family {Eα}α∈I is compatible
with A if the following conditions are satisfied:

1) Û(t)Eα = Eα, ∀α ∈ I

2) limt→0 ‖Û(t)F − F‖α = 0, ∀F ∈ Eα, ∀α ∈ I.
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We define for all s ∈ R and α ∈ I the set Ls,α
A :

(3) Ls,α
A := {F ∈ D−∞(A) : JsF ∈ Eα}

where J = (1 + A2)1/2.

Lemma 2.5. If, for every s < 0, Js maps Eα continuously into itself,
then if s1 < s2, Ls2,α

A ⊂ Ls1,α
A and the embedding is continuous.

Proof. Indeed, one has, for some C > 0:

‖Js1F‖α = ‖Js1−s2Js1F‖α ≤ C‖Js2F‖α.

Proposition 2.6. If {Eα}α∈I is a family of Banach spaces compatible
with A, then the following statements hold:

1) For each s ∈ R and α ∈ I, Ls,α
A [‖ · ‖s,α], endowed with the norm ‖F‖s,α =

‖(1 + A2)
s
2 F‖α, is a Banach space, and (1 + A2)

s
2 is an isometry of Ls,α

A

in Eα.

2) D∞(A) ↪→ Ls,α
A , s ∈ R , α ∈ I (↪→ denotes a continuous embedding).

3) (Ls,α
A )′  L−s,ᾱ

A , s ∈ R , α ∈ I.

4) For any s ∈ R, D∞(A) is dense in any finite intersection of the spaces Ls,α
A

endowed with the projective norm.

The notion of compatibility is crucial in the proof of 4). Indeed, in this
case, if F ∈

⋂n
i=1 L

si,αi

A , as shown in [13], the net {jε
A∗F} converges to F with

respect to the projective topology. The net {jε
A∗F} is defined by

jε
A∗F =

∫
R

jε(t)Û(t)Fdt

where jε is the approximate identity constructed from a regularizing function
j ∈ C∞

0 (R) and Û(t) the continuous extension of U(t) to Eα.
This fact and Proposition 2.6 imply that the spaces Ls,α

A constitute a gen-
erating family of interspaces, in the sense explained above.

More in general, we may consider a subspace D ⊂ D∞(A) endowed with a
locally convex topology t which makes of D a semireflexive space and satisfying
the following properties:
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d1) the topology t of D is finer than the topology induced from D∞(A);

d2) both A and J map D[t] continuously into itself;

d3) for all n ∈ N, D is a core for Jn, that is: Jn �D = Jn.

If D′ denotes the conjugate dual of D[t], we have the following situation

D ↪→ D∞(A) ↪→ H ↪→ D−∞(A) ↪→ D′

and if {Gα} is a multiplication framework between D∞(A) and D−∞(A), so it
is between D and D′ also. In analogy with (3), we define

Ls,α
A = {F ∈ D′ : (1 + A2)

s
2 F ∈ Eα}.

The following Lemma, proved in [13] will be needed in what follows.

Lemma 2.7. For each s ∈ R and α ∈ I, the space Ls,α
A [‖ ‖s,α] is a

Banach space. Moreover, the map

F ∈ Ls,α
A → F �D−∞(A)∈ Ls,α

A

is an isometric isomorphism of Banach spaces.

Clearly, for the spaces Ls,α
A a statement completely analogous to Proposi-

tion 2.6 holds.

§3. Multiplication of Distributions

In this Section we will discuss the problem of the multiplication of distribu-
tions identifying them with certain multiplication operators acting in the rigged
Hilbert space of distributions itself and applying the methods of
Section 2. We will try to maintain the situation as abstract as we can; thus,
instead of considering specific test function spaces, such as D(Rn) or S(Rn),
we start with a dense domain in Hilbert space which is at once a commutative
*-algebra satisfying additional topological requirements.

Let D be a domain satisfying the conditions d1)-d3) above with respect to
a fixed self-adjoint operator A. We assume, in addition, that D is a generalized
commutative Hilbert *-algebra in the sense that D is a commutative *-algebra
with respect to the involution φ �→ φ∗ and the multiplication (φ, ψ) �→ φψ(=
ψφ) and the following conditions hold:
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(h1) 〈φ, ψ〉 = 〈ψ∗, φ∗〉, ∀φ, ψ ∈ D;

(h2) 〈φψ, χ〉 = 〈ψ, φ∗χ〉, ∀φ, ψ, χ ∈ D;

(h3) the multiplication (φ, ψ) �→ φψ(= ψφ) is jointly continuous with re-
spect to the topology t of D;

(h4) the involution φ �→ φ∗ is continuous in D[t];

(h5) D · D is dense in D[t].

Proposition 3.1. Let D′ be the (conjugate) dual of D. If we define the
multiplication of an element F ∈ D′ and an element φ ∈ D by

〈Fφ, ψ〉 = 〈φF, ψ〉 := 〈F, φ∗ψ〉, ∀ψ ∈ D,

then (D′[t′],D) is a topological quasi*-algebra.

Proof. First, we prove that Fφ ∈ D′, ∀φ ∈ D. Indeed, let {pDγ }γ∈K

denote a directed family of seminorms defining the topology t; then using the
continuity of F and (h3), we can find a bounded subset M of D, γ, δ ∈ K and
a positive constant C such that

|〈Fφ, ψ〉| = |〈F, φ∗ψ〉|≤‖F‖MpDγ (φ∗ψ) ≤ CpDδ (φ)pDδ (ψ), ∀φ, ψ ∈ D.

Therefore, Fφ is a continuous linear functional on D. Now, we define an invo-
lution ∗ in D′ which extends the involution of D. This can be done by setting

F ∈ D′ �→ F ∗ ∈ D′

where
〈F ∗, φ〉 := 〈F, φ∗〉, ∀φ ∈ D.

The involution defined in this way satisfies the equality

(Fψ)∗ = ψ∗F ∗, ∀F ∈ D′, ∀ψ ∈ D.

Furthermore, it is continuous, since, if M is a bounded subset of D, we have:

‖F ∗‖M= sup
φ∈M

|〈F ∗, φ〉|= sup
φ∈M

|〈F, φ∗〉| = sup
φ∈M∗

|〈F, φ〉| = ‖F‖M∗

where M∗ := {φ∗, φ ∈ M} is bounded as continuous image of a bounded set.
For each fixed φ in D, the map

F ∈ D′ �→ Fφ ∈ D′
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is continuous. Indeed, let M be a bounded subset of D; we have:

‖Fφ‖M = ‖F‖φM.

The set φM is still bounded in D since it is the continuous image of a bounded
set. Finally, it is clear, by the semireflexivity, that D is dense in D′.

From these facts it follows that to each element F of D′ we can associate
an operator LF of multiplication on D defined by

LF : φ ∈ D → Fφ ∈ D′.

This is a continuous linear map of D into D′. Indeed, if M is bounded in D[t],
by the continuity of F , there exists C > 0 and γ ∈ K such that:

sup
χ∈M

|〈Fφ, χ〉| = sup
χ∈M

|〈F, φ∗χ〉| ≤ C sup
χ∈M

pDγ (φ∗χ) .

Then, by the continuity of the multiplication and of the involution, we can find
a new constant C1 > 0 and δ ∈ K such that

sup
χ∈M

|〈Fφ, χ〉| ≤ C1p
D
δ (φ).

Moreover, the map j : F ∈ D′ → LF ∈ L (D,D′) is injective; indeed, LF = 0
implies LF φ = 0, ∀φ ∈ D and so

〈Fφ, ψ〉 = 〈F, φ∗ψ〉 = 0, ∀φ ∈ D, ψ ∈ D.

The density of D·D in D implies that F = 0. Clearly, for F, G ∈ D′ and λ ∈ C,
we have

LF+G = LF + LG, LλF = λLF , (LF )∗ = LF∗ .

Therefore, the problem of multiplying two distributions F, G can be formu-
lated in terms of the multiplication of the corresponding operators LF and LG.
The multiplication of operators of this kind can then be studied in the terms
proposed in [13] and summarized in the previous section. Nevertheless, even
though the product LF ·LG exists in L(D,D′), it is not necessarily an operator
of multiplication by some distribution. For this to happen, additional condi-
tions must be added. A net (ηε) of elements of D is called an approximate
identity of D if

t − lim
ε

ηεφ = φ, ∀φ ∈ D.
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Proposition 3.2. Assume that D has an approximate identity and let
X ∈ L(D,D′). Then X = LV for some V ∈ D′ if, and only if, the following
two conditions are fulfilled

(i) X(φψ) = φXψ, ∀φ, ψ ∈ D;

(ii) there exists C > 0 and γ ∈ K such that

|〈Xφ, ψ〉| ≤ CpDγ (φ∗ψ), ∀φ, ψ ∈ D.

Proof. The necessity is obvious.
As for the sufficiency, let (ηε) be an approximate identity of D. We define a
conjugate linear functional Vη on D by

Vη(φ) = lim
ε
〈Xηε, φ〉, φ ∈ D.

We have

|Vη(φ)| = lim
ε

|〈Xηε, φ〉| ≤ C lim
ε

pDδ (ηεφ) = CpDδ (φ), ∀φ ∈ D.

Therefore, Vη ∈ D′.
Now, making use of (i), we get, for φ, ψ ∈ D,

〈LVη
φ, ψ〉 = 〈Vη, φ∗ψ〉 = lim

ε
〈Xηε, φ

∗ψ〉 = 〈Xφ, ψ〉.

Therefore the definition of Vη is independent of (ηε) and X is a multiplication
operator.

Remark 3.3. We notice that the assumption that D has an approximate
identity is used only for the sufficiency. The previous Proposition can be seen as
an abstract version of [3, Proposition 3.10] where it was proved for D = S(Rn).

In order to simplify notations, from now on we will not distinguish graph-
ically elements of D′ and D. This means that we consider D as a true subspace
of D′.

Lemma 3.4. Let u ∈ D′ and let F and G be two interspaces. Assume
that Lu has a continuous extension L̃u : F → G, i.e., Lu ∈ C(F ,G). Then also

Lu∗ has a continuous extension from G′ to F ′, and (L̃u)† = L̃u∗ = (̃L†
u).

Proof. Since L̃u ∈ L(F ,G), then it has an adjoint

(L̃u)† : G′ → F ′
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defined by

G 〈L̃uf, g〉G′ = F 〈f, (L̃u)†g〉F′ , ∀f ∈ F , ∀g ∈ G′

on the other hand, for each φ, ψ ∈ D, one has:

D′ 〈Luψ, φ〉D = D′ 〈uψ, φ〉D = D′ 〈u, ψ∗φ〉D = D′ 〈u∗, (ψ∗φ)∗〉
D

= D〈φ∗ψ, u∗〉D′ = D〈ψ, φu∗〉D′ = D 〈ψ, Lu∗φ〉D′ ,

thus (Lu)† = Lu∗ . If g ∈ G′, there exists a net ωε ∈ D converging to g in the
topology of G′. By definition of continuous extension one has:

D〈ψ, Lu∗ωε〉D′ → F 〈ψ, L̃u∗f〉F′

and so, by definition: (L̃u)† = L̃u∗ . The equality (L̃u)† = (̃L†
u) follows easily.

Let now T be a multiplication framework satisfying the following proper-
ties:

A1) If F ∈ T , then ∗ : F → F , continuously.

A2) If F ∈ T and φ ∈ D, then φF ⊂ F , and the map Tφ : F → F , defined
by:

u ∈ F �→ φu ∈ F
is continuous in F .

A3) If F ∈ T , u ∈ F , the map Lu : φ ∈ D → φu ∈ F is continuous from D
into F .

Remark 3.5. If A1) and A2) are satisfied, then (h1) and (h2) extend
to any pair F ,F ′ of dual interspaces of T , due to the density of D in any
interspace. That is

(h1)′
F
〈u, v〉F′ =

F
〈u∗, v∗〉

F′ , ∀u ∈ F , v ∈ F ′

(h2)′
F
〈uφ, v〉F′ =

F
〈u, φ∗v〉F′ , ∀u ∈ F , v ∈ F ′, φ ∈ D.

Making use of these facts, we have

Proposition 3.6. Let D possess an approximate identity and let T be
a multiplication framework satisfying A1) and A2). If u, v ∈ D′ and Lu ◦Lv is
well defined with respect to T , then also Lv ◦ Lu is well defined and

Lu ◦ Lv = Lv ◦ Lu.



�

�

�

�

�

�

�

�

Partial *-algebras of Distributions 271

Proof. Lu ◦ Lv is well defined, then there exist E ,F ,G ∈ T such that:

L̃v : E → F

L̃u : F → G
continuously. For each φ, ψ ∈ D, if (ηε) is the approximate identity of D:

D′ 〈Lu ◦ Lvφ, ψ〉D = lim
ε D′ 〈Lu ◦ Lvφ, ψηε〉D = lim

ε F 〈Lvφ, L†
uψηε〉F′

= lim
ε F 〈vφ, u∗ψηε〉F′ = lim

ε F 〈ψ∗vφ, u∗ηε〉F′ = lim
ε F 〈ψ∗v, u∗ηεφ

∗〉F′

= F 〈ψ∗v, u∗φ∗〉F′ = F 〈(ψv∗)∗, (uφ)∗〉F′ = F′ 〈uφ, v∗ψ〉F = F′ 〈Luφ, L†
vψ〉F .

This implies that Lv ◦ Lu is well defined. From the previous equalities we
get:

D′ 〈(Lu ◦ Lv)φ, ψ〉D = F′ 〈Luφ, L†
vψ〉F = D′ 〈(Lv ◦ Lu)φ, ψ〉D ∀φ, ψ ∈ D

and therefore Lu ◦ Lv = Lv ◦ Lu.

The equality Lu ◦Lv = Lv ◦Lu stated in the previous Proposition strictly
depends on the fact that Lu and Lv are multiplication operators, but it does
not imply that Lu ◦Lv is itself a multiplication operator. Thus, in what follows
we will give conditions for the product Lu ◦Lv to be itself a distribution, in the
sense that there exist w ∈ D′ such that Lu ◦ Lv = Lw.

Lemma 3.7. Let T be a multiplication framework satisfying the prop-
erties A2), A3) and let v ∈ A ∈ T and u ∈ D′. Let Lv, Lu be the corresponding
multiplication operators from D into D′. If Lu has a continuous extension
L̃u : A → C ∈ T , then there exist C > 0 and a seminorm pC

′

γ in the directed
family defining the topology of C′ such that for each φ, ψ ∈ D:

(4) | D′ 〈L̃u · Lvφ, ψ〉D | ≤ CpC
′

γ (ψφ∗).

Proof. Indeed, there exist C1 > 0 and two seminorms pAδ1
and pA

′

δ2
in the

directed families generating, respectively, the topologies of A and A′ such that:

| D′ 〈L̃u · Lvφ, ψ〉D |= | C 〈L̃u · Lvφ, ψ〉C′ | = | A〈Lvφ, L̃†
uψ〉A′ | = | A〈vφ, u∗ψ〉A′ |

= | A〈v, u∗ψφ∗〉A′ | ≤ C1p
A
δ1

(v)pA
′

δ2
(L̃†

u(ψφ∗)).

Since the adjoint map L̃†
u : C′ → A′ is continuous, there exists C2 > 0 and

a seminorm pC
′

γ on C′ such that:

C1p
A
δ1

(v)pA
′

δ2
(L̃†

u(ψφ∗)) ≤ C1p
A
δ1

(v)C2p
C′

γ (ψφ∗) = CpC
′

γ (ψφ∗),

where C depends, in general, on u,v.
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Proposition 3.8. Let T be a multiplication framework satisfying the
properties A2), A3). For fixed v ∈ A and u ∈ D′, let Lv, Lu be the respective
multiplication maps from D into D′. If Lu has a continuous extension, L̃u :
A → C ∈ T , then there exists w ∈ C such that Lw = L̃u · Lv : D → C.

Proof. We need to prove that the conditions (i), (ii) of Proposition 3.2
are satisfied.
First we prove (i), that is

Lu · Lv(φψ) = φLu · Lvψ ∀φ, ψ ∈ D.

Indeed, for each φ, ψ, ξ ∈ D, we have:

D′ 〈Lu · Lv(φψ), ξ〉D = C 〈L̃u · Lv(φψ), ξ〉C′ = A〈Lv(φψ), L̃†
uξ〉A′

A〈v(φψ), u∗ξ〉A′ = A〈vψ, u∗ξφ∗〉A′ = A〈Lvψ, L̃†
uξφ∗〉A′ = C 〈L̃u · Lvψ, ξφ∗〉C′

= C 〈φL̃u · Lvψ, ξ〉C′ = D′ 〈φLu · Lvψ, ξ〉D .

In order to prove (ii) of Proposition 3.2, we make use of the inequality
(4) stated in Lemma 3.7. Since D is continuously embedded in C′, there exists
C3 > 0 and δ ∈ K such that pC

′

γ (ψφ∗) ≤ C3p
D
δ (ψφ∗). Then, we have:

| D′ 〈L̃u · Lvφ, ψ〉D | ≤ C4p
D
δ (ψφ∗)

for some C4 > 0. Then, by Proposition 3.2, there exists w ∈ D′ such that:

Lw = L̃u · Lv.

In order to prove that w ∈ C, it is enough to show that w is a continuous
functional on D as a dense subspace of C′. Let (ηε) be an approximate identity
of D: then ηεφ → φ in the topology of D, and therefore also in C′, which is
weaker. Using the inequality (4), there exists C > 0 and a seminorm pC

′

γ on C′

such that:

|D′ 〈w, φ〉D | = lim
ε

|D′ 〈w, ηεφ〉D | = lim
ε

|D′ 〈ηεw, φ〉D | = lim
ε

| C 〈Lwηε, φ〉C′ |

≤ C lim
ε

pC
′

γ (ηεφ) = CpC
′

γ (φ).

This proves that w can be identified with a continuous functional on C′.

The next corollary summarizes the results of Propositions 3.6 and 3.8:



�

�

�

�

�

�

�

�

Partial *-algebras of Distributions 273

Corollary 3.9. Let T be a multiplication framework satisfying the prop-
erties A1), A2), A3), and let v ∈ A and u ∈ D′, with Lv, Lu the corresponding
multiplication maps. If Lu ∈ C(A, C), then it is possible to define a product
w = u · v with w ∈ C. The multiplication defined in this way is commutative.

A special case of Corollary 3.9 is the following

Corollary 3.10. Let T be a multiplication framework satisfying the
properties A1), A2), A3) and u, v ∈ D′. If there exists an interspace M ∈ T
such that u ∈ M and v ∈ M′ then Lu ◦ Lv is well defined as a multiplica-
tion map, i.e, there exists w ∈ D′ such that Lw = Lu ◦ Lv. This product is
commutative.

Proof. This is once more an application of Proposition 3.2. The proof is
similar to that of Proposition 3.8, so we omit it.

Let now u ∈ D′ and T be a multiplication framework. In general, u need
not belong to any proper interspace F ∈ T . This is, however, needed to apply
the corollaries 3.9 and 3.10. For this reason we put:

D′
T =

⋃{
F : F ∈ T ,D ⊂ F ⊂ D′

}
.

At the light of the previous discussion, we get

Proposition 3.11. Let T be a multiplication framework satisfying the
properties A1), A2), A3). Then D′

T can be identified with a commutative partial
*-algebra

A = {Lu, u ∈ D′
T ⊂ L(D,D′)},

where the multiplication is that defined in L(D,D′) by the multiplication frame-
work T .

Remark 3.12. We notice that in the Propositions given above, the as-
sumption that T is a multiplication framework having the properties A1), A2)
and A3), can be replaced with the requirement that T is a generating family
of interspaces enjoying the same properties. This is due to the fact that if T is
a generating family of interspaces with the properties A1), A2) and A3), then
the generated multiplication framework T̂ has again the properties A1), A2)
and A3).

Now we turn to the generating family of interspaces constituted by the
Banach spaces

Ls,α
A := {u ∈ D′ : Jsu ∈ Eα}
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and we ask ourselves under which conditions the multiplication framework T
they generate satisfies the conditions A1), A2) and A3). As we shall see, for
this to be true additional assumptions on the operator A and on the family of
spaces {Eα} should be added.

We then assume that the family of Banach spaces {Eα} used in the con-
struction satisfies the following additional requirements:

(E1) ∗ is a continuous map from Eα onto itself, for each α;

(E2) for every α ∈ I, there exists a seminorm pDγ and C > 0 such that

‖φψ‖α ≤ CpDγ (φ)‖ψ‖α, ∀φ, ψ ∈ D.

Due to the assumptions made at the beginning of this section, ∗ is a bounded
conjugate linear operator in H. So, if ∗ strongly commutes with A, in the sense
that it commutes with the spectral family of A, then it commutes also with
Js = (1 + A2)s/2. From this fact and from (E1), it follows easily that ∗ maps
each Ls,α

A in itself continuously. Thus T satisfies the condition A1).
The situation for the other two conditions is more involved and requires

even stronger assumptions.
We will only discuss the case where the relationship between A and the

family of multiplication operators Tφ, φ ∈ D is described by the following
commutation relation:

(5) [Tφ, A] f = −TAφf, f ∈ D

that reduces to the (extended) canonical commutation relation:[
φ(x), i

d

dx

]
f = −i

dφ

dx

when D = C∞
0 (R) and A = i d

dx .

Lemma 3.13. If (5) holds, then

(6) [An, Tφ]f =
n∑

k=1

(
n

k

)
TAkφAn−kf, f ∈ D.

Proof. It is simple induction argument, based on straightforward calcu-
lations and well-known properties of the binomial coefficients.



�

�

�

�

�

�

�

�

Partial *-algebras of Distributions 275

Lemma 3.14. For every s ∈ N, the norms

‖f‖s,α := ‖Jsf‖α

and

‖f‖0
s,α :=

s∑
k=0

‖Akf‖α

define equivalent topologies on D.

Proof. The statement is proved again by induction on s, taking into ac-
count the condition d1).

Proposition 3.15. Assume that, for each α ∈ I, there exists Cα > 0
such that

‖J iyF‖α ≤ Cα‖F‖α, ∀y ∈ R, F ∈ Eα.

Let s0, s1 ∈ R and α ∈ I. Put st = ts1 + (1 − t)s0, 0 ≤ t ≤ 1. Then the spaces
Lst,α

A are the interpolating spaces between Ls0,α
A and Ls1,α

A .

Proof. Instead of proving the statement for the spaces Ls,α
A , we prove it

for the spaces Ls,α
A , defined in (3). The final result is obtained by the identi-

fication of Lemma 2.7. The proof is made with standard methods of complex
interpolation theory. We only give a sketch.

For shortness we put X = D∞(A). Let now φ ∈ X and put st = ts1 −
(1 − t)s0. We will show that for each t ∈ [0, 1] the interpolating norm ‖ ‖(t) is
equivalent to ‖ ‖st,α on X. The statement will then follow from the density of
X in each Ls,α

A .
Let

f(z) = Jst−zs1−(1−z)s0φ.

Then f(z) ∈ X, for each z ∈ C.

‖f(iy)‖s0,α = ‖J i(s0−s1)yJstφ‖α ≤ Cα‖φ‖st,α

‖f(1 + iy)‖s1,α = ‖J i(s0−s1)yJstφ‖α ≤ Cα‖φ‖st,α.

Since f(t) = φ, one obtains for the interpolating norm ‖ ‖(t) the relation ‖ ‖(t) ≤
Cα‖ ‖st,α. On the other hand, if F(X) denotes the class of continuous functions
on S = {z ∈ C : 0 ≤ �z ≤ 1} analytic on the interior of S and satisfying the
smoothness conditions required in interpolation theory (see, e.g., [14, IX.4,
Appendix] or [15]) and f ∈ F(X), with the choice

g(z) = J−st+zs1+(1−z)s0φ,
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putting H(z) = 〈f(z), g(z)〉, by Hadamard’s three line theorem [14, IX.4, Ap-
pendix], one finds

|H(t)| ≤ Cα ‖φ‖−st,α|||f |||

where |||f ||| := supt∈R
{‖f(it)‖s0 , ‖f(1 + it)‖s1}.

This in turn implies that 1
Cα

‖ψ‖st,α ≤ ‖ψ‖(t), for every ψ ∈ X. So finally,

1
Cα

‖ψ‖st,α ≤ ‖ψ‖(t) ≤ Cα‖ψ‖st,α, ∀ψ ∈ D∞(A).

In the following Proposition, we will suppose, as before, that the topology
of D is defined by a directed family of seminorms {pDγ }.

Proposition 3.16. The following statements hold:

(i) For each s ∈ Z, α ∈ I, there exists a seminorm pDγ(s,α) and C ≡ Cs,α > 0
such that

(7) ‖TφF‖s,α ≤ CpDγ(s,α)(φ)‖F‖s,α, ∀F ∈ Ls,α
A .

(ii) If for each α ∈ I there exists Cα > 0 such that

‖J iyF‖α ≤ Cα‖F‖α, ∀y ∈ R, F ∈ Eα,

then the statement (i) holds also for s ∈ R.

Proof. For s ∈ N, making use of the norm ‖ ‖0
s,α, by Lemma 3.13 one can

write, for φ, ψ ∈ D:

(8) ‖Tφψ‖0
s,α =

s∑
k=0

‖AkTφψ‖α =
s∑

k=0

‖TφAkψ +
k∑

j=0

(
k

j

)
TAjφAk−jψ‖α.

Taking into account (E2) and the continuity in D of all powers of A, with some
straightforward computation, it is easily seen that the right hand side of (8)
can be estimated by a term

CpDγ (φ)
s∑

k=0

‖Akψ‖α,

and this implies the result in the case F = ψ ∈ D. The general case is obtained
taking into account the density of D.
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If s ∈ Z, s < 0 the statement follows by an easy duality argument.
Finally for s ∈ R, under the assumptions made, by Proposition 3.15, we

can use an interpolation argument. So, if s0, s1 ∈ Z, by the Calderon-Lions
theorem [14, Theorem IX.20], the continuity of Tφ in Ls0,α

A and in Ls1,α
A implies

the continuity in each Lst,α
A with st = ts1 + (1 − t)s0, and since

‖TφF‖s0,α ≤ Cs0,αpDγ(s0,α)(φ)‖F‖s0,α, ∀F ∈ Ls0,α
A

and
‖TφF‖s1,α ≤ Cs1,αpDγ(s1,α)(φ)‖F‖s1,α, ∀F ∈ Ls1,α

A ,

the norm ‖Tφ‖(st,α),(st,α) of Tφ, as bounded operator from Lst,α
A into itself can

be estimated as follows

‖Tφ‖(st,α),(st,α)

≤
(
Cs0,αpDγ(s0,α)(φ)‖F‖s0,α

)1−t (
Cs1,αpDγ(s1,α)(φ)‖F‖s1,α

)t

≤ C̃pDγ̃ (φ)

taking into account that the set of seminorms {pDγ } is directed.

In conclusion, under quite reasonable assumptions, the family of spaces
{Ls,α

A } generates a multiplication framework satisfying the conditions A1), A2)
and A3) and Proposition 3.11 can be applied.

Remark 3.17. The inequality (7) actually says something more than
what we asked with the conditions A2), A3), because it implies joint conti-
nuity of the multiplication.

§4. The Case of Tempered Distributions

Let us consider the rigged Hilbert space:

S(R) ↪→ L2(R) ↪→ S′(R).

As is known, S(R) coincides with the space of C∞-vectors of the operator
B = − d2

dx2 + x2; i.e.
D∞(B) = S(R)

and the topology tB (defined as in Section 3.1) is equivalent to the usual topol-
ogy of the Schwartz space S(R).
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To begin with, we take as A the operator P defined on the Sobolev space
W 1,2(R) by

(Pf)(x) = −if ′(x), f ∈ W 1,2(R),

where f ′ stands for the weak derivative. As is known, the operator P is self-
adjoint on W 1,2(R) and

D∞(P ) = {f ∈ C∞(R) : f (k) ∈ L2(R), ∀k ∈ N}.

Clearly, S(R) ⊂ D∞(P ). It is well known that the usual topology of S(R) is
finer than the one induced on it by tP . Furthermore, the operator (1 + P 2)

1
2

leaves S(R) invariant and it is continuous on it. Moreover, S(R) is a core for
any power of (1 + P 2)

1
2 . Hence the conditions d1)-d3) are all satisfied.

The spaces Lp(R) with p > 1 will play the role of the {Eα}’s in the previous
construction.

The family {Lp(R)}p>1 is compatible with P = −i d
dx . Indeed U(t) = eiP t

and eiP tf(s) = f(t + s). By Lebesgue theorem (see, e.g. [16, Lemma IV.3]), if
f ∈ Lp(R) 1 < p < ∞ then:

lim
t→0

‖f(s + t) − f(s)‖Lp = 0.

The spaces Ls,p
P are defined by

Ls,p
P = {u ∈ S′ : (1 + P 2)

s
2 u ∈ Lp(R)}.

With the help of the Fourier transform, one can prove that, if u is a tempered
distribution,

u ∈ Ls,p
P if, and only if, F−1

((
1 + |ξ|2

)− s
2Fu

)
∈ Lp(R).

The condition on the right hand side defines the so called Bessel potential spaces
Ls,p(R), which as is known reduce to the Sobolev space W s,p for integer s.
These spaces generate a multiplication framework T which has the properties
A1), A2) and A3) required in our construction (we refer to [17, 18] for the
properties of these spaces; inequalities analogous to (7) have been given in [18]
and [19]). Then they can be used to reformulate the abstract results of Section
3 in the concrete case of tempered distributions.

So, for instance, an immediate application of Corollary 3.9 yields:

Proposition 4.1. Let v ∈ Lt,q(R) and u ∈ S′. Assume that there exist
s, t ∈ R and p, q ∈ [1,∞[ such that Lu ∈ C(Ls,p(R), Lt,q(R)). Then the product
w = u · v exists and w ∈ Lt,q(R).
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As a consequence of Proposition 3.11, the set S′
T of tempered distributions

belonging to some Bessel potential space Ls,p(R) is a partial *-algebra with
respect to the partial multiplication inherited by L(S,S′).
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[7] Schmüdgen, K., Unbounded Operator Algebras and Representations Theory, Birkhäuser,
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