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Abstract

We give an explicit representation for the sums of multiple zeta-star values of
fixed weight and height in terms of Riemann zeta values.

§1. Introduction

In this article we establish a new family of relations between sums of mul-
tiple zeta values and Riemann zeta values. This family contains relations which
do not appear in the families of relations given in [6], [9], [11].

Concerning multiple zeta values, there are two types of definition: multiple
zeta values defined by the Euler sums with strict inequalities in the summation
and defined by those with non-strict inequalities (see below). The former is
mainly used in mathematical literature and the latter is the main subject of this
article. Normally multiple zeta values (MZVs for short) mean the former and
are denoted by ζ(k). We tentatively call the latter multiple zeta-star values and
denote them by ζ∗(k) to distinguish them from ordinary ones. We abbreviate
them to MZSVs. They are classic objects although there had been no name of
them. In fact, Euler was the first mathematician who was interested in multiple
zeta values and he mainly treated MZSVs [3]. Recently, Hoffman [5] pointed
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out the significance of considering MZSVs as well as MZVs. The notation S

was used there instead of ζ∗.
The main result of this article shows that the sum of MZSVs with fixed

weight and height turns out to be a rational multiple of the Riemann zeta value
of the same weight. Considering MZSVs clarifies the importance of those two
indices: weight and height. They have been played a role in [8], [11]. The
employment of the indices and MZSVs is a neat way to formulate systematic
description of relations that hold among MZVs. Another important index is
depth. We believe that MZSVs and the three indices: weight, height and
depth will play an important role in investigation of the structure of Q-algebra
generated by MZVs. (Note that this algebra coincides with Q-algebra generated
by MZSVs.)

An interesting feature of the method employed in our proof is related to the
theory of differential equations in the complex domain. The method is a vari-
ation on [11] and the use of connection formulas of the Gauss hypergeometric
function is essential in both cases (see [7], [12] also).

§2. Statement of the Results

For any multi-index k = (k1, k2, . . . , kn) (ki ∈ Z, ki > 0), the weight,
depth, and height of k are by definition the integers k = k1 + k2 + · · · + kn, n,
and s = #{i|ki > 1}, respectively. We denote by I(k, s) the set of multi-indices
k of weight k and height s, and by I0(k, s) the subset of admissible indices,
i.e., indices with the extra requirement that k1 ≥ 2. For any admissible index
k = (k1, k2, . . . , kn) ∈ I0(k, s), the multiple zeta values ζ∗(k) and ζ(k) are
defined by

ζ∗(k) = ζ∗(k1, k2, . . . , kn) =
∑

m1≥m2≥···≥mn≥1

1
m1

k1m2
k2 · · ·mn

kn
,

ζ(k) = ζ(k1, k2, . . . , kn) =
∑

m1>m2>···>mn>0

1
m1

k1m2
k2 · · ·mn

kn
.

Note that, there are linear relations among ζ∗ and ζ, for example,

ζ∗(k1, k2) = ζ(k1, k2) + ζ(k1 + k2), ζ(k1, k2) = ζ∗(k1, k2) − ζ∗(k1 + k2),

ζ∗(k1, k2, k3) = ζ(k1, k2, k3) + ζ(k1 + k2, k3) + ζ(k1, k2 + k3) + ζ(k1 + k2 + k3),

ζ(k1, k2, k3) = ζ∗(k1, k2, k3) − ζ∗(k1 + k2, k3)

−ζ∗(k1, k2 + k3) + ζ∗(k1 + k2 + k3),
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and so on. Multiple zeta-star values ζ∗(k) had been studied by Euler [3], and
his study is the origin of various researches of multiple zeta values. We consider
the sum of multiple zeta-star values of fixed weight and height:∑

k∈I0(k,s)

ζ∗(k) .(1)

Our main result will then be

Theorem 1. The sum (1) is given by

∑
k∈I0(k,s)

ζ∗(k) = 2
(

k − 1
2s − 1

)
(1 − 21−k)ζ(k).(2)

Remark 1. If we replace ζ∗ by ζ in the left-hand side of (2), it is unlikely
that the value is expressed as a rational multiple of ζ(k). For example, in case
when k = 5 and s = 1, the left-hand side becomes

ζ(5) + ζ(4, 1) + ζ(3, 1, 1) + ζ(2, 1, 1, 1) = 6ζ(5) − 2ζ(2)ζ(3).

It has been proved by Le and Murakami [8] that the following relation

∑
k∈I0(2k,s)

(−1)dep(k)ζ(k) =
(−1)k

(2k + 1)!

k−s∑
r=0

(
2k + 1

2r

)
(2 − 22r)B2rπ

2k,(3)

holds for a fixed even weight and a fixed height, where Bn denotes the n-th
Bernoulli number and dep(k) denotes the depth of k. If we rewrite the left-
hand side of (3) in terms of ζ∗, the height of each term is not equal any more.
Therefore the left-hand side after the replacement does not take the same form
as the left-hand side of (2). Note that (3) is a special case of the result given
in [11], where a generating function for sums of MZVs with fixed weight, depth
and height is constructed.

As an application of Theorem 1, we can express sums of special values of
Arakawa-Kaneko zeta function in terms of Riemann zeta values.

For any positive integer k ≥ 1, T. Arakawa and M. Kaneko [1] defined the
function ξk(s) by

ξk(s) =
1

Γ(s)

∫ ∞

0

ts−1

et − 1
Lik(1 − e−t)dt,

where Lik(s) denotes the k-th polylogarithm Lik(s) =
∑∞

m=1
sm

mk . The integral
converges for Re(s) > 0 and the function ξk(s) continues to an entire function
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of whole s-plane. They proved that the special values of ξk(s) at non-positive
integers are given by poly-Bernoulli numbers and the values at positive integers
are given in terms of multiple zeta values. Thereafter the second author [9] gave
the following relation among the values of ξk(s) at positive integers and MZSVs:

ξk(n) = ζ∗(k + 1, 1, . . . , 1︸ ︷︷ ︸
n − 1

)

where the both indices k and n are positive integers. By using this relation, we
have the following corollary of Theorem 1.

Corollary 1. For any integer k > 1, we have

k−1∑
n=1

ξk−n(n) = 2(k − 1)(1 − 21−k)ζ(k).

Or equivalently,

Corollary 2. For any integer k > 1, we have

ζ(k) =
1

2(k − 1)(1 − 21−k)

∫ ∞

0

1
et − 1

k−1∑
n=1

tn−1

(n − 1)!
Lik−n(1 − e−t)dt.

§3. Proof of Theorem 1

We denote by X0(k, s) the left-hand side of (2):

X0(k, s) =
∑

k∈I0(k,s)

ζ∗(k) .(4)

Since the set I0(k, s) is non-empty only if the indices k and s satisfy the in-
equalities s ≥ 1 and k ≥ 2s, we can collect all the numbers X0(k, s) into a
single generating function

Φ0(x, z) =
∑
k, s

X0(k, s) xk−2s z2s−2 ∈ R[[x, z]] .(5)

Following [11] and [14], we consider the multiple zeta-star value ζ∗(k) as the
limiting value at t = 1 of the function

L∗
k(t) = L∗

k1,k2,...,kn
(t) =

∑
m1≥m2≥···≥mn≥1

tm1

m1
k1m2

k2 · · ·mn
kn

(|t| < 1) .
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Note that we consider L∗
k(t) not just for k ∈ I0 but for all k ∈ I. For k empty

we define L∗
k(t) to be 1. For non-negative integers k and s set

X(k, s; t) =
∑

k∈I(k,s)

L∗
k(t)

(so X(0, 0; t) = 1 and X(k, s; t) = 0 unless k ≥ 2s and s ≥ 0), and let X0(k, s; t)
be the function defined by the same formula but with the summation restricted
to k ∈ I0(k, s).

We denote by Φ = Φ(x, z; t) and Φ0 = Φ0(x, z; t) the corresponding gen-
erating functions

Φ =
∑

k,s≥0

X(k, s; t)xk−2sz2s = 1 + L∗
1(t)x + L∗

1,1(t)x
2 + · · ·

and

Φ0 =
∑

k,s≥0

X0(k, s; t)xk−2sz2s−2 = L∗
2(t) + L∗

2,1(t)x + L∗
3(t)x + · · · .

Note that the coefficient of xk−2sz2s−2 in Φ0(x, z; 1) = Φ0(x, z) is X0(k, s).
Using the formulas

d

dt
L∗

k1,...,kn
(t) =




1
t

L∗
k1−1,k2,...,kn

(t) if k1 ≥ 2,

1
t(1 − t)

L∗
k2,k3,...,kn

(t) if k1 = 1, n > 1

and
d

dt
L∗

1(t) =
1

1 − t

for the derivative of L∗
k(t), we obtain

d

dt
X0(k, s; t) =

1
t

(
X(k − 1, s − 1; t) − X0(k − 1, s − 1; t) + X0(k − 1, s; t)

)
,

d

dt

(
X(k, s; t) − X0(k, s; t)

)
=

1
t(1 − t)

X(k − 1, s; t),

or, in terms of generating functions,

dΦ0

dt
=

1
xt

(
Φ−1−z2Φ0

)
+

x

t
Φ0 ,

d

dt

(
Φ−z2Φ0

)
=

x

t(1 − t)
(Φ−1)+

x

1 − t
.
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Eliminating Φ, we obtain the differential equation

t2(1 − t)
d2Φ0

dt2
+ t

(
(1 − t)(1 − x) − x

) dΦ0

dt
+ (x2 − z2) Φ0 = t(6)

for the power series Φ0. The unique power-series solution at t = 0 is given by

Φ0(x, z; t) =
∞∑

n=1

antn

with

an =
Γ(n)Γ(n − x)Γ(1 − x − z)Γ(1 − x + z)

Γ(1 − x)Γ(1 − x − z + n)Γ(1 − x + z + n)
.

Here Γ(z) denotes the gamma function. Specializing to t = 1 gives

Φ0(x, z; 1) =
∞∑

n=1

an.(7)

We need to evaluate the right-hand side of (7). We can rewrite an in the form

an =
n∑

l=1

(
A

(+)
n,l

x + z − l
+

A
(−)
n,l

x − z − l

)

with

A
(±)
n,l = (−1)l

(
n − 1
l − 1

)
(±z − l + 1)(±z − l + 2) · · · (±z − l + n − 1)
(±2z − l + 1)(±2z − l + 2) · · · (±2z − l + n)

.

Hence we have

∞∑
n=1

an =
∞∑

n=1

n∑
l=1

(
A

(+)
n,l

x + z − l
+

A
(−)
n,l

x − z − l

)

=
n∑

l=1

( ∞∑
n=l

A
(+)
n,l

1
x + z − l

+
∞∑

n=l

A
(−)
n,l

1
x − z − l

)
.

The sums of A
(±)
n,l in n are evaluated as follows:

∞∑
n=l

A
(±)
n,l = (−1)l

∞∑
n=0

(l − 1 + n)!(±z − l + 1)(±z − l + 2) · · · (±z + n − 1)
n!(l − 1)!(±2z − l + 1)(±2z − l + 2) · · · (±2z + n)

= (−1)l (±z − l + 1)(±z − l + 2) · · · (±z − 1)
(±2z − l + 1)(±2z − l + 2) · · · (±2z)

F (l,±z,±2z + 1, 1),



�

�

�

�

�

�

�

�

Sum Relations for Multiple Zeta Values 335

where F (α, β, γ; t) denotes the Gauss hypergeometric function. Using Gauss’
formula for F (α, β, γ; 1) gives

∞∑
n=l

A
(±)
n,l = ± (−1)l

z
.

Hence we have
∞∑

n=1

an =
1
z

∞∑
l=1

(−1)l

(
1

x + z − l
− 1

x − z − l

)
.

Expanding the right-hand side in power series of x and z and taking the coef-
ficient of xk−2sz2s−2 (cf. (5)) gives

2
(

k − 1
2s − 1

) ∞∑
l=1

(−1)l−1

lk
,

and now using the relation
∞∑

l=1

(−1)l−1

lk
= (1 − 21−k)ζ(k) yields equation (2).

Appendix

The relation given in Theorem 1 can be interpreted as an equality con-
cerning an integral which contains the Gauss hypergeometric function.

Theorem 2. Under suitable conditions for the parameters x and z that
guarantee existence of both members, the following equality holds:

1
1 − x

∫ 1

0

(1 − t)z−xF (1 − x + z, 1 + z, 2 − x; t) dt

=
1
z

∞∑
l=1

(−1)l

(
1

x + z − l
− 1

x − z − l

)
.(8)

Proof. We set

φ1(t) = tx+zF (x + z, z, 2z + 1; t),

φ2(t) = tx−zF (x − z,−z,−2z + 1; t).

Then (φ1, φ2) is a system of fundamental solutions of the homogeneous equation
of (6). The unique holomorphic solution Φ0 of (6) is constructed in the form

Φ0 = u1φ1 + u2φ2,
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where u1 and u2 are defined as follows:

u1(t) =
1
2z

∫ t

0

s−x−z(1 − s)x−1F (x − z,−z,−2z + 1; s) ds,

u2(t) =− 1
2z

∫ t

0

s−x+z(1 − s)x−1F (x + z, z, 2z + 1; s) ds.

The values φ1(1) and φ2(1) are obtained by using Gauss’ formula. Hence we
find that Φ0(1) = u1(1)φ1(1) + u2(1)φ2(1) has the value∫ 1

0

dt (1 − t)x−1t−x+z

{
Γ(−2z)Γ(1 − x)

Γ(1 − x − z)Γ(1 − z)
F (x + z, z, 2z + 1; t)

+
Γ(2z)Γ(1 − x)

Γ(1 − x + z)Γ(1 + z)
tz−xF (x − z,−z,−2z + 1; t)

}
.

Using one of the connection formulas for the Gauss hypergeometric functions
(e.g., (43), p. 108 in [2]) yields

Φ0(1) =
1

1 − x

∫ 1

0

tz−xF (1 − x + z, 1 + z, 2 − x; 1 − t)dt,

which is equal to the left-hand side of (8). The right-hand side has been already
obtained in the proof of Theorem 1. This proves Theorem 2.

Remark 2. The right-hand side of (8) can be written in the following
form:

−1
z

(
ψ(1 − (x + z)) − ψ(1 − (x − z)) − ψ

(
1 − x + z

2

)
+ ψ

(
1 − x − z

2

))
,

where ψ(t) =
Γ′(t)
Γ(t)

is the di-gamma function.
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