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Free Product Decomposition of Galois
Groups of Number Fields
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Let G(k(c)|k) be the Galois group of the maximal pro-c extension k(c)
of a number field k, where c is a full class of finite groups which is closed
under taking subgroups, quotients and extensions. If p is a prime of k and
P an extension of p to k(c), then the decomposition group GP(k(c)|k) with
respect to P is isomorphic to the Galois group G(kp(c)|kp) of the maximal pro-
c extension kp(c) of kp, cf. [4] theorem (9.3.1). In this paper we consider the
question whether the decomposition groups GP(k(c)|k) or the inertia groups
TP(k(c)|k) for some primes p form a free pro-c-product inside G(k(c)|k). More
precisely, if S(k) and T0(k) are sets of primes of k, then

kS(c) is the maximal pro-c extension which is unramified outside S,

kT0(c) is the maximal pro-c extension which is completely decomposed at T0,

and we have canonical homomorphisms

φS(c) : ∗
p/∈S(kS(c))

TP(k(c)|k)−→G(k(c)|kS(c)),

of the free pro-c-product of the groups TP(k(c)|k) into G(k(c)|kS(c)) and, if T0

is finite,
φT0(c) : ∗

p∈T0(kT0 (c))
GP(k(c)|k)−→G(k(c)|kT0(c)),

of the free pro-c-products of the groups TP(k(c)|k) and GP(k(c)|k), respectively;
here the prime P is a fixed extensions of p to k(c). It is known that the answer
of the questions, whether φS(c) or φT0(c) are isomorphisms, do not depend on
the choice of the extensions P|p if c is the class of finite p-groups, p a prime
number, but in general it does, see [4] chap. IV §2. Observe further that in
general the sets S(kS(c)) (resp. its complement) and T0(kT0(c)) are infinite,
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296 Kay Wingberg

and we recall the definition of free profinite products over profinite spaces in
section 1 (see [4]). Let us collect some known results.

If c is the class of finite p-groups and S(k) is an arbitrary set containing
the set Sp(k) of primes above p, then φS is an isomorphism, see [4] theorem
(10.5.1) for the case that p is odd or S(k) contains the set SR of real places of
k and [6] theorem 2 in the remaining case.

If c is the class of all finite groups (and T0(k) is finite), then there exist
suitable extensions P|p such that φT0 is an isomorphism of profinite groups. If
T0 = S∞ is the set archimedean primes, this is a result of Fried-Haran-Völklein
[1] and in general it is proven by Pop [5].

We also would like to mention a result of Neukirch, [3] Satz (12.2), which
says that finitely many decomposition groups GP(k(p)|k) form a free pro-p-
product inside G(k(p)|k).

In this paper we will prove that φT0(c) is an isomorphism if c is the class
of finite p-groups. We get even more: let S, T0 be sets of primes of k such that
Sp ∪ S∞ ⊂ S, the density δ(S) of S is equal to 1 and T0 is a finite subset of S

and let

kT0
S (p) be the maximal pro-p extension of k which is unramified outside S

and completely decomposed at T0.

Then we have a canonical isomorphism

φT0
S : ∗

p∈T0(k
T0
S (p))

Gp(k(p)|k) ∗ ∗
p/∈S(k

T0
S (p))

Tp(k(p)|k) −→∼ G(k(p)|kT0
S (p)).

Observe that T0 may contain the set Sp ∪ S∞ (and then the cyclotomic Zp-
extension of k is not contained in kT0

S (p)). Furthermore we would like to mention
that this result, in the case where S is the set of all places of k, is not an
easy consequence of the theorem of Pop, although the proof of that theorem
is much more difficult than this one which is only based on the theorem of
Grunwald/Wang. From Pop’s result it only follows that we have a free pro-
p product decomposition into decomposition groups over the field kT0 (the
maximal Galois extension of k which is completely decomposed at all primes of
T0) whereas we show that this decomposition already exists over the maximal
p-extension of k inside kT0 .

Finally, I would like to thank Alexander Schmidt for many helpful discus-
sions on this subject.
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§1. Free Products

We briefly collect some facts on free products of profinite groups. For a
more detailed presentation and proofs we refer the reader to [4], chap. IV and
chap. X §1 and [2].

A profinite space is a topological inverse limit of finite discrete spaces and
a pro-c-group is a profinite group which is the inverse limit of groups in a full
class of finite groups c which is closed under taking subgroups, quotients and
extensions.

Definition 1.1. Let T be a profinite space. A bundle of pro-c-groups

G = (G, pr, T )

over T is a group object in the category of profinite spaces over T together with
a continuous structure map pr : G→T such that the fibre Gt of G over every
point t ∈ T is a pro-c-group.

Example 1. If G is a pro-c-group and T a profinite space, then we always
have the constant bundle (G×T, pr, T ), where pr is the projection G×T → T .

Example 2. Let {Gt}t∈T be a continuous family of closed subgroups of
a pro-c-group G indexed by the points of a profinite space T , i.e. it has the
property that for every open subgroup U ⊆ G the set T (U) = {t ∈ T |Gt ⊆ U}
is open in T . Then

G = {(g, t) ∈ G × T | g ∈ Gt}

is in a natural way a bundle of pro-c-groups over T .

Example 3. Let T̄ = T ∪ {∗} be the one-point compactification of a
discrete set T . Let {Gi}i∈T be a (discrete) family of pro-c-groups. Then the
bundle G over T̄ is defined by

G :=
⋃.
i∈T

Gi

⋃. {∗} ,

with the following topology: Gi ⊆ G (together with its profinite topology) is
open in G for all i, and for every open neighbourhood V ⊆ T̄ of ∗ ∈ T̄ , let

⋃.
i∈V
i�=∗

Gi

⋃. {∗}
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be an open neighbourhood of ∗ ∈ G. One checks that the map

p : G → T̄ ; Gi � gi �→ i, ∗ �→ ∗

is continuous. Viewing {∗} as the group with one element, we see that the
group operations on the Gi’s induce the structure of a bundle of pro-c-groups
on the triple (G, p, T̄ ).

Definition 1.2. A morphism of bundles

φ : (G, prG , T ) → (H, prH, S)

is a pair φG : G → H, φT : T → S of continuous maps such that
(i) the diagram

G
φG ��

prG

��

H
prH

��
T

φT

�� S

commutes and

(ii) for every t ∈ T the associated map φt : Gt → HφT (t) is a group homo-
morphism.

We say that φ is surjective if φG (and hence also φT ) is surjective.

We will not distinguish between the pro-c-group G and the bundle (G, pr,

{∗}) over the one point space {∗}. In particular, a morphism from a bundle
(G, pr, T ) to a group G is a continuous map φ : G → G such that the induced
maps φt : Gt → G are group homomorphisms for every t ∈ T .

Definition 1.3. The free pro-c-product of a bundle (G, pr, T ) of pro-c-
groups is a pro-c-group G =∗

T
G

together with a morphism ω : G → G, which has the following universal prop-
erty: for every morphism f : G → H from G to a pro-c-group H there exists a
unique homomorphism of pro-c-groups φ : G → H with f = φ ◦ ω.

Proposition 1.4. The free pro-c-product of the bundle G of pro-c-groups
over T exists and is unique up to unique isomorphism.

Let G be a bundle of pro-c-groups over a profinite space T and let {Gt}t∈T

be its fibers, i.e.
G =

⋃.
t∈T

Gt.
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For the free pro-c-product of the bundle (G, pr, T ) we often write

∗
T
G = ∗

t∈T
Gt.

Proposition 1.5. Let

(G, p, T ) = lim←−
i∈I

(Gi, pi, Ti)

be the inverse limit of the pro-c-group bundles Gi. Then

∗
T
G = lim←−

i∈I

∗
Ti

Gi.

Let G be a pro-c-group and let {Gt}t∈T be a continuous family of closed
subgroups indexed by the points of a profinite space T , and so G = {(g, t) ∈
G × T | g ∈ Gt} is a bundle over T . We have a canonical homomorphism

φ :∗
T
G −→G.

Definition 1.6. A pro-c-group G is the free product of the continuous
family {Gt}t∈T if φ is an isomorphism.

Now we consider the cohomology of a free product in the following case:
Let T = lim←−λ

T̄λ, where the sets T̄λ = Tλ ∪ {∗λ} are the one-point com-
pactifications of discrete sets Tλ. Let G = lim←−λ

Gλ be the projective limit of
bundles Gλ =

⋃.
tλ∈Tλ

Gtλ

⋃. {∗λ}.
Let A be an abelian torsion group on which the groups ∗T̄λ

Gλ act and
assume that these actions are compatible with respect to the transition maps.
Then A is also a G-module where G =∗

T
G.

Proposition 1.7. With the notation and assumptions as above there is
an exact sequence

0→A/AG → lim−→
λ

⊕
Tλ

A/AGtλ →H1(G, A)→ lim−→
λ

⊕
Tλ

H1(Gtλ
, A)→ 0

and isomorphisms
Hi(G, A) = lim−→

λ

⊕
Tλ

Hi(Gtλ
, A), i ≥ 2.

Proof. Using Proposition 1.5, we have

Hi(G, A) = lim−→
λ

Hi(∗̄
Tλ

Gλ, A), i ≥ 0,

and so the result follows from [4], theorem (4.1.4).
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If k is a number field, then we denote the one-point compactification of
the set of all places of k by Sp(k). The compactifying point will be denoted by
ηk. For an infinite extension K|k, we set

Sp(K) = lim←−
k′

Sp(k′),

where k′|k runs through all finite subextensions of K. Let S be a set of primes
of k and S̄ its closure in Sp(k). The pre-image S̄(K) of S̄ under the natural
projection Sp(K) → Sp(k) is the closure of the set S(K) of all prolongations
of primes in S to K in Sp(K).

Let M ⊇ K ⊇ k be (possibly infinite) extensions of k such that M |K is a
Galois extension and G(M |K) is a pro-c-group. Let S be a set of primes of k.
For a fixed section s : S̄(K) → S̄(M) of the natural projection S̄(M) → S̄(K)
we consider the family {Gs(p)(M |K)}p∈S̄(K) of decomposition groups and the
family {Ts(p)(M |K)}p∈S̄(K) of inertia groups, where by convention GηM

= {1}.
Since a finite extension of number fields is ramified only at finitely many primes,
the later is a continuous family of subgroups of G(M |K) indexed by S̄(K). We
obtain a natural homomorphism

ϕ : ∗
S(K)

Ts(p)(M |K)→G(M |K)

and, if S(k) is finite, a homomorphism

φ : ∗
S(K)

Gs(p)(M |K)→G(M |K).

If c is the class of p-groups, where p is a prime number, we have the following
well-known

Lemma 1.8. Let f : G′ −→G be a homomorphism of pro-p-groups.
Then f is an isomorphism if and only if the induced homomorphism

Hi(f) : Hi(G, Z/pZ)−→Hi(G′, Z/pZ)

is an isomorphism for i = 1 and injective for i = 2.

In particular, it follows that the questions whether the homomorphisms
φ or ϕ are isomorphisms (in the case of pro-p-groups) do not depend on the
section s. In the following we will omit the chosen section s in the notation.

For the cohomology of a free product with values in a torsion group A

(considered as a module with trivial action) it follows from proposition 1.7 the
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Proposition 1.9. With the notation as above let S1 and S2 be sets of
primes of k where S1 is finite. Then, for i ≥ 1, the following holds:

Hi
( ∗

p∈S1(K)
Gp(M |K) ∗ ∗

p∈S2(K)
Tp(M |K), A

)

= lim−→
k′

⊕
p∈S1(k′)

Hi(Gp(M ′|k′), A) ⊕ lim−→
k′

⊕
p∈S2(k′)

Hi(Tp(M ′|k′), A).

where k′ runs through all finite subextensions of k in K and M ′ is the maximal
pro-c Galois subextension of M |k′ (so M = lim−→M ′).

The limits on the right-hand side depend on K and not on k and we denote
them by

⊕′

p∈S1(K)

Hi(Gp(M |K), A) and
⊕′

p∈S2(K)

Hi(Tp(M |K), A).

§2. Galois Groups of Large Number Fields

Let k be a number field and P the set of all primes of k. Let p be a prime
number and S ⊇ T sets of primes of k, where S contains the set Sp ∪ S∞ of
archimedean primes and primes above p, and let kS be the maximal extension
of k which is unramified outside S.

We denote the density of a set S of primes of k by δ(S) and the inertia
subgroup of the decomposition group Gp(k) by Tp(k). In the following we write
Hi(−) for Hi(−, Z/pZ).

One version of the theorem of Grunwald/Wang says (see [4], theorem
(9.2.2))

Theorem 2.1. Let k be a number field and let S ⊇ T be sets of primes
of k, where S ⊇ Sp ∪ S∞, δ(S) = 1 and T is finite. Then the canonical
homomorphism

H1(kS |k)−→
⊕
p∈T

H1(Gp(k))

is surjective.

Corollary 2.2. Let k be a number field, and let T and T0 be sets of
primes such that T0 is finite, δ(T ) = 0 and T ∩ T0 = ∅. Then the canonical
homomorphism

H1(k̄|k)−→
⊕
p∈T0

H1(Gp(k)) ⊕
⊕
p∈T

H1(Tp(k))Gp(k)

is surjective.



�

�

�

�

�

�

�

�

302 Kay Wingberg

Proof. Let T1 = T0 ∪ Sp ∪ S∞ and S = (P\T ) ∪ Sp ∪ S∞. It follows that
δ(S) = 1, P\S = T\(Sp ∪ S∞) and T1 ⊂ S.

By Theorem 2.1, the canonical map

H1(kS |k)−→
⊕
T1

H1(Gp(k))

is surjective. Furthermore, by [4] corollary (10.5.3), we have a canonical iso-
morphism

H1(k̄|kS) −→∼
⊕′

p/∈S(kS)

H1(Tp(k)),

and so an isomorphism

H1(k̄|kS)G(kS |k) −→∼
⊕

p/∈S(k)

H1(Tp(k))Gp(k).

Consider the commutative and exact diagram

H1(k̄|kS)G(kS |k) ∼ ��
⊕

T\(Sp∪S∞) H1(Tp(k))Gp(k)

H1(k̄|k) ��

��

⊕
T1

H1(Gp(k)) ⊕
⊕

T\(Sp∪S∞) H1(Tp(k))Gp(k)

����

H1(kS |k) �� ��
��

��

⊕
T1

H1(Gp(k))
��

��

We will show that the vertical upper map on the left-hand side is surjective.
Using the Hochschild-Serre spectral sequence, we have to show that the inflation
map

H2(kS |k)−→H2(k̄|k)

is injective. But this follows from the commutative diagram

H2(k̄|k) � � �� ⊕
P H2(Gp(k))

H2(kS |k) � � ��

��

⊕
S H2(Gp(k))

��

��

where the lower horizontal map is injective since δ(S) = 1, see [4] theorem
(9.1.8).
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It follows that the map

H1(k̄|k)−→
⊕
T1

H1(Gp(k)) ⊕
⊕

T\(Sp∪S∞)

H1(Tp(k))Gp(k)

is surjective. Since the maps H1(Gp(k))→H1(Tp(k))Gp(k) are surjective and
the set T is contained in (T1\T0)∪(T\(Sp∪S∞)), the desired result follows.

For a number field k and sets S, T0 of primes of k recall that

kT0
S (p) is the maximal p-extension of k which is unramified outside S

and completely decomposed at T0.

For a prime p ∈ S and a fixed extension P of p to a number field K|k we denote
the completion of K with respect to P by Kp.

Proposition 2.3. Let S, T0 be sets of primes of k with T0∪Sp∪S∞ ⊆ S

such that T0 is finite and δ(S) = 1. Then

(kT0
S (p))p =




kp(p), if p ∈ S\T0,

knr
p (p), if p /∈ S,

kp, if p ∈ T0.

Proof. Let T = P\S. For a prime p0 of k let P0 be a fixed extension to
kT0

S (p). Let K|k be a finite Galois extension inside kT0
S (p) and let P0 be the

restriction of P0 to K.
Let p0 ∈ S\T0. By Theorem 2.1, the canonical homomorphism

H1(kS |K)−→H1(G
P0

(K)) ⊕
⊕

T0(K)

H1(Gp(k))

is surjective. In particular, for every α
P0

∈ H1(G
P0

(K)) there exists an el-
ement β ∈ H1(kS |K) which is mapped to (α

P0
, 0, . . . , 0). But β lies in the

subgroup H1(kT0
S (p)|K) of H1(kS |K). Therefore

H1(kT0
S (p)|K)−→H1(G

P0
(K))

is surjective, and so we proved the first assertion.
Now let p0 ∈ T . Again by Theorem 2.1, the canonical homomorphism

H1(kS∪{p0}|K)−→H1(G
P0

(K)) ⊕
⊕

T0(K)

H1(Gp(k))
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is surjective. Therefore, for every

α
P0

∈ H1(G
P0

(K)/T
P0

(K)) ⊆ H1(G
P0

(K))

there exists β ∈ H1(kS∪{p0}|K) which is mapped to (α
P0

, 0, . . . , 0) and is there-
fore contained in H1(kT0

S (p)|K). Thus

H1(kT0
S (p)|K)−→H1(G

P0
(K)/T

P0
(K))

is surjective. This proves the second assertion and the third is trivial.

Corollary 2.4. Let k be a number field and let S, T0 be sets of primes
of k such that T0 ∪Sp ∪S∞ ⊆ S, δ(S) = 1 and T0 is finite. Then the canonical
homomorphism

H1(k(p)|kT0
S (p))−→

⊕′

p∈T0(k
T0
S (p))

H1(Gp(k(p)|k)) ⊕
⊕′

p/∈S(k
T0
S (p))

H1(Tp(k(p)|k))

is bijective and

H2(k(p)|kT0
S (p))−→

⊕′

p∈T0(k
T0
S (p))

H2(Gp(k(p)|k))

is injective.

Proof. Using Corollary 2.2 and taking the inductive limit over all finite
subextensions of kT0

S (p)|k, we obtain a surjective homomorphism

H1(k̄|kT0
S (p)) �

⊕′

p∈T0(k
T0
S (p))

H1(Gp(k)) ⊕
⊕′

p/∈S(k
T0
S (p))

H1(Tp(k))Gp(k
T0
S (p)).

By Proposition 2.3, we have

Gp(k(p)|kT0
S (p)) = Tp(k(p)|k) for p /∈ S,

and so we obtain a surjection

H1(k(p)|kT0
S (p)) �

⊕′

p∈T0(k
T0
S (p))

H1(Gp(k(p)|k)) ⊕
⊕′

p/∈S(k
T0
S (p))

H1(Tp(k(p)|k)).

Since the groups Gp(k(p)|k) for p ∈ T0 and Tp(k(p)|k) for p /∈ S generate the
group G(k(p)|kT0

S (p)), the map above is injective. Thus we proved the first
assertion.
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By [4] theorem (9.1.8), we have an injection

H2(k̄|kT0
S (p)) ↪→

⊕′

p∈T0(k
T0
S (p))

H2(Gp(k)) ⊕
⊕′

p/∈T0(k
T0
S (p))

H2(Gp(kT0
S (p))).

Since H2(k̄|K) = H2(k(p)|K) and H2(Gp(K)) = H2(Gp(k(p)|K)), see [4] the-
orem (10.4.8) and theorem (7.5.7), we get an injection

H2(k(p)|kT0
S (p)) ↪→

⊕′

p∈T0(k
T0
S (p))

H2(Gp(k(p)|k))

⊕
⊕′

p/∈T0(k
T0
S (p))

H2(Gp(k(p)|kT0
S (p))).

From Proposition 2.3 it follows that

H2(Gp(k(p)|kT0
S (p))) = 0 for p /∈ T0,

since Gp(k(p)|kT0
S (p)) = 1 for p ∈ S\T0 and cdp Gp(k(p)|kT0

S (p)) ≤ 1 for p /∈ S.
This proves the second assertion.

Using Lemma 1.8 and Corollary 2.4, we obtain the following theorem.

Theorem 2.5. Let k be a number field and let S, T0 be sets of primes
of k such that δ(S) = 1, Sp∪S∞ ⊂ S and T0 is a finite subset of S. Then there
is a canonical isomorphism

φT0
S : ∗

p∈T0(k
T0
S (p))

Gp(k(p)|k) ∗ ∗
p/∈S(k

T0
S (p))

Tp(k(p)|k) −→∼ G(k(p)|kT0
S (p)).

In particular, if S = P, then

∗
p∈T0(kT0 (p))

Gp(k(p)|k) −→∼ G(k(p)|kT0(p)).
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