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Uniqueness and Existence of the Integrated
Density of States for Schrödinger Operators
with Magnetic Field and Electric Potential

with Singular Negative Part

By

Viorel Iftimie
∗

Abstract

We prove the coincidence of the two definitions of the integrated density of states
(IDS) for Schrödinger operators with strongly singular magnetic fields and scalar
potentials: the first one using the counting function of eigenvalues of the induced
operator on a bounded open set with Dirichlet boundary conditions, the second one
using the spectral projections of the whole space operator. Thus we generalize a result
of [5], where the scalar potential was non-negative. Moreover, we prove the existence
of IDS for the case of periodical magnetic field and scalar potential.

§1. Introduction

One considers the vector potential a = (a1, . . . , an) : Rn → Rn, n ≥ 2
(which is identified to the differential form

∑
1≤j≤n

aj dxj) and the scalar potential

V : Rn → R satisfying the following hypotheses:

i) aj ∈ L2
loc(R

n), 1 ≤ j ≤ n;

ii) V ∈ L1
loc(R

n) and V− := max(0,−V ) belongs to the Kato class Kn, that
is, one has:
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lim
ε↘0


 sup

x∈Rn

∫
|x−y|<ε

E(x − y) V−(y) dy


 = 0,

where E is the usual elementary solution of the Laplace operator ∆.
We define the sesqui-linear form h = h(a, V ) on L2(Rn) with domain

D(h) =
{

u ∈ L2(Rn); (∇− ia)u ∈
(
L2(Rn)

)n
, |V |1/2u ∈ L2(Rn)

}
,

by

h(u, v) =
∫

Rn

(∇− ia)u · (∇− ia)v dx +
∫

Rn

V u v dx,

where ∇ stands for the distributional gradient and i =
√
−1.

It is well-known (see [14]) that h is bounded from below and closed, the
space C∞

0 (Rn) being a core of h. Let H = H(a, V ) be the associated self-adjoint
bounded from below operator on L2(Rn), with domain

D(H) =
{
u ∈ D(h); −(∇− ia)2u + V u ∈ L2(Rn)

}
,

given by
Hu = −(∇− ia)2u + V u.

We shall also need a self-adjoint realization of the differential operator −(∇−
ia)2 + V on a open subset Ω of Rn, corresponding to the Dirichlet boundary
conditions. One identifies L2(Ω) to the closed subspace of L2(Rn) with elements
which are zero on Rn \ Ω. Let PΩ be the projection of L2(Rn) onto L2(Ω)
(the multiplication operator by the characteristic function of Ω). If Hα :=
H + α(1 − PΩ), α ≥ 0, one obtains an unique operator HΩ, pseudo-selfadjoint
on L2(Rn), such that limα→∞ Hα = HΩ in the strong resolvent sense (see
Th. 4.1 in [10]). Moreover, the operator HΩ can be considered as a self-adjoint
operator on L2(Ω) associated with the sesqui-linear form hΩ defined by:

hΩ(u, v) := h(u, v), D(hΩ) := {u ∈ D(h); supp u ⊂ Ω},

identified to a form on L2(Ω).

Remark 1.1. Usually, one works with another Dirichlet realization on Ω
(see [5], for instance). More exactly, one considers the operator H̃Ω, self-adjoint
on L2(Ω), associated with the sesqui-linear form h̃Ω, which is the closure on
L2(Ω) of the form h◦

Ω with domain C∞
0 (Ω), defined by

h◦
Ω(u, v) =

∫
Ω

(∇− ia)u · (∇− ia)v dx +
∫
Ω

V u v dx.
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We shall see in §3 that HΩ = H̃Ω if Ω is a “Lipschitz domain” (or, following
Stein [15], a domain with “minimally smooth boundary”).

In order to state the main result, we shall need a family F of bounded
open subsets of Rn, satisfying the conditions:

iii) For every m ∈ N∗, there exists Ω ∈ F such that the ball B(0; m), with
centre at the origin and of radius m, is contained in Ω.

iv) For every ε > 0, there exists m0 ∈ N∗ such that if Ω ∈ F and B(0; m0) ⊂ Ω,
one has

|{x ∈ Ω; dist (x, ∂Ω) < 1}| < ε|Ω|.

Definition 1.2. Let µ, µΩ (Ω ∈ F) be Borel measures on R. We say
that

lim
Ω→Rn,Ω∈F

µΩ = µ,

if for every f ∈ C0(R) (the space of compactly supported continuous functions
on R) and for every ε > 0, there exists m0 ∈ N∗ such that if B(0; m0) ⊂ Ω,
than one has ∣∣∣∣∣∣

∫
R

f dµΩ −
∫
R

f dµ

∣∣∣∣∣∣ < ε.

We shall see that for every f ∈ C0(R) and for every Ω bounded open subset
of Rn, the operators f(HΩ) and PΩf(H)PΩ belong to I1 (the space of trace
class operators). Then, using the Riesz-Markov Theorem, there exist Borel
measures µD

Ω and µΩ, such that

|Ω|−1Tr f(HΩ) =
∫
R

f dµD
Ω , |Ω|−1Tr (PΩf(H)PΩ) =

∫
R

f dµΩ.

One sees that the distribution functions of those two measures satisfy the rela-
tions

µD
Ω ((−∞, λ]) = |Ω|−1NΩ(λ), µΩ((−∞, λ]) = |Ω|−1Tr (PΩEλ(H)PΩ),

almost everywhere on R, where NΩ(λ) is the number of the eigenvalues of HΩ

which are less than λ, and Eλ(H) is the spectral projection of H for the interval
(−∞, λ], λ ∈ R.

We can define the integrated density of states in two different ways.
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Definition 1.3. We call density of states of H a Borel measure µD

(respectively µ) on R such that

lim
Ω→Rn,Ω∈F

µD
Ω = µD

(
respectively lim

Ω→Rn,Ω∈F
µΩ = µ

)
.

The distribution function ρD of µD (respectively ρ of µ) will be the integrated
density of states of H.

This definition rises two problems:

a) Prove the equivalence of the two definitions of IDS.

b) Prove the existence of IDS.

The solution of problem a) is the main result of this paper:

Theorem 1.4. Under hypotheses i)–iv), the density of states µD exists
if and only if the density of states µ exists. Moreover, if one of them exists,
then µD = µ.

This theorem was proved in [5] in the case where V ≥ 0. The proof in
§4 uses some ideas of [5], along with a property of comparison of resolvents,
essentially proved in [4], and which requires the hypothesis V− ∈ Kn.

Remark 1.5. An analysis of the proof of Theorem 1.2 in [5] shows that
if F ⊂ LM(r, A, B) (see the notation in [5]), Theorem 1.4 remains true if the
Dirichlet boundary conditions are replaced by Neumann boundary conditions.

The problem b) will be solved only in a special case. Let

B = da =
1
2

∑
1≤j,k≤n

Bjkdxj ∧ dxk, Bjk = ∂jak − ∂kaj

be the magnetic field defined by the vector potential a. (Bjk will be distribu-
tions on R

n.) One considers a lattice Γ in R
n, generated by a basis e1, . . . , en,

that is,

Γ =




n∑
j=1

αjej ; αj ∈ Z, 1 ≤ j ≤ n


 .

One denotes by F a fundamental domain of Rn with respect to Γ; for instance,

F =




n∑
j=1

tjej ; 0 ≤ tj < 1, 1 ≤ j ≤ n


 .
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We also remark that for every f ∈ C0(R) and every Ω bounded open subset
of Rn, PΩf(h)PΩ is the product of two operators from I2 (the space of Hilbert-
Schmidt operators). By the Fubini Theorem, the restriction of the integral
kernel Kf(H) of f(H) to the diagonal set of R

n × R
n is well-defined and is a

locally integrable function.
We suppose that the following two hypotheses hold:

iv’) For every ε > 0 there exists m0 ∈ N
∗ such that, if Ω ∈ F and B(0; m0) ⊂ Ω,

then one has
|{x ∈ R

n; dist(x, ∂Ω) < 1} < ε|Ω|.

v) V and Bjk, 1 ≤ j, k ≤ n are Γ-periodic functions.

Theorem 1.6. Under hypotheses i)–iii), iv’) and v), the IDS of H exists
and, for every f ∈ C0(R), one has

(1.1) lim
Ω→Rn,Ω∈F

Tr (PΩf(H)PΩ)
|Ω| =

1
|F |

∫
F

Kf(H)(x, x)dx.

We shall see that the integral above represents a Γ-trace of the operator
f(H), in the sense of Atiyah [1].

The theorem above is known in the case where B is a constant magnetic
field and V ∈ C∞(Rn) (see [6]). The case of constant magnetic fields and
random electric potentials, possibly unbounded from below, was also studied
(see [7]).

The plan of the paper is the following: In the second section we prove
some properties of the operator H. Particularly, for the reader convenience, we
give the proof of the property of comparison of resolvents. The third section
is devoted to the study of the operator HΩ: we prove the identity HΩ = H̃Ω

for domains with minimally smooth boundary and we generalize the aforemen-
tioned property of comparison to this case. In the last two sections we prove
Theorems 1.4 and 1.6, respectively.

§2. The Operator H = H(a, V )

Proposition 2.1. Under hypotheses i) and ii), for every ρ > 1, there
exist M , δ > 0 such that if λ > max{δ,− inf σ(H)} (where σ(H) is the spectrum
of H), then one has

(2.1) |(H + λ)−rf | ≤ M(ρH0 + λ − δ)−r|f | a.e. on R
n

for every r > 0 and f ∈ L2(Rn), where H0 := H(0, 0).
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Proof. Firstly, one remarks that, following [2], for every f ∈ L2(Rn) and
t > 0, one has the inequality

(2.2)
∣∣e−tH(a,V )f

∣∣ ≤ e−tH(0,V )|f |, a.e on R
n.

Using the Feymann-Kaç formula (see, for instance, [13]), we infer that

(2.3) e−tH(0,V )|f | ≤ e−tH(0,−V−)|f | a.e on R
n.

It is known (see Proposition B.6.7 in [14]) that e−tH(0,−V−) is an integral op-
erator whose integral kernel k : R

∗
+ × R

n × R
n → R

∗
+ is a continuous function

which verifies the following estimate: for every ρ > 1, there exist the positive
constants M and δ such that, for every t > 0 and x, y ∈ Rn, one has

(2.4) |k(t, x, y)| ≤ Meδtk0(ρt, x, y),

where k0 is the integral kernel of e−tH0 .
We also have

(2.5) (H + λ)−rf =
1

Γ(r)

∞∫
0

tr−1e−λte−tHf dt,

for every r > 0, λ > − inf σ(H) and f ∈ L2(Rn), where Γ(·) is the Euler gamma
function.

If λ > max{δ,− inf σ(H)}, the relations (2.2)–(2.5) imply the inequalities

|(H + λ)−rf | ≤ M

Γ(r)

∫ ∞

0

tr−1e−(λ−δ)te−ρtH0 |f | dt

= M(ρH0 + λ − δ)−r|f | a.e. on R
n,

which finish the proof.

Remark 2.2. For the case V ≥ 0, one proves in [9] that for λ > 0 and
f ∈ L2(Rn) one has

|(H + λ)−1f | ≤ (H0 + λ)−1|f |, a.e. on R
n.

It is this equality (or rather an extension of it at HΩ) which is used in [5].

Remark 2.3. In [4], one gives an example which shows that the hypoth-
esis V− ∈ Kn is necessary for the validity of inequality (2.1)
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Proposition 2.4. Under the hypotheses of Proposition 2.1, for every
r > n/4 and λ > max{δ,− inf σ(H)}, there exists a positive constant C such
that, for every open bounded subset Ω of Rn, we have that PΩ(H + λ)−r ∈ I2

and the inequality

(2.6) ‖PΩ(H + λ)−r‖I2 ≤ C|Ω|1/2

holds.

Proof. Using (2.1) we infer that for every f ∈ L2(Rn),

(2.7) |PΩ(H + λ)−rf | ≤ Mρ−rPΩ

(
H0 +

λ − δ

ρ

)−r|f | a.e. on R
n.

On the other hand,
(
H0 + λ−δ

ρ

)−r is a convolution operator by a function
g ∈ L2(Rn); therefore the operator in the right hand side of (2.7) belongs to I2,
since its integral kernel is Mρ−rχΩ(x)g(x − y), where χΩ is the characteristic
function of Ω. Furthermore,

(2.8)

∥∥∥∥∥PΩ

(
H0 +

λ − δ

ρ

)−r
∥∥∥∥∥
I2

=
∫
Ω

∫
Rn

|g(x − y)|2dx dy = ‖g‖2
L2(Rn)|Ω|.

To obtain the stated properties, it suffices to use (2.7), (2.8) and Theorem 2.13
in [12].

Corollary 2.5. Under the hypotheses of Proposition 2.1, for every m >

n/2 and λ > max{δ,− inf σ(H)}, there exists a positive constant C such that,
for every open bounded subset Ω of Rn, we have that PΩ(H +λ)−mPΩ ∈ I1 and
the inequality

(2.9) ‖PΩ(H + λ)−mPΩ‖I1 ≤ C|Ω|

holds.

Proof. It suffices to use Proposition 2.4 and the inequality

‖PΩ(H + λ)−mPΩ‖I1 ≤ ‖PΩ(H + λ)−r‖I2 · ‖(H + λ)−sPΩ‖I2 ,

where r, s > n/4 and r + s = m.

Corollary 2.6. For every f ∈ L∞
comp(R), there exists a constant C > 0,

such that for every open bounded subset Ω of Rn, we have that PΩf(H)PΩ ∈ I1

and the inequality

(2.10) ‖PΩf(H)PΩ‖I1 ≤ C|Ω|

holds.
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Proof. It suffices to write the identity

PΩf(H)PΩ = PΩ(H + λ)−r(H + λ)2rf(H)(H + λ)−rPΩ,

where r > n/4 and λ > max{δ,− inf σ(H)} and to apply Proposition 2.4.

In order to state the last result of this section, we denote by B(E, F ) the
space of all bounded linear operators from E to F (E and F being normed
linear spaces). In particular, B(E) := B(E, E).

Lemma 2.7. Let ϕ ∈ C∞(Rn) be such that ∂αϕ ∈ L∞(Rn) if |α| ≤ 2.
Then ϕu belongs to D(H) for every u ∈ D(H). Moreover,

(2.11) [H, ϕ] = −2(∇ϕ) · (∇− ia) − ∆ϕ on D(H)

and

(2.12) (H + λ)−1[H, ϕ] ∈ B(L2(Rn)) if λ > − inf σ(H).

Proof. If u ∈ D(H), then ϕu ∈ D(h) and for every v ∈ C∞
0 (Rn),

h(ϕu, v) = h(u, ϕv) − 2 ((∇ϕ) · (∇− ia)u, v) − ((∆ϕ)u, v)

= (ϕHu − 2(∇ϕ) · (∇− ia)u − (∆ϕ)u, v) ,

where (·, ·) denotes the scalar product of L2(Rn). We deduce that ϕu ∈ D(H)
and

H(ϕu) = ϕHu − 2(∇ϕ) · (∇− ia)u − (∆ϕ)u.

This yields (2.11). To get (2.12), we endow D(H) with the graph topology.
Then [H, ϕ] ∈ B(D(H), L2(Rn)) and, by duality, [H, ϕ] ∈ B(L2(Rn), [D(H)]∗),
while (H + λ)−1 ∈ B(L2(Rn), D(H)) and (H + λ)−1 ∈ B([D(H)]∗, L2(Rn)) by
duality.

§3. The Operator HΩ = HΩ(a, V ).

We fix γ ∈ R such that h ≥ γ. Then D(h) is a Hilbert space for the norm

‖u‖h = [h(u, u) + (γ + 1)‖u‖2]1/2, u ∈ D(h),

where ‖ · ‖ denotes the norm of L2(Rn).
Let C+∞(R) := {f ∈ C(R); limt→+∞ f(t) = 0}. Then for f ∈ C+∞(R)

and Ω open subset of Rn, we can define f(HΩ) ∈ B(L2(Rn)) in the following
way: f(HΩ)

∣∣∣
L2(Ω)

is the operator from B(L2(Ω)) associated with HΩ, as self-

adjoint operator on L2(Ω), by the usual functional calculus, while f(HΩ) = 0
on L2(Ω)⊥.
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Proposition 3.1. Let f ∈ C+∞(R), λ > − inf σ(H) and ϕ as in
Lemma 2.7. Then, for every open set Ω ⊂ Rn, the operator HΩ has the following
properties:

a) s − limα→∞ f(Hα) = f(HΩ) in B(L2(Rn)).

b) s − limα→∞(Hα + λ)−1 = (HΩ + λ)−1 in B([D(h)]∗, D(h)).

c) (HΩ + λ)−1 = PΩ(HΩ + λ)−1 = (HΩ + λ)−1PΩ.

d) (HΩ + λ)−1[H, ϕ], [H, ϕ](HΩ + λ)−1 ∈ B(L2(Rn)).

e) s − limα→∞[H, ϕ](Hα + λ)−1 = [H, ϕ](HΩ + λ)−1 in B(L2(Rn)).

f) (∂k − iak)(HΩ + λ)−1 ∈ B(L2(Ω)), 1 ≤ k ≤ n.

Proof. a) The property follows from [3], §3.
b) The property is a consequence of Lemma 3.7 in [3].
c) By the inequality (3.7) in [3], there exists a constant C > 0 such that, for
every α > 0, we have

‖(1 − PΩ)(Hα + λ)−1‖B(L2(Rn)) ≤ Cα−1/2,

whence we get the needed inequalities.
d) The property follows from the fact that

(HΩ + λ)−1 ∈ B(L2(Rn), D(h)) ∩ B([D(h)]∗, L2(Rn))

(see b)) and

[H, ϕ] ∈ B(D(h), L2(Rn)) ∩ B(L2(Rn), [D(h)]∗)

(see (2.11)).
e) The property follows from b) and the fact that [H, ϕ] ∈ B(D(h), L2(Rn)).
f) The statement follows from (HΩ + λ)−1 ∈ B(L2(Ω), D(hΩ)) and ∂k − iak ∈
B(D(hΩ), L2(Ω)), where D(hΩ) is endowed with the norm induced by the one
of D(h).

We shall also need to write under a certain form the difference between
the resolvent of H and the pseudo-resolvent of HΩ.

Lemma 3.2. Let λ > − inf σ(H) and ϕ be a function as in Lemma 2.7,
ϕ = 1 on Rn \ Ω. Then

(H + λ)−1 − (HΩ + λ)−1

=
[
(H + λ)−1 − (HΩ + λ)−1

] [
ϕ + [H, ϕ](HΩ + λ)−1

]
(3.1)

=
[
ϕ − (H + λ)−1[H, ϕ]

] [
(H + λ)−1 − (HΩ + λ)−1

]
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Proof. We have

(H + λ)−1 − (HΩ + λ)−1 = s − lim
α→∞

[
(H + λ)−1 − (Hα + λ)−1

]
= s − lim

α→∞
(H + λ)−1α(1 − PΩ)(Hα + λ)−1

= s − lim
α→∞

(H + λ)−1α(1 − PΩ)ϕ(Hα + λ)−1

= s − lim
α→∞

[
(H + λ)−1α(1 − PΩ)(Hα + λ)−1ϕ

+(H + λ)−1α(1 − PΩ)(Hα + λ)−1[H, ϕ](Hα + λ)−1
]

=
[
(H + λ)−1 − (HΩ + λ)−1

]
ϕ

+
[
(H + λ)−1 − (HΩ + λ)−1

]
[H, ϕ](HΩ + λ)−1,

where in the last equality we have used the property e) from Proposition 3.1,
as well as the fact that (Hα + λ)−1 is bounded in B(L2(Rn)) uniformly with
respect to α ≥ 0.

In the same way we prove the equality between the first and the last term
of relation (3.1).

Now we can generalize the inequality (2.1) to the operator HΩ.

Proposition 3.3. Under the hypotheses i) and ii), for every ρ > 1 there
exist M , δ > 0 such that if λ > max{δ,− inf σ(H)}, we have

(3.2) |(HΩ + λ)−r| ≤ MPΩ(ρH0 + λ − δ)−rPΩ|f | a.e on R
n,

for every r > 0, Ω open subset of R
n and f ∈ L2(Rn).

Proof. Using Proposition 3.1 a), we see that for every t > 0

(3.3) s − lim
α→0

e−tHα = e−tHΩ .

We also note that the Feymann-Kaç formula allows us to derive the inequality

(3.4) e−tH(0,V +α(1−χΩ))|f | ≤ e−tH(0,−V−)|f | a.e. on R
n.

Hence, using (3.3), (3.4) and the first part of the proof of Proposition 2.1, we
get

(3.5)
∣∣e−tHΩf

∣∣ ≤ Meδte−ρtH0 |f | a.e. on R
n.

We infer from Proposition 3.1 a) that, for every r > 0,

(3.6) s − lim
α→0

(Hα + λ)−r = (HΩ + λ)−r.
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Hence, from the equality (2.5) for Hα, from (3.5) and (3.6), it follows that

(3.7)
∣∣(HΩ + λ)−rf

∣∣ ≤ M(ρH0 + λ − δ)−r|f | a.e. on R
n.

To get (3.2) it suffices to write (3.7) for PΩf instead of f and to use Proposi-
tion 3.1 b).

The proof of Proposition 2.4, with (2.1) replaced by (3.2), allows us to
obtain the next proposition.

Proposition 3.4. Under the hypotheses of Proposition 3.3, for every
r > n/4 and λ > max{δ,− inf σ(H)}, there exists a positive constant C such
that for every U and Ω open subsets of Rn, U bounded, we have that PU (HΩ +
λ)−r ∈ I2 and the inequality

(3.8) ‖PU (HΩ + λ)−r‖I2 ≤ C|Ω ∩ U |1/2

holds.

The next two corollaries follow directly from the proposition above (see
the proofs of Corollary 2.5 and 2.6).

Corollary 3.5. Under the hypotheses of Proposition 3.3, for every m >

n/2 and λ > max{δ,− inf σ(H)}, there exists a positive constant C such that
for every Ω open bounded subset of Rn, we have that (HΩ + λ)−m ∈ I1 and the
inequality

(3.9) ‖(HΩ + λ)−m‖I1 ≤ C|Ω|

holds.

Corollary 3.6. For every f ∈ L∞
comp(R) there exists a constant C > 0

such that, for every Ω open bounded subset of R
n, we have that f(HΩ) ∈ I1

and the inequality

(3.10) ‖f(HΩ)‖I1 ≤ C|Ω|

holds.

The last result of this section will be the equality HΩ = H̃Ω for open
subsets of Rn with minimally smooth boundary. This equality is a consequence
of the following proposition.
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Proposition 3.7. Let Ω be an open subset of Rn with minimally smooth
boundary (cf. Stein [15]). Then C∞

0 (Ω) is a core of the sesqui-linear form hΩ.

Proof. The proof is divided in three steps, in each of them obtaining
partial results.

i) D(hΩ) ∩ L∞(Ω) is a core of hΩ.

We use an idea from [11]. It is obvious that the range of e−HΩ is a core
of HΩ, hence also for hΩ. On the other hand, for every ρ > 0, e−ρH0 is a con-
volution operator by an L2(Rn)-function, hence e−ρH0 ∈ B(L2(Rn), L∞(Rn)).
The inequality (3.5) implies therefore that the range of e−HΩ is contained in
L∞(Ω).

ii) D(hΩ) ∩ L∞
comp(Ω) is a core of hΩ.

There exist (see [15]) N ∈ N, a sequence (Ωi)i≥1 of open subsets of Rn and
two sequences of functions (ϕi)i≥1 and (ψi)i≥0 with the following properties:

1. ∂Ω ⊂
⋃

i≥1

Ωi.

2. The intersection of N + 1 open sets Ωi is void.

3. The functions ϕi : Rn−1 → R are Lipschitz and the sequence of their Lips-
chitz constants is bounded.

4. We may suppose that Ω ∩ Ωi = {x ∈ Ωi; xn > ϕi(x′)}, i ≥ 1, where
x = (x′, xn) ∈ Rn−1 × R = Rn.

5. ψi ∈ C∞(Rn), ψi ≥ 0, supp ψ0 ∈ Ω, and supp ψi ∈ Ωi for i ≥ 1.

6. For every α ∈ N
n, ∂αψi are bounded uniformly with respect to i ≥ 0.

7.
∑
i≥0

ψi = 1 on Ω.

Let u ∈ D(hΩ) ∩ L∞(Ω). Then supp u ⊂ Ω and u =
∑

i≥0 ψiu; the
series converges in D(hΩ), by the dominated convergence theorem. It suffices
to prove that for every i ≥ 0, ψiu is the limit in D(hΩ) of a sequence from
D(hΩ) ∩ L∞

comp(Ω). We can construct a partition of unity on a neighborhood
of supp (ψiu), that is a sequence (βj)j≥1, with βj ∈ C∞

0 (Rn), βj ≥ 0, the
family (suppβj)j≥0 being locally finite and

∑
j≥0 βj = 1 on a neighborhood

of supp (ψiu). We may also suppose that for every α ∈ Nn, the sequence
(∂αβj)j≥0 is uniformly bounded. Then ψiu =

∑
j≥0 βj(ψiu), the series being
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convergent in D(hΩ). It then follows that we may henceforth suppose ψiu to
be compactly supported.

We have that ψ0u ∈ D(hΩ) ∩ L∞
comp(Ω); hence it remains to show that for

every v ∈ D(hΩ)∩L∞(Ω), whose support is a compact subset of Ω∩Ωi, is the
limit in D(hΩ) of a sequence from D(hΩ) ∩ L∞

comp(Ω).
Let χi : Rn → Rn be the homeomorphism defined by y = χi(x) if and only

if y′ = x′, yn = xn − ϕ(x′). It is clear that v ∈ H1
comp(Rn) (the Sobolev space

of order 1 on Rn, whose elements are compactly supported). Then w := v◦χ−1
i

belongs to H1
comp(Rn) and supp w ⊂ Rn

+. We consider a function θ ∈ C∞
0 (Rn),

θ ≥ 0,
∫

Rn

θ(y) dy = 1, and such that |y| ≤ 1 and yn > 0 on supp θ. For 0 < ε ≤ 1

we define θε ∈ C∞
0 (Rn) by θε(y) := ε−nθ(y/ε). Let wε be the convolution of

w by θε. Then wε ∈ C∞
0 (Rn), supp wε ⊂ R

n
+, sup0<ε≤1 ‖wε‖L∞(Rn) < ∞ and

limε↘0 wε = w in H1(Rn).
If vε := wε◦χi, then vε ∈ H1

comp(Rn), sup0<ε≤1 ‖vε‖L∞(Rn) < ∞, limε↘0 vε

= v in H1(Rn), and there exist ε0 ∈ (0, 1] and a compact K contained in
Ω ∩ Ωi such that supp vε ⊂ K ∩ Ω for all 0 < ε ≤ ε0. It is clear that vε ∈
D(hΩ) ∩ L∞

comp(Ω) and we easily infer the existence of a sequence (εj)j≥0,
0 < εj ≤ ε0, limj→∞ εj = 0 such that limj→∞ vεj

= v in D(hΩ).

iii) C∞
0 (Ω) is a core of hΩ.

Let u ∈ D(hΩ) ∩ L∞
comp(Ω) and (θε)0<ε≤ε0 be the sequence constructed in

ii). If ε0 is small enough, uε := u ∗ θε ∈ C∞
0 (Ω) and there exists a compact

subset M of Ω such that supp uε ⊂ M for all ε ∈ (0, ε0]. Moreover, the sequence
(uε)0<ε≤ε0 is uniformly bounded and limε↘0 uε = u in H1(Ω), since u ∈ H1(Ω).
Hence, there exists a sequence (εj)j≥0, 0 < εj ≤ ε0, limj→∞ εj = 0 such that
limj→∞ uεj

= u in D(hΩ).

§4. Proof of Theorem 1.4

The main ingredient of the proof will be the following result.

Proposition 4.1. Under the hypotheses of Proposition 3.3, for every
m ∈ N, m ≥ n+2 and λ > max{δ,− inf σ(H)}, there exists a positive constant
C such that we have

(4.1) ‖PΩ(H + λ)−mPΩ − (HΩ + λ)−m‖I1 ≤ C |Ω|1/2 |Ω̃|1/2

for every Ω bounded open subset of R
n, where Ω̃ := {x ∈ Ω; dist(x, ∂Ω) < 1}.
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Proof. We have the identity

PΩ(H + λ)−mPΩ − (HΩ + λ)−m = PΩ

[
(H + λ)−m − (HΩ + λ)−m

]
PΩ(4.2)

=
m−1∑
j=0

PΩ(H + λ)j−m+1
[
(H + λ)−1 − (HΩ + λ)−1

]
(HΩ + λ)−jPΩ.

Let ϕ ∈ C∞(Rn) be such that ϕ = 1 on Rn \ Ω, ϕ = 0 on Ω \ Ω̃, and for every
α ∈ Nn, ∂αϕ is bounded by a constant independent on Ω (we may construct it
by considering the convolution of the characteristic function of a neighborhood
of Rn \ Ω by a appropriate function from C∞

0 (Rn)).
We use Propositions 3.4, 3.1 d), Lemma 2.7 and the first equality in (3.1)

to estimate the I1-norm of the terms in the sum in (4.2) corresponding to
j > n/2. Everything reduces to the following two estimates:

‖PΩ(H + λ)j−m+1
[
(H + λ)−1 − (HΩ + λ)−1

]
ϕ(HΩ + λ)−j−1PΩ‖I1

≤ C1 ‖ϕ(HΩ + λ)−j/2‖I2‖(HΩ + λ)−j/2PΩ‖I2 ≤ C2 |Ω|1/2 |Ω̃|1/2

and

‖PΩ(H + λ)j−m+1
[
(H + λ)−1 − (HΩ + λ)−1

]
[H, ϕ] (HΩ + λ)−j−1PΩ‖I1

≤ C3 ‖PΩ̃(HΩ + λ)−j−1‖I1 ≤ C4 |Ω|1/2 |Ω̃|1/2,

where the constants Cj , 1 ≤ j ≤ 4, do not depend on Ω, and we should consider
the fact that the derivatives of ϕ have supports contained in Ω̃.

The terms with j ≤ n/2 (hence m − j − 1 > n/2) are estimated in the
same way, using the other equality of (3.1) and the identity ϕ(H + λ)−1 =
(H + λ)−1ϕ + (H + λ)−1H, ϕ(H + λ)−1.

The assertions of Theorem 1.4 will follow from the next proposition.

Proposition 4.2. Suppose that hypotheses i)–iv) hold. Then, for every
f ∈ C0(R) and ε > 0, there exists m0 ∈ N

∗ such that we have

∣∣Tr (PΩf(H)PΩ) − Tr f(HΩ)
∣∣ ≤ ε |Ω|(4.3)

for every Ω ∈ F with B(0; m0) ⊂ Ω.

Proof. The proof follows [5]. For a fixed ρ > 1, we consider δ > 0 as in
Proposition 3.3, and let a := max{δ,− inf σ(H)}+1. It suffices to prove (4.3)
for real functions f with supp f ⊂ [−a+1/2,∞). The functions [−a+1/2,∞) �
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t → (a + t)n+2f(t) ∈ R and [0, 2] � τ → τ−n−2f(τ−1 − a) ∈ R are continuous.
For every ε > 0 there exists a polynomial Pε such that

|τ−n−2f(τ−1 − a) − Pε(τ )| ≤ ε for 0 ≤ τ ≤ 2.

Then ∣∣∣∣(a + t)n+2f(t) − Pε

(
1

a + t

)∣∣∣∣ ≤ ε for t ≥ −a + 1/2.

Let Qε(t) := (a + t)−n−2Pε

(
1

a+t

)
. Then, in form sense,

−ε(a + H)−n−2 ≤ f(H) − Qε(H) ≤ ε(a + H)−n−2,

hence

−εPΩ(a + H)−n−2PΩ ≤ PΩf(H)PΩ − PΩQε(H)PΩ

≤ εPΩ(a + H)−n−2PΩ.

Using Corollary 2.5 we infer
∣∣Tr (PΩf(H)PΩ) − Tr (PΩQε(H)PΩ)

∣∣(4.4)

≤ εTr
(
PΩ(a + H)−n−2PΩ

)
≤ C1 ε |Ω|,

where C1 is a constant independent on ε and Ω ∈ F .
Similarly we prove that there exists another constant C2, independent on

ε and Ω ∈ F , such that we have
∣∣Tr f(HΩ) − Tr Qε(HΩ)

∣∣ ≤ εTr (a + HΩ)−n−2 ≤ C2 ε |Ω|.(4.5)

Therefore (4.3) follows from (4.4), (4.5), Proposition 4.1 and hypothesis iv).

§5. Proof of Theorem 1.6

We shall identify the Γ-periodic distributions on Rn to the distributions on
the torus Tn = Rn/Γ. The duality bracket for the dual pair

(
D′(Tn),D(Tn)

)
is denoted by 〈·, ·〉Γ, while 〈·, ·〉 is the scalar product of Rn. Let

Γ∗ = {γ∗ ∈ R
n; 〈γ∗, γ〉 ∈ 2πZ for every γ ∈ Γ}

be the dual lattice of Γ.

Proposition 5.1. Let B = 1
2

∑
1≤j,k≤n

Bjk dxj ∧ dxk be a differential

2-form whose coefficients Bjk = −Bkj are real Γ-periodic distributions on
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Rn, and such that dB = 0. Then, there exists a differential 1-form A =∑
1≤j≤n

Ajdxj , with coefficients Aj real Γ-periodic distributions on Rn and such

that dA = B, if and only if

(5.1) 〈Bjk, 1〉Γ = 0, 1 ≤ j, k ≤ n.

Moreover, if the coefficients Bjk belong to the Sobolev space H−1(Tn), 1 ≤
j, k ≤ n, we can choose Aj ∈ L2(Tn), 1 ≤ j ≤ n.

Proof. We may write

Bjk =
∑

α∈Γ∗

Bjk
α ei〈·,α〉, Bjk

α :=
1
|F | 〈Bjk, e−i〈·,α〉〉Γ,

the series being convergent in D′(Tn), which means that there exists a constant
C > 0 and p ∈ Z such that we have

(5.2) |Bjk
α | ≤ C(1 + |α|)p, α ∈ Γ∗, 1 ≤ j, k ≤ n.

The condition dB = 0 means that ∂lBjk + ∂kBlj + ∂jBkl = 0, hence

(5.3) αlB
jk
α + αkBlj

α + αjB
kl
α = 0, 1 ≤ j, k, l ≤ n,

where α = (α1, . . . αn). Similarly, we may represent A in the form

(5.4) Aj =
∑

α∈Γ∗

Aj
α ei〈·,α〉, Aj

α :=
1
|F | 〈Aj , e−i〈·,α〉〉Γ,

and we have to find C > 0, q ∈ Z such that

(5.5) |Aj
α| ≤ C(1 + |α|)q, α ∈ Γ∗, 1 ≤ j ≤ n.

The equation dA = B, that is, the differential system

∂jAk − ∂kAj = Bjk, 1 ≤ j, k ≤ n,

is equivalent to the algebraic system

(5.6) αjA
k
α − αkAj

α = −iBjk
α , 1 ≤ j, k, l ≤ n, α ∈ Γ∗.

The condition (5.1) means Bjk
0 = 0, 1 ≤ j, k ≤ n, and it is a necessary condition

for the existence of a solution to the system (5.6). Considering (5.3), it is also
sufficient, since the general solution to (5.6) is

Aj
α =




C0 for α = 0,

−i |α|−2
∑

1≤k≤n

αkBkj
α + i αjCα for α �= 0,

(5.7)
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where Cα are arbitrary constants with Cα = C−α. If we choose Cα = 0 for
α �= 0, we may take q = p − 1 in (5.5). We have Bkj

α = Bkj
−α, therefore also

Aj
α = Aj

−α, and the distribution Aj is real.
To prove the last assertion, it suffices to note the fact that Bjk ∈ H−1(Tn)

means ∑
α

(1 + |α|)−2
∣∣Bjk

α

∣∣2 < ∞.

Then the solution (5.7) with Cj
α = 0 for α �= 0 verifies∑

α

∣∣Aj
α

∣∣2 < ∞,

hence Aj ∈ L2(Tn).

Corollary 5.2. Assume that hypotheses i), ii) and v) hold. Then there
exists a vector potential A =

∑
1≤j≤n

Aj dxj with Aj ∈ L2
loc(R

n, R) and Γ-

periodic, 1 ≤ j ≤ n, and a constant magnetic field B0 = 1
2

∑
1≤j,k≤n

B0
jk dxj∧dxk,

B0
jk = −B0

kj ∈ R, such that if A0 =
∑

1≤j≤n

A0
j dxj with A0

j(x) = 1
2

∑
1≤k≤n

B0
jkxk,

the operators H(a, V ) and H(A + A0, V ) are unitarily equivalent.

Proof. We first choose the form B0 with B0
jk = −B0

kj ∈ R such that we
have 〈Bjk − B0

jk, 1〉Γ = 0, 1 ≤ j, k ≤ n. It is obvious that Bjk ∈ H−1(Tn),
and therefore, using Proposition 5.1, we infer the existence of a 1-form A =∑
1≤j≤n

Aj dxj with Aj ∈ L2
loc(R

n, R) and Γ-periodic, such that dA = B − B0.

If A0 is the 1-form from the statement, we shall have d(A + A0) = B = da.
Using Lemma 1.1 in [8], we deduce the existence of a real function g ∈ H1

loc(R
n)

such that a− (A + A0) = ∇g. If U is the multiplication operator by eig, which
is unitary on L2(Rn), Theorem 1.2 in [8] implies U H(a, V ) U−1 = H(A +
A0, V ).

Remark 5.3. Considering the definition of the density of states, we see
that it suffices to prove the existence of this measure for H(A+A0, V ). There-
fore we may henceforth assume that a = A + A0.

Let Tγ , γ ∈ Γ, the magnetic translations defined by B0 in Corollary 5.2.
Hence Tγ = UγLγ , where Lγ are the usual translations in Rn: (Lγu)(x) =
u(x − γ), x ∈ Rn, γ ∈ Γ, and (Uγu)(x) = ei〈B0,x∧γ〉/2u(x), B0 being viewed
here as a linear form on Rn ∧ Rn.

Using the model in [1] (even if {Tγ}γ is not a group) we can define a Γ-trace
on a class of operators from B(L2(Rn)).
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Definition 5.4. An operator S ∈ B(L2(Rn)) commuting with the mag-
netic translations Tγ , γ ∈ Γ is said to be of Γ-trace class if for every functions
ϕ, ψ ∈ L∞

comp(Rn) we have ϕSψ ∈ I1. We write S ∈ IΓ
1 .

Lemma 5.5. Let S ∈ IΓ
1 and ϕ, ϕ′, ψ, ψ′ ∈ L2

comp(Rn) such that∑
γ∈Γ

Lγ(ϕψ) =
∑
γ∈Γ

Lγ(ϕ′ψ′) = 1. Then Tr (ϕSψ) = Tr (ϕ′Sψ′).

Proof. We have

Tr (ϕSψ) = Tr


∑

γ∈Γ

[Lγ(ϕ′ψ′)]ϕSψ


 =

∑
γ∈Γ

Tr [(Lγ(ϕ′ψ′))ϕSψ]

=
∑
γ∈Γ

Tr [(Lγϕ′)ϕψS(Lγψ′)] =
∑
γ∈Γ

Tr [Tγ((Lγϕ′)ϕψS(Lγψ′))T−1
γ ]

=
∑
γ∈Γ

Tr ([L−1
γ (ϕψ)]ϕ′Sψ′) = Tr


∑

γ∈Γ

[L−1
γ (ϕψ)]ϕ′Sψ′




= Tr (ϕ′Sψ′),

where one should keep in mind the fact that the sums are finite and that Tγ is
a unitary operator on L2(Rn).

Thus, the following definition is justified.

Definition 5.6. If S ∈ IΓ
1 , we call Γ-trace of S the quantity Tr ΓS :=

Tr (ϕSψ), where ϕ, ψ ∈ L∞
comp(Rn) and

∑
γ∈Γ

Lγ(ϕψ) = 1.

Lemma 5.7. If S is a self-adjoint operator from B(L2(Rn)) and S ∈
IΓ

1 , then KS , the integral kernel of S, is an L1
loc-function, its restriction to the

diagonal of Rn × Rn is well-defined and locally integrable and, moreover,

Tr ΓS =
∫
F

KS(x, x) dx.(5.8)

Proof. The first assertions of the statement are consequences of the fol-
lowing remark: if ϕ ψ ∈ C∞

0 (Rn), we have ϕSψ ∈ I1, therefore there exist Φ,
Ψ ∈ I2 such that ϕSψ = ΦΨ. But KΦ, KΨ ∈ L2(Rn × Rn) and

KϕSψ(x, y) =
∫

Rn

KΦ(x, z) KΨ(z, y) dz,
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and, by the Fubini Theorem, the function Rn � x → KϕSψ(x, x) ∈ C belongs
to L1

loc(R
n). Hence, as KϕSψ = (ϕ⊗ψ)KS , we infer that the functions KS and

Rn � x → KS(x, x) ∈ C are locally integrable.
We now take ϕ = ψ = χF . Then

∑
γ∈Γ

Lγ(ϕψ) = 1, and

Tr ΓS = Tr (ϕSψ) =
∫

Rn

ϕ(x)KS(x, x) dx

=
∑
γ∈Γ

∫
F

(Lγϕ)(x)KS(x + γ, x + γ) dx

=
∫
F

KS(x, x) dx.

For the last equality we have used the relation KS(x + γ, x + γ) = KS(x, x),
x ∈ Rn, γ ∈ Γ, a consequence of TγS = STγ .

Now we are able to prove Theorem 1.6, having already a meaning for
the integral in (1.1). It suffices to check the existence of the limit, and the
relation (1.1). By Corollary 2.6, if Ω ∈ F and f ∈ C0(R), then PΩf(H)PΩ ∈ I1

and we have
Tr (PΩf(H)PΩ)

|Ω| =
1
|Ω|

∫
Ω

Kf(H)(x, x) dx.

Let us consider the following sets:

M :=
{
γ ∈ Γ; (F + {γ}) ∩ Ω �= ∅

}
,

∂M :=
{
γ ∈ M; (F + {γ}) ∩ ∂Ω �= ∅

}
,

ΩΓ :=
⋃

γ∈M\∂M
(F + {γ}) ⊂ Ω,

(∂Ω)Γ :=
⋃

γ∈∂M
(F + {γ}).

We remark that in iv’) the inequality

{x ∈ R
n; dist (x, ∂Ω) < 1} < ε|Ω|

may be replaced by

{x ∈ R
n; dist (x, ∂Ω) < a} < ε|Ω|.
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Indeed, let χa be the characteristic function of the set {x ∈ Rn; dist (x, ∂Ω) < a}
and ρb the characteristic function of the open ball of radius b and center 0. Then

ρb ∗ χa1(x) =
∫

ρb(x − y)χa1(y) dy ≥ ωa1χa2(x)

whenever b > a1 + a2, where ωc denotes the measure of the ball centred at 0
and of radius c. Hence, an integration in x in the above inequality will give

ωb |{x ∈ R
n; dist (x, ∂Ω) < a1} ≥ ωa1 |{x ∈ R

n; dist (x, ∂Ω) < a2}.

Consequently we may suppose that diam F < 1, and therefore

Ω \ ΩΓ ⊂ (∂Ω)Γ ⊂ Ω̃ = {x ∈ R
n; dist(x, ∂Ω) < 1}.

By hypothesis iv’), we get that for every ε > 0, there exists m0 ∈ N∗ such that
if B(0; m0) ⊂ Ω, we have

∣∣(∂Ω)Γ
∣∣ < ε|Ω|, and hence |Ω \ ΩΓ| ≤ ε|Ω|. For such

an Ω, we have

Tr (PΩf(H)PΩ)
|Ω| =

|ΩΓ|
|Ω|

1
|ΩΓ|



∫
ΩΓ

Kf(H)(x, x) dx +
∫

Ω\ΩΓ

Kf(H)(x, x) dx


 .

(5.9)

The operator H commutes with the magnetic translations Tγ , γ ∈ Γ, whence
Tγf(H) = f(H)Tγ , γ ∈ Γ, and then Kf(H)(x+γ, x+γ) = Kf(H)(x, x), x ∈ Rn,
γ ∈ Γ. Hence, we infer that

1
|ΩΓ|

∫
ΩΓ

Kf(H)(x, x) dx =
1
|F |

∫
F

Kf(H)(x, x) dx.(5.10)

We also have |ΩΓ| = |Ω| − |Ω \ ΩΓ|, hence

1 − ε ≤ |ΩΓ|
|Ω| ≤ 1.(5.11)

Finally, ∣∣∣∣∣∣∣
∫

Ω\ΩΓ

Kf(H)(x, x) dx

∣∣∣∣∣∣∣
≤
∫

(∂Ω)Γ

|Kf(H)(x, x)| dx(5.12)

=
|(∂Ω)Γ|
|F |

∫
F

|Kf(H)(x, x)| dx

≤ ε|Ω|
|F |

∫
F

|Kf(H)(x, x)| dx.

Now, the equality (1.1) follows directly from (5.9)–(5.12).
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Remark 5.8. We have that f(H) ∈ IΓ
1 and then, by Lemma 5.7, we see

that

lim
Ω→Rn,Ω∈F

Tr (PΩf(H)PΩ)
|Ω| =

1
|F |Tr Γf(H).
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Schrödinger avec un champ magnétique, Rev. Roumaine Math. Pures Appl., 40 (1995),
743-749.

[5] Doi, S., Iwatsuka, A. and Mine, T., The uniqueness of the integrated density of states
for the Schrödinger operators with magnetic fields, Math. Z., 237 (2001), 335-371.
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