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An Approximate Rolle’s Theorem for
Polynomials of Degree Four in a Hilbert Space
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Abstract

We show that the fourth degree polynomials that satisfy Rolle’s Theorem in the
unit ball of a real Hilbert space are dense in the space of polynomials that vanish in
the unit sphere. As a consequence, we obtain a sort of approximate Rolle’s Theorem
for those polynomials.

§1. Introduction

S. Shkarin showed in [5] that Rolle’s Theorem fails in general for continuous
polynomials, even of degree four, in the unit ball of a Hilbert space. In [4], we
generalized Shkarin’s example finding a class of four degree polynomials for
which the result does not hold. In the same paper, we gave some sufficient
conditions for this type of polynomials to satisfy the theorem.

The purpose of this paper is to show that the polynomials (always assumed
to be continuous and of degree four) that satisfy Rolle’s Theorem form a dense
subset of those vanishing on the unit sphere.

More specifically, recalling that a continuous polynomial of the fourth de-
gree P which vanishes on the unit sphere of a real Hilbert space X has the
form

P (x) = (1− ‖ x ‖2) Q(x), Q(x) = 〈Ax, x〉 + 2〈ϕ, x〉 + k,

with A being a non-zero bounded self-adjoint operator in X, ϕ ∈ X, k ∈ IR,
we show that, for every ε > 0, there is a polynomial Pε which satisfies Rolle’s
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376 Jesús Ferrer

Theorem (i.e., there is a vector x0 ∈ X with ‖x0 ‖< 1 and the Fréchet-derivative
is such that P ′

ε(x0) = 0) and at the same time ‖ P −Pε ‖≤ ε. As a by-product
of this density result, we also show that there exists an element xε ∈ X such
that ‖ xε ‖< 1 and ‖ P ′(xε) ‖≤ ε. We must say that another version of an
approximate Rolle’s Theorem is given in [2], although with a different approach.

We must also recall that, if A is a compact self-adjoint operator in X,
then, since the polynomial Q(x) is weakly continuous, see [1], and the factor
1− ‖x‖2 is weakly upper semicontinuous, it follows, as showed in [3], that the
polynomial P (x) satisfies Rolle’s Theorem.

For the sake of commodity, the symbols P4(X) and R4(X) will denote the
Banach space of at most four degree continuous polynomials with zero-value in
the unit sphere, endowed with its usual norm, that is,

‖P ‖= sup{|P (x) |: ‖x‖≤ 1},

and the subset of polynomials satisfying Rolle’s Theorem, respectively.

§2. Density of the Polynomials that Satisfy Rolle’s Theorem

Let P be an element of the space P4(X). Then, as we mentioned before,
P (x) = (1− ‖ x ‖2)Q(x), where Q(x) = 〈Ax, x〉+ 2〈ϕ, x〉+ k. We assume that
A �= 0, otherwise it may be easily seen that P ∈ R4(X). Let us suppose that,
for real numbers λ in a certain domain, we may find a vector x(λ) in X such
that the vector equation (I − λA)x(λ) = λϕ holds. For such λ, let us consider
the real-valued function

h(λ) := ‖ x(λ) ‖2 + λQ(x(λ)).

Then, calculating the derivatives P ′(x) and Q′(x), it is clear that a sufficient
condition to guarantee that P ∈ R4(X) is to show that there is a certain λ0

for which
‖ x(λ0) ‖ < 1, h(λ0) = 1.

Thus, our problem may be reduced to the one to find an appropriate domain
for λ ∈ IR, then seeking the conditions before stated. With this in mind, we
define the following values (possibly infinite):

rA := sup{λ > 0 : I − µA is a topological isomorphism, 0 < µ < λ},
sA := inf{λ < 0 : I − µA is a topological isomorphism, λ < µ < 0},
tA := min{rA,−sA}.

Now, since A is non-zero, bounded and self-adjoint, we know that tA is
always finite and that either I − tAA, or I + tAA, cannot be an isomorphism.
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It is also clear that

]
−1
‖A‖ ,

1
‖A‖ [⊂] − tA, tA[⊂]sA, rA[.

Hence, by applying the implicit function theorem to the equation

(I − λ A) x = λ ϕ,

one obtains an infinitely differentiable function x(λ), λ ∈]sA, rA[, satisfying
this equality. Moreover, the real-valued functions 〈ϕ, x(λ)〉 and h(λ) are both
infinitely differentiable in that interval. We proceed next to show some auxiliary
details that will be used later. We shall be assuming always that ϕ �= 0,
otherwise P ′(0) = 0.

Lemma 1. The function 〈ϕ, x(λ)〉 increases strictly in ]sA, rA[.

Proof. For λ ∈]sA, rA[, λ �= 0, taking derivatives in the equality ( 1
λI −

A)x(λ) = ϕ, we obtain (
1
λ

I − A

)
x′(λ) =

1
λ2

x(λ).

But, since 1
λI − A is self-adjoint, we have

d

dλ
〈ϕ, x(λ)〉= 〈ϕ, x′(λ)〉 =

〈(
1
λ

I − A

)
x(λ), x′(λ)

〉

=
〈

x(λ),
(

1
λ

I − A

)
x′(λ)

〉
=

‖ x(λ) ‖2

λ2
> 0,

after noticing that x(λ) = 0 would imply λ = 0.

Lemma 2. If k /∈ [ 1
sA

, 1
rA

], then P ∈ R4(X).

Proof. We assume k > 1
rA

, the other alternative can be shown in an
analogous way. For λ ∈]0, rA[, making use of the mean value theorem, we get
hold of a certain µ ∈]0, λ[ such that

〈ϕ, x(λ)〉 =
‖ x(µ) ‖2

µ2
· λ.

Thus, doing straightforward computations,

h(λ) = ‖ x(λ) ‖2 +λQ(x(λ)) =‖ x(λ) ‖2 + λ[〈Ax(λ), x(λ)〉+ 2〈ϕ, x(λ)〉+ k]

= ‖ x(λ) ‖2 +λ[〈Ax(λ) + ϕ, x(λ)〉 + 〈ϕ, x(λ)〉+ k]

= 2 ‖ x(λ) ‖2 +λ(〈ϕ, x(λ)〉+ k)

= 2 ‖ x(λ) ‖2 +
λ2

µ2
‖ x(µ) ‖2 + kλ > kλ.
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In particular, for λ = 1/k ∈]0, rA[, we have that h(1/k) > 1, and so, since
h(0) = 0, continuity assures the existence of λ0 ∈]0, 1/k[ such that h(λ0) = 1.
Clearly,

‖ x(λ0) ‖2 <
1
2

h(λ0) =
1
2

< 1,

and, after the considerations above mentioned, it follows that P ∈ R4(X).

Lemma 3. If either 1
tA

, or − 1
tA

, is an eigenvalue of A, then P ∈
R4(X).

Proof. We assume that 1
tA

is an eigenvalue, the other case may be shown
in an analogous manner. Let z be a non-zero element of Ker(I − tAA). We
also assume that k ∈ [ 1

sA
, 1

rA
], otherwise Lemma 2 applies. We now take into

consideration the following alternatives:
One: There is λ0 ∈]0, tA[ such that h(λ0) = 1. Then, since, after Lemma

1, λ0〈ϕ, x(λ0)〉 is positive, we have

‖ x(λ0) ‖2 =
1
2

(1 − λ0〈ϕ, x(λ0)〉 − kλ0)

<
1
2

(1 − kλ0) ≤
1
2

(1 + | kλ0 |)

≤ 1
2

(1+ | k | ·tA) ≤ 1.

So, P ∈ R4(X).
Two. For all λ ∈]0, tA[, h(λ) < 1. Then, we have that the set {x(λ) :

0 < λ < tA} is bounded in X, and so we may find a sequence (λj)∞j=1 in ]0, tA[
and a vector φ in X such that limj λj = tA, and the vector sequence (x(λj))∞j=1

converges weakly to φ. Hence, taking weak limits in the equality

(I − λjA) x(λj) = λjϕ, j ≥ 1,

we obtain
(I − tAA)φ = tA ϕ,

and also, remembering that h(λ) = 2 ‖ x(λ) ‖2 +λ(〈ϕ, x(λ)〉 + k), it follows
that

(1) 1 ≥ sup
j

h(λj) ≥ 2 ‖ φ ‖2 + tA (〈ϕ, φ〉 + k).

For t ∈ IR, the vector φ + tz is such that

(I − tAA)(φ + tz) = (I − tAA)φ = tAϕ,

that is, φ + tz is a solution of the vector equation (I − λA)x = λϕ, for λ = tA.
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Considering now the real-valued function

h1(t) :=‖ φ + tz ‖2 + tA · Q(φ + tz), t ∈ IR.

(Notice that it may be regarded as a continuation of h(λ) =‖ x(λ) ‖2 +λQ(x(λ))
for λ = tA), we show that h1(t) behaves similarly to h(λ).

Recalling that

〈ϕ, z〉 =
1
tA

〈(I − tAA)φ, z〉 =
1
tA

〈φ, (I − tAA)z〉 = 0,

and A(φ + tz) = 1
tA

(φ + tz) − ϕ, we have that

h1(t) = ‖ φ + tz ‖2 + tA(〈A(φ + tz), φ + tz〉 + 2〈ϕ, φ + tz〉 + k)

= ‖ φ + tz ‖2 + tA(
1
tA

‖ φ + tz ‖2 +〈ϕ, φ + tz〉 + k)

= 2 ‖ φ + tz ‖2 + tA (〈ϕ, φ〉 + k).

Therefore, since, after (1), h1(0) = 2 ‖ φ ‖2 +tA(〈ϕ, φ〉+k) ≤ 1, limt→∞ h1(t) =
+∞, and h1(t) is continuous, we can find a non-negative value t0 such that
h1(t0) = 1. But, since 〈ϕ, x(λ)〉 is increasing, we know that 〈ϕ, φ〉 = limj

〈ϕ, x(λj)〉 > 0. Hence, setting x0 := φ + t0z, it follows that

‖x0 ‖2=‖ φ + t0z ‖2 =
1
2
(1 − tA〈ϕ, φ〉 − tAk) <

1
2
(1 + tA | k |) ≤ 1,

and

P ′(x0) = 2[(1− ‖ x0 ‖2)(Ax0 + ϕ) − Q(x0)x0]

= 2
[

1
tA

(1− ‖ x0 ‖2)x0 − Q(x0)x0

]

=
2
tA

(1− ‖ x0 ‖2 −tAQ(x0))x0 =
2
tA

(1 − h1(t0))x0 = 0.

Lemma 4. If ϕ /∈ Range(I−tAA)∩Range(I+tAA), then P ∈ R4(X).

Proof. Seeking a contradiction, let us assume that P /∈ R4(X). Then,
after Lemma 2, k ∈ [ 1

sA
, 1

rA
], and so, for λ ∈]−tA, tA[, h(λ) < 1. Consequently,

proceeding as in the previous lemma, since the set {x(λ) :| λ |< tA} is
bounded, we may find two sequences (λ1j)∞j=1, (λ2j)∞j=1 in ]− tA, tA[ and two
vectors φ, ψ in X, such that

lim
j

λ1j = tA, lim
j

λ2j = −tA,
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and the vector sequences (x(λ1j))∞j=1, (x(λ2j))∞j=1 converge weakly to φ and
ψ, respectively. Taking weak limits in the equality (I − λA)x(λ) = λϕ, we get

(I − tAA)φ = tAϕ, (I + tAA)ψ = −tAϕ.

Therefore, ϕ ∈ Range(I − tAA) ∩ Range(I + tAA).

Theorem 1. R4(X) is dense in P4(X).

Proof. Let P be an arbitrary element of P4(X) with the standard form
given at the beginning. Take ε > 0. We assume P /∈ R4(X) and so, after
Lemma 3, the operators I − tAA, I + tAA are both one-to-one. We know that
at least one of these operators must not be onto, otherwise either I − rAA, or
I −sAA, would be a topological isomorphism thus contradicting the definitions
of rA and sA. Hence, Range(I − tAA) ∩ Range(I + tAA) �= X and so
it has empty interior. Thus, we can get hold of a vector ϕε /∈ Range(I −
tAA)∩Range(I + tAA) such that ‖ ϕ−ϕε ‖ ≤ ε/2. Finally, if we consider the
polynomials

Qε(x) := 〈Ax, x〉 + 2 〈ϕε, x〉 + k,

Pε(x) := (1− ‖x‖2) Qε(x),

it is clear, after Lemma 4, that Pε ∈ R4(X) and, since, for ‖ x ‖≤ 1,

| P (x) − Pε(x) |= (1− ‖ x ‖2)· | Q(x) − Qε(x) |
= 2(1− ‖ x ‖2)· | 〈ϕ − ϕε, x〉 |
≤ 2 ‖ ϕ − ϕε ‖≤ ε,

it follows that ‖ P − Pε ‖≤ ε.

Corollary 1 (Approximate Rolle’s Theorem for polynomials of
degree four). If P is a continuous polynomial of degree four that vanishes in
the unit sphere of the real Hilbert space X, then, for each ε > 0, there exists
xε ∈ X such that ‖xε ‖< 1 and ‖ P ′(xε)‖≤ ε.

Proof. Assuming P ∈ P4(X)\R4(X) has the standard form, and pro-
ceeding as in the previous theorem, we find a vector ϕε which does not belong
to the subspace Range(I − tAA) ∩ Range(I + tAA), and ‖ ϕ − ϕε ‖≤ ε/6.
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The polynomial Pε there defined is in R4(X), so there exists xε ∈ X with
‖xε ‖< 1 and P ′

ε(xε) = 0. Hence

‖ P ′(xε) ‖= ‖ P ′(xε) − P ′
ε(xε) ‖

= ‖ −2Q(xε)xε + (1− ‖ xε ‖2)(2Axε + 2ϕ) + 2Qε(xε)xε

−(1− ‖ xε ‖2)(2Axε + 2ϕε) ‖
≤ 2 ‖ Q − Qε ‖ + 2 ‖ ϕ − ϕε ‖≤ 6 ‖ ϕ − ϕε ‖≤ ε.

§3. A Characterization of the Shkarin Polynomials which do not
Satisfy Rolle’s Theorem

In [4], we introduced the class of Shkarin polynomials, giving a sufficient
condition for those polynomials not to satisfy Rolle’s Theorem. We show here
that this condition is also necessary. We reproduce the definition of a Shkarin
polynomial.

Definition 1. If P ∈ P4(X) has the standard form given in the first
section, it is then said to be a Shkarin polynomial whenever it satisfies the
following conditions:

1. A is a strictly positive operator in X, i.e., x �= 0 implies 〈Ax, x〉 > 0.

2. With the terminology introduced in Section 2, we know that rA = 1
‖A‖ ,

sA = −∞. We assume in this condition that there is 0 < ρ < 1 such that
‖ x(λ) ‖≤ ρ, λ < 1

‖A‖ .

3. ‖ A ‖ is not an eigenvalue, i.e., the operator I − 1
‖A‖A is one-to-one.

4. ϕ is not in the range of I − λA, λ > 1
‖A‖ .

Lemma 5. If P is a Shkarin polynomial and P /∈ R4(X), then there
are vectors ψ, φ such that, in X,

lim
λ→−∞

x(λ) = ψ, lim
λ→1/‖A‖

x(λ) = φ.

Proof. Since the set {x(λ) : λ ∈] −∞, 1
‖A‖ [} is bounded, proceeding as

in Lemma 4, we find two scalar sequences (λ1j)∞j=1, (λ2j)∞j=1 and two vectors
ψ, φ, such that

lim
j

λ1j = −∞, lim
j

λ2j =
1

‖ A ‖ ,
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and the vector sequences (x(λ1j))∞j=1, (x(λ2j))∞j=1 converge weakly to ψ, φ,
respectively. Now, since ‖ x(λ) ‖2 is decreasing in ] − ∞, 0[, it follows that
limλ→−∞ ‖ x(λ) ‖2 exists.

Moreover, making use of L’Hôpital’s rule, the fact that A is self-adjoint
and that Aψ = −ϕ, (I − 1

‖A‖A)φ = 1
‖A‖ϕ, we have

lim
λ→−∞

〈ψ, x(λ)〉 = lim
λ→−∞

〈ψ, λ(Ax(λ) + ϕ)〉

= lim
λ→−∞

〈ϕ, ψ − x(λ)〉
1/λ

= lim
λ→−∞

〈ϕ, x′(λ)〉
1/λ2

= lim
λ→−∞

λ2〈ϕ, x′(λ)〉 = lim
λ→−∞

‖ x(λ) ‖2 .

But, since (x(λ1j))∞j=1 converges weakly to ψ,

‖ ψ ‖2= lim
j
〈ψ, x(λ1j)〉 = lim

λ→−∞
‖ x(λ) ‖2 .

Hence, convergence in norm is now clear

lim
λ→−∞

‖ ψ − x(λ) ‖2= lim
λ→−∞

(‖ ψ ‖2 −2〈ψ, x(λ)〉+ ‖ x(λ) ‖2) = 0.

Similarly, if λ ∈]0, 1
‖A‖ [, since

x(λ) =
∞∑

n=0

λn+1Anϕ, x′(λ) =
∞∑

n=0

(n + 1)λnAnϕ,

it follows that

d

dλ
‖ x(λ) ‖2= 2

∞∑
m,n=0

(n + 1)λm+n+1〈Am+nϕ, ϕ〉 > 0,

and so the function ‖x(λ)‖2 increases in ]0, 1
‖A‖ [ and thus limλ→ 1

‖A‖
‖ x(λ) ‖2

exists. Now

〈ϕ, φ − x(λ)〉 =‖ A ‖
〈(

I − A

‖ A ‖

)
φ, φ − x(λ)

〉

=‖ A ‖
(
‖ φ ‖2 −〈φ, x(λ)〉 − 1

‖ A ‖〈Aφ, φ〉 +
1

‖ A ‖〈Aφ, x(λ)〉
)

=‖ A ‖
(

1
‖ A ‖〈φ, Ax(λ) + ϕ〉 − 〈φ, x(λ)〉

)

=‖ A ‖
(

1
λ ‖ A ‖ − 1

)
〈φ, x(λ)〉 =

1 − λ ‖ A ‖
λ

〈φ, x(λ)〉.



�

�

�

�

�

�

�

�

An Approximate Rolle’s Theorem 383

Therefore

lim
λ→ 1

‖A‖

〈φ, x(λ)〉 = lim
λ→ 1

‖A‖

〈ϕ, φ − x(λ)〉
1/λ− ‖ A ‖

= lim
λ→ 1

‖A‖

〈ϕ, x′(λ)〉
1/λ2

= lim
λ→ 1

‖A‖

‖ x(λ) ‖2 .

Finally
‖ φ ‖2= lim

j
〈φ, x(λ2j)〉 = lim

λ→ 1
‖A‖

‖ x(λ) ‖2,

which implies that
lim

λ→ 1
‖A‖

‖ φ − x(λ) ‖2= 0.

The following characterization clearly improves the result given in
[4, Theorem 1], which we reproduce here

Theorem. If P (x) is a Shkarin polynomial such that

‖ φ ‖2= limλ→ 1
‖A‖

‖ x(λ) ‖2,

then P (x) does not satisfy Rolle’s Theorem if and only if

〈Aψ, ψ〉 < k < ‖ A ‖ (1 − 3 ‖ φ ‖2) + 〈Aφ, φ〉.

Theorem 2. Let P be a Shkarin polynomial. Then, P does not satisfy
Rolle’s Theorem if and only if the following inequality holds

〈Aψ, ψ〉 < k < 〈Aφ, φ〉 + ‖ A ‖ (1 − 3 ‖ φ ‖2).

Proof. For the sufficiency part we refer to Proposition 1 of [4]. Seeking
necessity, notice that 〈Aψ, ψ〉 �= k, otherwise 0 = Q(ψ) = P ′(ψ) and, by
condition 2 in the definition of a Shkarin polynomial, it follows that ‖ ψ ‖≤
ρ < 1. Assuming k < 〈Aψ, ψ〉, then, on one hand we know that h(λ) < 1,
λ ∈] −∞, 1

‖A‖ [, but, on the other hand, after Lemma 5,

lim
λ→−∞

h(λ) = 2 ‖ ψ ‖2 + lim
λ→−∞

λ(〈ϕ, x(λ)〉+ k)

= 2 ‖ ψ ‖2 +(−∞)(k − 〈Aψ, ψ〉)
= +∞,
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which contradicts the boundedness of h(λ). Thus k > 〈Aψ, ψ〉. For the
other part of the inequality, again using Lemma 5, we know that, by setting
x( 1

‖A‖ ) := φ, we obtain a continuous extension of h(λ) to the closed interval
] −∞, 1

‖A‖ ]. Since P /∈ R4(X), we must have that h( 1
‖A‖ ) < 1. Hence

1 > h

(
1

‖ A ‖

)
= lim

λ→ 1
‖A‖

h(λ) = lim
λ→ 1

‖A‖

[2 ‖ x(λ) ‖2 +λ(〈ϕ, x(λ)〉+ k)]

= 2 ‖ φ ‖2 +
〈ϕ, φ〉 + k

‖ A ‖ = 3 ‖ φ ‖2 +
k − 〈Aφ, φ〉

‖ A ‖ ,

and the inequality follows.
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