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Abstract

In this paper, an explicit formula of the solution of Hamada-Leray-Wagschal’s
theorem is given. For this, only structure’s theorem of finite dimensional determina-
tion’s function and linear algebra technics developped in [1] are used.

§1. Introduction

In a previous paper, the monodromy of the ramified Cauchy problem was
studied [1]. This paper is a direct application of previous methods to give an
explicit formulation of the solution of Hamada-Leray-Wagschal’s theorem [3, 4].
First, we call back what kind of problem it is. Let a(x, D) a linear differential
operator of order m

a(x, D) =
∑

|α|≤m

aα(x)Dα

with holomorphic coefficients in a neighbourhood of the origin of Cn+1, that
is aα ∈ C{x} (where x = (x0, . . . , xn) is the variable of Cn+1 and x′ =
(x1, . . . , xn)). Its principal symbol will be written g(x; ξ) and we assume the
hyperplane S : x0 = 0 non-characteristic in the origin : this means that
g(0; 1, 0, . . . , 0) �= 0. We will note Ω0 an open neighbourhood of the ori-
gin of Cn+1 such that all functions aα are defined and holomorphic on Ω0.
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418 Renaud Camalès

We suppose that the operator a(x, D) is an operator with multiple charac-
teristics of constant multiplicity : this means that there are some functions
(x, ξ′) �→ λi(x, ξ′), where i = 1, . . . , d, holomorphic in a neighbourhood of
(x = 0, ξ

′
= (1, 0, . . . , 0)) and some integers mi ≥ 1 such that

g(x; ξ) =
d∏

i=1

(ξ0 − λi(x, ξ′))mi for (x, ξ′) closed to (x, ξ
′
)

and, if λi = λi(x, ξ
′
), λi �= λj if i �= j.

Then, we can solve the non-linear first order Cauchy problem


D0ki(x) = λi(x, D′ki(x)),

ki(x) = x1 for x0 = 0

where D′ki(x) = (D1ki(x), . . . , Dnki(x)). There is a unique solution of this
problem in a neighbourhood of the origin. We have Dki(0) = (λi, 1, 0, . . . , 0); so
the functions ki can be assumed defined and holomorphic on Ω0 and Dki(x) �= 0
for x ∈ Ω0. This allows us to define hypersurfaces Ki = {x ∈ Ω0; ki(x) = 0};
if T is the hyperplane x0 = x1 = 0 in S, then we have Ki ∩ S = Ω0 ∩ T : this
means that the Ki are the characteristic hypersurfaces which go out from T .

Now, the Hamada-Leray-Wagschal’s theorem is called back. The following
problem is studied

(1.1)




a(x, D)u(x) =
d∑

i=1

vi(t, x)∣∣t=ki(x)
,

Dh
0 u(x) = wh(t, x)∣∣t=x1

for x0 = 0, 0 ≤ h < m.

R(Ḋω) will be denote the universal covering of Ḋω = {t ∈ C; 0 < |t| < ω}.
Then, we have the following theorem [3, 4]

Theorem 1.1. Let Ω ⊂ Ω0 a simply connected open neighbourhood of
the origin of Cn+1, there is a simply connected open neighbourhood Ω′ ⊂ Ω of
the origin of Cn+1 and ω0 > 0 such that: let 0 < ω ≤ ω0, a ∈ S ∩ Ω′ such
that 0 < |a1| < ω, vi and wh some holomorphic germs at (t, x) = (a1, a) which
have a holomorphic extension on R(Ḋω) × Ω, then the solution of (1.1) could
be written

u(x) =
d∑

i=1

ui(t, x)∣∣t=ki(x)
for x closed to a
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where ui is a holomorphic germ at (a1, a) which have a holomorphic extension
on R(Ḋω) × Ω′.

The aim goal of this paper is to explicit the ui’s structure in function of vi

and wh. More precisely, if the germs vi and wh are finite dimensional determi-
nation’s functions, then ui are finite dimensional determination’s function too
[1]. Using a structure’s theorem of finite dimensional determination’s functions
in a punctured disk and technics of [1], the ui’s form will be precise.

§2. Notations, Recall and Main Theorem

Let X a connected complex manifold and E a complex Banach space. The
complex vector space of holomorphic functions f : X → E will be written
H(X; E) and Oa = Oa(X; E) will be the complex vector space of holomorphic
germs at point a ∈ X with values in E.

If u ∈ Oa has an analytic continuation along a path γ : I → X, where
I = [0, 1], of origin a and endpoint b, we will write uγ ∈ Ob the germ in b got
by analytic continuation of u along γ.

Γa = Γa(X) will be the space of loops γ : I → X of origin a and let u ∈ Oa

a germ which has an analytic continuation along all loops γ ∈ Γa. We note Fu
a

the subvector space of Oa spanned by (uγ)γ∈Γa
of all determinations of u at

point a and Au
γ ∈ GL(Fu

a ) the automorphism

Au
γ : θ ∈ Fu

a �−→ θγ ∈ Fu
a .

This automorphism depends only on the homotopy class [γ] of the path γ ∈ Γa,
then we have a linear representation of Poincaré’s group π1(X, a)

Au : [γ] ∈ π1(X, a) �−→ Au
γ ∈ GL(Fu

a ) where γ ∈ [γ];

this linear representation is called the monodromy of germ u.
The germ u is of finite dimensional determination if Fu

a is a finite dimen-
sional vector space. The space Of

a of germs of finite dimensional determination
is a subvector space of Oa. For u ∈ Of

a , σγ(u) is the Au
γ automorphism’s spec-

trum. When u has a holomorphic extension on X, we have uγ = u for all
γ ∈ Γa, so Fu

a = Cu and Au
γ is the identity map. When u is not the null germ,

dimFu
a = 1 and σγ(u) = {1}; when u = 0, we will say that σγ(u) = ∅. At last,

a subvector space F of Oa is said invariant under analytic continuation if, for
all u ∈ F and γ ∈ Γa, u has an analytic continuation along γ and uγ ∈ F .

Let A = (ai,j)i,j ∈ Mm,n(C) with 1 ≤ i ≤ m and 1 ≤ j ≤ n, then i stands
for the column and j stands for the line.
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We call back the following structure’s theorem. We note δ the loop defined
by s �→ (a1e

2iπs, a) where (a1, a) ∈ Ḋω × Ω. We have to remark that δ is a
generator loop of π1(Ḋω × Ω, (a1, a)) 
 Z.

Theorem 2.1. A germ u ∈ O(a1,a)(R(Ḋω)×Ω) is of finite dimensional
determination if, and only if, it could be written

(2.1) u(t, x) =
∑

m∈M

tpm

qm∑
k=0

amk(t, x)[ln t]k

where M is a finite set, Re(pm) ∈ [0, 1[, pm �= pm′ if m �= m′ and the functions
amk : Ḋω × Ω → C are holomorphic, amqm

�≡ 0.
Moreover, {λm = e2iπpm}m∈M are the eigenvalues of the automorphism

Au
δ ; to each eigenvalue λm, there is an unique Jordan’s block of dimension

qm + 1 and
dim Fu

(a1,a) =
∑

m∈M

(qm + 1).

Now, let u the following germ at point (a1, a)

u(t, x) = tp
q∑

k=0

ak(t, x)[ln t]k

where functions ak : Ḋω × Ω → C are holomorphic, aq �≡ 0. This germ u is
of finite dimensional determination, dim Fu

(a1,a) = q + 1 and e2iπp is the only
eigenvalue of the automorphism Au

δ . Moreover, it is easy to see that in all basis
(ψ0, . . . , ψq) of Fu

(a1,a), such that the matricial representation of Au
δ in this basis

is 


e2iπp 1
. . . . . .

e2iπp 1
e2iπp


 ,

we have ψ0 = Ctpaq where C ∈ C∗.

Now this is the main theorem.

First, some space called h(p, q) are defined.

Definition 2.1. Let p ∈ C such that Re(p) ∈ [0, 1[ and q ∈ N. u ∈
h(p, q) if there is a real ω > 0 and a simply connected open neighbourhood Ω
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of the origin of Cn+1 such that u ∈ H(R(Ḋω)×Ω) could be written under the
form

q∑
k=0

tpak(t, x)[ln t]k

where the ak are holomorphic on Ḋω × Ω and where aq ∈ H(Dω × Ω) when
p = 0 with Dω = {t ∈ C; |t| < ω}.

Theorem 2.2. If the germs vi, wh are in a same h(p, q) space, then the
solution u of problem (1.1) could be written

u(x) =
d∑

i=1

ui(ki(x), x)

with ui ∈ h(p, q) for i = 1, . . . , d.

Remark. Let u ∈ h(p, q) and k a holomorphic function in a neighbour-
hood of the origin, then, for all holomorphic linear differential operator a(x, D),
we have

a(x, D)u(k(x), x) = v(k(x), x)

where v ∈ h(p, q). This results from the fact that the h(p, q) spaces are invariant
under differentiation.

This remark allows us to assume the germs wh ≡ 0, in Theorem 2.2.

We have to say that C. Wagschal [5] gave an analogous result in the case
of an operator with simple characteristics (that is mi = 1 for all i and then
d = m). He defined h̃(p, q) spaces.

Definition 2.2. Let p ∈ C and q ∈ N. u ∈ h̃(p, q) if there is a real
ω > 0 and a simply connected open neighbourhood Ω of the origin of Cn+1

such that u ∈ H(R(Ḋω) × Ω) could be written under the form


tpPq(x, [ln t]) if p is not a integer < 0

tpPq−1(x, [ln t]) + Pq(x, [ln t]) if p is an integer < 0 and q ≥ 1

P0(x) if p is an integer < 0 and if q = 0.

where Pi(x, ξ), ξ ∈ C are polynomial functions in ξ of degree ≤ i, with holo-
morphic coefficients in a neighbourhood of the origin of Cn+1.



�

�

�

�

�

�

�

�

422 Renaud Camalès

Then, he proved the following theorem [5]

Theorem 2.3. If the germs vi and wh are in a same h̃(p, q) space,
then the solution u of problem (1.1) (in the case of an operator with simple
characteristics) could be written

u(x) =
d∑

i=1

ui(ki(x), x)

with ui ∈ h̃(p, q) for i = 1, . . . , d.

Also, this theorem gives a result on the order of the polar singularity
of the solution. This type of result could not be get for an operator with
multiple characteristics of constant multiplicity. Indeed, Y. Hamada [2] gave
the following very simple counterexample



[D2
0 − D1]u(x) = 0,

u(x) =
1
x1

for x0 = 0,

D0u(x) = 0 for x0 = 0.

The solution is

u(x) =
1
x1

+
1
x1

∞∑
n=1

(−1)n n!
(2n)!

(x2
0

x1

)n

;

then the solution u have only essential singularities on the double characteristic
hypersurface

K = {x; x1 = 0}.

§3. Recall on the Monodromy

We come back to the problem (1.1)


a(x, D)u(x) =
d∑

i=1

vi(t, x)∣∣t=ki(x)
,

Dh
0u(x) = wh(t, x)∣∣t=x1

for x0 = 0, 0 ≤ h < m.

The solution of this problem could be written under the form

u(x) =
d∑

i=1

ui(t, x)∣∣t=ki(x)
=

d∑
i=1

[Dm−mi
0 Dmi

t Ui(t, x)]∣∣t=ki(x)
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where Ui is a germ at point (a1, a) which has a holomorphic extension on
R(Ḋω)×Ω′. U = (U1, . . . , Ud) is the solution of an integro-differential problem

(3.1)




(Dm
0 − Am(x, D))U(t, x) =

∑
l∈L

Am
l (x, D)D−l

t U(t, x) + ym(t, x),

(Dh
0 − Ah(x, D))U(t, x) =

∑
l∈L

Ah
l (x, D)D−l

t U(t, x) + yh(t, x)

for x0 = 0, 0 ≤ h < m

with L a finite subset of Z∗. The operators Ah and Ah
l , for h = 0, . . . , m

and l ∈ L, are holomorphic linear differential operators whose coefficients are
holomorphic in Ω. The assumptions about operators’ orders are the following

orderAh ≤ h, orderx0Ah < h,

orderAh
l ≤

{
h + l − 1 if l < 0,

h + l if l > 0.

Now, the functions yh, h = 0, . . . , m are defined.

ym(t, x) = (a1(x)D−m
t v1(t, x), . . . , ad(x)D−m

t vd(t, x))

where ai are holomorphic functions on Ω and, for 0 ≤ h ≤ m − 1,

yh(t, x) =
( m−1∑

k=0

P1,k,h(x′, D−1
t )wk(t, x), . . . ,

m−1∑
k=0

Pd,k,h(x′, D−1
t )wk(t, x)

)

where Pi,j,h(x′, ξ) is polynomial function in ξ ∈ C with holomorphic coefficients
in the variable x′. This kind of integro-differential problem was studied in [3, 4].
Section 4 of [1] shows that if the datas of problem (3.1) are of finite dimensional
determination, then

FU
(a1,a) ⊂ F

where F is a finite dimensional vector space invariant under analytic continu-
ation. F is spanned by the generators’ system

(3.2)
(
S(Qδ±1S(βj)), S(βj)

)
1≤j≤q

,

with the following notations

• (βj)1≤j≤q is a basis of F y
(a1,a), where y = (y0, . . . , ym),

• S(y) is the solution of problem (3.1),
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• (Qδ±1u)h =
∑

l∈L+ Ah
l (x, D)P l

δ±1(u), L+ = {l ∈ L; l > 0} and

P l
δ±1(u) =

(
D−l

t u
)
δ±1 − D−l

t (uδ±1).

We can show that P l
δ±1(u) is holomorphic in a neighbourhood of the origin of

Ct × Cn+1
x , that P l

δ±1(u) = 0 if u is holomorphic in a neighbourhood of the
origin of Ct×Cn+1

x [1]. Moreover, if y is holomorphic in a neighbourhood of the
origin of Ct × Cn+1

x , then so is S(y) [4]. Hence S(Qδ±1S(βj)) is holomorphic
in a neighbourhood of the origin of Ct × Cn+1

x .

These results allow us to show that a matricial representation of the auto-
morphism θ �→ θγ , where γ ∈ Γ(a1,a)(Ḋω × Ω), in the generators’ system (3.2)
could be written (

Id B

0 M

)

where M is the matricial representation of Ay
γ in the basis (βj)1≤j≤q.

At last, for all i = 1, . . . , d, thanks to the results of section 3 of [1], we
know that there is a vector space Fi of finite dimension which is invariant under
analytic continuation such that

Fui

(a1,a) ⊂ Fi.

There is a generators’ system of Fi such that a matricial representation of the
automorphism θ �→ θγ in this generators’ system is

(
Id B

0 M

)
.

Moreover, in section 5 of [1] the following fact was shown. If 1 /∈ σδ(y), then
there is a finite dimensional vector space invariant under analytic continuation
F̃i, such that Fui

(a1,a) ⊂ F̃i, and a generators’ system of F̃i such that a matri-
cial representation of the automorphism θ �→ θγ in this generators’ system is M.

§4. Proof of Theorem 2.2

By linearity, we can assume v1 ∈ h(p, q), v1 �= 0 and v2, . . . , vd = 0.



�

�

�

�

�

�

�

�

Monodromy and Cauchy Problem 425

So, the following problem is studied


a(x, D)u(x) = v1(t, x)∣∣t=k1(x)
,

Dh
0u(x) = 0 for x0 = 0, 0 ≤ h < m.

With help of previous section, the solution could be written under the form

u(x) =
d∑

i=1

ui(t, x)∣∣t=ki(x)
=

d∑
i=1

[Dm−mi
0 Dmi

t Ui(t, x)]∣∣t=ki(x)

where Ui is a germ at point (a1, a) which has a holomorphic extension on
R(Ḋω) × Ω′. U = (U1, . . . , Ud) is solution of an integro-differential problem



(Dm
0 − Am(x, D))U(t, x) =

∑
l∈L

Am
l (x, D)D−l

t U(t, x) + ym(t, x),

(Dh
0 − Ah(x, D))U(t, x)

=
∑
l∈L

Ah
l (x, D)D−l

t U(t, x) for x0 = 0, 0 ≤ h < m

with
ym(t, x) = (a(x)D−m

t v1(t, x), 0, . . . , 0)

where a is a holomorphic function on Ω.

With help of section 4 of [1], we know that FU
(a1,a) ⊂ F where F is a finite

dimensional vector space invariant under analytic continuation. A generators’
system of F is given by(

S(Qδ±1S(βj)), S(Pm
δ±1(Dm

t βj)), S(βj)
)

0≤j≤k

where βj = [(a(x)D−m
t θj , 0 . . . , 0), 0, . . . , 0] and (θj)0≤j≤k is a basis of F v1

(a1,a).
Indeed, the vector space spanned by (Pm

δ±1(Dm
t βj), βj)0≤j≤k is invariant under

analytic continuation and contains F y
(a1,a) (y = (ym, 0, . . . , 0)). Moreover, since

Pm
δ±1(Dm

t βj) ∈ H(Dω × Ω′), we have QδP
m
δ±1(Dm

t βj) ≡ Qδ−1Pm
δ±1(Dm

t βj) ≡ 0;
thus we can conclude with help of Section 3.

Remark. We can show that F is spanned by

(4.1)
(
S(QδS(βj)), S(Pm

δ (Dm
t βj)), S(βj)

)
0≤j≤k

.
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Indeed, thanks to lemma 3.4 of [1], we get

P l
e(u) = Pδ−1δ(u) = P l

δ−1(u) + P l
δ(uδ−1);

but P l
e(u) = 0, so P l

δ−1(u) = −P l
δ(uδ−1). Then we have

Pm
δ−1(Dm

t βj) = −Pm
δ ((Dm

t βj)δ−1).

But the vector space spanned by (Dm
t βj)0≤j≤k is invariant under analytic con-

tinuation (because Dm
t βj = [(aθj , 0 . . . , 0), 0, . . . , 0]), so Pm

δ−1(Dm
t βj) lies in the

vector space spanned by(
S(Qδ±1S(βj)), S(Pm

δ (Dm
t βj)), S(βj)

)
0≤j≤k

.

Now, from definition of operators Qγ and from the fact that S(u)γ = S(uγ) +
S(QγS(u)), we have

Qδ−1S(βj) =−Qδ((S(βj))δ−1)
=−QδS((βj)δ−1) − Qδ(S(Qδ−1(βj)))
=−QδS((βj)δ−1)

because S(Qδ−1S(βj)) ∈ H(Dω × Ω′). Now, since the vector space spanned
by (Pm

δ (Dm
t βj), βj)0≤j≤k is invariant under analytic continuation and since

Pm
δ (Dm

t βj) is holomorphic on Dω × Ω′, QδS((βj)δ−1) lies in the vector space
spanned by (

S(QδS(βj)), S(Pm
δ (Dm

t βj)), S(βj)
)

0≤j≤k
.

Hence, F is spanned by the generators’ system (4.1)

First, we look to the case p �= 0.
There is a basis of F v1

(a1,a) such that the matricial representation of Av1
δ in this

basis is

M =




e2iπp 1
. . . . . .

e2iπp 1
e2iπp


 .

So, by Section 3, we know that the solution of problem (1.1) is of finite dimen-
sional determination and could be written under the form

u(x) =
d∑

i=1

ui(ki(x), x).
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Moreover, always by Section 3, since 1 /∈ σ(v1), there exists a finite dimensional
vector space F̃i invariant under analytic continuation which contains Fui

(a1,a)

and such that M is a matricial representation of the automorphism θ �→ θδ in
a generators’ system of F̃i.
The end of the proof use corollary 3.1 of [1] which is recalled.

Corollary 4.1. Let F a finite dimensional vector space, A ∈ L(F ) a ho-
momorphism whose a matricial representation in a generators’ system is given
by a matrix M. Then, we have

σ(A) ⊂ σ(M)

where σ(A) is the set of eigenvalues of A and σ(M) is the set of eigenvalues of
M .

Hence, with help of Theorem 2.1 and Corollary 4.1, we deduce that ui ∈
h(p, q) for p �= 0.

Now, we look to the case p = 0.
We have

v1(t, x) =
q∑

k=0

ak(t, x)[ln t]k

with aq ∈ H(Dω × Ω). By linearity, two cases will be studied:

1. v1(t, x) = ak(t, x)[ln t]k with 0 ≤ k ≤ q − 1,

2. v1(t, x) = aq(t, x)[ln t]q.

First case – Let (θ0, . . . , θk) a basis of F v1
(a1,a) such that the matricial

representation of the automorphism Av1
δ , in this basis, is

Mk+1 =




1 1
. . . . . .

1 1
1


 .

We recall that θ0 = Kak where K ∈ C∗.

A matricial representation of θ �→ θδ in the generators’ system (4.1) is
given by

(4.2)

(
Id2k+2 B

0 Mk+1

)
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where

B =

(
Idk+1

Idk+1

)

and Idj is the identity matrix of dimension j.
Indeed, we have

• S(QδS(βj))δ = S(QδS(βj)) because S(QδS(βj)) ∈ H(Dω × Ω′),

• S(Pm
δ (Dm

t βj))δ = S(Pm
δ (Dm

t βj)) because S(Pm
δ (Dm

t βj)) ∈ H(Dω × Ω′),

• S(βj)δ = S(βjδ) + S(QδS(βj)) and βjδ = Pm
δ (Dm

t βj) + βj + βj−1 with
β−1 ≡ 0.

The matrix (4.2) could be written in an another basis, under the following
Jordan’s form

(4.3)

(
Id2k+1 0
0 Mk+2

)
;

the matrix of change of basis is

(4.4)

(
C D

0 Idk+1

)
.

Using the matrix of change of basis (4.4), we define ϕ0, . . . , ϕ2k, ψ0, . . . , ψk+1

like this

ϕj =
k∑

i=0

(
ci,jS(QδS(βi)) + ci+k+1,jS(Pm

δ (Dm
t βi))

)
for j = 0, . . . , 2k,

ψ0 =
k∑

i=0

(
ci,2k+1S(QδS(βi)) + ci+k+1,2k+1S(Pm

δ (Dm
t βi))

)
,

ψj =
k∑

i=0

(
di,j−1S(QδS(βi)) + di+k+1,j−1S(Pm

δ (Dm
t βi))

)
+ S(βj−1)

for j = 1, . . . , k + 1.

where the matrix C is denoted by C = (ci,j)0≤i,j≤2k+1 and D is denoted by
D = (di,j)i,j with 0 ≤ i ≤ 2k + 1 and 0 ≤ j ≤ k. We can note that ϕ0, . . . , ϕ2k

and ψ0 are holomorphic on Dω×Ω′. F is spanned by (ϕ0, . . . , ϕ2k, ψ0, . . . , ψk+1)
since (4.4) is a matrix of change of basis and a matricial representation of the
automorphism θ �→ θδ in this generators’ system is given by (4.3).
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The following lemma is fundamental to end the proof of Theorem 2.2.

Lemma 4.1. Let F a finite dimensional vector space invariant under
analytic continuation such that FU

(a1,a) ⊂ F . Assume that F is spanned by a
generators’ system such that a matricial representation θ �→ θδ, in this genera-
tors’ system, could be written (

Id 0
0 M

)

where M is a Jordan’s matrix and 1 is an eigenvalue of M . Then, the solution
of problem (1.1) could be written under the form

d∑
i=1

ui(t, x)∣∣t=ki(x)

with Fui

(a1,a) ⊂ Fi where Fi is a finite dimensional vector space invariant under
analytic continuation such that a matricial representation of the automorphism
θ �→ θδ of Fi in a generators’ system is M.

Proof. We note M = diag(Jλ1 , . . . , Jλn
) where Jλj

is a Jordan’s matrix
with unique eigenvalues λj . We assume λ1 = 1. Also, we note (ϕk, ψl)kl, where
ϕk ∈ H(Ḋω ×Ω′), ψl ∈ H(R(Ḋω)×Ω′), a generators’ system of F such that a
matricial representation of θ �→ θδ in this generators’ system is(

Id 0
0 M

)
.

We have, for all i = 1, . . . , d,

Ui(t, x) =
∑

k

νkϕi
k +

∑
l

µlψ
i
l .

We note ϕ = (
∑

k νkϕi
k)1≤i≤d and (ψ0, . . . , ψl′) the generators’ system associ-

ated to the Jordan’s block J1.
First, if, for l = 1, . . . , l′, µl = 0, then we note ψ̃0 = ϕ and we add to

ψ̃0 some vectors ψ̃1, . . . , ψ̃l′ to form a vector space invariant under analytic
continuation such that a matricial representation of the automorphism θ �→ θδ,
in the generators’ system, (ψ̃0, . . . , ψ̃l′) is J1. We note, for l > l′, ψ̃l = ψl.
Then, we have

Ui =
∑

l

µ′
lψ̃

i
l .
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So, we have FUi

(a1,a) ⊂ Gi where Gi is the vector space invariant under analytic

continuation spanned by (ψ̃l)l such that a matricial representation of the au-
tomorphism θ �→ θδ, in the generators’ system (ψ̃l)l, is M . Hence, by virtue of
ui = Dm−mi

0 Dmi
t Ui, we have Fui

(a1,a) ⊂ Fi where Fi is a vector space invariant
under analytic continuation such that a matricial representation of the auto-
morphism θ �→ θδ is M . We have to note that if ϕ ∈ H(Dω × Ω′) then, by
construction so is ψ̃0.

Next, we note l0 = max{l = 0, . . . , l′; µl �= 0}. So, we note




ψ̃l = ψl if l > l′,

ψ̃l = ψl if l < l0,

ψ̃l0 = ψl0 +
1

µl0

ϕ

and we add to (ψ̃0, . . . , ψ̃l0) some vectors ψ̃l0+1, . . . , ψ̃l′ to form a vector space
invariant under analytic continuation such that a matricial representation of
the automorphism θ �→ θδ in the generators’ system (ψ̃0, . . . , ψ̃l′) is J1. We
have to note, in this case, that if ψ0 ∈ H(Dω × Ω′) and ϕ ∈ H(Dω × Ω′) if
l0 = 0 then, by construction, ψ̃0 ∈ H(Dω × Ω′).
Then, we have

Ui =
∑

l

µlψ̃
i
l .

So, we have FUi

(a1,a) ⊂ Gi where Gi is the vector space invariant under analytic

continuation spanned by (ψ̃l)l such that a matricial representation of the au-
tomorphism θ �→ θδ, in the generators’ system (ψ̃l)l, is M . Hence, by virtue of
ui = Dm−mi

0 Dmi
t Ui, we have Fui

(a1,a) ⊂ Fi where Fi is a vector space invariant
under analytic continuation such that a matricial representation of the auto-
morphism θ �→ θδ in the generators’ system (Dm−mi

0 Dmi
t ψ̃i

l )l is M . This is end
the proof of the lemma.

The matrix (4.3) is a Jordan’s matrix; so, with help of Lemma 4.1, we
could write

u(x) =
d∑

i=1

ui(ki(x), x)

with Fui

(a1,a) ⊂ Fi where Fi is a vector space invariant under analytic continu-
ation and such that a matricial representation in a generators’ system is given
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by Mk+2. Hence, with help of Theorem 2.1 and Corollary 4.1, we have

ui(t, x) =
k+1∑
j=0

aj(t, x)[ln t]j

where aj ∈ H(Ḋω × Ω′) and ak+1 = KiD
m−mi
0 Dmi

t ψ̃i
0 where ψ̃0 is given in

the proof of Lemma 4.1. By construction, we have ψ̃0 ∈ H(Dω × Ω′) because
ϕ0, . . . , ϕ2k and ψ0 are holomorphic on Dω ×Ω′ (ψ̃0 is eventually null). Hence
ui ∈ h(0, k + 1).

Second case – As previously, a generators’ system of the vector space F̃

is given by (
S(QδS(βl)), S(Pm

δ (Dm
t βl)), S(βl)

)
0≤l≤q

where βl = (a(x)D−m
t θl, 0 . . . , 0) with a ∈ H(Ω).

We have to remark that, since θ0 ∈ H(Dω × Ω), we have S(β0) ∈ H(Dω × Ω′)
and then S(QδS(β0)) = S(Pm

δ (Dm
t β0)) = 0.

Then, a generators’ system of F is given by(
S(QδS(βl)), S(Pm

δ (Dm
t βl)), S(β0), S(βl)

)
1≤l≤q

and a matricial representation of the automorphism θ �→ θδ in this generators’
system is given by

(4.5)

(
Id2q B′

0 Mq+1

)

where

B′ =




0 1
. . . . . .

0 1
0 1

. . . . . .
0 1




.

This follows from the same fact as above and S(β0) ∈ H(Dω × Ω′).
Now, (4.5) could be written in an another basis under the form

(4.6)

(
Id2q 0
0 Mq+1

)
.
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The matrix of change of basis is

(4.7)

(
C D

E Idq+1

)

where

E =




e1 . . . e2q

0 . . . 0
...

...
0 . . . 0


 .

Using the matrix of change of basis (4.7), we define ϕ1, . . . , ϕ2q, ψ0, . . . , ψq like
this

ϕj =
q∑

i=1

(
ci,jS(QδS(βi)) + ci+q,jS(Pm

δ (Dm
t βi))

)
+ ejS(β0)

for j = 1, . . . , 2q,

ψj =
q∑

i=1

(
di,j+1S(QδS(βi)) + di+q,j+1S(Pm

δ (Dm
t βi))

)
+ S(βj)

for j = 0, . . . , q,

where the matrix C is denoted by C = (ci,j)1≤i,j≤2q and D is denoted by
D = (di,j)i,j with 1 ≤ i ≤ q + 1 and 1 ≤ j ≤ 2q. We can note that ϕ1, . . . , ϕ2q

and ψ0 are holomorphic on Dω ×Ω′. F is spanned by (ϕ1, . . . , ϕ2q, ψ0, . . . , ψq)
since (4.7) is a matrix of change of basis and a matricial representation of the
automorphism θ �→ θδ in this generators’ system is given by (4.6). So with help
of Lemma 4.1, we could write

u(x) =
d∑

i=1

ui(ki(x), x)

with Fui

(a1,a) ⊂ Fi where Fi is a vector space invariant under analytic continu-
ation and such that a matricial representation in a generators’ system is given
by Mq+1. So, with help of Theorem 2.1 and Corollary 4.1, we have

ui(t, x) =
q∑

j=0

aj(t, x)[ln t]j

where aj ∈ H(Ḋω × Ω′) and aq = KiD
m−mi
0 Dmi

t ψ̃i
0 where ψ̃0 is given in the

proof of Lemma 4.1. By construction, we have ψ̃0 ∈ H(Dω × Ω′) because
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ϕ1, . . . , ϕ2q and ψ0 are holomorphic on Dω × Ω′. Hence ui ∈ h(0, q). This is
end the proof of Theorem 2.2.

References

[1] Camalès, R., Sur la monodromie du problème de Cauchy ramifié, J. Math. Pures Appl.,
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