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Abstract

For a Banach space E with Schauder basis, we prove that the n fold symmetric
tensor product ⊗̂n

µ, sE has a Schauder basis for all symmetric uniform crossnorms
µ. This is done by modifying the square ordering on N

n and showing that the new
ordering gives tensor product bases in both ⊗̂n

µE and ⊗̂n
µ, sE.

The main purpose of this article is to prove that the n-fold symmetric
tensor product of a (real or complex) Banach space E has a Schauder basis
whenever E does. The result was stated without proof in Ryan’s thesis [11]
and has been constantly referred to in the literature. In the particular case of a
shrinking Schauder basis for a complex Banach space E, an implicit proof was
given by Dimant and Dineen [2]. The existence of a basis for the full tensor
product was proved by Gelbaum and Gil de Lamadrid [7] who also showed that
the unconditionality of the basis for E does not necessarily imply the same
property for the tensor product basis. This was taken further by Kwapień and
Pe�lczyński [8] who treated this issue in the context of spaces of matrices and
by Pisier [9] and Schütt [12]. The dual problem, whether the monomials are
a basis in the space of homogeneous polynomials, was dealt with by Dimant
in her thesis [1], as well as in two other articles, together with Dineen [2] and
Zalduendo [3]. The unconditionality (or lack thereof) of the monomial basis
was extensively analysed by Defant, Dı́az, Garcia and Maestre [4].
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§1. Preliminaries

Let E and F be (real or complex) Banach spaces and let E ⊗ F be their
tensor product. A norm µ on E ⊗ F is said to be a reasonable crossnorm on
E ⊗ F if

1. µ(x⊗ y) ≤ ‖x‖ ‖y‖ for every x ∈ E and y ∈ F
2. for every ϕ ∈ E∗ and ψ ∈ F ∗, the linear functional ϕ ⊗ ψ on E ⊗µ F is

bounded and ‖ϕ⊗ ψ‖ ≤ ‖ϕ‖ ‖ψ‖.

The projective and the injective norms π and ε satisfy these conditions
and it can be shown that a norm µ on E ⊗ F is a reasonable crossnorm if and
only if ε(u) ≤ µ(u) ≤ π(u) for every u ∈ E ⊗ F (see [5], [10] for details).

A uniform crossnorm is an assignment to each pair E and F of Banach
spaces of a reasonable crossnorm on E ⊗ F which behaves well with respect to
the formation of tensor product of operators, in the sense that if S : E → X

and T : F → Y are bounded linear operators then S ⊗ T : E ⊗ F → X ⊗ Y ,
defined by S⊗T (x⊗y) = Sx⊗Ty, is bounded and ‖S ⊗ T‖ ≤ ‖S‖ ‖T‖. In what
follows we work with a uniform crossnorm µ and with E⊗̂µF , the completion
of E ⊗ F in this norm.

Let N be the set of nonnegative integers. A sequence {ei}i∈N
is a Schauder

basis for the normed space E if every element x of E can be uniquely represented
as x =

∑
i∈N

xiei. If the convergence of the series is unconditional for all x then
the basis is called unconditional. It is well known that {ei}i∈N

is a Schauder
basis if and only if span{ei} = E and {ei}i∈N

is a basic sequence: there exists a
constant C such that ‖∑n

i=1 aiei‖ ≤ C
∥∥ ∑n+p

i=1 aiei

∥∥ for all natural numbers n, p
and every set of scalars {ai}i∈N

. This amounts to saying that the projections
Pn(

∑
i∈N

xiei) =
∑n

i=1 xiei of E on the span of the first n basis vectors satisfy
‖Pn‖ ≤ C for all n. The smallest of such constants C is called the basis constant
of {ei}i∈N

. The linear functionals e∗k(
∑

i∈N
xiei) = xk are bounded and {e∗k}k∈N

is a basic sequence in E∗.
If {ei}i∈N

and {fj}j∈N
are Schauder bases for E and F respectively, a

natural question is: does the space E⊗̂µF have a Schauder basis? Since µ is a
reasonable crossnorm, it is clear that span{ei⊗fj}(i,j)∈N×N = E⊗̂µF . The only
thing needed then is an order on N×N with respect to which {ei⊗fj}(i,j)∈N×N

is a basic sequence.
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If we arrange {ei ⊗ fj}(i,j)∈N×N in a matrix, one classical way of ordering
them is the so called diagonal ordering:

e1 ⊗ f1→ e1 ⊗ f2 e1 ⊗ f3→ e1 ⊗ f4
↙ ↗ ↙

e2 ⊗ f1 e2 ⊗ f2 e2 ⊗ f3 · · ·
↓ ↗ ↙

e3 ⊗ f1 e3 ⊗ f2
↙

e4 ⊗ f1 · · ·

Among the set of all projections we encounter the main triangle projections

Tn(u) =
∑

i+j≤n+1

aijei ⊗ fj

for u =
∑

i,j aijei ⊗ fj , a finite linear combination of tensors of the form ei ⊗
fj . Kwapień and Pe�lczyński [8] proved that for E = �p and F = �q with
1/p + 1/q ≥ 1 and the injective norm ε, the projections Tn are unbounded,
since ‖Tn‖ ≥ C(p, q) lnn. Therefore the diagonal ordering will not give a basic
sequence.

Nevertheless, it is possible to order {ei⊗fj}(i,j)∈N×N in a satisfactory way.
Gelbaum and Gil de Lamadrid [7] introduced the square ordering illustrated in
the diagram below

e1 ⊗ f1→ e1 ⊗ f2 e1 ⊗ f3 e1 ⊗ f4
↓ ↓ ↓

e2 ⊗ f1← e2 ⊗ f2 e2 ⊗ f3 e2 ⊗ f4
↓ ↓

e3 ⊗ f1← e3 ⊗ f2← e3 ⊗ f3 e3 ⊗ f4
↓

· · · ← e4 ⊗ f3← e4 ⊗ f4
Their proofs also work with the following slightly modified ordering in which
the role of rows and columns is reversed: e1 ⊗ f1, e2 ⊗ f1, e2 ⊗ f2, e1 ⊗ f2,
e3 ⊗ f1, . . ., and to which we will refer to as the square ordering. They proved
that this ordering gives rise to a basic sequence. Let P(i,j) be the projection
on the linear span of the first (i, j) basis vectors with respect to the square
ordering on N × N. These projections are uniformly bounded; if C and D are
the basis constants for E and F , then the tensor product basis has a basis
constant at most 5CD.
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The square ordering can be extended recursively to tensor products of any
number of spaces, since the tensor product is associative and so E⊗F ⊗G may
be identified with (E ⊗ F )⊗G.

When E = F we can consider the symmetric tensor product E⊗̂µ,sE as
a subspace of the full tensor product E⊗̂µE. In general the n-fold symmetric
tensor product ⊗̂n

sE is defined as S(⊗̂n
E), where

S(x1 ⊗ · · · ⊗ xn) =
1
n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n),

Sn being the group of permutations of the set {1, . . . , n}. It is reasonable to
expect that the corresponding square ordering

e1 ⊗ e1
e2 ⊗s e1→ e2 ⊗ e2
e3 ⊗s e1→ e3 ⊗s e2→ e3 ⊗ e3
e4 ⊗s e1→ e4 ⊗s e2→ e4 ⊗s e3→ · · ·

will make {ei ⊗s ej}j≤i a Schauder basis for E⊗̂µ,sE. Ryan stated this in his
thesis [11] but it was not actually proved. Given the fact that the symmetric
tensor product is not defined recursively, one difficulty one might expect to
encounter is how to describe this ordering in the case of ⊗̂n

µ,sE. Therefore it
seems more natural to obtain it from the ordering we already have in the full
tensor product ⊗̂n

µE, in which case one might expect that the corresponding
projections in the two spaces will be related. Let us see what happens for n = 2.
For a finite linear combination u =

∑
j≤i aijei ⊗s ej put

Π(m,n)(u) =
∑

(i,j)≤(m,n)
j≤i

aijei ⊗s ej .

We have, for example

Π(3,1)(u) =
∑

(i,j)≤(3,1)
j≤i

aijei ⊗s ej = P(3,1)u+
1
2
a31e1 ⊗ e3.

The greater the index (m,n) will be, the more terms the difference between the
two projections will contain, so the more difficult will be to show that Π(m,n)

are uniformly bounded. Nevertheless, it is hard to imagine that the ordering
described above will not give a basic sequence. In fact this has been proved, for
the projective norm, via the dual space of ⊗̂n

π,sE, for a complex Banach space
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E by Dimant and Dineen [2]. Our goal is to give a proof that works for both
real and complex spaces and uses only tensors.

§2. A Different Ordering

In the sequel, for every positive integer n, we will call an element of N
n an

n-multi-index.
The reason why there was a difference between Π(3,1) and P(3,1) is that in

the square ordering, between e1⊗ e3 and e3⊗ e1 we come across other tensors:
e3⊗ e2, e3⊗ e3 and e2⊗ e3. We circumvent this by introducing a new ordering,
under which the permutations of the same multi-index stay together.

If α is an n-multi-index, we denote by αd the multi-index obtained by
arranging the elements of α in decreasing order. If α and β are two decreasing
multi-indices, we say that α < β if α1 = maxα < β1 = maxβ or α1 = β1 and
(α2, α3, . . . , αn) < (β2, β3, . . . , βn) .

Now if α and β are arbitrary we say that α < β if

1. αd < βd or

2. αd = βd, case in which α is a permutation of β, and the greater of the
two will be the index for which maxα = maxβ appears earlier. If maxα
appears in the same position for both of the multi-indices, we eliminate it
and compare the remaining (n− 1)-multi-indices.

When n = 3 the order is

(1, 1, 1) < (1, 1, 2) < (1, 2, 1) < (2, 1, 1) < (1, 2, 2) < (2, 1, 2) < (2, 2, 1)

< (2, 2, 2) < (1, 1, 3) < (1, 3, 1) < (3, 1, 1) < (1, 2, 3) < (2, 1, 3) < (1, 3, 2)

< (2, 3, 1) < (3, 1, 2) < (3, 2, 1) < (2, 2, 3) < (2, 3, 2) < (3, 2, 2) < (1, 3, 3) . . .

It is easy to check that this is a total order.

§3. Main Results

In what follows we will write eα = eα1 ⊗ eα2 ⊗ · · · ⊗ eαn
for every n-

multi-index α. Let Pn
α : ⊗̂n

µE → ⊗̂n
µE be the projection of ⊗̂n

µE on the linear
span of the first α basis vectors with respect to the ordering of N

n defined
above. For a positive integer k, the operator e∗k ⊗ ek : E → E is defined by
e∗k ⊗ ek

(∑
i∈N

xiei

)
= xkek.
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For a permutation σ in Sn let us put (x1 ⊗ · · · ⊗ xn)σ = xσ(1)⊗· · ·⊗xσ(n)

and extend it by linearity and continuity to the whole of ⊗̂n
µE. There exist

norms, called symmetric [5], such as π and ε, for which µ(uσ) = µ(u) for all
tensors u and all σ in Sn. Nevertheless, this does not happen in general, for
instance the Chevet-Saphar norms dp and gp do not have this property (see
[10] for details).

Proposition. Let E be a Banach space with Schauder basis {ei}i∈N
and µ

a symmetric uniform crossnorm. Then the sequence {eα}α∈Nn with the ordering
defined above is a Schauder basis for ⊗̂n

µE.

Proof. Obviously span{eα}α∈Nn = ⊗̂n
µE. Therefore we need to show that

{eα}α∈Nn is a basic sequence. We will prove it by induction. Let C1 be the
basis constant of {ei}i∈N

.
Let n = 2. If α = (k, k) then P 2

α = P 1
k ⊗ P 1

k and so
∥∥P 2

α

∥∥ ≤ C2
1 . Now let

(k, k) < α < (k + 1, k + 1). If α = (l, k + 1) then

P 2
α = P 2

(k,k) + P 1
l ⊗ (e∗k+1 ⊗ ek+1) + (e∗k+1 ⊗ ek+1)⊗ P 1

l−1

and if α = (k + 1, l) then

P 2
α = P 2

(k,k) + P 1
l ⊗ (e∗k+1 ⊗ ek+1) + (e∗k+1 ⊗ ek+1)⊗ P 1

l .

In both cases we obtain
∥∥P 2

α

∥∥ ≤ C2
1 + 2C2

1 + 2C2
1 = 5C2

1 ,

therefore the projections are uniformly bounded and so the basis constant for
⊗̂2

µE is C2 ≤ 5C2
1 .

We suppose now that the result is true for all natural numbers less than
n− 1 and we prove it for n. As above, if α = (k, k, . . . k) then Pn

α = ⊗nP 1
k and

so ‖Pn
α ‖ ≤ Cn

1 . Now let (k, k, . . . , k) < α < (k + 1, k + 1, . . . , k + 1) . We shall
find an uniform bound for ‖Pn

α ‖ moving along step by step, depending on the
number of (k + 1)’s that appear in α.

Suppose that α contains only one k + 1 and that it appears in the last
position. Then α = (α1, . . . , αn−1, k + 1) and

Pn
α = Pn

(k,k,...,k)

+
∑

(k,k,...,k)<β≤(α1,...αn−1,k+1)

(e∗β1
⊗eβ1)⊗· · ·⊗(e∗βn−1

⊗ eβn−1)⊗ (e∗βn
⊗ eβn

).

Now, unless α1 = α2 = . . . = αn−1 = 1, there are multi-indices that contain
k+ 1 on one of the (n−1)th, . . . , 1st positions and are less than α. Consider all
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the multi-indices β that are less than α and contain k+1 on the nth position and
sum the corresponding terms in the expression above. We obtain Pn−1

(α1,...αn−1)
⊗

(e∗k+1 ⊗ ek+1). Now consider all the multi-indices that are less than α and
contain k + 1 on the (n − 1)th position. Because the ordering we are using
is total, there exists a γ in N

n−1 such that (γ1, . . . , γn−2, k + 1, γn−1) is their
maximum. Summing the corresponding terms in the expression of Pn

α we obtain

(∑
(e∗β1
⊗ eβ1)⊗ · · · ⊗ (e∗k+1 ⊗ ek+1)⊗ (e∗βn

⊗ eβn
)
)

(u)

=





∑

δ≤γ

(e∗δ1
⊗ eδ1)⊗ · · · ⊗ (e∗δn−1

⊗ eδn−1)⊗ (e∗k+1 ⊗ ek+1)


 (uσ)




σ−1

=
(
Pn−1

γ ⊗ (e∗k+1 ⊗ ek+1)(uσ)
)σ−1

where σ is the transposition that takes n to n − 1. Since µ(uσ) = µ(u) for all
u in ⊗̂n

µE, we have

∥∥∥∑
(e∗β1
⊗ eβ1)⊗ · · · ⊗ (e∗k+1 ⊗ ek+1)⊗ (e∗βn

⊗ eβn
)
∥∥∥

=
∥∥Pn−1

γ ⊗ (e∗k+1 ⊗ ek+1)
∥∥ ≤ Cn−1(2C1)

with Cn−1 the basis constant for ⊗̂n−1
E. Repeating the same procedure n− 2

more times we obtain

‖Pn
α ‖ ≤ Cn

1 + nCn−1(2C1).

It is clear now that the same argument can be applied to all multi-indices that
contain only one k + 1 in any position, not necessarily the last.

The same technique can be used for all α that contain l entries equal to
k + 1, where 1 ≤ l ≤ n− 1. There are

(
n
l

)
possibilities to place those (k + 1)’s

among the n entries of α. If we fix one of these
(
n
l

)
arrangements and we sum

the corresponding terms, we obtain, for an (n− l)-multi-index γ, the operator(
Pn−l

γ ⊗ (e∗k+1 ⊗ ek+1)l
)σ−1

with σ the permutation that takes the positions
where the (k+1)’s appear in α to (n− l + 1, . . . , n). The norm of each of these
operators is bounded by Cn−l(2C1)l. To obtain an upper bound for ‖Pn

α ‖ we
have to keep in mind that all the n multi-indices that contain strictly less than
l entries equal to k + 1 are less than α. Therefore

‖Pn
α ‖ ≤ Cn

1 + nCn−1(2C1) + · · ·+
(

n

l − 1

)
Cn−l+1(2C1)l−1 +

(
n

l

)
Cn−l(2C1)l.
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Continuing in the same manner until l = n− 1, we get

‖Pn
α ‖ ≤

n−1∑
l=0

(
n

l

)
Cn−l(2C1)l

for all (k, k, . . . , k) < α < (k + 1, k + 1, . . . , k + 1) and for all k, which shows
that {Pn

α }α∈Nn is uniformly bounded and thus the sequence {eα}α∈Nn with
the ordering defined above is a basic sequence, therefore a Schauder basis for
⊗̂n

µE.

Remark 1. The proof also shows that Cn ≤
∑n−1

l=0

(
n
l

)
Cn−l(2C1)l.

Let us denote by N
n
d the set of decreasing n-multi-indices: {α ∈ N

n : α1 ≥
α2 ≥ . . . αn}. Note that the restriction to N

n
d of the ordering we are working

with is the same as the square ordering for N
n
d , as explained in [6]. For an α in

N
n
d , let Πn

α : ⊗̂n
µ,sE → ⊗̂n

µ,sE be the projection of ⊗̂n
µ,sE on the linear span of

the first α basis vectors with respect to the ordering of N
n
d in question.

Theorem. Let E be a Banach space with Schauder basis {ei}i∈N
and µ a

symmetric uniform crossnorm. Then the sequence {eα1⊗seα2⊗s· · ·⊗seαn
}α∈Nn

d

with the square ordering is a Schauder basis for ⊗̂n
µ,sE.

Proof. As in the previous proposition, it suffices to show that {eα1 ⊗s

eα2⊗s · · ·⊗seαn
}α∈Nn

d
is a basic sequence, that is there exists a positive constant

C such that µ(Πn
αu) ≤ Cµ(Πn

βu) for every α ≤ β in N
n
d and u in ⊗̂n

µ,sE.
Fix two decreasing multindices α and β with α ≤ β. It is enough to prove

the above inequality for tensors u that are finite linear combinations in ⊗̂n
µ,sE

of terms corresponding to indices no greater than β, in which case Πn
βu = u.

We have

Πn
αu=

∑
γ∈N

n
d

γ≤α

uγ1...γn
eγ1 ⊗s · · · ⊗s eγn

=
∑
γ∈N

n
d

γ≤α

∑
σ∈Sn

1
n!
uγ1...γn

eγσ(1) ⊗ · · · ⊗ eγσ(n) .

For γ ≤ α and σ ∈ Sn, we have, by the definition of our ordering on N
n,(

γσ(1), γσ(2), . . . , γσ(n)

) ≤ (γ1, γ2, . . . , γn) ≤ α. On the other hand, if δ is a
multi-index in N

n and δ ≤ α then δd ≤ αd = α. Let τ be the permutation that
takes δd to δ. Then eδ = eδ1 ⊗ · · · ⊗ eδn

= e(δd)τ(1)
⊗ · · · ⊗ e(δd)τ(n)

and so all



� �

�

�

�

�

Bases for Symmetric Tensors 467

the terms less than α of which u is a linear combination in ⊗n
µE appear in the

above sum. Therefore
Πn

αu = Pn
αu

and
µ(Πn

αu) = µ(Pn
αu) ≤ Cnµ(u) = Cnµ(Πn

βu)

which shows that {eα1 ⊗s eα2 ⊗s · · · ⊗s eαn
}α∈Nn

d
is a basic sequence with basis

constant no greater that Cn, the basis constant for ⊗̂n
µE.

In the case when µ = π, the projective norm, we have
(⊗̂n

πE
)∗

= Ls(nE),
the space of symmetric n-linear forms on E with the usual sup norm. By
the polarization formula [6], Ls(nE) is isomorphic to P(nE), the space of
n-homogeneous polynomials on E with the sup norm. For an α in N

n
d , the

functional (eα1 ⊗s eα2 ⊗s · · · ⊗s eαn
)∗ belongs to Ls(nE) and

(eα1 ⊗s eα2 ⊗s · · · ⊗s eαn
)∗(x1, . . . , xn)

= (eα1 ⊗s eα2 ⊗s · · · ⊗s eαn
)∗(x1 ⊗s · · · ⊗s xn)

= n!(e∗α1
⊗s e

∗
α2
⊗s · · · ⊗s e

∗
αn

)(x1 ⊗s · · · ⊗s xn).

Thus the sequence {e∗α1
⊗s e

∗
α2
⊗s · · ·⊗s e

∗
αn
}α∈Nn

d
is a basic sequence in Ls(nE),

and so is {xα}α∈Nn
d
, with xα = xα1xα2 · · ·xαn

, in P(nE). The polynomials xα

are called the monomials of degree n. Therefore the monomials will form a
basis for their closed linear span. If n = 1 then this closed linear span is the
whole of P(1E) = E∗ if and only if the basis {ei}i∈N

is shrinking, in which case
the closed linear span of the monomials of degree n is Pw(nE), the space of
n-homogeneous polynomials that are weakly continuous on bounded sets. Thus
we have the following

Corollary. If the (real or complex) Banach space E has a shrinking
Schauder basis then the monomials of degree n with the square ordering of N

n
d

form a Schauder basis for Pw(nE).

For complex spaces E this result has been proved, in a different way, by
Dimant and Dineen [2]. We note than the corollary and the theorem (for the
projective norm) are equivalent, due to the duality between the bases {eα1 ⊗s

eα2 ⊗s · · · ⊗s eαn
}α∈Nn

d
and {n!e∗α1

⊗s e
∗
α2
⊗s · · · ⊗s e

∗
αn
}α∈Nn

d
.

Remark 2. The antisymmetrization operator A : ⊗nE → ⊗nE is defined
by

A(x1 ⊗ · · · ⊗ xn) =
1
n!

∑
σ∈Sn

sgn(σ)xσ(1) ⊗ · · · ⊗ xσ(n).
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The range of A is called the space of alternating tensors ⊗n
aE = A (⊗nE). We

write
x1 ⊗a · · · ⊗a xn = A(x1 ⊗ · · · ⊗ xn).

Restricting the order defined in section 2 to the set N
n
sd = {α ∈ N

n : α1 > α2 >

. . . > αn}, and copying word for word the proof of the theorem, we obtain that
the sequence {eα1 ⊗a eα2 ⊗a · · · ⊗a eαn

}α∈Nn
sd

is a Schauder basis for ⊗̂n
µ,aE.

Remark 3. In the case of the basis {ei}i∈N
being unconditional, a natural

question seems to be: will the bases {eα}α∈Nn or {eα1⊗s eα2⊗s · · ·⊗s eαn
}α∈Nn

d

be unconditional? It turns out that this is a very strong request. If the ba-
sis {eα}α∈Nn were unconditional then the main triangle projections would be
bounded, which, as we have seen [8], is not true even for “nice” spaces like cer-
tain �p’s. Kwapień and Pe�lczyński also showed that for �2 ⊗ �2, considered as
a space of matrices whose entries are the coordinates of the elements of �2⊗ �2
relative to the basis {e(i,j)}(i,j)∈N2 , endowed with a unitary matrix norm, the
basis is unconditional if and only if the norm in question is equivalent to the
Hilbertian norm on �2 ⊗ �2. Working for tensors product of two spaces E ⊗ F
with a uniform crossnorm, Pisier [9] and Schütt [12] obtained independently
that the tensor product basis is unconditional if and only if E⊗̂µF has the
Gordon-Lewis property. Their results have been extended to n-fold symmetric
and full tensor products by Defant, Dı́az, Garcia and Maestre [4]. Considering
the dual problem, that is the spaces Pw(nE) and P(nE) having unconditional
basis, they narrowed down considerably the list of candidates E with this prop-
erty, showing that it does not happen for any Banach space that contains uni-
formly complemented one of the sequences (�np )n∈N with 1 < p ≤ ∞. Dineen
[6] conjectures that the answer is going to be affirmative “rarely and perhaps
never”.
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