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Eigenvalue Asymptotics for the Maass
Hamiltonian with Decreasing Electric Potentials
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Abstract

We study the eigenvalue distribution in the spectral gaps of the Maass Hamil-
tonian with electric potential V . For a real constant B, the (unperturbed) Maass
Hamiltonian is given by

H(0) = y2

„
1√−1

∂

∂x
− B

y

«2

− y2 ∂2

∂y2
,

where H = {(x, y)|x ∈ R, y > 0} is the hyperbolic plane. The spectrum of the Maass
Hamiltonian consists of the two disjoint parts: the continuous part and the discrete
Landau levels (a finite number of eigenvalues of infinite multiplicity) if |B| > 1/2.
Following the argument as in Raikov, G. D. and Warzel, S. [“Quasi-classical versus
non-classical spectral asymptotics for magnetic Schrödinger operators with decreas-
ing potentials”, Rev. Math. Phys., vol. 14, no. 10, (2002), 1051–1072], we obtain the
asymptotic distribution of the number of discrete spectrum of H(V ) = H(0)+V near
each discrete Landau level when V is real-valued, asymptotically spherically symmet-
ric and satisfies some decay estimates near infinity, or V is compactly supported.

§1. Introduction and Results

We consider the Maass Hamiltonian

H(0) = y2

(
1√−1

∂

∂x
− B

y

)2

− y2 ∂2

∂y2

acting in L2(H), where B is a real constant and H = {z = (x, y)|x ∈ R, y > 0}
is the hyperbolic plane. The Riemannian measure on H is given by dxdy/y2
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436 Shin-ichi Shirai

and the hyperbolic distance d(z, z0) on H is given by cosh (d(z, z0)) = (|x −
x0|2 + y2 + y2

0)/(2yy0) for any z = (x, y), z0 = (x0, y0) ∈ H.
The operator H(0) has a physical interpretation as the Hamiltonian which

governs a non-relativistic, charged particle moving on H under the influence of
the magnetic field of constant strength B perpendicular to H.

The spectral properties of the Maass Hamiltonian has been investigated
by many authors (See, [Roe], [Els], [Fay], [Gro], [C-H], [Com], [A-P], and ref-
erences therein). We recall some basic results. The Maass Hamiltonian H(0)
is essentially self-adjoint on C∞

0 (H), the set of all complex-valued, smooth
functions with compact support on H ([Roe], Satz 3.2). (In what follows we
use the same notation for an operator and its operator closure if there is no
fear of confusion.) The spectrum of H(0) consists of the absolutely continu-
ous part [B2 + 1/4, ∞) and the discrete Landau levels {En}N(|B|−1/2)

n=0 , where
En = (2n + 1)|B| − n(n + 1) and N(x) denotes the largest integer less than
x. In case |B| ≤ 1/2, the set of discrete Landau levels is empty. If |B| > 1/2,
each of Ens is an eigenvalue of infinite multiplicity. In what follows we may
restrict ourselves to the case B > 1/2, provided we are concerned with the
discrete Landau levels, since the Maass Hamiltonian H(0) with B is unitarily
equivalent to the one with −B via the transform (x, y) �→ (−x, y).

For a measurable function V on H, we say V decays at infinity if for any
ε > 0 there exists a compact subset K of H such that |V (x, y)| < ε outside K.
Any bounded, measurable function V decaying at infinity is relatively compact
with respect to H(0) (See [I-S], Lemma 3.10), so the operator

H(V ) = H(0) + V

is a well-defined self-adjoint operator when V is real-valued, and the essential
spectrum of H(V ) coincides with that of H(0) (See [R-S], Vol. IV). (Note that,
examining the proof, one can easily find that Lemma 3.10 in [I-S] is still valid
if we drop the continuity condition of V .) Then the perturbed operator H(V )
may have the discrete spectrum (i.e., discrete eigenvalues of finite multiplicity)
in the spectral gaps.

The purpose of this paper is to obtain the asymptotic distribution of the
number of the discrete spectrum near Ens. To formulate our results, we make
the following condition (V)ε on the purterbation V .

(V)ε The perturbation V is a real-valued, bounded, measurable and non-negative
function on H. Moreover, there exist z0 ∈ H and positive constants ε and
CV such that the asymptotic relation

lim
d(z,z0)→∞

exp (εd(z, z0))V (z) = CV(1.1)
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holds, where d is the hyperbolic distance introduced at the beginning of
this section.

Let n be any non-negative integer n satisfying 0 ≤ n ≤ N(B − 1/2) and
let ε > 0. We introduce the notations

βn = 2B − 2n − 1 (> 0)

and

Θn(ε) =
Γ(βn + ε)Γ(βn + n + 1)
Γ(βn)Γ(n + 1)Γ(βn + 1)

F2(βn + ε;−n,−n;βn + 1, βn + 1; 1, 1).

Here, Γ(z) =
∫∞
0

e−ttz−1dt is the gamma function and

F2(a; b, b′; c, c′;x, y) =
∞∑

l,m=0

(a)l+m(b)l(b′)m

(c)l(c′)m

xlym

l!m!

is the Appell hypergeometric series (See [G-R], Section 9.18 and see also [Sla],
Section 8) and (x)0 = 1 and (x)m = x(x + 1) · · · (x + m − 1) if m ≥ 1. We
note that, because of the parameter −n, the Appell series in the expressions
of Θn(ε) terminates and it turns out that Θn(ε) is positive (See Lemma 2.2
below).

For any real numbers a, b and for any self-adjoint operator T acting in a
Hilbert space, we set

N(a < T < b) = dim ran(PT ((a, b))),

where PT (I) stands for the the spectral projection for T on an open interval I.
The main results of this paper are the following two theorems.

Theorem 1.1. Assume that |B| > 1/2. Let {En}N(|B|−1/2)
n=0 be as above.

Let E′ be any point between En and En+1, where we set En+1 = B2 + 1/4 for
n = N(|B| − 1/2). Then the condition (V)ε implies that

N(En + E < H(V ) < E′)(1.2)

=
1
4π

(Θn(ε))1/εVolH{z ∈ H|V (z) > E}(1 + o(1))

as E ↘ 0, where VolH is the Riemannian volume on H.

For any z0 ∈ H, we denote by FT,t,z0 the characteristic function on the set
{z ∈ H|t ≤ d(z0, z) ≤ T}.
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Theorem 1.2. Assume that |B| > 1/2 and V is bounded, measurable,
non-negative on H and decays at infinity. Let E′ be any point between En and
En+1, where we set En+1 = B2 + 1/4 for n = N(|B| − 1/2). Let z0 ∈ H and
0 ≤ t < T . Then the following assertions hold:

(i) If there exists a positive constant c such that 0 ≤ V (z) ≤ cFT,t,z0(z)
holds for all z ∈ H, then we have

| log tanh2 (T/2)| lim sup
E↘0

N(En + E < H(V ) < E′)/| log E| ≤ 1.

(ii) If there exists a positive constant c such that cFT,t,z0(z) ≤ V (z) holds
for all z ∈ H. then we have

| log tanh2 (T/2)| lim inf
E↘0

N(En + E < H(V ) < E′)/| log E| ≥ 1.

(iii) In particular, if there exist positive constants c, c′ such that cFT,t,z0(z)
≤ V (z) ≤ c′FT,t,z0(z) holds for all z ∈ H, then we have

| log tanh2 (T/2)| lim
E↘0

N(En + E < H(V ) < E′)/| log E| = 1.

We canonically identify any point z = (x, y) ∈ H with z = x +
√−1y in

the complex upper-half plane.
Let SL(2,R) be the special linear group of 2× 2 real matrices, which acts

on H transitively and isometrically as the linear fractional transform z �→ γz =

(az + b)/(cz + d) if γ =
(a b

c d

)
∈ SL(2,R). Fix z0 = x0 + y0

√−1 ∈ H and set

λ =
√

y0, a = x0/y0 and γ =
(λ λa

0 λ−1

)
. One can observe that γ ∈ SL(2,R) and

γ
√−1 = λ2a + λ2

√−1 = x0 + y0

√−1 = z0. If we define a unitary operator
S acting on L2(H) by (Sf)(z) = f(γz) = f(λ2(x + a), λ2y), we can find that
(S−1f)(z) = f(x/λ2−a, y/λ2), S−1 ∂

∂xS = λ2 ∂
∂x , S−1 ∂

∂y S = λ2 ∂
∂y hold and the

multiplication operator g transforms as S−1gS = (S−1g) = g(γ−1·) on C∞
0 (H),

from which we can deduce that the operator H(0) commutes with S. Then we
have the unitary equivalence S−1H(V )S = H(0) + V (γ−1·) = H(V (γ−1·)).
Hence it is enough to prove Theorem 1.1 and Theorem 1.2 in the case of z0 =√−1.

Let D be the Poincaré disk {w = reiθ|0 ≤ r < 1, 0 ≤ θ < 2π} equipped
with the standard measure 4r(1−r2)−2drdθ. The Cayley transform A is defined
by Az = (z − √−1)/(z +

√−1) for each z ∈ H, and A defines an isometric
diffeomorphism between H and D, so it induces the unitary transform A∗
from L2(H) to L2(D) by f(z) �→ f(A−1w). For any w = re

√−1θ ∈ D, the
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distance dD(w, 0) on D is given by log [(1 + r)/(1 − r)], which coincides with
d(A−1w,

√−1) on H. In the sequel, we shall identify H and D via A.
We note that, in the case of z0 =

√−1, the asymptotic relation (1.1) is
equivalent to the condition that

lim
r↗1

V (A−1w)
(1 − r2)ε

= 4−εCV

holds uniformly in θ for w = re
√−1θ ∈ D, which follows from the relation

1 − r2 = cosh−2 (dD(w, 0)/2).

Remark 1.3. Let V satisfy (V)ε for some ε > 0 and let FT,t,z0 be the
function as in Theorem 1.2. Then a simple calculation shows that

lim
E↘0

E1/εVolH {z ∈ H| V (z) > E}= πC
1/ε
V ,

lim
E↘0

VolH {z ∈ H| FT,t,z0(z) > E}= 4π(cosh2 T − cosh2 t).

Remark 1.4. Our results are concerned with the asymptotic distribution
of the discrete spectrum accumulating to each discrete Landau level En from
the right. Analogous results hold if we consider the eigenvalues of H(−V )
accumulating to En from the left.

Unfortunately, the author has not obtained the result at the lower edge of
the continuous spectrum of H(0).

In the Euclidean case, Raikov ([Rai], [Rai2]) has obtained the asymptotic
distribution of the number of the discrete spectrum near the boundary of the
essential spectrum of the Schrödinger operators with constant magnetic fields
and power-like decreasing electric potentials. In the two dimensional case, the
leading asymptotics are independent of the level-number n, and behave quasi-
classically, i.e., behave like (B/2π)VolR2 {x ∈ R2|V (x) > E} as E ↘ 0 (See,
e.g., [R-W], Remark 2.5). Here, B is the strength of the constant magnetic field
and B/(2π) is the density of states for the n-th Landau level of the Landau
Hamiltonian.

Recently, several authors ([R-W], [M-R]) investigate the asymptotics for
the case where the decay of the electric potentials V is Gaussian or faster.
They show that the asymptotics are non-classical if the decay of V is faster
than Gaussian (in an appropriate sense), or support of V is compact. The
leading asymptotics are independent of n, and in the case of compact support,
they do not depend on V .

On the other hand, our result shows that the asymptotic behaviour of
N(En + E < H(V ) < E′) has the form (1.2) as E ↘ 0. The density of states
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of the Maass Hamiltonian can be found in [Com], Eq.(5.14)–(5.16), Eq.(B.19).
In particular, the density of states for the n-th discrete Landau level is given
by βn/(4π), which depends on n. The quantity βn/(4π) does not coincide with
the leading coefficient Θn(ε)1/ε/(4π) in (1.2) unless ε = 1. For example, we
find that

Θ0(ε) = β0
Γ(β0 + ε)
Γ(β0 + 1)

,

Θ1(ε) = β1
Γ(β1 + ε)
Γ(β1 + 1)

(
1 +

ε(ε − 1)
β1 + 1

)
,

Θ2(ε) = β2
Γ(β2 + ε)
Γ(β2 + 1)

(
1 +

ε(ε − 1)
β2 + 1

+
ε(ε − 1)
β2 + 2

+
ε2(ε − 1)2

2(β2 + 1)(β2 + 2)

)
,

etc. Obviously, Θn(ε)1/ε depends on both n and ε. So, this is different from
the flat case.

Remark 1.5. By using some hypergeometric identities (See, e.g.,
[A-A-R], [Sla]), we can also express Θn(ε) as

Γ(βn + ε)
Γ(βn) 3F2

(
−n, 1 − ε, ε

βn + 1, 1
; 1

)
,

where 3F2 is the (generalized) Gauss hypergeometric function (See Section 2
below). However, this expression is not used in this paper.

The organization of this paper is as follows: In Section 2, we recall some
elementary results for the gamma function and the hypergeometric functions.
In Section 3, we derive an integral representation of Θn(ε), from which the pos-
itivity of Θn(ε) obeys. In Section 4, following the line of argument as in [R-W],
we reduce the problem for H(V ) to that for the associated compact operator
PnV Pn. Here, Pn stands for the spectral projection of H(0) corresponding to
En. In Section 5 and Section 6, we obtain the asymptotic distribution of the
eigenvalues of PnV Pn when V are the functions as in Theorems 1.1 and 1.2,
respectively. In Section 7 and Section 8, we give proofs for Theorem 1.1 and
Theorem 1.2, respectively.

§2. Preliminaries

For later use, we prepare some elementary formulae for special functions.
However, all results in this section are well-known in special function theory
(See, e.g., [A-A-R], [Sla], [Leb] and [G-R]). We also show the positivity of the
coefficient Θn(ε).
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The hypergeometric function pFq is given by

pFq

(
x1 x2 . . . xp

y1 y2 . . . yq
; z

)
=

∞∑
m=0

(x1)m(x2)m . . . (xp)m

(y1)m(y2)m . . . (yq)m

zm

m!
.(2.1)

Lemma 2.1. Let Γ(z) be the gamma function and let (a)m as in Section
1. Then we have the following assertions:

(i) For any real numbers α, β, we have

lim
k→∞

kβ−α Γ(k + α)
Γ(k + β)

= 1.

(ii) If x is not a non-positive integer, we have (x)m = Γ(x + m)/Γ(x) and
(−x)m = (−1)mΓ(x + 1)/Γ(x − m + 1). For any non-negative integer n, we
have

(−n)m =

{
(−1)mΓ(n + 1)/Γ(n − m + 1) if 0 ≤ m ≤ n,

0 if m ≥ n + 1.

(iii) Let 	γ > 	β > 0 and |arg(1 − z)| < π. Then we have

2F1

(
α, β

γ
; z

)
= (1 − z)−α

2F1

(
α, γ − β

γ
;

z

z − 1

)
.

Here, 	 and arg stand for the real part and the argument of a complex number,
respectively.

Proof. The assertion (i) follows from the Stirling asymptotic formula (e.g.,
[Leb], Section 1.2, Eq. 1.2.2 and Section 1.4, Eq. 1.4.23). The assertion (ii)
is obvious by definition and the assertion (iii) is well-known (See, e.g., [Leb],
Section 9.5, Eq. 9.5.1).

In the rest of this section we show the positivity of the asymptotic coeffi-
cient Θn(ε) as we stated in Section 1.

The Laguerre polynomial is given by

Lα
n(x) =

1
n!

exx−α

(
d

dx

)n

(e−xxn+α)(2.2)

=
n∑

m=0

(−1)m

(
n + α

n − m

)
xm

m!

=

(
n + α

n

)
1F1

(
−n

α + 1
;x

)

(See [G-R], Section 8.97).
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Lemma 2.2. Let n be a non-negative integer and let ε > 0. Then we
have

Θn(ε) =
Γ(βn + ε)Γ(βn + n + 1)
Γ(βn)Γ(n + 1)Γ(βn + 1)

F2(βn + ε;−n,−n;βn + 1, βn + 1; 1, 1)(2.3)

=
βnΓ(n + 1)

Γ(βn + n + 1)

∫ ∞

0

tβn+ε−1e−tLβn
n (t)2dt.

In particular, the integral ensures the positivity of Θn(ε).

Proof. We show the equality (2.3) in the same way as in the proof of
Lemma 1 in [S-H]. We note that the Appell series in (2.3) converges because
of the parameter −n. It follows from (2.2) that∫ ∞

0

tβn+ε−1e−tLβn
n (t)2dt

=

(
n + βn

n

)2 ∫ ∞

0

tβn+ε−1e−t
1F1

(
−n

βn + 1
; t

)2

dt

=

(
n + βn

n

)2 n∑
l,m=0

(−n)l(−n)m

(βn + 1)l(βn + 1)m

1
l!m!

∫ ∞

0

tβn+ε+l+m−1e−tdt

=

(
n + βn

n

)2 n∑
l,m=0

(−n)l(−n)m

(βn + 1)l(βn + 1)m

1
l!m!

Γ(βn + ε + l + m)

=

(
n + βn

n

)2

Γ(βn + ε)
n∑

l,m=0

(−n)l(−n)m(βn + ε)l+m

(βn + 1)l(βn + 1)m

1
l!m!

=

(
n + βn

n

)2

Γ(βn + ε)F2(βn + ε;−n,−n;βn + 1, βn + 1; 1, 1),

where we used Lemma 2.1 in the fourth equality. Then the result follows since
Γ(βn + 1) = βnΓ(βn) and

(
n + βn

n

)2

Γ(βn + ε) =
Γ(βn + ε)Γ(βn + n + 1)2

Γ(n + 1)2Γ(βn + 1)2
.
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§3. Reduction to a Single Landau-level Eigenspace

In this section, following the argument as in Section 3 in [R-W], we re-
duce the eigenvalue asymptotics for H(V ) near En to that for the compact
operator PnV Pn near 0. Here, Pn stands for the spectral projection of H(0)
corresponding to En.

For any real numbers a, b and for any self-adjoint operator T , we denote

N(a < T ) = dim ran(PT ((a,∞))),

N(T < b) = dim ran(PT ((−∞, b))).

Here, PT stands for the spectral projection for T .

Lemma 3.1. Let T1 and T2 be compact operators acting on a Hilbert
space. Then for any s > 0 and for any δ > 0 with 0 < δ < 1, we have

N(±T1 > s(1 + δ)) − N(∓T2 > sδ)(3.1)

≤ N(±(T1 + T2) > s)

≤ N(±T1 > s(1 − δ)) + N(±T2 > sδ),

respectively.

Proof. This is a basic result in spectral theory for compact operators.
See, e.g., [B-S], Chap. 11.

Lemma 3.2. Let T be a self-adjoint operator acting in a Hilbert space
and assume that the resolvent set of T contains an interval [α, β]. Assume
that V is non-negative, bounded and relatively compact with respect to T . Then
we have

N(α < T + V < β) = N(V 1/2(α − T )−1V 1/2 > 1)

−N(V 1/2(β − T )−1V 1/2 > 1) − dim ker(T + V − β).

Proof. This is an easy consequence of the (generalized) Birman-Schwinger
principle (e.g., [A-D-H], Theorem 1.3, [Bir], Proposition 1.5). However, we give
a proof for the sake of completeness.

Let E ∈ [α, β]. The Birman-Schwinger kernel is given by X(E) = V 1/2(E−
T )−1V 1/2. Then the B-S principle says that an eigenvalue E of T +λV (λ > 0)
of multiplicity m corresponds to an eigenvalue 1/λ of X(E) of multiplicity m.
Thus we have∑

0<λ<1

dim ker(T + λV − E) =
∑

0<λ<1

dim ker(X(E) − 1/λ)(3.2)

= N(X(E) > 1).



� �

�

�

�

�

444 Shin-ichi Shirai

On the other hand, we can deduce that each eigenvalue of X(E) is mono-
tonically decreasing in E since the non-negativity of V implies that

∂

∂E
V 1/2(E − T )−1V 1/2 = −V 1/2(E − T )−2V 1/2 ≤ 0.

Then it follows from the B-S principle and the analytic perturbation theory
(e.g., [R-S], vol. IV) that each eigenvalue of T +λV is monotonically increasing
in λ (See [A-D-H], Theorem 1.5, and see also the argument after Proposition
1.5 in [Bir]). Then we have

N(α < T + V < β)(3.3)

=
∑

0<λ<1

dim ker(T + λV − α)

−
∑

0<λ<1

dim ker(T + λV − β) − dim ker(T + V − β).

Then the result follows from (3.3) and (3.2) with E = α, β.

Lemma 3.3. The operator PnV Pn is compact, and for any δ > 0 small
enough, we have, as E ↘ 0,

N((1 − δ)PnV Pn > E) + O(1) ≤ N(En + E < H(V ) < E′)

≤ N((1 + δ)PnV Pn > E) + O(1).

Proof. The proof is similar to that of Proposition 4.2 in [R-W]. However,
we give a proof for the sake of completeness.

The compactness of PnV Pn follows easily from the fact that V (H(0)−z)−1

is compact ([I-S], Lemma 3.10). By Lemma 3.2, we have

N(En + E < H(V ) < E′)(3.4)

= N(V 1/2(En + E − H(0))−1V 1/2 > 1)

−N(V 1/2(E′ − H(0))−1V 1/2 > 1)

−dim ker(H(V ) − E′)

= N(V 1/2(En + E − H(0))−1V 1/2 > 1) + O(1)

as E ↘ 0. Let Qn = I − Pn. We apply Lemma 3.1 with T1 = V 1/2(En + E −
H(0))−1PnV 1/2, T2 = V 1/2(En + E − H(0))−1QnV 1/2 and s = 1. Then (3.1)
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with upper sign yields

N(V 1/2(En + E − H(0))−1PnV 1/2 > 1 + δ)(3.5)

−N(V 1/2(En + E − H(0))−1QnV 1/2 < −δ)

≤ N(V 1/2(En + E − H(0))−1V 1/2 > 1)

≤ N(V 1/2(En + E − H(0))−1PnV 1/2 > 1 − δ)

+N(V 1/2(En + E − H(0))−1QnV 1/2 > δ).

Since H(0) ≥ 1/2 and the distance between the point En and the rest of the
spectrum of H(0) is positive, we have, for small E > 0,

inf{|(En + E) − x|/x | x ∈ σ(H(0)) \ {En}} ≥ Cn > 0

for some constant Cn, where σ(·) stands for the spectrum. Hence, we have

|En + E − H(0)|−1Qn

=
∑
j �=n

|En + E − Ej |−1Pj +
∫ ∞

B2+1/4

|En + E − λ|−1dPH(0)(λ)

≤ Cn


∑

j �=n

E−1
j Pj +

∫ ∞

B2+1/4

λ−1dPH(0)(λ)




≤ CnH(0)−1.

Then, for each δ > 0 small enough, we have, as E ↘ 0,

N(±V 1/2(En + E − H(0))−1QnV 1/2 > δ)(3.6)

≤ N(V 1/2|En + E − H(0)|−1QnV 1/2 > δ)

≤ N(V 1/2CnH(0)−1V 1/2 > δ)

= O(1).

The result follows from (3.4)–(3.6).

We now introduce the angular-momentum eigenfunctions (i.e., eigenfunc-
tions of the form eikθGk(r)) for H(V ) and show that the eigenvalues of PnV Pn

can be described in terms of these eigenfunctions.
Let A be the Cayley transform. We define a unitary operator UB from

L2(H) to L2(D) by

(UBf)(w) =
(

1 − w̄

1 − w

)B

f(A−1w)
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for any f ∈ L2(H), where 1B = 1. Then we have

UBH(0)U−1
B

= −1
4
(1 − r2)2

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
+ i(1 − r2)

∂

∂θ
− (1 − r2)B2 + B2

(See [Els], Satz 2.1 and see also [Fay], Theorem 1.1). Moreover, a complete set
of orthogonal angular-momentum eigenfunctions {ϕnk}∞k≥−n corresponding to
the eigenvalue En is known (See Satz 3.2 in [Els], Theorem 1.4 in [Fay], Eq.13
in [Gro2] and see also Eq.4.47 in [K-L]). Especially, the eigenfunction is given
by

ϕnk =
√

Cnkeikθrk(1 − r2)B−n
2F1

(
−n, k + βn + n + 1

k + 1
; r2

)
(3.7)

in the case of k ≥ 0, where

Cnk =
βnΓ(k + βn + n + 1)Γ(k + n + 1)
4πΓ(n + 1)Γ(k + 1)2Γ(βn + n + 1)

.(3.8)

Note that, because of the parameter −n, the hypergeometric function
above is a polynomial with respect to r2, in fact, we can find that

P (k,βn)
n (1 − r2) =

(
n + k

n

)
2F1

(
−n, k + βn + n + 1

k + 1
; r2

)
,

where the Jacobi polynomial P
(α,β)
n is given by

P (α,β)
n (x) =

(−1)n

2nn!
(1 − x)−α(1 + x)−β

(
d

dx

)n (
(1 − x)α+n(1 + x)β+n

)
and we set (

n

m

)
=

Γ(n + 1)
Γ(n − m + 1)Γ(m + 1)

(See [Leb], Section 4, p. 96, and for the relation between the Jacobi polynomial
and the hypergeometric function, see also [G-R], Section 8.96, p. 1059).

In what follows we identify the operator UBH(0)U−1
B , the associated spec-

tral projections, and the function A∗V = V (A−1·) with H(0), Pn, and V ,
respectively.
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Lemma 3.4. Let V be any bounded, measurable and spherically sym-
metric function on D. The set of eigenvalues of the compact operator PnV Pn

(acting on the range of Pn) is given by {(ϕnk, V ϕnk)}∞k=−n, where ϕnk is the
eigenfunction of H(0) as in (3.7) and (·, ·) denotes the inner product on L2(D).

Proof. Because of the orthogonality with respect to the angular momen-
tum and the symmetry of V , we have (ϕnk, V ϕnk′) = 0 if k �= k′. Then
it follows that PnV Pnϕnk = (ϕnk, V ϕnk)ϕnk. The result follows from the
completeness of {ϕnk}∞k=−n in the range of Pn.

§4. Eigenvalue Asymptotics for PnVεPn

In what follows we set Vε(w) = (1 − |w|2)ε for any ε > 0, and we set

γnk(V ) = (ϕnk, V ϕnk)(4.1)

for any function V on D and for any k ≥ −n. In the sequel, we investigate the
asymptotic behaviour of the eigenvalues γnk(Vε) as k → ∞, so we may assume
that k > 0 and ϕnk is of the form (3.7).

Lemma 4.1. We have

2F1

(
−n k + βn + n + 1

k + 1
; r2

)2

=
n∑

l,m=0

(−1)l+m

(
n

l

)(
n

m

)
×

× Γ(βn + n + 1)2Γ(k + 1)2

Γ(βn + n − l + 1)Γ(βn + n − m + 1)Γ(k + 1 + l)Γ(k + 1 + m)
×

× (1 − r2)2n−l−mr2(l+m).

Proof. By Lemma 2.1 (ii) with β = k + βn + n + 1, γ = k + 1, γ − β =
−(βn + n), and z = r2, we have

2F1

(
−n β

γ
; r2

)
= (1 − r2)n

2F1

(
−n −(βn + n)

k + 1
;

r2

r2 − 1

)
.

Then the result follows from the series expression (2.1) and Lemma 2.1 (i).
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Lemma 4.2. Let V = V (r) be bounded, continuous and spherically
symmetric. Then we have

γnk(V ) = 4πCnk

n∑
m,l=0

(−1)m+l

(
n

m

)(
n

l

)
×

× Γ(βn + n + 1)2Γ(k + 1)2

Γ(βn + n − m + 1)Γ(βn + n − l + 1)Γ(k + 1 + m)Γ(k + 1 + l)
×

×
∫ 1

0

tk+m+l(1 − t)βn+2n−m−l−1V (
√

t)dt.

In particular, with V = Vε, we have

γnk(Vε) = 4πCnk

n∑
m,l=0

(−1)m+l

(
n

m

)(
n

l

)
(4.2)

× Γ(βn + n + 1)2Γ(k + 1)2

Γ(βn + n − m + 1)Γ(βn + n − l + 1)Γ(k + 1 + m)Γ(k + 1 + l)

×Γ(k + m + l + 1)Γ(βn + 2n − m − l + ε)
Γ(βn + k + 2n + ε + 1)

.

Proof. By (3.7) and Lemma 4.1, we have

γnk(V )

= 4
∫ 2π

0

dθ

∫ 1

0

rdr

(1 − r2)2
V (r)Cnkr2k(1 − r2)2(B−n) ×

×2F1

(
−n k + βn + n + 1

k + 1
; r2

)2

= 8πCnk

n∑
m,l=0

(−1)m+l

(
n

m

)(
n

l

)
Γ(βn + n + 1)2

Γ(βn + n − m + 1)Γ(βn + n − l + 1)
×

× Γ(k + 1)2

Γ(k + 1 + m)Γ(k + 1 + l)

∫ 1

0

r2(k+m+l)+1(1 − r2)βn+2n−m−l−1V (r)dr,

where we used βn = 2B − 2n − 1 in the last equality. Then we have the first
assertion by changing the variable t = r2 in the last integral.
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The second assertion follows from

∫ 1

0

tk+m+l(1 − t)βn+2n−m−l−1Vε(
√

t)dt

=
∫ 1

0

tk+m+l(1 − t)βn+2n−m−l−1+εdt

= B(k + m + l + 1, βn + 2n − m − l + ε)

=
Γ(k + m + l + 1)Γ(βn + 2n − m − l + ε)

Γ(k + βn + 2n + ε + 1)
,

where B(p, q) =
∫ 1

0
tp−1(1 − t)q−1dt is the beta function.

Lemma 4.3. For any ε > 0, we have

lim
k→∞

kεγnk(Vε)

=
Γ(βn + ε)

Γ(βn)
Γ(βn + n + 1)

Γ(n + 1)Γ(βn + 1)
F2(βn + ε;−n,−n;βn + 1, βn + 1; 1, 1).

Proof. By (4.2) and (3.8), we have

γnk(Vε) =
n∑

m,l=0

(−1)m+l

(
n

m

)(
n

l

)
βnΓ(βn + n + 1)

Γ(n + 1)
×(4.3)

× Γ(βn + 2n − m − l + ε)
Γ(βn + n − m + 1)Γ(βn + n − l + 1)

×

× Γ(k + βn + n + 1)Γ(k + n + 1)Γ(k + m + l + 1)
Γ(k + m + 1)Γ(k + l + 1)Γ(k + βn + 2n + ε + 1)

.

Using Lemma 2.1 (iii), we have

lim
k→∞

kε Γ(k + βn + n + 1)Γ(k + n + 1)Γ(k + m + l + 1)
Γ(k + m + 1)Γ(k + l + 1)Γ(k + βn + 2n + ε + 1)

= 1,(4.4)
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since (βn+n+1)+(n+1)+(m+l+1)−(m+1)−(l+1)−(βn+2n+ε+1) = −ε.
Then it follows from (4.3) and (4.4) that

lim
k→∞

kεγnk(Vε)(4.5)

=
βnΓ(βn + n + 1)

Γ(n + 1)

n∑
l,m=0

(−1)l+m

×
(

n

l

)(
n

m

)
Γ(βn + 2n − l − m + ε)

Γ(βn + n − l + 1)Γ(βn + n − m + 1)

=
βnΓ(βn + n + 1)

Γ(n + 1)

n∑
i,j=0

(−1)i+j

(
n

i

)(
n

j

)
Γ(βn + i + j + ε)

Γ(βn + i + 1)Γ(βn + j + 1)

=
βnΓ(βn + n + 1)

Γ(n + 1)
Γ(βn + ε)
Γ(βn + 1)2

n∑
i,j=0

(−1)iΓ(n + 1)
Γ(n − i + 1)

(−1)jΓ(n + 1)
Γ(n − j + 1)

×Γ(βn + i + j + ε)
Γ(βn + ε)

Γ(βn + 1)
Γ(βn + i + 1)

Γ(βn + 1)
Γ(βn + j + 1)

1
i!j!

=
βnΓ(βn + n + 1)

Γ(n + 1)
Γ(βn + ε)
Γ(βn + 1)2

n∑
i,j=0

(−n)i(−n)j(βn + ε)i+j

(βn + 1)i(βn + 1)j

1
i!j!

=
βnΓ(βn + n + 1)

Γ(n + 1)
Γ(βn + ε)
Γ(βn + 1)2

F2(βn + ε;−n,−n;βn + 1, βn + 1; 1, 1),

where we set i = n − l, j = n − m in the second equality and used Lemma 2.1
in the fourth equality. This proves the lemma.

§5. Eigenvalue Asymptotics for the Potential Supported
in an Annulus

In this section we investigate the asymptotic behaviour of the eigenvalues
γnk(WrR) as k → ∞. Here, WrR stands for the characteristic function on the
set {w = |w|eiθ ∈ D|r ≤ |w| ≤ R}.

Lemma 5.1. Let β be a real number and let r,R satisfy the relation
0 ≤ r < R < 1. If we define

BrR(K,β) =
∫ R

r

tK−1(1 − t)β−1dt,

the estimate

Cr,R,β
RK

K
≤ BrR(K,β) ≤ C ′

r,R,β

RK

K
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holds for any K > 0 large enough. Here, the constants Cr,R,β , C ′
r,R,β are

independent of large K.

Proof. If β > 1, we have

(1 − R)β−1 RK − rK

K
= (1 − R)β−1

∫ R

r

tK−1dt

≤ BrR(K,β)

≤ (1 − r)β−1

∫ R

r

tK−1dt = (1 − r)β−1 RK − rK

K
,

since (1 − R)β−1 ≤ (1 − t)β−1 ≤ (1 − r)β−1 holds if r ≤ t ≤ R. Similarly, if
β ≤ 1, we have

(1 − r)β−1 RK − rK

K
≤ BrR(K,β) ≤ (1 − R)β−1 RK − rK

K
.

Thus we have

min {(1 − R)β−1, (1 − r)β−1}(1 − (r/R)K)
RK

K
≤ BrR(K,β)

≤ max {(1 − R)β−1, (1 − r)β−1}(1 − (r/R)K)
RK

K
,

from which the lemma follows since 1/2 < 1 − (r/R)K < 1 holds for large
K.

Lemma 5.2. Let 0 ≤ r < R < 1 and let WrR be the characteristic
function for the set {w = |w|eiθ ∈ D|r ≤ |w| ≤ R}. Then we have

lim
k→∞

log γnk(WrR)
2k log R

= 1.

Proof. By Lemma 4.2 with V = WrR, we have

γnk(WrR) =
n∑

l,m=0

Cml(k)
∫ 1

0

tk+m+l(1 − t)βn+2n−m−l−1WrR(
√

t)dt(5.1)

=
n∑

l,m=0

Cml(k)Br2R2(k + m + l + 1, βn + 2n − m − l),



� �

�

�

�

�

452 Shin-ichi Shirai

where we set

Cml(k)

= 4πCnk(−1)m+l

(
n

m

)(
n

l

)
Γ(βn + n + 1)2

Γ(βn + n − m + 1)
Γ(k + 1)2

Γ(βn + n − l + 1)
×

× 1
Γ(k + 1 + m)Γ(k + 1 + l)

=

(−1)m+lβn

(
n

m

)(
n

l

)
Γ(βn + n + 1)

Γ(n + 1)Γ(βn + n − m + 1)Γ(βn + n − l + 1)
Γ(k+βn+n+1)Γ(k+n+1)

Γ(k+1+m)Γ(k+l+1)
.

In the rest of the proof, we denote by
∑′ the summation over l,m satisfying

0 ≤ l ≤ n, 0 ≤ m ≤ n and l + m ≥ 1. It follows from (5.1) that

log γnk(WrR)(5.2)

= log
[
C00(k)Br2R2(k + 1, βn + 2n)×

×
(

1 +
∑ ′ Cml(k)Br2R2(k + m + l + 1, βn + 2n − m − l)

C00(k)Br2R2(k + 1, βn + 2n)

)]
= log C00(k) + log Br2R2(k + 1, βn + 2n) +

+ log
(

1 +
∑ ′ Cml(k)Br2R2(k + m + l + 1, βn + 2n − m − l)

C00(k)Br2R2(k + 1, βn + 2n)

)
.

By Lemma 2.1 (iii), there exists Cn > 0, independent of k, such that

lim
k→∞

k−(βn+2n)C00(k) =
βn

Γ(n + 1)Γ(βn + n + 1)
,(5.3)

|Cml(k)| ≤ Cnkβn+2n−m−l

hold for large k. By Lemma 5.1 and (5.3), we have, for large k > 0,∣∣∣∣∑ ′ Cml(k)Br2R2(k + m + l + 1, βn + 2n − m − l)
C00(k)Br2R2(k + 1, βn + 2n)

∣∣∣∣(5.4)

≤ Cr,R,βn

∑ ′ kβn+2n−m−l

kβn+2n

R2(k+m+l+1)

k + m + l + 1
k + 1

R2(k+1)

≤ C ′
r,R,βn

∑ ′ k−m−l

≤ C ′′
r,R,βn

k−1

for some positive constants Cr,R,βn
, C ′

r,R,βn
, C ′′

r,R,βn
, independent of k, where

we used the fact that the sum is finite (l,m ≤ n) in the last inequality. Then it
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follows from (5.2) and (5.4) that the rhs of (5.2) is equal to 2k log R + O(log k)
as k → ∞, since (5.3) and Lemma 5.1 imply that

log C00(k) = O(log k),

log Br2R2(k + n, βn + 2n) = 2k log R + O(log k)

as k → ∞, respectively. This proves the lemma.

§6. Proof of Theorem 1.1

Let Vε(w) = (1 − |w|2)ε as in Section 4 and let WrR be the function
as in the previous section. To the end of the paper, we identify any objects
(e.g., function, point) on H with the corresponding ones on D, via the Cayley
transform A, stated just after Theorem 1.2 and in Section 3.

As we remarked just after Theorem 1.2, it is enough to show in the case
of z0 =

√−1, and the condition (V)ε implies that, for any δ > 0 small enough,
there exists R > 0 such that

(1 − δ)C ′
V Vε(w) ≤ V (w) ≤ (1 + δ)C ′

V Vε(w)

holds for any w ∈ D with |w| ≥ R. Here, we set C ′
V = 4−εCV . Thus there

exists M > 0 such that

(1 − δ)C ′
V Vε(w) − MW0R(w) ≤ V (w) ≤ (1 + δ)C ′

V Vε(w) + MW0R(w)(6.1)

holds for all w ∈ D.
By Lemma 3.3, we have

N(En + E < H(V ) < E′)(6.2)

≥ N((1 − δ)PnV Pn > E) + O(1)

≥ N((1 − δ)Pn((1 − δ)C ′
V Vε − MW0R)Pn > E) + O(1),

as E ↘ 0, where we used the lower half of (6.1) in the second inequality.
Similarly, we have

N(En + E < H(V ) < E′)(6.3)

≤ N((1 + δ)Pn((1 + δ)C ′
V Vε + MW0R)Pn > E) + O(1)

as E ↘ 0. Because of the spherical symmetry of Vε and W0R, using Lemma
3.4, we have

N((1 ∓ δ)Pn((1 ∓ δ)C ′
V Vε ∓ MW0R)Pn > E)(6.4)

= �{k|(1 ∓ δ)[((1 ∓ δ)C ′
V γnk(Vε) ∓ Mγnk(W0R))] > E},
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where γkn(·) is as in (4.1) and � denotes the cardinality of the set. By Lemmas
4.3 and 5.2, for any δ > 0, there exists kδ > 0 such that

(1 − δ)[((1 − δ)C ′
V γnk(Vε) − Mγnk(W0R))](6.5)

≥ (1 − 2δ)(1 − δ)C ′
V γnk(Vε)

≥ (1 − 3δ)(1 − δ)C ′
V Θn(ε)k−ε

for all k ≥ kδ (we take δ small enough). Similarly, we have, for any δ > 0,

(1 + δ)[((1 + δ)C ′
V γnk(Vε) + Mγnk(W0R))](6.6)

≤ (1 + 2δ)(1 + δ)C ′
V γnk(Vε)

≤ (1 + 2δ)(1 + δ)C ′
V Θn(ε)k−ε.

Then it follows from (6.2)–(6.6) that

((1 − 2δ)(1 − δ)C ′
V Θn(ε)/E)1/ε + O(1)

≤ N(En + E < H(V ) < E′)

≤ ((1 + 3δ)(1 + δ)C ′
V Θn(ε)/E)1/ε + O(1)

as E ↘ 0. The arbitrariness of δ completes the proof.

§7. Proof of Theorem 1.2

As we remarked just after Theorem 1.2, it is enough to show in the case
of z0 =

√−1.

Lemma 7.1. Let WrR be as in Lemma 5.2 and let C > 0. Then we
have, as E ↘ 0,

N(En + E < H(CWrR) < E′) =
∣∣∣∣ log E

2 log R

∣∣∣∣ (1 + o(1)).

Proof. By Lemma 3.3, we have, for any δ > 0 small enough,

N((1 − δ)PnWrRPn > E/C) + O(1)≤N(En + E < H(CWrR) < E′)(7.1)

≤N((1 + δ)PnWrRPn > E/C).

By Lemma 3.4 with V = WrR, we have

N((1 ± δ)PnWrRPn > E/C) = � {k| γnk(WrR) > E/C(1 ± δ)}(7.2)

= � {k| log γnk(WrR) > log [E/C(1 ± δ)]}.
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By Lemma 5.2, we have, for large k > 0,

(1 + δ) log R2k ≤ log γnk(WrR) ≤ (1 − δ) log R2k,

from which we have

� {k| (1 + δ) log R2k > log [E/C(1 ± δ)]}(7.3)

≤ the rhs of (7.2)

≤ � {k| (1 − δ) log R2k > log [E/C(1 ± δ)]}.

On the other hand, we have

� {k| (1 ± δ) log R2k > log [E/C(1 ∓ δ)]}(7.4)

= � {k| k <
| log [E/C(1 ∓ δ)]|

(1 ± δ)| log R2| }

=
1

1 ± δ

∣∣∣∣ log E

log R2

∣∣∣∣+ O(1)

as E ↘ 0. The result follows from (7.1)–(7.4) since δ > 0 is arbitrary.

We note that

{w ∈ D|r ≤ |w| ≤ R}= {w ∈ D| log (1 + r)/(1 − r)

≤ d(0, w) ≤ log (1 + R)/(1 − R)}

and WrR = FT,t,
√−1 with t = log (1 + r)/(1 − r), T = log (1 + R)/(1 − R)

(equivalently, with r = tanh (t/2), R = tanh (T/2)).
Assume that V satisfies 0 ≤ V ≤ cFT,0,

√−1, equivalently, 0 ≤ V ≤
cW0,tanh (T/2). Then it follows from Lemma 7.1 and the standard min-max
argument for PnV Pn and Pn(cWrR)Pn that

lim sup
E↘0

N(En + E < H(V ) < E′)/| log E| ≤ 1/| log R2|

= 1/| log (tanh2 (T/2))|.

Then the assertion (i) in Theorem 1.2 follows. The assertions (ii) and (iii) in
Theorem 1.2 follow similarly in the case of z0 =

√−1. This completes the
proof.
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J. Math. Phys., 44 (2003), 89-106.

[K-L] Kim, S. and Lee, C., Supersymmetry-based approach to quantum particle
dynamics on a curved surface with non-zero magnetic field, Ann. Physics, 296
(2002), 390-405.

[Leb] Lebedev, N. N., Special functions and their applications, Dover Publ. Inc.,
New York, 1990.

[M-R] Melgaard, M. and Rozenblum, G., Eigenvalue asymptotics for even-dimensional
perturbed Dirac and Schrödinger operators with constant magnetic fields,
Comm. Partial Differ. Equations, 28 (2003), 697-736.

[Roe] Roelcke, W., Das Eigenwertproblem der automorphen Formen in der hyper-
bolischen Ebene, I, Math. Ann., 167 (1966), 292-337.

[Rai] Raikov, G.D., Eigenvalue asymptotics for the Schrödinger operator with homo-
geneous magnetic potential and decreasing electric potential I. Behaviour near
the essential spectrum tips, Comm. in P.D.E., 15 (1990), 407-434.

[Rai2] , Border-line eigenvalue asymptotics for the Schrödinger operator with
electromagnetic potential, Integral Eq. Operator Theory, 14 (1991), 875-888.

[R-W] Raikov, G.D. and Warzel, S., Quasi-classical versus non-classical spectral
asymptotics for magnetic Schrödinger operators with decreasing potentials,
Rev. Math. Phys., 14 (2002), 1051-1072.



� �

�

�

�

�

Eigenvalue Asymptotics 457

[R-S] Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Vol. I–IV,
Academic Press, New York, 1978.

[S-H] Saad, N. and Hall, R.L., Integrals containing confluent hypergeometric func-
tions with applications to perturbed singular potentials, J. Phys. A., 36 (2003),
7771-7788.

[Sla] Slater, L.J., Generalized hypergeometric functions, Cambridge Univ. Press,
1966.


