
�

�

�

�

�

�

�

�

Publ. RIMS, Kyoto Univ.
41 (2005), 397–416

Projected Canonical Curves and
the Clifford Index

Dedicated to Professor Makoto Namba on his 60th birthday

By

Kazuhiro Konno
∗

Introduction

We shall work over the complex number field C. Let X be a non-singular
projective curve of genus g. We always assume that it is non-hyperelliptic
and sometimes identify it with its canonical image in PH0(X, KX). By Max
Noether’s theorem, the canonical ring of X is generated in degree one and the
canonical map is a projectively normal embedding. Furthermore, a well-known
theorem of Enriques-Petri states that X is cut out by hyperquadrics if Cliff(X),
the Clifford index of X, is bigger than one. Then Mark Green [4] conjectured
that the non-vanishing of a certain higher syzygy can be characterized by the
Clifford index, which has been verified in many cases. From these, we learn
that Cliff(X) reflects the algebraic structure on X better than the gonality
gon(X), while two invariants are almost equivalent [2].

For a non-negative integer k, we denote by X(k) the k-th symmetric prod-
uct of X whose points are considered as effective divisors of degree k on X.
When k = 0, we understand that X(0) is one point corresponding to the zero
divisor. Let Dk be the open subset of X(k) consisting of effective divisors D

which spans scheme theoretically a (k − 1)-plane 〈D〉 in PH0(X, KX). For
D ∈ Dk, we put KX,D = KX − [D], where [D] denotes the line bundle associ-
ated to D. We let ΦKX,D

: X → PH0(X, KX,D) be the rational map associated
to the complete linear system |KX,D|.

In this article, we consider two kinds of uniformity questions with respect
to Dk:
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398 Kazuhiro Konno

• When is KX,D normally generated for any D ∈ Dk ?

• When is the image ΦKX,D
(X) cut out by hyperquadrics for any D ∈ Dk ?

In view of Max Noether theorem and Enriques-Petri theorem, we have a hope
that each of the algebraic questions can be answered in terms of the Clifford
index. We remark that the analogous geometric uniformity property about the
base point freeness or the very ampleness of KX,D can be easily characterized
by the gonality (see §1).

Now, our main result is the following:

Main Theorem. Let X be a canonical curve of genus g and k an integer
with 0 ≤ k < g − 1.

(1) Assume that k ≤ 33. Then KX,D is normally generated for any D ∈ Dk

if and only if Cliff(X) ≥ k + 1.

(2) Assume that k ≤ 5. Then ΦKX,D
(X) is cut out by quadrics for any

D ∈ Dk if and only if Cliff(X) ≥ k + 2.

In each of (1) and (2), the “if” part is an easy application of remarkable
theorems due to Green-Lazarsfeld [5] and Lange-Sernesi [7], respectively. So
the difficulty is in finding a special configuration of k points which breaks the
ideal property. We remark that the unpleasant restrictions on k are closely
related to the conjecture in [3, p.175] on curves of high Clifford dimension,
which is known so far to hold when the Clifford index is at most 33 (see, [3]).
Indeed, we can remove the restriction on k in (1) if the conjecture is true. We
also remark that (2) for k = 1 is an unpublished result of Mukai.

The plan of the paper is as follows. In §1, we collect known results about
the Clifford index from [3] and [2]. We also consider the geometric analogue
of our questions and give an answer in Proposition 1.1. In §2, we show The-
orems 2.1 and 2.2 which together with [5] and [7] give us Main Theorem. In
§3, we describe the quadric hull of curves with Cliff(X) = 2 to see what hap-
pens when we consider the projection of X from a point x ∈ X, and show
Theorem 3.1.

§1. Clifford Index

Let X be a non-singular projective curve of genus g ≥ 2. The gonality of
X, which we denote by gon(X), is by definition the minimum of the degrees of
surjective morphisms of X to P1. It is known that gon(X) ≤ [(g +3)/2], where
[x] denotes the integer part of a real number x.
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We have another invariant, the Clifford index, introduced by H. Martens.
Let us recall the definition and some related topics. See [3] and [2] for the
detail. The Clifford index of a line bundle L ∈ Pic(X) is

Cliff(L) := deg L − 2h0(X, L) + 2

Note that the Riemann-Roch theorem gives us

h0(X, L) + h1(X, L) = g + 1 − Cliff(L)

The Clifford index of X is

Cliff(X) := min{Cliff(L) | h0(X, L) > 1, h1(X, L) > 1}

for g ≥ 4. When g = 2, we put Cliff(X) = 0. When g = 3, we put Cliff(X) = 0
or 1 according to whether X is hyperelliptic or not. A line bundle as in the
right hand side of the definition of Cliff(X) is said to contribute to the Clifford
index and, among them, those L with Cliff(L) = Cliff(X) are said to compute
the Clifford index.

There is a striking relation between the gonality and the Clifford index. In
fact, it is shown in [2] that Cliff(X) = gon(X) − 2 or gon(X) − 3 and that the
latter is a special case. This says in particular that Cliff(X) is not necessarily
computed by a pencil. So we need another invariant especially for curves with
Cliff(X) = gon(X) − 3. We put

r(X) := min{h0(X, L) − 1 | L computes Cliff(X)}

and call it the Clifford dimension of X following [3]. A line bundle L computing
Cliff(X) and h0(X, L) = r(X) + 1 is said to compute the Clifford dimension.
Recall that a non-singular plane curve of degree d ≥ 5 has gon(X) = d − 1,
Cliff(X) = d− 4 and r(X) = 2 (see, e.g. [8]). In this case, a line on P2 induces
on X a line bundle computing the Clifford dimension. When r(X) ≥ 3, it is
shown in [3] that, for L computing the Clifford dimension, we have either (i)
deg L = 4r(X) − 3, KX = 2L, or (ii) deg L ≥ 6r(X) − 6, g ≥ 8r(X) − 7. It
is conjectured in [3] that the latter case cannot happen, which is true when
3 ≤ r(X) ≤ 9. We call (X, L) is an ELMS curve if deg L = 4r(X)− 3 holds for
L computing the Clifford dimension r(X) ≥ 3.

For a line bundle L on X, we denote by ΦL : X → PH0(X, L) the rational
map associated with |L|. We denote by Quad(X, L) the intersection of all
hyperquadrics through ΦL(X) and call it the quadric hull of ΦL(X). Here we
recall the following beautiful theorem due to Green-Lazarsfeld [5] and Lange-
Sernesi [7], which will play an important role in the proof of Main Theorem.
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Theorem 1.1 ([5] and [7]). Let L be a very ample line bundle on a non-
singular projective curve X.

(1) If Cliff(L) ≤ Cliff(X) − 1, then L is normally generated. That is, the
multiplication map SymnH0(X, L) → H0(X, nL) is surjective for ∀n ∈ N.

(2) If Cliff(L) ≤ Cliff(X) − 2, then

Quad(X, L) = ΦL(X)
⋃

(trisecant lines to ΦL(X))

Lemma 1.1. Let L be a special line bundle on X. Assume that there is
a positive integer � such that deg L ≥ 2g − 1 + �− gon(X) holds. Then for any
effective divisor Z of degree �, the restriction map H0(X, L) → H0(Z, L|Z) is
surjective.

Proof. We assume that the restriction map is not surjective and show that
this leads us to a contradiction. Since we have assumed that h0(X, L − Z) ≥
h0(X, L) − � + 1 and h1(X, L) �= 0, we have

h0(X, KX − L + Z) = deg(KX − L + Z) + 1 − g + h0(X, L − Z)
=−h0(X, L) + h1(X, L) + � + h0(X, L − Z)
≥ 2.

On the other hand, since deg L ≥ 2g − 1 + � − gon(X), we get

deg(KX − L + Z) = 2g − 2 − deg L + � < gon(X).

This is absurd.

Let k be an integer with 0 ≤ k ≤ g. We denote by Dk the set of all effective
divisors D of degree k with h0(X, KX) − h0(X, KX − [D]) = k. That is, an
element D ∈ Dk spans scheme theoretically a (k − 1) plane in PH0(X, KX).
For D ∈ X(k), we put KX,D := KX − [D]. We have h0(X, [D]) = k + 1 − g +
h0(X, KX,D) by the Riemann-Roch theorem and the duality theorem. Hence,
for D ∈ X(k), we have D ∈ Dk if and only if h0(X, [D]) = 1.

We consider the geometric analogue of our questions in Introduction.

Proposition 1.1. Let k and � be non-negative integers with 0 ≤ k+� ≤
g. Then the following hold.

(1) Dk = X(k) holds if and only if gon(X) ≥ k + 1.
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(2) Assume that � > 0 and consider the map Ψ : Dk × X(�) → X(k+�) defined
by Ψ((D, Z)) = D + Z. The image of Ψ is contained in Dk+� if and only
if gon(X) ≥ k + � + 1. In particular,

(a) KX,D is free from base points for ∀D ∈ Dk if and only if gon(X) ≥
k + 2

(b) KX,D is very ample for ∀D ∈ Dk if and only if gon(X) ≥ k + 3

(c) ΦKX,D
(X) has no trisecant lines for ∀D ∈ Dk if and only if gon(X) ≥

k + 4

Proof. (1) directly follows from the definition of gonality. (2) If gon(X) >

k + �, then we have Im(Ψ) ⊂ X(k+�) = Dk+� by (1). Suppose that gon(X) =
d ≤ k + �. Let E ∈ g1

d be a general member. Assume that k < d. We add
general k + �−d points to E to get a divisor G ∈ X(k+�) \Dk+�. If we take any
subdivisor D of degree k from G, then we have D ∈ Dk and Z = G−D ∈ X(�).
Assume that k ≥ d. We decompose E as E = E1 +E2 with deg E1 = d−1 and
deg E2 = 1. We add general k − d + 1 points to E1 to get a divisor D ∈ Dk.
Similarly, we add any �− 1 points to E2 to get Z ∈ X(�). Then D + Z �∈ Dk+�,
because E is a subdivisor of D + Z.

Now, let D ∈ Dk and consider the restriction map

H0(X, KX,D) → H0(Z, KX,D|Z)

for any Z ∈ X(�). Since D ∈ Dk, we have h1(X, KX,D) = 1. Hence the
restriction map is surjective if and only if h1(X, KX,D−Z) = 1, that is, D+Z ∈
Dk+�. So, by putting � = 1, 2, 3, we respectively get (a), (b), (c). We remark
that the “if part” also follows from Lemma 1.1 applied for L = KX,D.

§2. Proof of Main Theorem

In this section, we shall show Main Theorem in Introduction (and more)
with several lemmas. The following shows its “if” parts.

Lemma 2.1. Let k be a non-negative integer with 0 ≤ k < g − 1. Then
the following hold.

(1) KX,D is normally generated for any D ∈ Dk if Cliff(X) ≥ k + 1.

(2) Quad(X, KX,D) 
 X for any D ∈ Dk if Cliff(X) ≥ k + 2.
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Proof. Recall that gon(X)− 3 ≤ Cliff(X) ≤ gon(X)− 2. Then it follows
from Lemma 1.1 applied for � = 2, 3 that KX,D is very ample if Cliff(X) ≥ k+1,
and that ΦKX,D

(X) has no trisecant lines if Cliff(X) ≥ k+2. Note that we have
Cliff(KX,D) = k for D ∈ Dk. Therefore, Theorem 1.1 gives us the assertion.

We look for a special configuration of k points which prevents KX,D from
being normally generated or, ΦKX,D

(X) from being cut out by hyperquadrics.

§2.1. Plane curves

Let X ⊂ P2 be a non-singular plane curve of degree d ≥ 5. We take a
line � ⊂ P

2 such that X ∩ � consists of d distinct points. Let k be a positive
integer with 0 < k ≤ d − 4. We take k points x1, . . . , xk from X ∩ � and put
D = x1 + · · ·+ xk. Then D ∈ Dk. Let µ : W → P2 be the blow-up with center
∪k

i=1xi, and put E =
∑k

i=1 µ−1(xi). We identify X with its proper transform
in W . Then X is linearly equivalent to dµ∗� − E on W and KX,D is induced
by (d − 3)µ∗� − E. It follows from the cohomology long exact sequence for

0 → OW (−3µ∗�) → OW ((d − 3)µ∗� − E) → OX(KX,D) → 0,

we have H0(W, [(d − 3)µ∗� − E]) 
 H0(X, KX,D).

Lemma 2.2. Let X be a non-singular plane curve of degree k+4. Then
there exists a divisor D ∈ Dk such that KX,D is not normally generated.

Proof. Since the restriction map H0(W, (k + 1)µ∗�−E) → H0(X, KX,D)
is an isomorphism, we see that the multiplication map Sym2H0(X, KX,D) →
H0(X, 2KX,D) factors through H0(W, 2(k + 1)µ∗� − 2E). Consider the coho-
mology long exact sequence for

0 → OW ((k − 2)µ∗� − E) → OW (2(k + 1)µ∗� − 2E) → OX(2KX,D) → 0.

We shall show that H1(W, 2(k+1)µ∗�−2E) = 0 and H1(W, (k−2)µ∗�−E) 
 C

to show that the restriction map H0(W, 2(k + 1)µ∗�− 2E) → H0(X, 2KX,D) is
not surjective.

For this purpose, let �̃ be the proper transform of � by µ. Consider the
cohomology long exact sequence for

0 → OW ((k − 3)µ∗�) → OW ((k − 2)µ∗� − E) → O�̃(−2) → 0.

Since Hi(W, (k−3)µ∗�) 
 Hi(P2,O(k−3)), we see that it vanishes for i = 1, 2.
Hence H1(W, (k−2)µ∗�−E) 
 H1(�̃,O(−2)) 
 C. We next show the vanishing



�

�

�

�

�

�

�

�

Projected Canonical Curves 403

of H1(W, 2(k +1)µ∗�−2E). We consider the cohomology long exact sequences
for

0 → OW (2kµ∗�) → OW ((2k + 1)µ∗� − E) → O�̃(k + 1) → 0

and

0 → OW ((2k + 1)µ∗� − E) → OW (2(k + 1)µ∗� − 2E) → O�̃(2) → 0.

We get from the first one that H1(W, (2k + 1)µ∗� − E) = 0. Then the second
one shows that H1(W, 2(k + 1)µ∗�− 2E) also vanishes. Therefore, KX,D is not
normally generated.

Lemma 2.3. Let X be a non-singular plane curve of degree k+5. Then
there exists a divisor D ∈ Dk such that Quad(X, KX,D) contains a conic curve.

Proof. Since H0(W, (k + 2)µ∗� − E) 
 H0(X, KX,D), ΦKX,D
(X) is con-

tained in the surface V obtained as the (k + 2)-th Veronese embedding of P2

followed by the linear projection from 〈D〉. Consider now the cohomology long
exact sequence for

0 → OW ((k − 1)µ∗� − E) → OW ((2k + 4)µ∗� − 2E) → OX(2KX,D) → 0.

If k = 1, then we have H0(W, 6µ∗� − 2E) 
 H0(X, 2KX,D). We see that the
quadric hull of ΦKX,D

(X) is V which is isomorphic to the Hirzebruch surface
of degree 1. If k > 1, then H0(W, (k − 1)µ∗� − E) �= 0. It follows that there
are more quadrics through X than V . Let �̃ be the proper transform of � by µ.
Then ((k − 1)µ∗� − E) · �̃ = −1 and it follows that �̃ is a fixed component of
|(k− 1)µ∗�−E|. From this, we see that the quadric hull of X contains �̃. Note
that �̃ is of degree 2 in PH0(X, KX,D).

§2.2. ELMS curves

We let (X, L) be an ELMS curve. We put r = h0(X, L) − 1 ≥ 3. Then
deg L = 4r − 3 and Cliff(X) = 2r − 3. Since KX = 2L, we have g = 4r − 2.
It is known that ΦL is a projectively normal embedding and ΦL(X) has no
(2s + 2)-secant s-planes for 1 ≤ s ≤ r − 2 (see, [3, Lemma 1.1]). It is shown
in [3, Theorem 3.7] that there is a (2r − 3) secant r − 2 space divisor Z with
respect to |L|. Then Z ∈ D2r−3 and |L − Z| is a pencil of minimal degree 2r.

Lemma 2.4. Let (X, L) be an ELMS curve of Clifford dimension r.
Then there exists a divisor D ∈ D2r−3 such that KX,D fails to be normally
generated.
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Proof. We put D = Z. By the free-pencil-trick, we have an exact sequence

0 → H0(X, D) → H0(X, L − D) ⊗ H0(X, L) → H0(X, KX,D)

On one hand, we have rank(H0(X, L − D) ⊗ H0(X, L) → H0(X, KX,D)) =
2r + 1, because we have h0(X, L) = r + 1 and h0(X, D) = 1. On the other
hand, we have h0(X, KX,D) = g − (2r − 3) = 2r + 1. Hence the multiplication
map H0(X, L − D) ⊗ H0(X, L) → H0(X, KX,D) is surjective.

We shall show that H0(X, KX,D)⊗H0(X, KX,D) → H0(X, 2KX,D) is not
surjective. By what we have seen above, it suffices to show that H0(X, L −
D) ⊗ H0(X, L) ⊗ H0(X, KX,D) → H0(X, 2KX,D) is not surjective. Since it
factors through H0(X, L − D) ⊗ H0(X, KX,D + L) → H0(X, 2KX,D), we only
have to show that this map is not surjective. Again by the free-pencil-trick, we
have the exact sequence

0 → H0(X, KX)→ H0(X, L − D) ⊗ H0(X, KX,D + L)
→ H0(X, 2KX,D) → H1(X, KX) → 0,

because 2L = KX . Since h1(X, KX) = 1, we get the assertion.

In order to study the quadric hull, we first show a conditional result:

Lemma 2.5. Let (X, L) be an ELMS curve and ΦL : X → PH0(X, L)
the Clifford embedding. Put r = h0(X, L) − 1. Assume that ΦL(X) has a
(2r − 3)-secant (r − 2)-plane Λ such that there is a non-singular rational curve
C of degree d in Λ passing through 2d + 1 points in ΦL(X) ∩Λ, 1 ≤ d ≤ r − 2.
Then there exists a divisor D ∈ D2r−4 such that Quad(X, KX,D) contains an
extra rational curve.

Proof. We choose one point P from ΦL(X)∩C and define a divisor D ∈
D2r−4 with ΦL(X) ∩ Λ \ {P}. Since L is projectively normal and KX = 2L,
any hyperquadrics through ΦKX,D

(X) can be interpreted as a hyperquartic on
PH0(X, L) which passes through ΦL(X) ∩ Λ and vanishes twice on D. Since
C ⊂ Λ is a non-singular rational curve of degree d through 2d + 1 points from
ΦL(X) ∩ Λ and containing 2d points in D, such a quartic must contain C as
well for a simple degree reason: 4d − (2 × 2d + 1) = −1 < 0.

Corollary 2.1. Let (X, L) be an ELMS curve of Clifford dimension
r ≤ 4. Then there exists a divisor D ∈ D2r−4 such that Quad(X, KX,D)
contains an extra rational curve.
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Proof. Let Λ be a (2r − 3)-secant (r − 2)-plane. If r = 3, then Λ is a
trisecant line and we can apply Lemma 2.5 putting C = Λ. Assume that r = 4.
Then Λ 
 P2 and ΦL(X)∩Λ consists of five points. Hence we can find a conic
through all the five points. Recall that ΦL(X) has no (2s + 2)-secant s-planes
for 1 ≤ s ≤ r−2. It follows that the conic cannot be a double line. If the conic
is irreducible, then we are done by Lemma 2.5. If the conic is reducible, one
component must be a line C which contains 3 points from ΦL(X) ∩ Λ. Hence,
also in this case, we can apply Lemma 2.5.

§2.3. Summary

We summarize here the results obtained above in two theorems.

Theorem 2.1. Suppose that Cliff(X) ≤ k. Then there exists a divisor
D ∈ Dk such that KX,D fails to be normally generated in the following cases:

(1) gon(X) ≤ k + 2.

(2) X is a non-singular plane curve of degree k + 4.

(3) X is an ELMS curve with Cliff(X) = k.

Proof. Because a projectively normal line bundle is necessarily very am-
ple, we have (1) by Proposition 1.1, (b). Hence we can assume that gon(X) =
k + 3 and Cliff(X) = k. Then (2) and (3) are covered by Lemmas 2.2 and 2.4,
respectively.

Theorem 2.2. There exists a divisor D ∈ Dk such that Quad(X, KX,D)
contains an extra variety if X satisfies either

(1) gon(X) ≤ k + 3, or

(2) Cliff(X) = k + 1 and r(X) ≤ 4.

Proof. (2) follows from Lemma 2.3 and Corollary 2.1. (1): Assume that
gon(X) ≤ k+3. Then it follows from (c) of Proposition 1.1 that ΦKX,D

(X) has
a trisecant line for some D ∈ Dk. It is then clear that Quad(X, KX,D) contains
such a trisecant line.

Now, the rest of Main Theorem follows from Theorems 2.1 and 2.2, if we
note that the conjecture of Eisenbud-Lange-Martens-Schreyer is true when the
Clifford dimension is less than ten. Q.E.D. of Main Theorem
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For D ∈ Dk, we let Quad(X, KX , 〈D〉) be the intersection of all hyper-
quadrics through X ⊂ PH0(X, KX) which are singular along 〈D〉. We call
it the singular quadric hull of X with ridge 〈D〉. Note that such a hyper-
quadric through X is in one-to-one correspondence with a hyperquadric through
ΦKX,D

(X) ⊂ PH0(X, KX,D). Hence, we get:

Corollary 2.2. Let X ⊂ PH0(X, KX) be a canonical curve and k an
integer with 0 ≤ k ≤ 5. Then

Quad(X, KX , 〈D〉) = X ∗ 〈D〉

holds for any D ∈ Dk if and only if Cliff(X) ≥ k + 2, where the operation ∗
denotes the projective join (see [6, §4]). In other words, X can be recovered
from the singular quadric hull as its base if and only if Cliff(X) ≥ k + 2.

We close the section by showing how to find a trisecant line geometrically
when gon(X) = k + 3.

Lemma 2.6. Let X be a non-singular curve of gon(X) = k + 3. Then
there exists a divisor D ∈ Dk such that Quad(X, KX,D) contains a trisecant
line to ΦKX,D

(X).

Proof. We denote by f : X → P1 the surjective morphism corresponding
to a g1

k+3. Let F be a general fiber of f . We can assume that F consists of
k + 3 distinct points. We choose k points from F to get a subdivisor D of
degree k. Then D ∈ Dk. Let E be the saturated subsheaf of f∗ωX generated by
H0(P1, f∗ωX). Then it is of rank k + 2, and the natural sheaf homomorphism
f∗E ↪→ f∗f∗ωX → ωX induces a morphism ψ : X → P(E). We remark that ψ

followed by the morphism defined by the tautological line bundle H on P(E)
is nothing but the canonical map of X. Let Γ be the fiber of P(E) → P1

containing F . Then 〈D〉 is a linear subspace of Γ 
 Pk+1. We perform the
elementary transformation along 〈D〉, that is, blow up P(E) with center 〈D〉
and then blow down the proper transform of Γ. Let µ : W → P(E) be the
blowing-up with center 〈D〉 and E the exceptional divisor. Then the morphism
Φ of W defined by |µ∗H−[E]| restricts to X to give the morphism ΦKX,D

and it
factors through the elementary transformation. Let Γ̄ be the proper transform
of Γ by µ. Via the blow-down, Γ̄ contracts to a line � and we see that the three
points in F −D are mapped to �. In this way, we can find a trisecant line � to
X ⊂ PH0(X, KX,D).
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§3. Quadric Hull of a Projected Canonical Curve

In this section, we shall determine the quadric hull Quad(X, KX,D) when
D ∈ D1 and Cliff(X) = 2.

§3.1. Special cases

We first consider the easiest case that g = 5:

Lemma 3.1. If X is a curve of genus five and Cliff(X) = 2, then
Quad(X, KX,D) = PH0(X, KX,D) for any effective divisor D of degree one.
Furthermore ΦKX,D

(X) is defined in PH0(X, KX,D) by

rank

(
�1 �2 �3
q1 q2 q3

)
= 1

where the �i’s are linear forms and the qj’s are quadric forms in four variables.

Proof. Recall that KX,D induces a projectively normal embedding of X.
We have Sym2H0(X, KX,D) 
 H0(X, 2KX,D) by dimension count. Hence
Quad(X, KX,D) = PH0(X, KX,D).

By the Hilbert-Burch theorem on the structure of Cohen-Macaulay ideal
of codimension 2, we see that the minimal free resolution of the homogeneous
ideal IΦKX,D

(X) is given by

0 → R(−4) ⊕ R(−5) → R(−3)⊕3 → IΦKX,D(X) → 0

where R = C[Z0, Z1, Z2, Z3]. Hence we get the assertion.

We assume that g ≥ 6.

Lemma 3.2. If X has several g1
4’s, then either X is bi-elliptic, or g ≤ 9.

In the latter case, X has either a simple g2
6 or X is of genus 9 with a simple

g3
8.

Proof. Two different g1
4 ’s give us a morphism f : X → P1 × P1. We

put Y = f(X). We see that Y is linearly equivalent to 4∆ or 2∆ according to
whether f is of degree one or two, where ∆ is the diagonal divisor on P

1×P
1. If

Y is linearly equivalent to 2∆, then its arithmetic genus is one. It follows that
Y is an elliptic curve, because if it were singular X would have a g1

2 . Therefore,
X is a bi-elliptic curve in this case. Assume that Y is linearly equivalent to 4∆.
Then it is of arithmetic genus 9 and |∆| induces on X a g3

8 . If Y is singular,
the projection from the singular point gives X a g2

6 .
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Remark 1. Martens-Mumford theorem (cf. [1]) states that, for g ≥ 6, X

is a bi-elliptic curve if X has a one dimensional family of g1
4 ’s.

Lemma 3.3. If X is a bi-elliptic curve, then Quad(X, KX,D) is a cone
over an elliptic normal curve.

Proof. Let f : X → C be the double covering over an elliptic curve C.
Because it is branched at 2g − 2 distinct points on C, there is a line bundle L′

of degree g − 1 on C such that KX = f∗L′. Since KX,D = KX − [D], we can
find a line bundle L of degree g − 2 on C such that |KX,D − f∗L| contains an
effective member. Now E := f∗OX(KX,D) is a locally free sheaf of rank 2 on
C. We have h0(C, E) = h0(X, KX,D) = g−1 and h1(C, E) = h1(X, KX,D) = 1.
It follows that deg(E) = g − 2. Since L is a subbundle of E of degree g − 2, the
quotient E/L is of degree zero. Since h1(C, E) = 1, we must have E/L 
 OC .
Hence E = L ⊕ OC . The natural sheaf homomorphism f∗E → OX(KX,D) is
surjective and induces a morphism ψ : X → PC(E) over C. We know that the
map ΦKX,D

is ψ followed by a morphism of PC(E) defined by the tautological
line bundle. Therefore, ΦKX,D

(X) is contained in the cone over a non-singular
elliptic curve which is the image of the P

1-bundle. Because the homogeneous
ideal of the cone is generated by quadrics when g ≥ 6, we see that it is nothing
but Quad(X, KX,D).

Lemma 3.4. Assume that X has a simple g2
6. Then Quad(X, KX,D) is

a weak Del Pezzo surface of degree g − 2.

Proof. We have 6 ≤ g ≤ 10. The g2
6 gives us a plane curve model Y of

X such that Y is a sextic with at most double points as its singularities. Note
that the cardinality of the singular points is 10 − g counting infinitely near
ones. We blow P2 up at these double points x1, · · · , x10−g to get a rational
surface W . Then X ⊂ W . We denote by Ei the inverse image of xi on W . If
H denotes the pull-back to W of a line on P2, then X is linearly equivalent to
6H − 2E1 − · · · − 2E10−g. Let µ : W̃ → W be the blowing-up at D ∈ X. Put
E0 = µ−1D. We denote the proper transform of X in W̃ by the same symbol.
Then KX,D is induced by L̃ = [3µ∗H − E0 − E1 − · · · − E10−g] on W̃ . From
the exact cohomology sequence for

0 → OW̃ (−E0) → OW̃ (2L̃) → OX(2KX,D) → 0

we see that H0(W̃ , 2L̃) 
 H0(X, 2KX,D). It follows that Quad(X, KX,D) con-
tains the image of W̃ under the morphism induced by |L̃|. (W̃ , L̃) gives us a
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weak Del Pezzo surface whose homogeneous ideal is known to be generated by
quadrics. Therefore Quad(X, KX,D) is the weak Del Pezzo surface of degree
g − 2.

Lemma 3.5. Assume that X is a canonical curve of genus 9 which has
a simple g3

8. Then Quad(X, KX,D) is a weak Del Pezzo surface of degree seven.

Proof. Let M be the line bundle on X giving the g3
8 . Then it is nor-

mally generated because it attains the Castelnuovo’s upper bound. Since
Sym2H0(X, M) → H0(X, 2M) = H0(X, KX) has one-dimensional kernel, the
image ΦM (X) lies on a quadric surface. It is either non-singular or a cone
over the conic curve. In the latter case, we blow P3 up at the vertex to get a
non-singular surface isomorphic to Σ2. Therefore, we can embedd X as a hy-
persurface of a geometrically ruled surface W linearly equivalent to 4H, where
H denote the pull-back to W of a hyperplane of P3, H|X = M . Let µ : W̃ → W

be the blowing-up at D ∈ X, and put E = µ−1(D). We identify X with the
proper transform by µ in W̃ . Then KX,D is induced by 2µ∗H−E. We easily see
that the restriction gives us isomorphisms H0(W̃ , 2µ∗H − E) 
 H0(X, KX,D)
and H0(W̃ , 4µ∗H − 2E) 
 H0(X, 2KX,D). This shows that Quad(X, KX,D) is
the image of W̃ by the morphism induced by [2µ∗H − E] which is a weak Del
Pezzo surface of degree 7.

We remark that X is either bi-elliptic or has a g2
6 when g = 6, 7.

§3.2. General case

In what follows, we assume that our X has a g1
4 and that g ≥ 8. We

frequently use the following notation. Let Σd be the Hirzebruch surface of
degree d ≥ 0, that is, a P1-bundle P(O(d) ⊕ O) on P1. We denote by ∆0 the
minimal section (that is, a section with self-intersection −d) and by Γ a fiber.

Let f : X → P1 be the morphism of degree 4. Let E be the saturated
subsheaf of f∗OX(KX,D) generated by H0(P1, f∗OX(KX,D)). Then we have
rk(E) = 3, h0(P1, E) = g − 1 and deg(E) = g − 4. The natural sheaf ho-
momorphism f∗E ↪→ f∗f∗OX(KX,D) → OX(KX,D) induces an embedding
ψ : X → W = P(E) over P1. We identify X with ψ(X). We let H be the
tautological line bundle and Γ a fiber of the projection π : P(E) → P1. Then
H|X = KX,D.

Since the multiplication map Sym2H0(X, KX,D) → H0(X, 2KX,D) is sur-
jective and it factors through H0(W, 2H), we see that the restriction map
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H0(W, 2H) → H0(X, 2KX,D) is also surjective. Let IX/W denote the ideal
sheaf of X in W and consider the exact sequence

0 → IX/W (2H) → OW (2H) → OX(2KX,D) → 0

We have H1(W, IX/W (2H)) = 0. Hence, we get H0(R1π∗IX/W (2H)) = 0 and
H1(π∗IX/W (2H)) = 0 by the Leray spectral sequence. Then R1π∗IX/W (2H) =
0, essentially because the restriction map H0(P2,O(2)) → H0(Z,OZ(2)) is
surjective for a generic 0-cycle Z of length 4, implying that R1π∗IX/W (2H) is
at most a torsion sheaf. Hence taking direct images, we get the exact sequence

0 → π∗IX/W (2H) → Sym2(E) → f∗OX(2KX,D) → 0

By the Riemann-Roch theorem and the Leray spectral sequence, we can com-
pute the rank and the degree of f∗OX(2KX,D) to see rk(f∗OX(2KX,D)) = 4
and deg(f∗OX(2KX,D)) = 3g − 9. Since rk(Sym2E) = 6 and deg Sym2(E) =
4(g − 4), we get rk(π∗IX/W (2H)) = 2 and deg(π∗IX/W (2H)) = g − 7. From
h1(P1, π∗IX/W (2H)) = 0, it follows h0(P1, π∗IX/W (2H)) = g−5. Therefore, if
we write π∗IX/W (2H) = OP1(α) ⊕OP1(β) with two integers α, β (α ≥ β), we
get β ≥ −1 and α + β = g − 7.

Note that the natural inclusion O(α) ↪→ Sym2E gives us an inclusion
O ↪→ Sym2E(−α). Hence 1 ∈ H0(P1,O) induces a section of Sym2E(−α).
Through the identification H0(Sym2E(−α)) 
 H0(W, 2H − αΓ), it defines a
relative hyperquadric Q1 which contains X by the construction. Similarly, the
inclusion O(β) ↪→ Sym2E gives us an relative hyperquadric Q2 containing X,
Q2 ∈ |2H − βΓ|.

Assume first that β ≥ 0. Then |2H − Q2| �= ∅ and we have X ⊂ Q1 ∩ Q2.
We see that Quad(X, KX,D) is the image of Q1 ∩ Q2 under the morphism
induced by |H|. We can compute the degree of Q1 ∩ Q2 as

(2H − αΓ)(2H − βΓ)H = 4H3 − 2(α + β)H2Γ = 4(g − 4) − 2(g − 7) = 2g − 2

On the other hand, deg X = deg KX,D = 2g − 3. Therefore, Q1 ∩ Q2 contains
a line. It is nothing but the trisecant line of X detected in Lemma 2.6.

If β = −1, then |2H − Q2| = ∅ and α = g − 6. Hence the image of Q1

under the morphism induced by |H| is nothing but Quad(X, KX,D). It is easy
to see that it is a weak Del Pezzo surface because its degree in PH0(X, KX,D)
is given by (2H − (g−6)Γ)H2 = 2(g−4)− (g−6) = g−2. We shall show with
several lemmas that X is either a bi-elliptic curve or has a g2

6 or a g3
8 .

Put E = O(a) ⊕O(b) ⊕O(c) with integers a, b, c satisfying a ≥ b ≥ c ≥ 0
and a+b+c = g−4. We can take sections Z0, Z1 and Z2 of [H−aΓ], [H−bΓ] and



�

�

�

�

�

�

�

�

Projected Canonical Curves 411

[H−cΓ], respectively, such that they form a system of homogeneous coordinates
on any fiber of π. Then the equation defining Q1 ∈ |2H − (g − 6)Γ| can be
written as ∑

i+j=2,0≤i,j≤2

ϕijZ
i
0Z

j
1Z2−i−j

2

where the ϕij ’s are forms of degree ia + jb + (2− i− j)c− (g − 6) on the base
curve P

1. If 2b < g − 6, then it can be divided by Z0, which is absurd. Hence
2b ≥ g − 6. Then the possible types of (a, b, c) are as follows:

• g = 2n + 2 (n ≥ 3), (a, b, c) = (n− 2, n− 2, 2), (n− 1, n− 2, 1), (n− 1, n−
1, 0), (n, n − 2, 0)

• g = 2n + 1 (n ≥ 4), (a, b, c) = (n − 2, n − 2, 1), (n − 1, n − 2, 0)

Lemma 3.6. For n ≥ 5, the following cases are impossible: (a, b, c) =
(n − 2, n − 2, 2), (n − 1, n − 2, 1), (n − 2, n − 2, 1).

Proof. The equation of Q1 is of the form

ϕ1Z
2
0 + ϕ2Z0Z1 + ϕ3Z

2
1 = 0

If (a, b, c) = (n − 2, n − 2, 2), then the ϕi’s are constant. It follows that Q1

is reducible, which is absurd. Assume that (a, b, c) = (n − 1, n − 2, 1) or (n −
2, n − 2, 1). Then Q1 is singular along Z0 = Z1 = 0. Let µ : W̃ → W be the
blow-up with center {Z0 = Z1 = 0}. Then W̃ is isomorphic to the total space
of the P1-bundle

	 : P(OV (Γ) ⊕OV (H1)) → V = P(O(a) ⊕O(b)) 
 Σa−b

where H1 denotes a tautological divisor on V . Since the exceptional divisor
for µ is linearly equivalent to µ∗H − 	∗H1, we see that the proper transform
Q̃1 of Q1 is linearly equivalent to µ∗(2H − (g − 6)Γ) − 2(µ∗H − 	∗H1) =
	∗(2H1 − (g − 6)Γ). This implies that Q̃1 is isomorphic to a P1-bundle over a
curve C ∈ |2H1 − (g − 6)Γ|. Note that C is of arithmetic genus zero. Since Q2

is a relative hyperquadric, we see that X is a double covering of the rational
curve C, which is absurd because we have assumed that Cliff(X) = 2.

Lemma 3.7. If g = 10, then the cases (a, b, c) = (2, 2, 2), (3, 2, 1) are
impossible.

Proof. Assume that (a, b, c) = (2, 2, 2). Then P(E) 
 P2 × P1. Through
this identification, for the irreducible relative hyperquadric Q1 ∈ |2H − 4Γ|,
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there is a non-singular conic curve C such that Q1 
 C × P1. Hence X can
be regarded as a divisor on Σ0. But it can be easily shown that a non-singular
curve of genus 10 on Σ0 has either a g1

2 or a g1
3 . This is impossible when

Cliff(X) = 2.
We next assume that (a, b, c) = (3, 2, 1). Then the equation of Q1 is of the

form
ϕ1Z

2
0 + ϕ2Z0Z1 + ϕ3Z

2
1 + ϕ4Z0Z2 = 0

where deg ϕ1 = 2, deg ϕ2 = 1 and ϕ3 and ϕ4 are constants. If ϕ3 = 0,
then the equation can be divided by Z0, which is absurd. If ϕ4 = 0, we
get a contradiction as in the previous lemma. Hence ϕ3 and ϕ4 are non-zero
constants. Then by a change of the coordinates, we can assume that Q1 is
defined by Z0Z2 − Z2

1 = 0. Then the projection map π|Q1 : Q1 → P1 gives Q1

a P
1-bundle structure. Since Z0Z1Q1 = (H − 3Γ)(H − 2Γ)(2H − 4Γ) = −2,

the section {Z0 = Z1 = 0} induces the minimal section with self-intersection
number −2. Hence Q1 is isomorphic to Σ2. But, it is easy to see that a
non-singular curve of genus 10 on Σ2 has either a g1

2 or a g1
3 .

Lemma 3.8. If g = 9 and (a, b, c) = (2, 2, 1), then X has either a g2
6 or

a g3
8.

Proof. The equation of Q1 ∈ |2H − 3Γ| is of the form

ϕ1Z
2
0 + ϕ2Z0Z1 + ϕ3Z

2
1 + ϕ4Z0Z2 + ϕ5Z1Z2 = 0

where deg ϕ1 = deg ϕ2 = deg ϕ3 = 1 and deg ϕ4 = deg ϕ5 = 0. If ϕ4 =
ϕ5 = 0, then we will get a contradiction as in the proof of Lemma 3.6. By a
coordinate change among Z0 and Z1, we can assume that ϕ4 = 1 and ϕ5 = 0.
Then, by a suitable change of coordinates, we can normalize the equation as
Z0Z2+ϕZ2

1 = 0, where deg ϕ = 1. This shows that Q1 is a non-singular surface
and π|Q1 : Q1 → P1 has only one singular fiber over the zero of ϕ. We have
Z0Z1Q1 = (H−2Γ)2(2H−3Γ) = −1. Hence Q1 is Σ1 blown up at a point which
is not on the minimal section. Let µ : Q1 → Σ1 be the corresponding blowing-
up. We denote by E the exceptional (−1) curve and by Γ̄ the proper transform
of the fiber over (ϕ). Assume that X is linearly equivalent to µ∗(4∆0+xΓ)−yE

on Q1, where x, y are non-negative integers with x ≥ 4. Since X · Γ̄ ≥ 0, we
have y ≤ 4. Since KX is induced by µ∗(2∆0 + (x − 3)Γ) − (y − 1)E, we have
(µ∗(4∆0 + xΓ)− yE)(µ∗(2∆0 + (x− 3)Γ)− (y − 1)E) = 16. From this, we get
6x = y(y − 1) + 36 and see that the possible (x, y)’s are

(x, y) = (6, 0), (6, 1), (7, 3), (8, 4)
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In the first two cases, µ can map X isomorphically to Σ1 and X is linearly
equivalent to 4∆0 + 6Γ. Through the blow-down Σ1 → P2 of the minimal
section ∆0, we get a plane curve model of X which is a sextic with a double
point. In the last two cases of (x, y), we can blow Γ̄ down to a point to get
Σ0 on which X is still non-singular and is linearly equivalent to 4∆0 + 4Γ.
Therefore, X has a simple g3

8 .

Lemma 3.9. Assume that (a, b, c) is either (n− 1, n− 1, 0), (n− 1, n−
2, 0) with n ≥ 4 or (n, n−2, 0) with n ≥ 3. Then X is a bi-elliptic curve and the
image of Q1 under the morphism induced by H is a cone over a non-singular
elliptic curve.

Proof. In these cases, ΦH(P(E)) is a cone over the surface V = P(O(a)⊕
O(b)) 
 Σa−b embedded by the tautological line bundle H1. We consider the
P1-bundle W̃ = P(O ⊕ O(H1)) over V obtained as the proper transform of
the cone via the blowing-up of PH0(X, KX,D) at the vertex. Then we have
a surjective morphism µ : W̃ → W which contracts the inverse image of the
vertex to the section of W given by Z0 = Z1 = 0.

We first assume that Q1 is singular along Z0 = Z1 = 0. Note that this is the
case unless (a, b, c) = (4, 2, 0), (3, 2, 0). Since Q1 is singular along Z0 = Z1 = 0,
the proper transform Q̃1 in W̃ is linearly equivalent to (2µ∗H − (g − 6)Γ) −
2(µ∗H −	∗H1) = 	∗(2H1 − (g− 6)Γ), where 	 : W̃ → V denotes the natural
projection map. This implies that Q̃1 is a P

1-bundle over a curve C defined in V

by a section of [2H1−(g−6)Γ]. It is easy to see that C is of arithmetic genus one.
The proper transform of X by µ is in Q̃1 and the natural projection Q̃1 → C

induces on X a double covering of C. By the assumption that Cliff(X) = 2, we
conclude that C must be a non-singular elliptic curve. Hence X is a bi-elliptic
curve and the image of Q̃1 under the morphism induced by µ∗H is the cone
over C embedded by H1|C , which is nothing but Quad(X, KX,D).

We next assume that Q1 is not singular along Z0 = Z1 = 0. We only
have to consider the two cases (a, b, c) = (4, 2, 0), (3, 2, 0). In these cases, the
equation of Q1 is of the form

ϕ1Z
2
0 + ϕ2Z0Z1 + ϕ3Z

2
1 + cZ0Z2 = 0

with a non-zero constant c (because Q1 is not singular along Z0 = Z1 = 0).
Hence, by a suitable change of coordinates, it can be transformed into a canon-
ical form

Z0Z2 + ϕZ2
1 = 0,
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where deg ϕ = 1. Then, as in the proof of Lemma 3.8, we see that Q1 is Σ4

(resp. Σ5) blown up at a point �∈ ∆0 when (a, b, c) = (4, 2, 0) (resp. (a, b, c) =
(3, 2, 0)). In both cases, X is a non-singular curve in Q1 of respective genus
10, 9, and the natural projection Q1 → P

1 gives X a 4-to-1 map. Using this
description, one can immediately check that such X cannot exist as in the proof
of Lemma 3.8.

Lemma 3.10. Assume that g = 8 and (a, b, c) = (2, 1, 1), (2, 2, 0).
Then X is bi-elliptic or has a g2

6.

Proof. Assume that (a, b, c) = (2, 1, 1). Then the equation of Q1 is of the
form

ϕ1Z
2
0 + ϕ2Z0Z1 + ϕ3Z0Z2 + c1Z

2
1 + c2Z1Z2 + c3Z

2
2 = 0

where deg ϕ1 = 2, deg ϕ2 = deg ϕ3 = 1 and the c′is are constants. Since Q1

is irreducible, we have (c1, c2, c3) �= (0, 0, 0). We consider the morphism of W

induced by |H − Γ| and we denote it by ν : W → P
3. Note that ν is defined

by (X0 : X1 : X2 : X3) = (t0Z0 : t1Z0 : Z1 : Z2) and that it is considered
as the blowing-up of P3 with center � = {X0 = X1 = 0}. If Q denotes the
image of Q1 by ν, then it is a quadric surface which does not contain �. Since
[H − Γ]|X = KX,D − F is of degree 9, ν induces a birational morphism of X

onto its image Y because X has no g1
3 . Recall that Q1 is obtained from Q by

blowing up � ∩ Q and X is the proper transform in Q1 of Y . It follows that Y

has at most two singular points (possibly infinitely near). We now calculate the
arithmetic genus of Y . Assume that Q 
 Σ0 and that Y is linearly equivalent
to α∆0 + βΓ with α, β ≥ 4. Then, since deg Y = 9, we can assume that α = 4
and β = 5, giving that Y is of arithmetic genus 12. Since X is of genus 8 and
Y has at most two singular points, we conclude that Y has a triple point P .
Then the projection from P induces on X a g2

6 . Assume that Q is a cone over
a conic curve. Taking the resolution, we can assume that Y is on Σ2. Then it
is easy to see that Y is linearly equivalent to 4∆0 + 9Γ. So, Y is of arithmetic
genus 12 and, as in the previous case, we conclude that X has a g2

6 .
We next assume that (a, b, c) = (2, 2, 0). Then the equation of Q1 is

ϕ1Z
2
0 + ϕ2Z0Z1 + ϕ3Z

2
1 + c1Z0Z2 + c2Z1Z2 = 0

where deg ϕ1 = deg ϕ2 = deg ϕ3 = 2 and the ci’s are constants. If c1 = c2 = 0,
then we can show that X is a bi-elliptic curve as in the proof of Lemma 3.9.
Hence we can assume that c1 �= 0, c2 = 0 by a suitable linear change of
coordinates among Z0, Z1. Then putting ϕ1Z0 + ϕ2Z1 + c1Z2 to be new Z2,
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the equation can be transformed to

Z0Z2 + ϕ3Z
2
1 = 0.

We have Z0Z1(2H−2Γ) = −2. Therefore, if ϕ3 = 0 has two different roots, Q1

is Σ2 blown up two distinct points P1, P2 which are on different fibers and not
on the minimal section. Let µ : Q1 → Σ2 be the blow-up and Ei = µ−1(Pi).
We assume that X is linearly equivalent to µ∗(4∆0 + xΓ)− y1E1 − y2E2. Note
that we have x ≥ 8, 0 ≤ y1, y2 ≤ 4. We may further assume that y1 ≥ y2.
Since X is of genus 8, we have 6x = y1(y1 −1)+ y2(y2 −1)+46. It follows that
(x, y1, y2) = (8, 2, 0), (8, 2, 1), (9, 3, 2), (10, 4, 2). Therefore µ(X) is a curve of
degree x with a singular point P1 of multiplicity y1 = x− 6, and we see that X

has a g2
6 by considering the projection of µ(X) with center P1. If ϕ3 = 0 has a

multiple root, then Q1 has an ordinary double point (that is, a singularity of
type A1) and the minimal resolution Q̂1 of Q1 is Σ2 blown up two points which
are infinitely near and not on ∆0. Also in this case we can show that X has a
g2
6 by considering the proper transform of X in Q̂1 similarly as in the previous

case.

In summary, we have shown the following:

Theorem 3.1. Assume that Cliff(X) = 2, g ≥ 6 and deg D = 1. Then
X = ΦX,D(X) has a trisecant line � and

Quad(X, KX,D) = X ∪ �

unless, either
(1) X is bi-elliptic, or

(2) X has a simple g2
6 (in particular g ≤ 10), or

(3) g = 9 and X has a simple g3
8.

In these exceptional cases, Quad(X, KX,D) is a weak Del Pezzo surface of degree
g − 2.
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